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Abstract The paper describes the use of active

structures technology for deformation and nonlinear

free vibrations control of a simply supported curved

beam with upper and lower surface-bonded piezo-

electric layers, when the curvature is a result of the

electric field application. Each of the active layers

behaves as a single actuator, but simultaneously the

whole system may be treated as a piezoelectric

composite bender. Controlled application of the

voltage across piezoelectric layers leads to elongation

of one layer and to shortening of another one, which

results in the beam deflection. Both the Euler–

Bernoulli and von Karman moderately large defor-

mation theories are the basis for derivation of the

nonlinear equations of motion. Approximate

analytical solutions are found by using the Lindst-

edt–Poincaré method which belongs to perturbation

techniques. The method makes possible to decompose

the governing equations into a pair of differential

equations for the static deflection and a set of

differential equations for the transversal vibration of

the beam. The static response of the system under the

electric field is investigated initially. Then, the free

vibrations of such deformed sandwich beams are

studied to prove that statically pre-stressed beams

have higher natural frequencies in regard to the

straight ones and that this effect is stronger for the

lower eigenfrequencies. The numerical analysis pro-

vides also a spectrum of the amplitude-dependent

nonlinear frequencies and mode shapes for different

geometrical configurations. It is demonstrated that the

amplitude–frequency relation, which is of the hard-

ening type for straight beams, may change from hard

to soft for deformed beams, as it happens for the

symmetric vibration modes. The hardening-type non-

linear behaviour is exhibited for the antisymmetric

vibration modes, independently from the system

stiffness and dimensions.
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1 Introduction

Large deflection and large amplitude vibration prob-

lems of thin structures such as beams, plates and shells

have received attention of several authors. It is well

known that the description of dynamic behaviour of

such structures should include effects of geometrically

nonlinear deformation. Modal analysis with large

displacement effects is governed by using nonlinear

differential equations which do not have exact solu-

tions. Such problems are solved numerically or by

using an iterative series of linear approximations. The

approximation approaches and especially methods of

perturbations were vastly reported by Nayfeh in his

book [1]. Awrejcewicz and Krysko [2] investigated

not only geometrical, but also physical and material

nonlinear properties with thermoelastic features to

achieve the most accurate description of a real

behaviour of thin structural members within the

dynamical systems theory. A very early work of

Woinowsky–Krieger [3] concerning free oscillations

of a simply supported beam is treated as a source of the

basic results for comparison with those obtained by

using different mathematical models. Azrar et al. [4]

proposed a semi-analytical approach, based on the

harmonic balance method, applied to free vibrations of

beams with different supports preventing longitudinal

displacements. Furthermore, the improvement in the

solution based on the Padè approximants was also

presented. The variety of results based on the exact

solution and, additionally, by using a different number

of terms for power-series expansions of the exact

solution were compared with those reported in the

literature.

Many slender elastic structures in engineering

applications are prone to large static bending defor-

mation inducing structural nonlinearities and thus

leading to nonlinear vibration phenomena. Therefore,

the nonlinear vibrations of structural elements with

initial deflection, as e.g. curved beams, have been

considered over the last two decades. Hughes and Bert

[5] studied the nonlinear vibrations of statically

deflected simply supported beams. The authors proved

that due to the stiffening effect of the induced axial

tension force, the geometrically nonlinear beam

loaded by its own weight had the greater linear

fundamental natural frequency at small amplitude than

that of the linear beam. Dependently on the length to

the radius of gyration ratio, both softening and

hardening effects in the frequency–amplitude rela-

tionship occurred. The nonlinear vibrations of a

slightly curved beam having arbitrary rising function

and restricted in axial direction by elastic supports

were examined by Sarigül [6]. The beam, resting on

the Winkler foundation, was carrying an arbitrarily

placed concentrated mass. The natural frequencies for

different control parameters such as the concentrated

mass location and the elastic foundation coefficient

were presented and discussed. Analysis of the fre-

quency–amplitude curves led to a conclusion that the

slide and fixed supports had some raising effects on the

nonlinear frequencies, but the simple supporting cases

tended to reduce the frequencies. Lacarbonara et al. [7]

analysed the nonlinear planar vibrations of a clamped–

clamped buckled beam about its first post-buckling

configuration by using approximate solutions based on

the method of multiple scales discretized via the

Galerkin procedure. The authors performed an exper-

iment to obtain frequency–response curves for the

directly excited first mode, the results of which were in

a good agreement with those obtained with the direct

approach and in disagreement with those obtained

with the single-mode discretization approach. Ye et al.

[8] investigated the nonlinear transverse vibrations of

a slightly curved beam with nonlinear boundary

conditions. It was concluded that the linear frequency

and vibration modes of the beam, as well as the

nonlinear response, were highly sensitive to the initial

curvature and to the linear and nonlinear boundary

conditions. An increase in the curvature changed the

characteristics of the nonlinear vibrations gradually,

exhibiting hardening-type behaviour only to coexis-

tence of both softening and hardening features. The

studies concerning the coupled vibration of curved

beams of different geometrical and physical parame-

ters using numerous analytic theories and assumptions

may be found in [9–12]. Chaotic dynamic phenomena

of slender systems with geometrical nonlinearity were

studied in [13–15]. Awrejcewicz et al. examined the

chaotic vibrations of Euler–Bernoulli and Timoshenko

one-layer beams [13] as well as multi-layered beams

[14] under control parameters, i.e. the amplitude and

frequency of an external loading. Different boundary

conditions for beam models were taken into account to

illustrate the nonlinear dynamics phenomena includ-

ing periodicity, bifurcations and chaos. The order of

chaos was quantitatively estimated by using Lyapunov

exponents. Krysko et al. [15] considered the nonlinear
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dynamics of beams made of a material with an

optimized microstructure exhibiting non-homogeneity

in two directions. The dynamic behaviour was illus-

trated for different values of both the material’s

length-dependent parameter and temperature. In par-

ticular, the influence of the scale size parameter on the

chaotic beam dynamics was investigated.

Discovery of piezoelectricity around 1880, i.e. a

phenomenon constituting the relations between

mechanical strains in solids and their resulting elec-

trical behaviour or vice versa, led to enormous

applications of new types of electromechanical sys-

tems by integrating the piezoelectric actuators and

sensors in macro- and micro-scale devices. Piezoelec-

tric active elements are incorporated among others in

beams, plates and shells for shape control purposes

and are also extensively used for active and passive

structural vibration attenuation. A vast literature

overview concerning the vibration control from

macro- to nanoscale systems with the use of piezo-

electric transducers may be found in [16, 17]. The

static and dynamic behaviour of multilayer beam

bending actuators was thoroughly documented by

Ballas [18], who stated that a piezoelectric bending

actuator that consists of given number of layers may be

modelled as a sandwich beam. Dunsch and Breguet

[19] presented a theoretical approach for the static

modelling of different piezoelectric bender actuators

under any lateral loads. The model was established for

a triple-layer sandwich beam. A controlled voltage

application made that one piezoceramic layer was

biased to expand and the other was biased to contract.

Therefore, the beam deflection could be adjusted what

was proved experimentally. A very similar active

buckling control of an imperfection sensitive com-

posite column utilizing piezoceramic actuators was

examined theoretically and experimentally by Thomp-

son and Loughlan [20]. The actuators were surface

bonded at mid-heights on both sides of the column.

Due to material and geometric imperfections, the

axially loaded column without actuation deflected at

high levels. Application of the controlled voltage to

the actuators induced a reactive moment that removed

the lateral deflections and enforced the column to

behave in a perfectly straight manner. Vasques and

Rodrigues [21] numerically investigated vibration

attenuation of a three-layered cantilever piezo-beam

composed of two piezoelectric surface layers and a

metallic core. The authors made a comparison

between classical control strategies and optimal con-

trol strategies in order to investigate their effectiveness

to suppress vibrations. Kerboua et al. [22] considered

an optimal design and location of piezoelectric patches

to passively reduce the transversal vibrations in a

simple cantilever beam. The results proved that the

control efficiency is sensitive to the location of the

piezoceramic patches and the accuracy of the shunt

circuit tuning. The study of the optimal location of

actuators and sensors for active vibration control was

carried out by Kumar and Narayanan [23] for different

boundary conditions of beams such as cantilever,

simply supported and clamped conditions. The active

control of the linear and nonlinear vibrations of

sandwich piezoelectric beams based on a proportional

and derivative feedback potential control, as well as on

a complex nonlinear amplitude equation, was inves-

tigated by Belouettar et al. [24]. The authors presented

analytical relationships of the nonlinear frequency–

amplitude and nonlinear loss factor amplitude and the

adequate results for sandwich beams with various

boundary conditions. Azrar et al. [25] performed a

modal analysis for linear and nonlinear vibrations of

deformed sandwich piezoelectric beams with initial

imperfections. The authors studied the subcritical and

particularly the under critical frequency behaviours

related to deformed beams, showing the transition

from softening to hardening effects for various levels

of active voltage, static response and imperfection

amplitudes.

The vast spectrum of literature on the vibration of

curved beams, rings and arches concerns the structures

free of stress in the initial static equilibrium state. The

stress in those structures arises during vibrations

which is a right assumption for different engineering

applications. Nevertheless, there are structures which

under the static loads yield initial stress directly

affecting their dynamical behaviour, as documented in

[26–30]. Cornil et al. [29] presented a compelling

comparison between an initially straight beam that

was deformed by a static force and a beam with initial

shape identical to the statically deformed beam. The

major difference between these two beams was that

initially deformed beam had internal stresses, while

the naturally curved beam was stress-free. The vibra-

tion characteristics were different as ones were

affected by the initial stresses. Chang and Hodges

[31] stated that the linear theory is adequate for free

vibration analysis of initially curved beams, but when

123

Nonlinear vibrations of a sandwich piezo-beam system under piezoelectric actuation 691



a beam is brought into a state of high curvature by

active loads, one must linearize the equations of

nonlinear theory about the static equilibrium state.

In this paper, static and dynamic responses of a

geometrically nonlinear piezo-beam system with both

ends preventing longitudinal displacements subjected

to bending actuation are discussed. A piezoelectric

sandwich beam in the form of a triple-layer bender

configuration consists of two piezoelectric layers and a

mechanically relevant passive layer in-between. A

controlled voltage application makes that one piezo-

electric layer is stimulated to expand and the other is

stimulated to contract, which makes that the beam

deflection appears. Hence, the electric field when

driving actuators generates also the initial stress and

initial displacement of the whole beam. The effects of

the existing stress caused by the static deformation

and, additionally, by a dynamic tension on the

vibration characteristics are analysed. Due to applica-

tion of the Lindstedt–Poincaré method, the problem is

decoupled into two interrelated issues: determining

equilibrium configuration under static load caused by

piezoelectric actuation and finding the corresponding

free vibration frequency.

2 Problem description

2.1 Structural model

For vibration control of piezoelectric beams, the

actuators may be bonded to or embedded in the

structure. In this work, a simply supported sandwich

beam with a pair of piezoceramic layers of identical

geometrical and material properties perfectly bounded

at the top and bottom surfaces is considered. An elastic

passive layer sandwiched between two external layers

is made of aluminium, as shown in Fig. 1a. An electric

circuit diagram for driving piezoelectric actuators is

presented in Fig. 1b. Since the piezo-layers have the

same polarization, application of the voltages makes

the upper layer expanded, whereas the second one is

contracted and, as a result, the beam deflection appears

associated with an initial static tension. It should be

noted that contemporary piezoceramic materials may

operate at high electric field up to 9.0 kV/mm (see e.g.

NOLIAC [32]). Moreover, some of these materials

indicate linear relationship between the applied elec-

tric field and the strain up to 5.5 kV/mm.

The primary purpose of this work is to explain how

the vibration characteristics of the beam are affected

by the initial stresses and initial curvature. In order to

do so, a curvilinear equilibrium shape of the beam with

a related internal tension must be determined initially.

Then, the effects of the initial curvature and the

tension force on the linear frequency and nonlinear

response of the system will be examined. Since the

considered beam is slender, the Euler–Bernoulli beam

theory is used. The nonlinear kinematics assumptions

include the moderately large deformation of the mid-

plane stretching and transverse deflection that are

defined by using the von Kármán relations.

2.2 Mathematical model

With the assumption that piezoelectric patches are

polarized along z-axis as shown in Fig. 1b, the

problem is formulated with the use of the linear

constitutive piezoelectric relations:

rx ¼ Epe xð Þ � e31V=hp ð1Þ

Dz ¼ e31ex þ n33V=hp ð2Þ

where Ep denotes the Young’s modulus of the

piezoelectric material [N/m2], e(x) is the axial strain,

e31 is the piezoelectric constant [C/m2], V is the

voltage applied to the piezo-element [V], hp is the

piezoelectric layer thickness [m], Dz is the transverse

electric displacement and n33 represents the dielectric

constant coefficient [F/m].

The nonlinear von Karman strain–displacement

relationship and curvature of beams undergoing

moderately large deflections are

e xð Þ ¼ oU x; tð Þ
ox

þ 1

2

oW x; tð Þ
ox

� �2

;

j xð Þ ¼ � o2W x; tð Þ
ox2

ð3Þ

where W(x, t) and U(x, t) are the transversal and axial

displacements, respectively.

Governing equations for the considered system

may be written on the basis of a derivation presented in

[33]. In that study, the Hamilton’s principle was

applied with implementation of Eqs. (1–3) for an n-

segmented Bernoulli–Euler beam with piezoceramic

actuators bonded to its top and bottom surface and

subjected to an external load. Consequently, the
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governing equations for the nonlinear free vibrations

of simply supported initially straight beams with upper

and lower surface-bonded piezoelectric layers are as

follows:

EJ
o4W x; tð Þ

ox4
� S tð Þ o

2W x; tð Þ
ox2

þ qA
o2W x; tð Þ

ot2
¼ 0;

ð4Þ

S tð Þ ¼ EA
oU x; tð Þ

ox
þ 1

2

oW x; tð Þ
ox

� �2
" #

ð5Þ

where EJ ¼ EbJb þ 2EpJp; qA ¼ qbAb þ 2qpAp; EA

¼ EbAb þ 2EpAp, in which EbJb and EpJp denote the

bending stiffness of a beam and piezoceramic layers,

respectively, subscript b indicates the core beam,

whereas p concerns the piezoelectric actuator, J stands

for the area moment of inertia, t is the time, S(t) is the

axial tensile force appearing during system’s static or

dynamic deflection, q is the material density and A is

the cross-sectional area.

The governing equations are associated with

boundary conditions that for the considered beam

with both pinned ends are:

W x; tð Þjx¼0 ¼ W x; tð Þjx¼L¼ 0;
o2W x; tð Þ

ox2

����
x¼0

¼ o2W x; tð Þ
ox2

����
x¼L

¼ �Mp

ð6a � dÞ

In the above boundary conditions, Mp is the

piezoelectric bending moment which initiates the

beam deflection, whose magnitude and direction are a

function of the applied bias voltages V. Assuming that

both piezoelectric layers have the same thickness and

are applied with an equal electric field E = V/hp, the

piezoelectric moment after Preumont [34] may be

given as:

Mp ¼ �b e31 V d ð7Þ

where d is a distance measured between the mid-

planes of piezoelectric layers, as in Fig. 1b, and b is

the common width of the beam and piezoelectric

wafers.

For the generalizations of analysis, the following

non-dimensional quantities are introduced:

n ¼ x

L
; w n; sð Þ ¼ W x; tð Þ

L
; k sð Þ2¼ S tð ÞL2

EbJb þ 2EpJp
;

x2 ¼ X2L4
qbAb þ 2qpAp

EbJb þ 2EpJp
; k ¼

EbAb þ 2EpAp

� �
L2

EbJb þ 2EpJp
;

mp ¼ Mp � L

EbJb þ 2EpJp
; s ¼ Xt

ð8a � gÞ

where L is the total beam length and X is the system

natural frequency.

Substitution of the non-dimensional parameters

into the governing Eqs. (4), (5) and boundary condi-

tions (6a-d) yields

o4w n; sð Þ
on4

� k sð Þ2o
2w n; sð Þ
on2

þ x2 o
2w n; sð Þ
os2

¼ 0;

ð9Þ

Fig. 1 Slender beam with piezo-layers attached to its top and bottom surface a, deflected beam axis after piezoelectric actuation b
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k sð Þ2¼ k
2

Z1

0

ow n; sð Þ
on

� �2

dn ð10Þ

w n; sð Þjn¼0 ¼ w n; sð Þjn¼1¼ 0;
o2w n; sð Þ

on2

����
n¼0

¼ o2w n; sð Þ
on2

����
n¼1

¼ �mp

ð11a � dÞ

2.3 Approximate solution

In order to obtain approximate solutions to the

problem, the Lindstedt–Poincaré method has been

selected, which belongs to perturbation methods

discussed in detail by Nayfeh [1]. According to the

method, the dimensionless transversal displacement,

the axial force parameter and the vibration frequency

are expanded into power series with respect to a small

amplitude parameter e:

w n; sð Þ ¼ w0 nð Þ þ
Xn

j¼1

enwn n; sð Þ þ O enð Þ ð12Þ

k2 ¼ k2
0 þ

Xn

j¼1

enk2
n sð Þ þ O eN

� �
ð13Þ

x2 ¼ x2
0 þ

Xn

j¼1

enx2
n þ O enð Þ ð14Þ

Substituting expansions (12)–(14) into equation of

motion (9) and axial force (10) and then separating all

terms for each order of e, one obtains an infinite

sequence of these equations, from which the first four

pairs are:

O e0
� �

:

d4w0 nð Þ
dn4

� k2
0

d2w0 nð Þ
dn2

¼ 0 ð15aÞ

k2
0 ¼ k

2

Z1

0

dw0 nð Þ
dn

� �2

dn ð15bÞ

O e1
� �

:

o4w1 n; sð Þ
on4

� k2
0

o2w1 n; sð Þ
on2

þ x2
0

o2w1 n; sð Þ
os2

¼ k2
1 sð Þ d2w0 nð Þ

dn2
ð16aÞ

k2
1 sð Þ ¼ k

Z1

0

dw0 nð Þ
dn

� ow1 n; sð Þ
on

dn ð16bÞ

O e2
� �

:

o4w2 n; sð Þ
on4

� k2
0

o2w2 n; sð Þ
on2

þ x2
0

o2w2 n; sð Þ
os2

¼ k2
1 sð Þ o

2w1 n; sð Þ
on2

þ k2
2 sð Þ d2w0 nð Þ

dn2
� x2

1

o2w1 n; sð Þ
os2

ð17aÞ

k2
2 sð Þ ¼ k

2

Z1

0

ow1 n; sð Þ
on

� �2

þ2
dw0 nð Þ

dn
� ow2 n; sð Þ

on

 !
dn

ð17bÞ

O e3
� �

:

o4w3 n; sð Þ
on4

� k2
0

o2w3 n; sð Þ
on2

þ x2
0

o2w3 n; sð Þ
os2

¼ k2
1 sð Þ o

2w2 n; sð Þ
on2

þ k2
2 sð Þ o

2w1 n; sð Þ
on2

þ k2
3 sð Þ d2w0 nð Þ

dn2
� x2

1

o2w2 n; sð Þ
os2

� x2
2

o2w1 n; sð Þ
os2

ð18aÞ

k2
3 sð Þ ¼ k

Z1

0

ow1 n; sð Þ
on

� ow2 n; sð Þ
on

þ dw1 nð Þ
dn

� ow3 n; sð Þ
on

� �
dn

ð18bÞ

Introducing expansions (12)–(14) into boundary

conditions (11a-d) yields at order e0:

O e0
� �

: w0 nð Þjn¼0¼ w0 nð Þjn¼1¼ 0;

o2w0 nð Þ
on2

����
n¼0

¼ o2w0 nð Þ
on2

����
n¼1

¼ �mp

ð19a � dÞ

whereas for the higher powers of e parameter, these

conditions take the form:
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O e j
� �

: wj n; sð Þ
��
n¼0

¼ wj n; sð Þ
��
n¼1

¼ o2wj n; sð Þ
on2

����
n¼0

¼ o2wj n; sð Þ
on2

����
n¼1

¼ 0; j ¼ 1; 2; 3:::

ð20a � dÞ

The solution of dynamic Eqs. (16)–(18) requires

the separation of space and time variables which may

be done according to the following formulas:

wj n; sð Þ ¼
Xjþ1

i¼1

wj

i�1ð Þ
nð Þ cos i�1ð Þs; j ¼ 1; 2; 3::::

ð21Þ

k2
j n; sð Þ ¼

Xjþ1

i¼1

k2
j

i�1ð Þ
nð Þ cos i�1ð Þs; j ¼ 1; 2; 3::::

ð22Þ

In order to find the approximate analytical solu-

tions, the sequence of nonlinear problems at each

order of e must be taken into consideration. The

solution of Eq. (15) regards the static problem, and the

consecutive solutions of Eqs. (16)–(18) are used for

determination of the particular terms of the natural

frequency, the dynamic force and mode shapes of the

vibrating system. The effect of nonlinearity begins at

order e2 as the axial force component k2
2 sð Þ depends on

the vibration amplitude. The effect of nonlinearity on

the vibration frequency arises at the order of e3

perturbation series.

2.3.1 Solution at small amplitude parameter e0—

static analysis

The solution to Eq. (15a) represented by

w0 nð Þ ¼ A0cosh k0nð Þ þ B0sinh k0nð Þ þ C0nþ D0

ð23Þ

is substituted to boundary conditions (19a-d), which

gives the system of four inhomogeneous algebraic

equations for unknown integration constants. That

system cannot be solved due to the unknown axial

force parameter k0. The fifths supplementary tran-

scendental equation is obtained after substituting

Eq. (23) into Eq. (15b). As the piezoelectric bending

moment mp acting on the beam is represented in

boundary conditions (19c-d), numerical calculations

make possible to find force k0 appearing in the bent

beam as a result of voltage V application. As a

consequence, the beam’s deflected axis described by

Eq. (23) may also be determined.

2.3.2 Solution at small amplitude parameter e1—the

first term of system’s natural frequency x0

After obtaining the static solution, the natural vibra-

tion frequency equations may be established on the

basis of Eqs. (16a-b) and boundary conditions (20a-d)

with the space and time variables separation according

to Eqs. (21) and (22). The governing equations of

motion and the axial force at coss are:

d4 w1

1ð Þ
nð Þ

dn4
� k2

0

d2 w1

1ð Þ
nð Þ

dn2
� x2

0 w1

1ð Þ
nð Þ ¼ k2

1

1ð Þ d2w0 nð Þ
dn2

ð24aÞ

k2
1

1ð Þ
¼ k

Z1

0

ow0 nð Þ
on

� ow1

1ð Þ
nð Þ

on
dn ð24bÞ

The form of Eqs. (24a-b) imposes two different

solutions regarding symmetric and antisymmetric

modes of vibration. The first derivative of function

w0(n), expressing the static beam deflection caused by

identical piezoelectric moments acting at beam ends,

multiplied by the first derivative of any antisymmetric

mode specified by w1

1ð Þ
nð Þ is always equal to zero.

Therefore, the antisymmetric modes of vibration of the

considered system have a zero dynamic tension term

(k2
1

1ð Þ
¼ 0).

Taking that into account, the general solution of the

differential Eq. (24a) has the following forms:

• for symmetric modes:

w1

1ð Þ
nð Þ ¼ A1 cosh a1nð Þ þ B1 sinh a1nð Þ

þ C1 cosh b1nð Þ þ D1 sinh b1nð Þþ

� k2
1

1ð Þ
k2

0 A0 cosh k0nð Þ þ B0 sinh k0nð Þ½ �
x2

0

ð25aÞ

• for antisymmetric modes:
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w1

1ð Þ
nð Þ ¼ A1 cosh a1nð Þ þ B1 sinh a1nð Þ

þ C1 cosh b1nð Þ þ D1 sinh b1nð Þ ð25bÞ

where constants a1 and b1 are:

a1 ¼ k2
0 � k4

0 þ 4x2
0

� �1
2=2

h i1
2

;

b1 ¼ k2
0 þ k4

0 þ 4x2
0

� �1
2=2

h i1
2

ð26Þ

By introducing Eq. (25a) into boundary conditions

(20a-d) with separated time and space variables

according to Eqs. (21)–(22), one obtains the system

of four inhomogeneous linear algebraic equations with

respect to integration constants A1, B1, C1, D1. The

system must be accompanied by the fifths transcen-

dental equation resulting from inserting Eq. (25a) into

Eq. (24b). In the case of antisymmetric vibration

modes, Eq. (25b) is substituted into the same bound-

ary conditions to get the system of four homogeneous

linear algebraic equations. Numerical solution of one

of those systems determines the first term of natural

frequency x0 of the particular mode. For both the

symmetric and antisymmetric modes of vibration, x0

term is independent from the dynamic tension k2
1

1ð Þ
and

the vibration amplitude.

To find the amplitude–axial force and the ampli-

tude–vibration frequency relations, a normalization

condition must be introduced. In the studies of Foda

[35] and Evensen [36], the dimensional amplitude was

taken in relation to the radius of gyration r of the

considered beams (r ¼
ffiffiffiffiffiffiffiffi
J=A

p
). To refer to those

works, the dimensionless amplitude in this study is

multiplied by the non-dimensional slenderness param-

eter k expressed by Eq. (8e). Therefore, the normal-

ization condition has the form:

ffiffiffi
k

p
w1

ð1Þ
fð Þ ¼ Am ð27Þ

where f is the abscissa of a particular mode maximum.

For the symmetric modes f = 0.5, whereas for the

antisymmetric modes f = 1/(2n), where n is a number

of the antisymmetric mode (n = 2, 4, 6…). The values

of amplitude Am are selected a priori. In the most

studies, Am includes inside the range 0; 3ið . For those

values, all nonlinear vibration parameters are deter-

mined during calculations.

2.3.3 Solution at small amplitude parameter e2—axial

dynamic forces

As the solutions to the problem must be valid for any

value of time, the separation of time and space

variables according to Eqs. (21)–(22) in Eqs. (17a-b)

leads to the following sets of equations at particular

time functions:

(coss0):

d4 w2

0ð Þ
nð Þ

dn4
� k2

0

d2 w2

0ð Þ
nð Þ

dn2
¼ 1

2
k2

1

1ð Þ d2 w1

1ð Þ
nð Þ

dn2
þ k2

2

0ð Þ d2 w0 nð Þ
dn2

ð28aÞ

k2
2

0ð Þ
¼ k

2

Z1

0

1

2

d w1

1ð Þ
nð Þ

dn

2
4

3
5

2

þ2
d w0 nð Þ

dn
� d w2

0ð Þ
nð Þ

dn

2
4

3
5dn

ð28bÞ

(coss):

d4 w2

1ð Þ
nð Þ

dn4
� k2

0

d2 w2

1ð Þ
nð Þ

dn2
� x2

0 w2

1ð Þ
nð Þ

¼ k2
2

1ð Þ d2 w0 nð Þ
dn2

þ x2
1 w1

1ð Þ
nð Þ ð29aÞ

k2
2

1ð Þ
¼ k

Z1

0

d w0 nð Þ
dn

� d w2

1ð Þ
nð Þ

dn
dn ð29bÞ

(cos(2s)):

d4 w2

2ð Þ
nð Þ

dn4
� k2

0

d2 w2

2ð Þ
nð Þ

dn2
� 4x2

0 w2

2ð Þ
nð Þ

¼ 1

2
k2

1

1ð Þ d2 w1

1ð Þ
nð Þ

dn2
þ k2

2

2ð Þ d2 w0 nð Þ
dn2

ð30aÞ

k2
2

2ð Þ
¼ k

2

Z1

0

1

2

d w1

1ð Þ
nð Þ

dn

2
4

3
5

2

þ2
d w0 nð Þ

dn
� d w2

2ð Þ
nð Þ

dn

2
4

3
5dn

ð30bÞ

The solutions to Eqs. (28a-b) and (30a-b) make

possible to determine two further components of the

axial dynamic force, i.e. k2
2

0ð Þ
and k2

2

2ð Þ
, respectively.

Independently from the type of modes, those two
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components depend on the vibration amplitude as both

are expressed as a function of w1

1ð Þ
nð Þ.

The second term x1 of the vibration frequency

occurs in Eq. (29a). That term may be determined on

the basis of the orthogonality condition introduced by

Keller and Ting [37]. As the linear operators of the

left-hand sides of Eqs. (24a) and (29a) are identical

and both equations are subjected to the same type of

boundary conditions, Eq. (29a) will have a nontrivial

solution w2

1ð Þ
nð Þ if it is orthogonal to all the solutions

w1

1ð Þ
nð Þ of the adjoint Eq. (24a). That may be denoted as

Z1

0

w1 nð Þ
1ð Þ d4 w2

1ð Þ
nð Þ

dn4
� k2

0

d2 w2

1ð Þ
nð Þ

dn2
� x2

0 w2

1ð Þ
nð Þ

2
4

3
5dn

¼
Z1

0

w1 nð Þ
1ð Þ

k2
2

1ð Þ d2w0 nð Þ
dn2

þ x2
1 w1

1ð Þ
nð Þ

" #
dn

ð31Þ

Finally, after performing all mathematical elabora-

tions with making use of the boundary conditions

expressed by Eqs. (20a-d) and the axial force compo-

nents explicit by Eqs. (24b) and (29b), the integrated

right-hand side of Eq. (31) gives

x2
1

Z1

0

w1

1ð Þ
nð Þ

� �2

dn ¼ 0 ð32Þ

For the nontrivial vibration modes, Eq. (32) is

fulfilled for x1 = 0, i.e. when the first nonlinear

vibration term equals zero.

2.3.4 Solution at small amplitude parameter e3—the

second term of nonlinear frequency x2

After separation the time and space variables in

Eqs. (18a-b) and collecting all coefficients of the

cos(s) terms, one obtains the following equations:

d4 w3

1ð Þ
nð Þ

dn4
� k2

0

d2 w3

1ð Þ
nð Þ

dn2
� x2

0 w3

1ð Þ
nð Þ

¼ k2
1

1ð Þ d2 w2

0ð Þ
nð Þ

dn2
þ 1

2

d2 w2

2ð Þ
nð Þ

dn2

2
4

3
5þ d2 w1

1ð Þ
nð Þ

dn2
k2

2

0ð Þ
þ 1

2
k2

2

2ð Þ
 !

þ k2
3

1ð Þ d2 w0 nð Þ
dn2

þ x2
2 w1

1ð Þ
nð Þ

ð33Þ

k2
3

1ð Þ
¼ k

Z1

0

d w0 nð Þ
dn

� d w3

1ð Þ
nð Þ

dn
þ d w1

1ð Þ
nð Þ

dn
d w2

0ð Þ
nð Þ

dn
þ 1

2

d w2

2ð Þ
nð Þ

dn

0
@

1
A

2
4

3
5dn

ð34Þ

An analogically formulated orthogonality condi-

tion as in the previous section in regard to solutions

w1

1ð Þ
nð Þ and w3

1ð Þ
nð Þ, when applied to Eq. (33), results in

the following expression for the first nonzero ampli-

tude-dependent vibration frequency term:

x2
2 ¼

2 k2
1

1ð Þ R1
0

d w1

1ð Þ
nð Þ

dn
d w2

0ð Þ
nð Þ

dn þ 1
2

d w2

2ð Þ
nð Þ

dn

� �
dnþ k2

2

0ð Þ
þ 1

2
k2

2

2ð Þ
 !R1

0

d w1

1ð Þ
nð Þ

dn

� �2

dn

R1
0

w1

1ð Þ
nð Þ

� �2

dn

ð35Þ

Equation (35) is valid for both symmetric and

antisymmetric modes with an additional condition that

for the antisymmetric modes k2
1

1ð Þ
¼ 0.

After x2 determination, the nonlinear frequency

according to Eq. (14) is considered as the square root

of two terms:

xn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0 þ e2x2
2

q
ð36Þ

It is customary in practice to restrict the natural

frequency determination to terms up to an order of two

in expansion (14) for vibrations in lower modes as it

was done by Evensen [36] and Aravamudan et al. [38].

Only responses at higher modes should be examined

with the higher-order terms.

At each stage in the process of solutions, the

obtained algebraic and transcendental equations are

solved numerically.
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3 Exemplary results and discussion

The application of the voltage across piezoelectric

layers for controlling both the piezoelectric beam

deflection and its nonlinear free vibrations with

respect to the deflected beam axis is the subject of

numerical calculations. The material of the core beam

is an aluminium alloy of Young’s modulus Eb-

= 70 GPa and the mass density qb = 2720 kg/m3.

For the active layers, P-41 piezoceramic material is

chosen, for which the physical data according to its

manufacturer [39] are: Ep = 83.33 GPa, qp-

= 7450 kg/m3 and piezoelectric strain constant

e31 = -8.333 C/m2.

The top and bottom layers have the same thickness,

and the same voltage is applied to both wafers. Two

configurations of the system shown in Fig. 1 are

chosen—the first reference one (beam A), for which

the thickness of the core beam is equal to that of two

piezoelectric layers (hb/2hp = 1.0), whereas in the

second configuration (beam B), the core beam has its

thickness three times greater than in the case (A);

therefore, hb/2hp = 3.0. As a result, the bending

rigidity of beam B is 7.6 times greater than that of

beam A.

For both configurations, three different lengths of

the system are studied, i.e. L = 0.20 m, 0.35 m and

0.50 m. The common width of the core beam and

piezoceramics is b = 20 mm. As the thickness of each

piezoelectric layer equals hp = 0.5 mm, the maximum

voltage which can be applied to a single layer is

Vmax = 1000 V. That value results from the material

data revealing that the maximum operating electric

field, for which the linear dependence between the

voltage and strain is maintained, may be as large as

2000 V/mm.

3.1 Shape control under piezoelectric actuation

At the first stage of analysis, the static response of the

system under the electric field is investigated. The

influence of the applied voltage on both the tensile

force and the system’s midpoint deflection for both

configurations and three different lengths is presented

in Figs. 2 and 3, respectively.

On the basis of results presented in Fig. 2, it might

be stated that regardless of the configuration, the

longer the beam and the higher the applied voltage, the

greater the tensile force is generated by the

piezoelectric moment mp. For beam A (Fig. 2a), the

increase in the axial force is especially significant up

to 0.35 Vmax, and then, it becomes almost linear. For

the system of greater bending stiffness (beam B), the

tensile force for L = 0.5 m is nearly the same as for the

reference beam A of L = 0.2 m.

Comparing the courses of curves illustrating the

midpoint deflection of beams in Fig. 3a and b, one

may notice that for beam A these curves cross each

other, whereas for beam B they are clearly separated.

As shown in these figures, the increase in the applied

voltage increases the system’s lateral displacements.

Identifying the dimensional deflection according to

Eq. (6b), the differences in W0(L/2) for both config-

urations are substantial, i.e. for beam A of length

L = 0.5 m: W0(L/2) = 1.733 mm, whereas for beam

B of the same length, W0(L/2) = 1.501 mm. The same

quantities for L = 0.2 m are: for beam A, W0(L/2) =

0.771 mm and for beam B, W0(L/2) = 0.344 mm.

The influence of beam’s length for both configura-

tions on the midpoint deflection at maximum operat-

ing voltage (Vmax = 1000 V) is presented in Fig. 4,

where Lmax = 0.5 m.

As shown in Fig. 4, the increase in the midpoint

deflection for beam B is monotonic up to L/Lmax [ 0.6

and then it weakens as L increases. For beam A, the

midpoint deflection is initially increasing to reach the

maximum value and then it decreases. Identification of

this effect has a direct impact for the shape control of

piezoelectric sandwich beams.

3.2 Modification of natural frequency

by piezoelectric actuation

The influence of the electric field applied to the

piezoelectric layers on the first term of natural

vibration frequencies of the system is shown in

Figs. 5, 6, 7 and 8 in regard to the first, second, third

and fourth frequency, respectively. Small icons in

these figures indicate particular symmetric and

antisymmetric vibration modes. As x0 term is inde-

pendent from the vibration amplitude, it is treated as

the linear frequency term. All results for V = 0

presented in the consecutive figures, i.e. x0 = p2,

4p2, 9p2 and 16p2, are the bending natural frequencies

for rectilinear pinned–pinned beams which are easily

identified in the existing literature. In the considered

case, an initially straight beam is deformed by

piezoelectric actuation which creates also the beam’s
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tension. Generally, the vibration characteristics are

affected by the internal stresses which was pointed out

by e.g. Cornil et al. [29]. Additionally, when the

geometries of an initially curved beam and a beam

loaded by moments at its end are the same, the

obtained natural frequencies demonstrate significant

differences [31]. Hence, the vibration frequency of the

studied piezoelectric beam is under a common influ-

ence of two factors, the internal prestress manifested

by force k2
0 and the associated deflection described by

w0(n).

The curves of the fundamental frequency and the

next three frequencies sketched in Figs. 5, 6, 7 and 8

versus the applied voltage for different beam’s lengths

and two configurations indicate that the increased

voltage causes the increase in vibration frequencies

with an increase in the deflection of the beam. The

main differences in the obtained results arise from

geometrical and physical parameters of the studied

piezo-beam systems. In the case of beam B of greater

flexural stiffness, the effect of piezoelectric actuation

on the frequency is insignificant, especially for short

beams of L = 0.20 m (Figs. 5b, 6, 7 and 8b). Under the

maximum voltage, the first natural frequency rises by

3.31% in relation to the non-actuated straight beam,

Fig. 2 Effect of the

applied voltage on the static

axial force for beam A a and

beam B b

Fig. 3 Effect of the

applied voltage on the

midpoint deflection for

beam A a and beam B b

Fig. 4 Variation of the midpoint deflection with the beam’s

length for beams A and B under actuation voltage V = Vmax
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Fig. 5 The effect of the

applied voltage on the

fundamental non-

dimensional frequency for

beam A a and beam B b

Fig. 6 The effect of the

applied voltage on the

second non-dimensional

frequency for beam A a and

beam B b

Fig. 7 The effect of the

applied voltage on the third

non-dimensional frequency

for beam A a and beam B b
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the second one by 0.28%, the third one by 0.13% and

the fourth one by 0.07%.

For the reference beam A of the smaller bending

rigidity, the influence of the electric field on the

vibration frequencies considerably increases, as it is

shown in Figs. 5a, 6, 7 and 8a. For beams of length

L = 0.20 m, activated by the maximal operating

voltage, the first natural frequency rises by 54.35%

with regard to zero voltage case, the second one by

5.71%, the third one by 2.70% and the fourth one by

1.46%. The analogical results for the same beam of

L = 0.50 m are as follows: 195.35%, 31.28%, 17.68%

and 8.67%, respectively.

In spite of the indicated changes in the non-

dimensional vibration frequencies, one may conclude

that regardless of the beam length, the greatest effect

of the piezoelectric actuation is observed for the first

vibration frequency.

3.3 Amplitude–nonlinear frequency relationship

The nonlinear free vibration behaviour of piezoelec-

tric beams is presented in terms of backbone curves.

The backbone curves provide information about the

measure of amplitude dependence of natural frequen-

cies. In Figs. 9 and 10, the ratio of the nonlinear to the

linear natural frequency as a function of the vibration

amplitude for different values of the applied voltage is

sketched for beam A and beam B, respectively. Each

beam has length L = Lmax = 0.5 m.

It results from the performed calculations that if the

beam’s deflection created by a small voltage and the

vibration amplitude are of the same order, the studied

system has characteristics similar to those of a straight

beam. The nonlinear frequency–amplitude relation-

ship in the case of simply supported rectilinear beams

on the basis of different mathematical models was

thoroughly studied e.g. by Azrar et al. [4] and Rao

et al. [40]. The present results concerning the natural

frequency of the first symmetric mode obtained for

V = 0 are compared in Table 1 with those given in

both papers. The results obtained by using the present

method match very well with those obtained by the

Padè approximants [4] and the coupled displacement

field method [40].

The first frequency curves presented in Figs. 9a and

10a show both hardening- and softening-type beha-

viours for the symmetric vibration modes of both

beams. The type of that behaviour depends on the

applied voltage. For beam A of smaller bending

stiffness, the transition from hardening to softening

characteristics occurs at the voltage of value 0.055 V/

Vmax, whereas for beam B, that value is greater and

equal to 0.37 V/Vmax.

The graphs plotted in Figs. 9b and 10b concern the

nonlinear frequencies versus amplitude for the second

antisymmetric mode for beams A and B, respectively.

Those graphs show only hardening-type behaviour for

the whole range of the applied voltage. A wider range

of the nonlinear frequency modifications with increas-

ing voltage is observed for beam A than for beam B.

That limitation to the hardening behaviour is caused

by the fact that the antisymmetric modes of vibration

of the piezoelectrically bent beam have a zero

Fig. 8 The effect of the applied voltage on the fourth non-dimensional frequency for beam A a and beam B b
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dynamic tension term expressed by Eq. (24b). The

similar characteristics concerning the nonlinear fre-

quency–amplitude relationship for the first and second

modes were reported by Öz et al. [41] for a slightly

curved beam resting on a nonlinear elastic foundation.

The role of piezoelectric actuation in modification

of the amplitude–frequency relationship for the third

and fourth modes for beam A of length L = 0.5 m is

presented in Fig. 11. Seeing the curves for the third

symmetric mode in Fig. 11a, it can be concluded that

this system is characterized by both hardening and

softening behaviours, as it happens for the first

symmetric mode (Figs. 9a and 10a). Nevertheless, in

contrary to the first mode, the softening response

occurs at very high voltages, greater than the threshold

value Vmax acceptable for the chosen piezoceramic

material without the risk of depolarization. In the case

of the fourth antisymmetric mode, it is clear from

Fig. 11b that an increase in amplitude only increases

the value of the nonlinear vibration frequency and

even a very large voltage V = 5Vmax does not change it

qualitatively. Hence, the hardening effect occurs for

antisymmetric vibration modes only.

The nonlinear/linear frequency ratios versus

dimensionless amplitude of beams A and B are plotted

in Fig. 12a, b for the first symmetric mode and

different beam’s lengths L changing from 0.1 m to

Lmax = 0.5 m. The presented results obtained for

Fig. 9 Nonlinear

frequency–amplitude

relation of the first

symmetric mode a and of the

second antisymmetric mode

b for beam Aax

Fig. 10 Nonlinear

frequency–amplitude

relation of the first

symmetric mode a and of the

second antisymmetric mode

b for beam B

Table 1 Comparison of the first nonlinear (xn)-to-linear nat-

ural frequency (x0) ratios for a simply supported straight beam

xn=x0

Am Rao et al. [40] Azrar et al. [4] Present results (V = 0)

0 1 1 1

1 1.0889 1.089724736 1.089724735

2 1.3183 1.322875656 1.322875655

3 1.6260 1.639359631 1.639359631
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V = 0.5Vmax indicate that, depending on values of L,

the nonlinear behaviour may switch from softening to

hardening. Generally, there exists a threshold value of

the length above which the relation becomes soften-

ing, whereas it is hardening below.

The change in the nonlinear-to-linear frequency

ratio versus the beam’s length for amplitude Am = 3

and three values of the voltage are depicted in Fig. 13a,

b for beams A and B, respectively. The greater the

voltage, the changes in the nonlinear frequency are

more distinctive. For beam B that is stiffer than beam

A, an increase in the length decreases monotonically

the nonlinear/linear frequency ratio. That is especially

observable for greater voltages. For beam A actuated

by voltages greater than 0.5Vmax, the increase in length

L initially reduces the frequency ratio and then causes

it to increase.

4 Conclusion

A simply supported beam with a pair of piezoelectric

layers perfectly bounded to the top and bottom

surfaces has been considered. The piezoelectric layers

are treated as actuators applied by equal and opposite

sign voltages to generate bending moments at both

beam’s ends. The immovable pinned ends cause

stretching during the static bending and free vibrations

with respect to a deflected beam’s axis.

Due to the von Karman nonlinearity, the Lindstedt–

Poincaré method which belongs to perturbation tech-

niques has been used for approximate analytical

solutions. The obtained set of equations for increasing

power of the perturbation amplitude parameter is

solved sequentially in order to predict the nonlinear

static and dynamic behaviours of the piezoelectric

beam. The first pair of static nonlinear equations for

the beam are solved analytically to obtain the static

Fig. 11 Nonlinear frequency–amplitude relation of the third symmetric mode a and of the fourth antisymmetric mode b for beam A

Fig. 12 Nonlinear

frequency–amplitude

relation of the first

symmetric mode for

different lengths for beam

A a and for beam B
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deflection caused by the piezoelectric actuation. Then,

the vibration equations with coefficients regarding

static tensile force, static deflection and dynamic

tension are solved for consecutive perturbation param-

eter. The solution includes both the symmetric and

antisymmetric vibration modes. The nonlinear term of

the frequency is found on the basis of the orthogonality

condition of particular solutions.

Numerical tests performed on the basis of analytical

solutions have been used to illustrate the nonlinear

static and dynamic responses of sandwich beams with

layer actuators. It is shown that both the static tensile

force and beam deflection generated by the electric

field depend on the applied voltage and are diversified

by the beam’s transversal stiffness and its length.

Those factors caused by the applied voltage, i.e. the

internal prestress manifested by the tensile force and

the associated deflection curvature, strongly affect

vibration frequencies for the symmetric and antisym-

metric modes; however, the greatest impact is

observed for the first vibration frequency.

It has been certified after studying the amplitude–

nonlinear vibration frequency characteristics for the

symmetric modes, that dependently on the applied

voltage, nonlinear frequencies may decrease with

increasing vibration amplitudes for softening-type

curves or may increase with increasing amplitudes

for hardening-type curves. Dependently on the

transversal stiffness and the beam’s slenderness, the

transition from softening to hardening effects occurs at

various levels of active voltage. For the antisymmetric

modes, which are characterized by zero dynamic

tension, only hardening behaviour has been observed.

On the basis of obtained results, it is revealed that

the piezoelectric actuation may be used as an efficient

tool for modifying static and dynamic responses of

slender mechanical systems.
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