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Abstract Active researches on the water waves have
been done, and water waves are essentially complex
waves controlled by gravity field and surface ten-
sion. Using the Hirota bilinear method, two bilinear
auto-Bäcklund transformations of the extended (3+1)-
dimensional shallow water wave equation are derived
explicitly. The hyperbolic cosine-function solution and
cosine-function solution are obtained by means of
bilinear auto-Bäcklund transformations. Five linear
superposition formulas of this equation are given and
proved. All the results depend on the coefficients of
the equation and the linear superposition relationship.
Thereafter, we perform a numerical simulation to trace
and study the dynamical behaviors of the linear super-
position solutions via their three-dimensional profiles
using symbolic calculation systemMathematica codes.
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1 Introduction

Shallow water wave equations have been considered
as the models in which the depth of the water is much
smaller than the wave length of the disturbance of the
free surface [1,2]. Shallow water wave equations are
one of the important models of nonlinear evolution
equations (NLEEs), which are widely used in math-
ematical physics [3,4]. For instance, the acoustic prob-
lem of wave propagation in discontinuous media [3].
The horizontal velocity and the height away from the
equilibrium position of water waves depend on the
dispersion power of sea water waves [4]. In order to
better understand the physical mechanism of natural
phenomena described by NLEEs [5–8], it is particu-
larly important to analyze the analytical solutions of
NLEEs [9–11]. There existmany significantmethods to
find the analytical solutions of NLEEs, including tanh
function and the sine-cosine method [12], variable-
coefficient three-wave approach [13], Darboux trans-
formation [14–16], Bäcklund transformation [17,18],
bilinear neural network method [19,20], multiple exp-
function method [21,22], Lie group method [23–27],
Hirota bilinear method [28–30] and many others.

A new extended (3+1)-dimensional shallow water
wave equation [31] is introduced by Wazwaz as fol-
lows:

uyt + uxxxy − 3uxxuy − 3uxuxy

+ λ1uxx + λ2uyy + λ3uxy + λ4uyz = 0,
(1)
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where u = u(x, y, z, t) is a function of the three
scaled spatial variables x, y, z and the temporal vari-
able t , with λ1, λ2, λ3 and λ4 are constants. Equation
(1) is used to simulate the dynamic behaviors of water
wave propagation in oceanography and atmospheric
science. It is proved that the extended terms do not
destroy the integrability of Eq. (1). Painlevé analysis
was performed on Eq. (1) and the compatibility con-
ditions were checked. Multiple soliton solutions and
lump solutions of Eq. (1) are formally derived. The
effects caused by the extended terms were obvious on
the dispersion relations and the phase shifts as well
[31]. Special cases of Eq. (1) have been investigated as
follows:

(1) Setting ∂y = ∂x , ψ = −ux , λ1 = λ2 = λ3 =
λ4 = 0 in Eq. (1) gives the famous Korteweg-de
Vries (KdV) equation [32]

ψt + ψxxx + 6ψψx = 0. (2)

KdV equation describing the longwaves in shallow
water under the gravity, waves in a nonlinear lat-
tice, ion-acoustic and magneto-acoustic waves in a
plasma [32].

(2) When we restrict u to being z-independent and
λ4 = 0. Equation (1) has been reduced to the
extended (2+1)-dimensional shallow water wave
equation with constant coefficients [31]

uyt + uxxxy − 3uxxuy − 3uxuxy + λ1uxx

+ λ2uyy + λ3uxy = 0.
(3)

Equation (3) is used to simulate the dynamic behav-
iors of water wave propagation in oceanography
and atmospheric science. The integrability of Eq.
(3) is studied by Painlevé analysis method, and
multiple soliton solutions and lump solutions are
obtained [31].

(3) When we restrict u to being z-independent and
λ2 = λ4 = 0. Equation (1) has been reduced
to the (2+1)-dimensional extended shallow water
wave equation [33]

uyt + uxxxy − 3uxxuy − 3uxuxy

+λ1uxx + λ3uxy = 0. (4)

Equation (4) simulates the nonlinear waves in shal-
low water and the (2+1)-dimensional interaction of
theRiemannwave propagating along the y-axis and
a long wave propagating along the x-axis in plasma
physics and weakly dispersive media. By applying

the long wave limit method to the N-soliton solu-
tions, the multiple lump solutions of Eq. (4) are
gained [33].

(4) When we restrict u to being z-independent and
λ1 = λ2 = λ3 = λ4 = 0. Equation (1) has
been reduced to the (2+1)-dimensional Boiti-Leon-
Manna-Pempinelli equation [34]

uyt + uxxxy − 3uxxuy − 3uxuxy = 0. (5)

Equation (5) describes the interaction of a Riemann
wave propagating along the y-axis and a long wave
propagating along the x-axis in a fluid. Some exact
solutions of Eq. (5) are obtained, including kinky
periodic solitary-wave solutions, periodic soliton
solutions and kink solutions [34].

Many studies have revealed that nonlinear waves
will exhibit more complex and fascinating dynamic
characters, as the spatial dimension of system increases
[35–38]. For linear systems, different linear superpo-
sition forms produce generalized solutions of linear
problems. Linear superposition has an impact on the
applications of nonlinear models in the real world, but
the principle of linear superposition can be applied to
some specific nonlinear models [39]. Specifically, it
is transformed into bilinear form, and its character-
istics are used to study the linear superposition solu-
tions. In several areas of applied science and ocean
engineering, investigations of superposition solutions
have been played a vital role for demonstrating wave
character of nonlinear problems [40]. The innovation
of this paper lies in the construction of several formu-
las of new types of superposition solutions, which are
proved to be valid under superposition relations. The
trajectories and dynamic evolution of some superim-
posed solutions are analyzed in detail. The analysis of
its properties is closer to the real physical phenomena
in complex environment.

The paper is synchronized in the following man-
ner: Section 2 deals with the bilinear form in order
to obtain two bilinear auto-Bäcklund transformations
of Eq. (1). The hyperbolic cosine-function solution
and cosine-function solution are obtained by means of
bilinear auto-Bäcklund transformations. In Sect. 3, we
give and prove three superposition solutions for Eq. (1),
including exponential function superposition solutions,
trigonometric function superposition solutions, hybrid
solution among trigonometric functions and exponen-
tial functions. In Sect. 4, we study the superposition
formulas of two kinds of function product solutions,
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which are exponential function product type superposi-
tion solutions and trigonometric function product type
superposition solutions. The derived results are studied
with the aid of graphics. At last, Sect. 5 ends with the
concluding remarks of the findings.

2 Bilinear auto-Bäcklund transformations

To study the bilinear auto-Bäcklund transformations,
we need to get the bilinear form for Eq. (1) at first.
Under the dependent variable transformation

u = −2(ln f )x + u0(z, t), (6)

where f is a real function of x , y, z and t , u0(z, t) is
an undetermined function of z and t . Equation (1) has
been converted into the following bilinear form

(DyDt + D3
x Dy + λ1D

2
x + λ2D

2
y

+ λ3Dx Dy + λ4DyDz) f · f = 0,
(7)

with R(x, y, z, t), F(x, y, z, t) are real functions with
respect to variables x , y, z and t , where Dx , Dy , Dz ,
Dt are the bilinear operators defined by Hirota [41]

Dn1
x Dn2

y Dn3
z Dn4

t R(x, y, z, t) · F(x, y, z, t)

=
(

∂

∂x
− ∂

∂x ′

)n1 (
∂

∂y
− ∂

∂y′

)n2 (
∂

∂z

− ∂

∂z′

)n3 (
∂

∂t
− ∂

∂t ′

)n4

R(x, y, z, t)F(x ′, y′, z′, t ′)|x ′=x,y′=y,z′=z,t ′=t ,

(8)

with n1, n2, n3 and n4 being the non-negative integers.
Suppose there is another solution g to bilinear form (7)

(DyDt + D3
x Dy + λ1D

2
x + λ2D

2
y

+ λ3Dx Dy + λ4DyDz)g · g = 0,
(9)

where g is a real function of x , y, z and t . In order to
search for certain bilinear auto-Bäcklund transforma-
tions between the solutions f and g of bilinear form
(7) for Eq. (1), consider the following form

P = [(DyDt + D3
x Dy + λ1D

2
x + λ2D

2
y

+ λ3Dx Dy + λ4DyDz) f · f ]g2
− f 2[(DyDt + D3

x Dy + λ1D
2
x + λ2D

2
y

+ λ3Dx Dy + λ4DyDz)g · g].

(10)

We use the exchange identities of the following Hirota
bilinear operators [41]

(DyDt f · f )g2 − f 2(DyDt g · g)
= 2Dy(Dt f · g) · ( f g)

= 2Dt (Dy f · g) · ( f g),

(Dx Dy f · f )g2 − f 2(Dx Dyg · g)
= 2Dx (Dy f · g) · ( f g)

= 2Dy(Dx f · g) · ( f g),

(DyDz f · f )g2 − f 2(DyDzg · g)
= 2Dy(Dz f · g) · ( f g)

= 2Dz(Dy f · g) · ( f g),

(D2
x f · f )g2 − f 2(D2

x g · g)
= 2Dx (Dx f · g) · ( f g),

(D2
y f · f )g2 − f 2(D2

yg · g)
= 2Dy(Dy f · g) · ( f g),

(11)

with

(D3
x Dy f · f )g2 − f 2(D3

x Dyg · g)
= 3Dx [(D2

x Dy f · g) · ( f g)]
− Dy[(D3

x f · g) · ( f g)]
− 3Dx [(D2

x f · g) · (Dy f · g)]
− 3Dy[(D2

x f · g) · (Dx f · g)],

(12)

and

(D3
x Dy f · f )g2 − f 2(D3

x Dyg · g)
= 2Dy[(D3

x f · g) · ( f g)]
− 6Dx [(Dx Dy f · g) · (Dx f · g)].

(13)

Selecting different exchange identities for the Hirota
bilinear operator, we get two different types of bilinear
auto-Bäcklund transformations and soliton solutions
for Eq. (1) as follows:

Case I Substituting expressions (11) and (12) into
Eq. (10) and assuming that

D2
x f · g = ρ1 f g, (14)

we derive that

P1 = Dx {[(3D2
x Dy + 3ρ1Dy + 2λ1Dx

+ 2λ3Dy) f · g] · ( f g)}
+ Dy{[(2Dt − D3

x + 3ρ1Dx + 2λ2Dy

+ 2λ4Dz) f · g] · ( f g)},

(15)

with ρ1 is the real constant. Taking P1 = 0, the decou-
pling of Eq. (15) gives rise to an alternative bilinear
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auto-Bäcklund transformation for Eq. (1) as

(D2
x − ρ1) f · g = 0, (3D2

x Dy + 3ρ1Dy + 2λ1Dx

+ 2λ3Dy) f · g = 0,

(2Dt − D3
x + 3ρ1Dx + 2λ2Dy + 2λ4Dz) f · g = 0.

(16)

We select f = 1 as a solution for bilinear form (7)
and solve bilinear auto-Bäcklund transformation (16)
to obtain the following equations

gxx − ρ1g = 0, 3gxxy + (3ρ1

+ 2λ3)gy + 2λ1gx = 0,

2gt − gxxx + 3ρ1gx + 2λ2gy + 2λ4gz = 0.

(17)

Assuming that g = cosh(a1x + b1y + c1z + d1t) and
solving Eq. (17), we get the parameters relationship in
solution g as follows:

ρ1 = a21, d1 = −(a31 + λ2b1 + λ4c1), λ3

= −3a21b1 − λ1a1
b1

, b1 �= 0,
(18)

where a1, b1, c1 and d1 are the real constants. Thus, the
corresponding hyperbolic cosine-function solution for
Eq. (1) is

u1 = −2a1 sinh[a1x + b1y + c1z − (a31 + λ2b1 + λ4c1)t]
cosh[a1x + b1y + c1z − (a31 + λ2b1 + λ4c1)t]

+u0(z, t). (19)

Case II Substituting expressions (11) and (13) into
Eq. (10) and supposing that

Dx Dy f · g = ρ2 f g, (20)

we can derive

P2 = 2Dx {[(3ρ2Dx + λ1Dx + λ3Dy) f · g] · ( f g)}
+ 2Dy{[(Dt + D3

x + λ2Dy + λ4Dz) f · g] · ( f g)},
(21)

where ρ2 is the real constant. Taking P2 = 0, it is con-
cluded that the second bilinear auto-Bäcklund trans-
formation associated with Eq. (1) can be constructed
as

(Dx Dy − ρ2) f · g = 0, (3ρ2Dx + λ1Dx

+ λ3Dy) f · g = 0,

(Dt + D3
x + λ2Dy + λ4Dz) f · g = 0.

(22)

Taking f = 1 as a solution for bilinear form (7) and
solving bilinear auto-Bäcklund transformation (22),we
get

gxy − ρ2g = 0, (3ρ2 + λ1)gx + λ3gy = 0, gt + gxxx

+λ2gy + λ4gz = 0. (23)

Assuming that g = cos(a2x + b2y + c2z + d2t) and
solving Eq. (23), we obtain the parameters relationship
in solution g as follows:

a2 = −ρ2

b2
, c2 = − (ρ3

2 + b32d2 + λ2b42)

λ4b32
,

λ3 = ρ2(λ1 + 3ρ2)

b22
, b2λ4 �= 0.

(24)

Thus, the corresponding cosine-function solution for
Eq. (1) is

u2 =
2a2 sin

[
a2x + b2y − (ρ3

2+b32d2+λ2b42)

λ4b32
z + d2t

]

cos

[
a2x + b2y − (ρ3

2+b32d2+λ2b42)

λ4b32
z + d2t

]

+u0(z, t). (25)

Bilinear auto-Bäcklund transformation is an effective
algorithm for solving NLEEs, and it turns the prob-
lem of solving equations into pure algebraic operation
[42,43]. It can be seen that the two kinds of bilin-
ear auto-Bäcklund transformations (16) and (22) are
obtained through different exchange identities, and the
process of applying bilinear auto-Bäcklund transfor-
mation to solve the analytical solutions is the same.
With the help of two kinds of bilinear auto-Bäcklund
transformations, the hyperbolic cosine-function solu-
tion (19) and cosine-function solution (25) are obtained
by assuming different forms of solutions. Similarly, it
can be assumed that there are different forms of solu-
tions, and then the parameters relationship can be given
byusingbilinear auto-Bäcklund transformation.There-
fore, the method provides an effective idea for solving
the analytical solutions of various NLEEs.

3 Linear superposition formula of solutions

It is well known that for the physical systems frequently
characterized by NLEEs, there is no linear superposi-
tion formula of solutions. At present, the corresponding
nonlinear superposition formula is given by means of
Bäcklund transformation method [44]. Based on the
Hirota bilinear method, bilinear neural network frame-
work expands to more than one hidden layer to con-
struct test functions [45]. By using the symbolic com-
putation software Maple, periodic-type I, II, and III
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solutions of the new (3+1)-dimensional Boiti-Leon-
Manna-Pempinelli equation are obtained [45]. Starting
from the potential forms constructed by the master-
symmetry approach, the special decompositions and
some linear superpositions of the BKP hierarchy and
the dispersionless BKP hierarchy are analyzed [46].
The above methods provide some feasible ideas for
constructing the linear superposition formula of solu-
tions.

3.1 Linear superposition formula of exponential
function type

Firstly, we assume the new test functions of multiple
exponential functions, hyperbolic cosine functions and
hyperbolic sine functions.

f A1 =
N∑
i=1

ki cosh(θi ), f A2 =
N∑
i=1

ki sinh(θi ),

f A3 =
N∑
i=1

ki exp(θi ), θi = αi x + βi y + γi z + ωi t,

(26)

where ki , αi , βi , γi , ωi are all the real constants, N is a
positive integer.

Theorem Assuming that the exponential test functions
fA1, f A2 and fA3 (26) are solutions of bilinear form
(7), one of the following four linear superposition rela-
tionships must be satisfied:

Case 1.1 : βi = − λ1

3αi
,

ωi = λ1λ2 − 3αi (α
3
i + λ3αi + λ4γi )

3αi
, αi �= 0; (27)

Case 1.2 : αi = − λ1

3βi
,

ωi = λ31 + 9λ1λ3β2
i − 27β3

i (λ2βi + λ4γi )

27β3
i

, βi �= 0;
(28)

Case 1.3 : βi = − λ1

3αi
,

γi = λ1λ2 − 3αi (α
3
i + λ3αi + ωi )

3λ4αi
, λ4αi �= 0; (29)

Case 1.4 : αi = − λ1

3βi
,

γi = λ31 + 9λ1λ3β2
i − 27β3

i (λ2βi + ωi )

27λ4β3
i

, λ4βi �= 0.

(30)

Proof By employing the properties of D-operator, sub-
stituting the exponential test functions (26) and the lin-
ear superposition relationship (27) into bilinear form
(7), we have

(DyDt + D3
x Dy + λ1D

2
x + λ2D

2
y

+ λ3Dx Dy + λ4DyDz) f A1 · f A1 = 0,

(DyDt + D3
x Dy + λ1D

2
x + λ2D

2
y + λ3Dx Dy

+ λ4DyDz) f A2 · f A2 = 0,

(DyDt + D3
x Dy + λ1D

2
x + λ2D

2
y

+ λ3Dx Dy + λ4DyDz) f A3 · f A3 = 0,

(31)

then the exponential test functions f A1, f A2 and f A3
(26) are solutions of bilinear form (7). Similarly, the lin-
ear superposition relationships (28), (29) and (30) are
true. Therefore, these linear superposition relationships
are sufficient for the existence of solutions in bilinear
form (7). One can directly prove this theorem. ��

Substituting relational formula f A1 (26) and the lin-
ear superposition relationship (30) into transformation
(6), the N-order hyperbolic cosine function superposi-
tion solutions of Eq. (1) can be obtained.

uA1 = −2(ln f A1)x + u0(z, t),

f A1 =
N∑
i=1

ki cosh

[
− λ1

3βi
x + βi y

+λ31 + 9λ1λ3β2
i − 27β3

i (λ2βi + ωi )

27λ4β3
i

z + ωi t

]
.

(32)

Numerical simulations are performed to illustrate
the properties of N-order hyperbolic cosine function
superposition solutions through graphical forms. By
setting N = 3 in N-order hyperbolic cosine func-
tion superposition solutions (32), the three-dimensional
dynamic graphs of interaction between peaked soliton
and two bending kink waves are successfully depicted
in Fig. 1. Figure 1 is plotted by considering arbitrary
constants as λ1 = λ2 = 1, λ3 = λ4 = −1, k1 =
β1 = 1.5, k2 = 2, k3 = 1, β2 = −0.3, β3 =
−1.5, ω1 = −0.5, ω2 = −1.2, ω3 = 1.8 and function
as u0(z, t) = 4sech( 12 z

2 + 1
2 t

2) in 3-order hyperbolic
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cosine function superposition solutions (32). Figure 1
shows the interaction phenomenon of splitting into two
bending kink waves due to the collision between two
kink waves and the peaked soliton. With the increase
of parameter x and the decrease of parameter y, two
kink waves move along the positive direction of the z
axis and collide with the peak soliton. It can be seen
from Fig. 1b that the collision leads to the reduction of
the peak value of the peaked soliton, and the two kink
waves are split into two bending kink waves. When the
parameters continue to change, the bending length of
one of the bending kink waves gradually increases, and
the peak of the peaked soliton cannot be recovered as
shown in Fig. 1c. It also means that waves can con-
structively or destructively interfere under the effect of
linear superposition.

Substituting relational formula f A3 (26) and the
linear superposition relationship (27) into transforma-
tion (6), theN-order exponential function superposition
solutions of Eq. (1) can be obtained.

uA3 = −2(ln f A3)x + u0(z, t),

f A3 =
N∑
i=1

ki exp

[
αi x − λ1

3αi
y + γi z

+λ1λ2 − 3αi (α
3
i + λ3αi + λ4γi )

3αi
t

]
.

(33)

Figure 2 demonstrates the intensity distribution of
the N-order exponential function superposition solu-
tions (33) under the conditions N = 4. The correspond-
ing parameters in Fig. 2 are λ1 = λ2 = 1, λ3 =
λ4 = −1, k1 = k2 = 1, k3 = k4 = 2, α1 =
−1.3, α2 = −0.1, γ1 = −1, γ2 = 0.8, α3 =
1.6, γ3 = −0.3, α4 = 0.2, γ4 = −0.8, u0(z, t) =
tanh(z). With the increase of parameter t and the
decrease of parameter y, three adjacent kink waves
advance at a certain angle along the positive direction
of z-axis and the negative direction of x-axis. When
parameter y and parameter t are equal, three adjacent
kink waves collide with one kink wave, resulting in the
fission of three kinkwaves. Then, three kinkwaves split
into two kink waves and the distance is getting farther
and farther. This process shows that the deformation of
multiple waves cannot be recovered due to their col-
lision, but their amplitude has not changed. Similarly,
more kinds of exponential function type solutions can
be obtained by means of relational formula (26) and
the linear superposition relationships (27), (28), (29),
(30), which are omitted here.

N-order hyperbolic cosine function superposition
solutions (32) and N-order exponential function super-
position solutions (33) are all analytical solutions. Fig-
ures 1 and 2 analyze the collision between kink waves
and peaked soliton, as well as the collision between
multiple kink waves. Kink waves are produced by the
collision of water waves, which is very helpful to the
study of water wave interaction [47].

3.2 Linear superposition formula of trigonometric
function type

In this subsection, we choose the new test functions of
multiple cosine functions and sine functions.

fB1 =
M∑
j=1

h j cos(φ j ),

fB2 =
M∑
j=1

h j sin(φ j ),

φ j = m j x + n j y + p j z + q j t,

(34)

where h j ,m j , n j , p j , q j are all the real constants, M
is a positive integer.

Remark 3.1 Assuming that the trigonometric test func-
tions fB1 and fB2 (34) are solutions of bilinear form
(7), it is necessary to meet one of the following four
constraint conditions:
Case 2.1 : n j = λ1

3m j
,

q j = 3m j (m3
j − λ3m j − λ4 p j ) − λ1λ2

3m j
,m j �= 0;

(35)

Case 2.2 : m j = λ1

3n j
,

q j = λ31 − 9λ1λ3n2j − 27n3j (λ2n j + λ4 p j )

27n3j
, n j �= 0;

(36)

Case 2.3 : n j = λ1

3m j
,

p j = 3m j (m3
j − λ3m j − q j ) − λ1λ2

3λ4m j
, λ4m j �= 0;

(37)

Case 2.4 : m j = λ1

3n j
,

p j = λ31 − 9λ1λ3n2j − 27n3j (λ2n j + q j )

27λ4n3j
, λ4n j �= 0.

(38)
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Fig. 1 (Color online) Interaction between the peaked soliton and two kink waves via N-order hyperbolic cosine function superposition
solutions (32). a x = 2, y = 6, b x = 6, y = 2, and c x = 10, y = −2

Fig. 2 (Color online) Interaction between three kink waves and one kink wave via N-order exponential function superposition solutions
(33). a y = 8, t = 0, b y = t = 4, and c y = 0, t = 8

Substituting relational formula fB1 (34) and the linear
superposition relationship (35) into transformation (6),
corresponding M-order cosine function superposition
solutions of Eq. (1) appear as

uB1 = −2(ln fB1)x + u0(z, t),

fB1 =
M∑
j=1

h j cos

[
m j x + λ1

3m j
y + p j z

+3m j (m3
j − λ3m j − λ4 p j ) − λ1λ2

3m j
t

]
.

(39)

Similarly, more kinds of trigonometric function type
solutions can be obtained by means of relational for-
mula (34) and the constraint conditions (35), (36), (37),
(38), which are omitted here.

3.3 Linear superposition formula of trigonometric
function and exponential function type

Select the test functions formed by the combination of
three exponential function types (26) and two trigono-
metric function types (34). Assume that the six super-
position solutions of bilinear form (7) are as follows

fC1 =
N∑
i=1

ki cosh(θi ) +
M∑
j=1

h j cos(φ j ),

fC2 =
N∑
i=1

ki cosh(θi ) +
M∑
j=1

h j sin(φ j ),

fC3 =
N∑
i=1

ki sinh(θi ) +
M∑
j=1

h j cos(φ j ),

123



1026 P.-F. Han, Y. Zhang

fC4 =
N∑
i=1

ki sinh(θi ) +
M∑
j=1

h j sin(φ j ),

fC5 =
N∑
i=1

ki exp(θi ) +
M∑
j=1

h j cos(φ j ),

fC6 =
N∑
i=1

ki exp(θi ) +
M∑
j=1

h j sin(φ j ),

θi = αi x + βi y + γi z

+ωi t, φ j = m j x + n j y + p j z + q j t, (40)

where ki , αi , βi , γi , ωi , h j ,m j , n j , p j , q j are all the
real constants, N and M are positive integers.

Remark 3.2 The superposition solutions fCi (i = 1,
2, 3, 4, 5, 6) (40) are composed of exponential func-
tions f A1, f A2, f A3 (26) and trigonometric functions
fB1, fB2 (34). Then fCi (i = 1, 2, 3, 4, 5, 6) (40) are
solutions of bilinear form (7), which must satisfy the
linear superposition relationships (27), (28), (29), (30)
and (35), (36), (37), (38). There are 16 kinds of super-
position relations, we only choose the following two
cases and the rest are omitted.

Case 3.1 : αi = − λ1

3βi
,

γi = λ31 + 9λ1λ3β2
i − 27β3

i (λ2βi + ωi )

27λ4β3
i

, λ4βi �= 0,

n j = λ1

3m j
,

q j = 3m j (m3
j − λ3m j − λ4 p j ) − λ1λ2

3m j
,m j �= 0;

(41)

Case 3.2 : βi = − λ1

3αi
,

ωi = λ1λ2 − 3αi (α
3
i + λ3αi + λ4γi )

3αi
, αi �= 0,

m j = λ1

3n j
,

p j = λ31 − 9λ1λ3n2j − 27n3j (λ2n j + q j )

27λ4n3j
, λ4n j �= 0.

(42)

Substituting relational formula fC1 (40) and the linear
superposition relationship (41) into transformation (6),
corresponding hybrid solution between N-order hyper-

bolic cosine functions and M-order cosine functions of
Eq. (1) appear as

uC1 = −2(ln fC1)x + u0(z, t),

fC1 =
N∑
i=1

ki cosh

[
− λ1

3βi
x + βi y

+λ31 + 9λ1λ3β2
i − 27β3

i (λ2βi + ωi )

27λ4β3
i

z + ωi t

]

+
M∑
j=1

h j cos

[
m j x + λ1

3m j
y + p j z

+3m j (m3
j − λ3m j − λ4 p j ) − λ1λ2

3m j
t

]
. (43)

By setting N = M = 2 and considering the parame-
ters λ1 = λ2 = 1, λ3 = λ4 = −1, k1 = k2 = 1, h1 =
2, h2 = −3, β1 = 0.27, ω1 = −1.4, β2 = 1.6, ω2 =
0.6,m1 = −0.5, p1 = −0.2,m2 = 1.4, p1 =
0.2, u0(z, t) = 0.1 in hybrid solution between N-order
hyperbolic cosine functions and M-order cosine func-
tions (43). The localized characteristics and energy dis-
tribution of interaction between two rogue waves and
two kink waves are shown clearly in Fig. 3. The rogue
wave consists of an upward peak and a downward val-
ley. As parameters y and t change, two rogue waves
generated by the collision of two kink waves move at
a certain angle along the negative direction of x axis
and the positive direction of z axis. It can be seen from
Fig. 3b that the amplitude of two roguewaves decreases
with the change of parameters y and t . Subsequently,
the shape of two rogue waves and two kink waves does
not change and the amplitude changes as shown in
Fig. 3c.

Substituting auxiliary function fC5 (40) and the
linear superposition relationship (42) into transforma-
tion (6), corresponding hybrid solution among N-order
exponential functions and M-order cosine functions of
Eq. (1) appear as

uC5 = −2(ln fC5)x + u0(z, t),

fC5 =
N∑
i=1

ki exp

[
αi x − λ1

3αi
y + γi z

+λ1λ2 − 3αi (α
3
i + λ3αi + λ4γi )

3αi
t

]

+
M∑
j=1

h j cos

[
λ1

3n j
x + n j y

+λ31 − 9λ1λ3n2j − 27n3j (λ2n j + q j )

27λ4n3j
z + q j t

]
. (44)
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Fig. 3 (Color online) Interaction between two rogue waves and two kink waves via hybrid solution between N-order hyperbolic cosine
functions and M-order cosine functions (43). a y = 10, t = −2, b y = 6, t = 2, and c y = 2, t = 6

Fig. 4 (Color online) Interaction between breather wave and two bell-shaped waves via hybrid solution among N-order exponential
functions and M-order cosine functions (44). a x = −4, y = 12, b x = y = 4, and c x = 12, y = − 4

Derived result of hybrid solution among N-order
exponential functions and M-order cosine functions
(44) at N = 2, M = 1 and λ1 = λ2 = 1, λ3 =
λ4 = −1, k1 = 1, k2 = h1 = 1.5, α1 =
0.5, α2 = −0.5, γ1 = −2, γ2 = 2, n1 = 0.3, q1 =
1.5, u0(z, t) = sech(t2 + z) + sech(t2 − z) reveals
interaction between breather wave and two bell-shaped
waves profile. It is obvious from Fig. 4 that the breather
wave is composed of two adjacent humps with period-
icity on both sides of the horizontal plane, two bell-
shaped waves intersect to form a bright soliton. As the
parameters x and y change, the breather wave moves
along the positive direction of the z-axis, and its ampli-
tude decreases after colliding with the bright soliton.

Hybrid solution between N-order hyperbolic cosine
functions and M-order cosine functions (43), hybrid
solution among N-order exponential functions and M-

order cosine functions (44) are all analytical solu-
tions. Figures 3 and 4 analyze the interaction between
rogue waves and kink waves, as well as the interac-
tion between breatherwave and bell-shapedwaves. The
mechanism of roguewaves can be regarded as the high-
amplitude waves generated by the collision of multi-
solitons [48,49]. It rises from an approximately con-
stant background plane before reaching the maximum
amplitude, and then gradually drops back the initial
background plane [50]. Since the center of gravity of
water waves fluctuates up and down, the results show
that periodic waveform, the constructed bell-shaped
waves and breather waves can help better understand
the hydrodynamics of water waves in ocean engineer-
ing [51].

123



1028 P.-F. Han, Y. Zhang

4 Linear superposition formula of function
product type

This section mainly introduces two kinds of function
product superposition theorems, including exponential
function product superposition solutions and trigono-
metric function product superposition solutions.

4.1 Linear superposition formula of exponential
function product type

In this subsection, we choose the new test functions
which are composed of the product of exponential func-
tions, hyperbolic cosine functions and hyperbolic sine
functions.

fD1 =
N∑
i=1

ki cosh(ηi ) cosh(ϕi ),

fD2 =
N∑
i=1

ki sinh(ηi ) sinh(ϕi ),

fD3 =
N∑
i=1

ki exp(ηi ) exp(ϕi ),

fD4 =
N∑
i=1

ki cosh(ηi ) sinh(ϕi ),

fD5 =
N∑
i=1

ki cosh(ηi ) exp(ϕi ),

fD6 =
N∑
i=1

ki sinh(ηi ) exp(ϕi ),

ηi = ai x + bi y + ci z + di t,

ϕi = ei x + gi y + ri z + si t,

(45)

where ki , ai , bi , ci , di , ei , gi , ri , si are all the real con-
stants, N is a positive integer.

Remark 4.1 Assuming that the exponential product
test functions fD1, fD2, fD3, fD4, fD5 and fD6 (45)
are solutions of bilinear form (7), one of the following
four linear superposition relationships must be satis-
fied:

Case 4.1 : bi = λ1ai
3(e2i − a2i )

,

di = λ1λ2ai
3(a2i − e2i )

− ai (a
2
i + 3e2i + λ3)

−λ4ci , a
2
i �= e2i ,

gi = λ1ei
3(a2i − e2i )

,

si = λ1λ2ei
3(e2i − a2i )

− ei (e
2
i + 3a2i + λ3) − λ4ri ; (46)

Case 4.2 : ai = λ1bi
3(g2i − b2i )

,

ci = λ31(b
3
i + 3bi g2i )

27λ4(b2i − g2i )
3

− λ2bi + di
λ4

+ λ1λ3bi
3λ4(b2i − g2i )

, b2i �= g2i ,

ei = λ1gi
3(b2i − g2i )

,

ri = λ31(g
3
i + 3gi b2i )

27λ4(g2i − b2i )
3

− λ2gi + si
λ4

+ λ1λ3gi
3λ4(g2i − b2i )

, λ4 �= 0; (47)

Case 4.3 : bi = λ1ai
3(e2i − a2i )

,

ci = λ1λ2ai
3λ4(a2i − e2i )

−ai (a2i + 3e2i + λ3) + di
λ4

, a2i �= e2i ,

gi = λ1ei
3(a2i − e2i )

,

ri = λ1λ2ei
3λ4(e2i − a2i )

− ei (e2i + 3a2i + λ3) + si
λ4

, λ4 �= 0; (48)

Case 4.4 : ai = λ1bi
3(g2i − b2i )

,

di = λ31(b
3
i + 3bi g2i )

27(b2i − g2i )
3

− λ2bi − λ4ci

+ λ1λ3bi
3(b2i − g2i )

, b2i �= g2i ,

ei = λ1gi
3(b2i − g2i )

,

si = λ31(g
3
i + 3gi b2i )

27(g2i − b2i )
3

− λ2gi − λ4ri + λ1λ3gi
3(g2i − b2i )

. (49)

Substituting auxiliary function fD1 (45) and the linear
superposition relationship (46) into transformation (6),
corresponding N-order cosh×cosh function solutions
of Eq. (1) appear as

uD1 = −2(ln fD1)x + u0(z, t), fD1

=
N∑
i=1

ki cosh(ηi ) cosh(ϕi ),
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ηi = ai x + λ1ai
3(e2i − a2i )

y + ci z

+
[

λ1λ2ai
3(a2i − e2i )

− ai (a
2
i + 3e2i + λ3) − λ4ci

]
t,

ϕi = ei x + λ1ei
3(a2i − e2i )

y + ri z

+
[

λ1λ2ei
3(e2i − a2i )

− ei (e
2
i + 3a2i + λ3) − λ4ri

]
t.

(50)

For the N-order cosh×cosh function solutions (50)
with N = 2, the three-dimensional dynamic graphs of
2-order cosh×cosh function solutions are successfully
depicted in Fig. 5. Figure 5 is plotted by taking arbi-
trary parameters as λ1 = λ2 = 1, λ3 = λ4 = −1, k1 =
k2 = 1, a1 = −0.7, a2 = 0.9, c1 = 0.5, c2 = r1 =
2, e1 = −0.3, e2 = −0.7, r2 = −1.2, u0(z, t) = 0.
With the increase of parameter y and the decrease
of parameter t , four bending kink waves collide with
each other and their shapes change. Figure 5b shows
that four bending kink waves are fused into two kink
waves under extrusion. Then, four bending kink waves
split under mutual collision and the amplitude did not
change in the whole process. Using relational formu-
las (45) and the linear superposition relationships (47),
(48), (49), we can obtain another exponential product
superposition solutions for Eq. (1).Here,we omit them.

4.2 Linear superposition formula of trigonometric
function product type

Here, we assume the new test functions which are com-
posed of the product of cosine functions and sine func-
tions.

fE1 =
M∑
j=1

h j cos(θ j ) cos(φ j ),

fE2 =
M∑
j=1

h j sin(θ j ) sin(φ j ),

fE3 =
M∑
j=1

h j cos(θ j ) sin(φ j ),

θ j = α j x + β j y + γ j z

+ ω j t, φ j = m j x + n j y + p j z + q j t,

(51)

where h j , α j , β j , γ j , ω j ,m j , n j , p j , q j are all the real
constants, M is a positive integer.

Remark 4.2 Assuming that the trigonometric product
test functions fE1, fE2 and fE3 (51) are solutions of
bilinear form (7), it is necessary to meet one of the
following four constraint conditions:

Case 5.1 : β j = λ1α j

3(α2
j − m2

j )
,

ω j = λ1λ2α j

3(m2
j − α2

j )
+ α j (α

2
j

+3m2
j − λ3) − λ4γ j , α

2
j �= m2

j ,

n j = λ1m j

3(m2
j − α2

j )
, q j = λ1λ2m j

3(α2
j − m2

j )

+m j (m
2
j + 3α2

j − λ3) − λ4 p j . (52)

Case 5.2 : α j = λ1β j

3(β2
j − n2j )

, γ j = λ31(β
3
j + 3β j n2j )

27λ4(β2
j − n2j )

3

−λ2β j + ω j

λ4
+ λ1λ3β j

3λ4(n2j − β2
j )

, n2j �= β2
j

m j = λ1n j

3(n2j − β2
j )

, p j = λ31(n
3
j + 3n jβ

2
j )

27λ4(n2j − β2
j )

3

−λ2n j + q j

λ4
+ λ1λ3n j

3λ4(β2
j − n2j )

, λ4 �= 0; (53)

Case 5.3 : β j = λ1α j

3(α2
j − m2

j )
, γ j = λ1λ2α j

3λ4(m2
j − α2

j )

+α j (α
2
j + 3m2

j − λ3) − ω j

λ4
, α2

j �= m2
j ,

n j = λ1m j

3(m2
j − α2

j )
, p j = λ1λ2m j

3λ4(α2
j − m2

j )

+m j (m2
j + 3α2

j − λ3) − q j

λ4
, λ4 �= 0; (54)

Case 5.4 : α j = λ1β j

3(β2
j − n2j )

, ω j = λ31(β
3
j + 3β j n2j )

27(β2
j − n2j )

3

+ λ1λ3β j

3(n2j − β2
j )

− λ2β j − λ4γ j , n
2
j �= β2

j ,

m j = λ1n j

3(n2j − β2
j )

, q j = λ31(n
3
j + 3n jβ

2
j )

27(n2j − β2
j )

3

+ λ1λ3n j

3(β2
j − n2j )

− λ2n j − λ4 p j . (55)

Substituting auxiliary function fE1 (51) and the linear
superposition relationship (52) into transformation (6),
corresponding M-order cos×cos function solutions of
Eq. (1) appear as

uE1 = −2(ln fE1)x + u0(z, t), fE1

=
M∑
j=1

h j cos(θ j ) cos(φ j ),

θ j = α j x + λ1α j

3(α2
j − m2

j )
y + γ j z
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Fig. 5 (Color online) Interaction between four bending kink waves via N-order cosh×cosh function solutions (50). a y = 1, t = 7, b y
= 5, t = 3, and c y= 9 , t= −1

+
[

λ1λ2α j

3(m2
j − α2

j )
+ α j (α

2
j + 3m2

j − λ3) − λ4γ j

]
t,

φ j = m j x + λ1m j

3(m2
j − α2

j )
y + p j z

+
[

λ1λ2m j

3(α2
j − m2

j )
+ m j (m

2
j + 3α2

j − λ3) − λ4 p j

]
t.

(56)

Using relational formulas (51) and the linear superposi-
tion relationships (53), (54), (55),we canobtain another
trigonometric product superposition solutions for Eq.
(1). Here, we do not propose this part. It is essential
to investigate the behavior of waves in nonlinear sci-
ences. Therefore, we analyze some linear superposition
solutions given by Eqs. (32), (33), (43), (44) and (50).
Through the symbolic calculation system Mathemat-
ica and selecting appropriate parameters for numeri-
cal simulation, the properties of the evolution profiles
of these wave expressions are studied. The results are
helpful to the study of shallow water waves and pro-
vide a new way to explain the physical properties of
nonlinear phenomena.

5 Conclusion

It is generally believed that waves play a pervasive
role in nature. The formation and propagation of
waves have important applications in water waves,
seismic waves, gravitational waves and mechanical
waves.With the help of symbolic computation,we have
studied the extended (3+1)-dimensional shallow water
wave equation in this work. Through theHirota bilinear

method, two kinds of bilinear auto-Bäcklund transfor-
mations are given and two different types of solutions
are obtained, including the hyperbolic cosine-function
solution and cosine-function solution. Through the
homoclinic test method, five kinds of linear superposi-
tion formulas are given. However, according to the par-
ticularity of undetermined coefficients in Eq. (1), this
method cannot be applied to all NLEEs. The results
obtained by this method have important practical sig-
nificance for explaining the nonlinear physical phe-
nomena of some important models.

The interactions of different types of superposition
solutions are studied by means of three-dimensional
diagram. Figure 1 shows the interaction phenomenon
of splitting into two bending kink waves due to the col-
lision between two kink waves and the peaked soliton.
One can evidently observe from Fig. 2 that the colli-
sion between three adjacent kink waves and one kink
wave leads to the splitting of three kink waves into
two bending kink waves. Figure 3 exhibits the inter-
action phenomenon of two kink waves colliding with
each other to generate two roguewaves. The interaction
phenomenon of bright soliton generated by the inter-
section of breather wave and two bell-shapedwaves are
found from Fig. 4. The interaction phenomenon of col-
lision and fusion of four bending kink waves as shown
in Fig. 5.

Our findings confirm the existence of some possi-
ble special linear superposition solutions in nonlinear
systems and add the richness of analytical solutions.
In the future work, the generalized bilinear form is
obtained based on the generalized bilinear differential
operators [52], and then some new linear superposi-
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tion solutions are studied. With the help of the physics-
informed neural networks [53] and bilinear neural net-
work method [54], the diversity of analytical solutions
can be enriched. The existence of these linear super-
position solutions in nonlinear systems provides a new
idea for us to analyze nonlinear phenomena. Naturally,
we hope that the linear superposition principle can find
different types of superposition solutions as much as
possible, so as to enrich our understanding of nonlin-
ear systems.
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