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Abstract In this paper, an n-star general dynamic
model of tethered satellite system with closed-loop
configuration is provided. An analytical method for
periodic solution stability of the general dynamic
model is proposed based on Floquet theory, which
proved that the periodic solution stability of the sys-
tem depends on the maximum modulus for the eigen-
value of a matrix related to the Jacobian matrix. The
periodic solution stability of a 3-star system with equi-
lateral triangle as the initial configuration is analyzed
as an example based upon the analytical method, and
the results are verified by numerical simulation. The
critical spin angular velocity caused by the tether mass
and the parameter variation of the 3-star system is ana-
lyzed. The results show that the analytical method of
periodic solution stability can solve the critical stable
spin angular velocity of the tethered satellite system

G. Zhu · Q. Cao
School of Astronautics, Harbin Institute of Technology,
Harbin 150001, Heilongjiang, People’s Republic of China

K. Lu (B) · K. Zhang
Northwestern Polytechnical University, Xi’an 710072,
Shaanxi, People’s Republic of China
e-mail: lukuan@nwpu.edu.cn

P. Huang
School of Astronautics, Northwestern Polytechnical
University, Xi’an 710072, Shaanxi, People’s Republic of
China

P. Huang
National Key Laboratory of Aerospace Flight Dynamics,
Northwestern Polytechnical University, Xi’an 710072, Shaanxi,
People’s Republic of China

accurately, and the 3-star system can guarantee stable
spin in the case of the spin angular velocity is higher
than the critical spin angular velocity.
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1 Introduction

Study on tethered satellite system (TSS) has become
one central issue of concerns in spacecraft engineer-
ing, attracting the attention of researchers in a series of
areas [1,2]. Since the first proposal of TSS, it has been
extensively applied in actual engineering, such as teth-
ered space robot [3], tethered space harpoon [4], and
tethered space net [5]. The first tethered satellite system
mission TSS-1 was jointly proposed by the USA and
Italy in 1992 [6]. Since then, many research institutions
have carried out a large number of space experiments
on tethered satellite systems [7] and made abundant
achievements [8–11], but also caused several mission
failures [6,12,13].

Based upon this, most researchers concentrated on
mechanism design and accordingly the dynamics and
control of space capture [14]. An analytical tether
length rate control law for the deployment of a flexible
TSS under the space perturbations was proposed [15].
Reference [16] proposed a novel adaptive dynamic slid-
ing mode scheme for the deployment of the tethered
satellite system. Although the input and command sig-
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nals are limited based on the strictly bounded terms, the
control tension force is discontinuous. Another con-
troller was designed by utilizing small-gain theorem
in Ref. [17], while the transversal thrust was consid-
ered to suppress the tethers’ oscillation. A feedback
tension control law for the deployment of space tether
with tension constraint and saturation functionwas pro-
posed by in Ref. [18]. Sakawa [19] used the optimal
control to solve the linearized nonlinear system. An
input shaping scheme was proposed to generate rea-
sonable planning of the control signal [20], and it is
widely used to solve underactuated problem. An earth-
oriented double-pyramid formation was investigated in
Ref. [21] and discovered that the stable configuration
was along the nadir direction, and the optimal control
of a double-pyramid Earth-facing formation was dis-
cussed.Anovel adaptive dynamic slidingmode scheme
for the deployment of the TSS was proposed in Ref.
[15]. Because of the Coriolis force and orbital motion,
the research on the spin stability of TSS is essential for
the realization of a fast and stable deployment/retrieval
[22].

Stability analysis is a core research content in mech-
anism study of vibration behaviors of dynamic sys-
tems. Many stability analysis methods have been used
to study nonlinear vibration behaviors of TSS. Accord-
ing to the variation demands of space missions, differ-
ent satellite formations are often required to complete
the missions together. For example, multi-point simul-
taneous measurements, as required in magnetospheric
studies, can be conducted by a set of probes connected
by tethers aligned along the local vertical. The poten-
tial application of multi-tethers systems is probably
greatest in space interferometry both LEO and deep
space [23]. Therefore, the study of n-star (or n-body)
TSS is of great significance. Correa et al. [24] applied
the one-dimensional stable configuration to the 4-body
tether system, and pointed out that it can be extended to
the tether system of N satellites. Pizarro-Chong et al.
[25] studied the tethered formations of hub-and-spoke
and closed-hub-and-spoke composed of N bodies, and
simulated the system composed of 3 ∼ 6 satellites.
The results show that the system composed of more
than 4 satellites needs to provide initial spin angular
velocity and tether tension to maintain configuration
stability. Tragesser [26] proved that the n-star system
with closed-loop configuration behaves very similar to
a rigid body in the cylindrical equilibrium case when
the spin rapid enough, based upon abundant simulation

analysis. But there is still a lack of elaboration on the
critical angular velocity of the stable spin for TSS with
close-loop configuration.

TheFloquet theory [27,28]was used to solve a series
of dynamic problems [29,30], such as rotor dynamics
[31,32], while few researchers used it to study the sta-
bility and dynamic behaviors of TSS.

The motivation of this paper is to propose a method
for the stable spin conditions of TSS with arbitrary
parameter feature based upon a general model with
closed-loop configuration. In Sect. 2, a general model
of TSS with closed-loop configuration is established
and a brief introduction to Floquet theory is also dis-
cussed. Section 3 proposes a general method for stabil-
ity analysis based upon the Floquet theory of the TSS
and discusses the numerical results of some examples
based on 3-star system. Finally, conclusions and out-
looks are drawn in Sect. 4.

2 Dynamic modeling of tethered satellite system

2.1 General tethered satellite system

Ageneralmodel of aTSSwithn satellites S1, S2, . . ., Sn
connected in a closed-loop configuration is considered.
The mathematical model of the TSS can be approxi-
mated to the bead-spring-damping ring (BSDR) form
shown in Fig. 1, no matter the masses of tethers are
considered or not, by the following fixed steps.

1. Define mi as the mass of the i th satellite Si ;
2. The i th mass tether connecting satellite Si and Si+1

is divided into finite segment (ni ) units consisting
of concentrated mass, massless spring and damp-
ing, in which 1 ≤ i < n;

3. The mass mi, j of each unit at the i th segment is
defined in which 1 ≤ j ≤ ni ; and spring stiff-
ness ki, j , damping coefficientCi, j , and equilibrium
length of each spring Li, j are defined in which
0 ≤ j ≤ ni , based upon the actual rope design
parameters.

In order to analyze the dynamic behavior of the sys-
tem in space, the inertial coordinate system O − XY Z
is established by connecting to the centroid of the earth
fixedly, and the rotating coordinate system o − xyz is
established by connected to the centroid of the tethered
satellite system fixedly, respectively, shown in Fig. 2.
The positive direction of X -axis is defined as the direc-
tion along the centroid of the earth to the ascending
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Fig. 1 General tethered satellite system model

Fig. 2 Schematic diagram of reference frame

node; the Z -axis is perpendicular to the orbital plane of
the TSS system with the positive direction of pointing
to the north pole from the centroid of the earth; and the
positive direction of Y -axis is determined by the right-
hand rule, in the inertial coordinate system O − XY Z .
The positive directions of y-axis and z-axis are defined
as the direction along the centroid of the earth to the
centroid of the TSS and the same direction of the Z -
axis, respectively, and the positive direction of x-axis is
determined by the right-hand rule, in the rotating coor-
dinate system o−xyz. Assuming the revolution angular
velocity of the o− xyz around the O − XY Z is �, and
the positive direction of rotation is counterclockwise.

The motion equation of the i th bead of the BSDR
system in the coordinate o − xyz can be expressed as
follows

mi r̈i = Gi + Ti + Di + Fe
i + Fk

i , (1)

in which 1 ≤ i ≤ n+m (including all the lumpedmass
of n satellites and m = ∑n−1

i=1 ni tether units), and for
the i th bread,mi : the mass, ri = (xi , yi , zi )T: the posi-
tion vector in the o− xyz, Gi : the gravity, Ti : the rope

tension, Di : the damping force, Fe
i : the convected iner-

tial force, Fk
i : the Coriolis inertial force, ṙi and r̈i : the

first and second order derivative of the position vector
ri to the time t , respectively, without considering the
perturbation factors such as J2 perturbation, thermal
effect, and atmospheric resistance.

Firstly, the gravitational term in Eq. (1) can be
obtained as follows

Gi = −miμE (ri − rE)

|ri − rE |3 . (2)

where μE ≈ 3.986× 105km3/s2 is the gravity param-
eter of the earth, rE = (0,−R, 0)T is the centroid
position vector of the earth in o − xyz, R = H + RE ,
in which H is the orbital height of the BSDR system,
and RE = 6378 km is the average radius of the earth.

Next, the tension term in Eq. (1) , which is deter-
mined by the sum of two adjacent tether tensions, can
be obtained as follows

Ti = −si, j Ei, j Ai, j

(
1

Li, j
− 1

ri, j

)
(
ri − r j

)

−si,k Ei,k Ai,k

(
1

Li,k
− 1

ri,k

)

(ri − rk) , (3)

where
⎧
⎪⎨

⎪⎩

j = 2, k = n + m, i = 1,

j = 1, k = n + m − 1, i = n + m,

j = i + 1, k = i − 1, else,

(4)

ri, j = |ri − r j | is the instantaneous distance between
the i th and j th beads, and si, j satisfies the following
relation

si, j =
{
1, ri, j > Li, j ,

0, else,
(5)

which control the effective of the tether tension.
The damping term in Eq. (1), which indicates the

sum of two tether damping along each axis direction
based on the linear damping model, can be obtained as
the following expression

Di = −si, jCi, j
ṙi, j
ri, j

(
ri − r j

)−si,kCi,k
ṙi,k
ri,k

(ri − rk) ,

(6)

where ṙi, j is the instantaneous relative speed between
the i th and j th beads.
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The convected inertial force term in Eq. (1) can be
considered to be consisted with the translation con-
vected inertial force and the centrifugal convected iner-
tial force, which can be expressed as follows

Fe
i = −mi ω̇ × (ri − rE) − miω × (ω × (ri − rE)) ,

(7)

where � is the value of spin angular velocity of the
coordinate o−xyz which equals to its revolution angu-
lar velocity numerically, and ω = (0, 0,�)T and ω̇

represent the rotational angular velocity and angular
acceleration of the o − xyz, respectively. ω̇ = 0 must
be hold by supposing the orbit of revolution is circular,
then the relation can be obtained as follows

− miω × (ω × (ri − rE)) =
⎡

⎣
i j k
0 0 �

− (yi + R) � xi� 0

⎤

⎦

=
⎡

⎣
−xi�2

− (yi + R) �2

0

⎤

⎦ , (8)

where i , j , and k represent the x , y, and z axes unit vec-
tors in the o− xyz. Furthermore, the convected inertial
force can be repressed as

Fe
i =

(
mi xi�

2,mi (yi + R) �2, 0
)T

. (9)

Finally, consider the Coriolis inertia force term in
Eq. (1) can be obtained as

Fk
i = −2mi ω̄ × ṙi , (10)

where ω̄ = ω is the spin angular velocity of the o−xyz,
then Eq. (10) can be rewritten as

Fk
i = (2mi�ẏi ,−2mi�ẋi , 0)

T . (11)

2.2 Brief introduction to Floquet theory

Floquet theory is a stability theory for a periodic vari-
able coefficient linear ordinary differential equation,
whichwas put forward byG. Floquet in 1883 [33]. This
section will discuss the general method for N dimen-
sions equation. Consider a system of first-order differ-
ential equations

ṗ (t) = A (t) p (t) , (12)

where A is a matrix with period T . Supposing the sys-
tem (12) has N linearly independent particular solu-
tions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p1 (t) = (p11 (t) , p12 (t) , . . . , p1N (t))T

p2 (t) = (p21 (t) , p22 (t) , . . . , p2N (t))T

...

pN (t) = (pN1 (t) , pN2 (t) , . . . , pNN (t))T

, (13)

and the initial conditions are satisfied

( p1 (0) , p2 (0) , . . . , pN (0)) = I . (14)

It is easy to prove that this set of particular solution is
the fundamental solution system of system (12). Based
on periodicity, if Pi (t) (1 ≤ i ≤ N ) is one of the par-
ticular solution, then Pi (t + T ) (1 ≤ i ≤ N ) must be
another particular solution, which can be expressed as

pi j (t + T ) =
N∑

k=1

aik pk j (t) , (15)

in which (1 ≤ i, j ≤ N ). Substituting t = 0 and Eq.
(14) into Eq. (15), the equation can be solved as follows

ai j = pi j (T ) . (16)

In order to determine the stability of the periodic solu-
tion of the system (12), it is necessary tofind aparticular
solution which satisfies the following conditions

p∗ (t + T ) = ρ p∗ (t) , (17)

in which p∗ (t) and p∗ (t + T ) can be expressed as the
fundamental solution system (12)

p∗ (t) =
(

N∑

i=1

bi pi1 (t) ,

N∑

i=1

bi pi2 (t) , . . . ,

N∑

i=1

bi pi N (t)

)T

,

(18)

and

p∗ (t + T ) =
(

N∑

i=1

bi pi1 (t + T ) ,

N∑

i=1

bi pi2 (t + T ) ,

. . . ,

N∑

i=1

bi pi N (t + T )

)T

, (19)
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respectively. It can be obtained by utilizing Eqs. (15),
(18), and (19) into Eq. (17) as follows

ρ

⎡

⎢
⎢
⎢
⎢
⎣

∑N
i=1 bi pi1 (t)

∑N
i=1 bi pi2 (t)

...
∑N

i=1 bi pi N (t)

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

∑N
i=1 bi pi1 (t + T )

∑N
i=1 bi pi2 (t + T )

...
∑N

i=1 bi pi N (t + T )

⎤

⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎣

∑N
i=1 bi

∑N
j=1 ai j p j1 (t)

∑N
i=1 bi

∑N
j=1 ai j p j2 (t)
...

∑N
i=1 bi

∑N
j=1 ai j p j N (t)

⎤

⎥
⎥
⎥
⎥
⎦

,

(20)

which is equivalent to

P (t) · M ≡ 0, (21)

by assuming

P (t) = ( p1 (t) , p2 (t) , . . . , pN (t)) , (22)

and

M =

⎡

⎢
⎢
⎢
⎣

(a11 − ρ) b1 + a21b2 + · · · + aN1bN
a12b1 + (a22 − ρ) b2 + · · · + aN2bN

...

a1Nb1 + a2Nb2 + · · · + (aNN − ρ) bN

⎤

⎥
⎥
⎥
⎦

.

(23)

It means that the following relation must be held

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(a11 − ρ) b1 + a21b2 + · · · + aN1bN = 0

a12b1 + (a22 − ρ) b2 + · · · + aN2bN = 0
...

a1Nb1 + a2Nb2 + · · · + (aNN − ρ) bN = 0

.

(24)

Ulteriorly, Eq. (24) can be rewritten as follows

AT · (B − ρ I) = 0, (25)

by assuming

AT =

⎡

⎢
⎢
⎢
⎣

a11, a21, . . . , aN1

a12, a22, . . . , aN2
...

a1N , a2N , . . . , aNN

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

p11 (T ) , p21 (T ) , . . . , pN1 (T )

p12 (T ) , p22 (T ) , . . . , pN2 (T )
...

p1N (T ) , p2N (T ) , . . . , pNN (T )

⎤

⎥
⎥
⎥
⎦

, (26)

and

B = (b1, b2, . . . , bN )T , (27)

where ρ is the eigenvalue of the matrix AT , which
means that the zero solution is asymptotically stable, if
and only if all |ρ| < 1, otherwise the zero solution is
unstable.

3 Dynamical analysis

3.1 General method for stability analysis of TSS

The motion Eq. (1) is rewritten into a first-order form,
to analyze the periodic stability of TSS

ẋ = F, (28)

where

x = (u1, v1, w1, . . . , un+m, vn+m, wn+m,

x1, y1, z1, . . . , xn+m, yn+m, zn+m)T , (29)

F = (
f x1 , f y1 , f z1 , . . . , f xn+m, f yn+m,

f zn+m, u1, v1, w1, . . . , un+m, vn+m, wn+m
)T

,

(30)

(ui , vi , wi )
T = ṙi , (31)

and

(
f xi , f yi , f zi

)T = Gi + Ti + Di + Fe
i + Fk

i , (32)

Assuming P0 : (x̄) is a fixed point on the Poincare
section, where

x̄ = (ū1, v̄1, w̄1, . . . , ūn+m, v̄n+m, w̄n+m,

x̄1, ȳ1, z̄1, . . . , x̄n+m, ȳn+m, z̄n+m)T , (33)
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p = (
p1, . . . , p6(n+m)

)T consisted of 2 (n + m) small
amounts, and P1 : (x̄ + p) is a point in the small neigh-
borhood of P0 : (x̄) that P1 can be regarded as a per-
turbation of P0. Therefore, P1 can be expanded into
Taylor series form by retaining the linear terms based
upon P0, which can be obtained as follows

ṗ = J0 · p, (34)

where

J0 = ∂F
∂xT

|x=x̄ . (35)

The system (36) with the initial conditions

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

p1 (t0) = 1, p2 (t0) = 0, . . . , p6(n+m) (t0) = 0

p1 (t0) = 0, p2 (t0) = 1, . . . , p6(n+m) (t0) = 0
...

p1 (t0) = 0, p2 (t0) = 0, . . . , p6(n+m) (t0) = 1

,

(36)

can be solved by dividing into the following two cases,
based on the ordinary differential equation theory.

1. When the matrix J has N = 6 (n + m) linearly
independent eigenvectors v1, v2, . . . , vN , and their
corresponding eigenvalues areλ1,λ2, . . . ,λN . Then
a basis solution matrix of homogeneous linear dif-
ferential equations with constant coefficients Eq.
(28) can always be expressed as

P (t) = ( p1 (t) , p2 (t) , . . . , pN (t))

= (
eλ1tv1, e

λ2tv2, . . . , e
λN tvN

)
(37)

the general solution can be expressed as

p (t) = P (t) · C (38)

where C = (C1,C2, . . . ,CN )T is a matrix con-
sisted of undetermined constants. Substituting the
initial condition (36) into Eq. (38), the equation can
be obtained as follows

I = V · C (39)

where

V = (v1, v2, . . . , vN ) , (40)

is the eigen-matrix of J |x=x̄ , and the constant
matrix satisfies the relation as follows

C = V−1. (41)

Thus, the general solution can be rewritten as

p (t) = P (t) · V−1. (42)

2. When the matrix J has less than N linearly inde-
pendent eigenvectors, it is easy to prove the fol-
lowing conclusion. If λi is the Ni -fold eigenvalue
of J , then there must be Ni linearly independent
solutions in the form of

p (t) = eλi t
Ni−1∑

j=0

t j

j !vi, j , (43)

in which vi,0 is a non-zero solution of

(J0 − λi I)Ni v = 0, (44)

and a recurrence relation can be obtained as follows

vi, j = (J0 − λi I) vi, j−1, (45)

where 1 ≤ j ≤ Ni − 1. Define the matrices P and
V are separately consisted of N linearly indepen-
dent vectors pi and vi , then the general solution of
the system in this situation can be solved by sub-
stituting P and V into (42).

The eigenvalues of the matrix p (t) at the periodic
sampling time ρ1, ρ2, . . . , ρN are the Floquet multi-
ples, according to the Floquet theory in Subsect. 2.2.
It is easy to prove that the Floquet multiplier of the
system is the eigenvalue of the matrix

AT = p (T ) , (46)
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by assuming t0 = 0, and the periodic solution must
be asymptotically stable if and only if the following
condition is satisfied

|ρi |max< 1, 1 ≤ i ≤ N . (47)

3.2 Verification based on a typical example

Taking a 3-star system connected bymassless tethers as
an example, the stability analysis is carried out based
on the above general model and analysis method, by
letting

{
n = 3

m = 0
. (48)

The motion equation of the system can be obtained as
follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẍ1 = − μE x1
(
x21 + (y1 + R)2 + z21

) 3
2

+ x1�
2 + 2�v1

− s1,2
E A

M

⎛

⎝ 1

L
− 1

√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2

⎞

⎠ (x1 − x2)

− s1,2
C

M

(x1 − x2) (u1 − u2) + (y1 − y2) (v1 − v2) + (z1 − z2) (w1 − w2)

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2
(x1 − x2)

− s1,3
E A

M

⎛

⎝ 1

L
− 1

√

(x1 − x3)2 + (y1 − y3)2 + (z1 − z3)2

⎞

⎠ (x1 − x3)

− s1,3
C

M

(x1 − x3) (u1 − u3) + (y1 − y3) (v1 − v3) + (z1 − z3) (w1 − w3)

(x1 − x3)2 + (y1 − y3)2 + (z1 − z3)2
(x1 − x3)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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where mi = M , Ei, j = E , Ai, j = A, Ci, j = C , Li, j = L ,
and i = 1, 2, 3, by assuming the initial position and veloc-
ity are in the xoy plane. Considering that the system has
an initial steady-state configuration of regular N -polygon,
which may be assumed that the 1st satellite is located on the
y-axis at the initial moment, the distance from the origin of
the o − xyz is R1. Then the initial position of any satellite
can be obtained as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̄i = R1 cos
(
(i − 1) δα + π

2

)

ȳi = R1 sin
(
(i − 1) δα + π

2

)

z̄i = 0

ūi = −ωR1 sin
(
(i − 1) δα + π

2

)

v̄i = ωR1 cos
(
(i − 1) δα + π

2

)

w̄i = 0

, (50)

in which N is the number of satellites, and δα = 2π

N
expresses the angle between two adjacent satellites. It is easy
to prove that R1 satisfies the following relation

−ω2R1 = v̇1|t=0, (51)

inwhichω expresses the spin angular velocity of theTSS sys-
tem. In order to verify the initial steady-state configuration of
tethered satellite system, a simulationmodelwas established.
The trajectories of the 1st, 2nd, and 3rd satellites are shown
in Figs. 3 and 4, which are represented by red, green, and
blue dotted curves, respectively; and the black circles and
the solid lines in black represent the satellites and the teth-
ers connecting two adjacent satellites, under the spin angular
velocity condition |ω| = 2.0� and |ω| = 2.5�, separately.

Table 1 Parameters of the tethered satellite system

Physical Significance Symbol Value

Radius of the earth RE 6378 km

Mass of the Satellite M 100 kg

Equilibrium length of tether L 10 km

Young’s modulus of tether E 5 × 1010 Nm−2

Cross sectional area of tether A 1 × 10−6 m2

Orbit radius of revolution H 1000 km

Based on the motion Eq. (49) and the initial conditions
(50), the TSS can maintain the initial configuration depend
on its spin under both conditions, which proves the correct-
ness of the steady-state configuration and the solution of the
initial conditions.

Substituting the initial conditions into the motion Eq.
(49), the Jacobian matrix can be solved as follows

J0 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂ u̇1
∂u1

,
∂ u̇1
∂v1

, . . . ,
∂ u̇1
∂z3

∂v̇1

∂u1
,

∂v̇1

∂v1
, . . . ,

∂v̇1

∂z3
...,

...,
. . . ,

...
∂ ż3
∂u1

,
∂ ż3
∂v1

, . . . ,
∂ ż3
∂z3

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

|t=0=
[
A, B
I, 0

]

. (52)

The curve of Floquet multiplier depended on clockwise spin
angular velocity of the TSS can be obtained based upon the
methodmentioned inSubsect. 3.1with the parameters shown
in Table 1.

It can be found from Fig. 5 that the configuration is sta-
ble when the spin angular velocity is higher than the critical

Fig. 3 Clockwise spin angular velocity |ω|= 2.0� of tether formation system, the numerical simulation results of the trajectories of
each satellite
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Fig. 4 Clockwise spin angular velocity |ω|= 2.5� of tether formation system, the numerical simulation results of the trajectories of
each satellite

(a) (b)

Fig. 5 The Floquet multiplier of the system in clockwise spin, a for the curve of Floquet multiplier and spin angular velocity, b for the
local enlargement of the curve

angular velocity (about 2.17 times of the revolution angu-
lar velocity). The correctness of the critical angular velocity
solved by the Floquet theory can be verified by introduc-
ing disturbances into the systems with different spin angular
velocitieswhich are shown inFigs. 3 and 4. The operation sit-
uations of the disturbed systems with the spin angular veloc-
ities of |ω|= 2.0� and |ω|= 2.5� are shown in Figs. 6 and
7, respectively. Obviously, the configuration of the disturbed
systemcannot be heldwhen the spin angular velocity is lower

than the critical angular velocity (| ω
�

|= 2.0 < 2.17), while

the disturbed system will converge to the original config-
uration in about 2 periods, when the spin angular velocity

satisfies | ω
�

|= 2.5 > 2.17.

The relative deviation from the initial steady-state con-
figuration is defined as follows

di = |ri |
R0

− 1, (53)

to analyze the convergence of each satellite to the initial con-
figuration depends on time. The relative deviation curves
of two operating modes with the two spin angular veloci-
ties of |ω|= 2.0� and |ω|= 2.5� are shown in Fig. 8. It
is shown that the relative deviation of each satellite in the
disturbed system cannot be attenuated to 0 when the spin
angular velocity is less than critical angular velocity, shown
in Fig. 8a; but the relative deviation of each satellite will
gradually decay to 0 to restore the initial steady state con-
figuration in a limited time, when the spin angular velocity
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Fig. 6 The orbit of each satellite, when the clockwise spin angular velocity of the system satisfies |ω| = 2.0�

Fig. 7 The orbit of each satellite, when the clockwise spin angular velocity of the system satisfies |ω|= 2.5�

Fig. 8 Relative deviation of the system, a for the situation of |ω|= 2.0� and b for the situation of |ω|= 2.5�
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satisfies | ω
�

|= 2.5 > 2.17. Therefore, the solution of period-

ical stability obtained by the general method based upon the
Floquet theory mentioned in Subsect. 3.1 has been proved
that the configuration solved by (50) and (51) is stable when
the clockwise spin angular velocity rapider than about 2.17
times the revolution angular velocity.

3.3 Sensitivity analysis of system parameters

The effects of the critical angular velocity caused by the vari-
ation of the system parameters are considered based upon the
above 3-star system.

Firstly, two groups of 3-star system with different satel-
lite masses are analyzed, in which the satellite masses in
the first group are 50 kg (less than the original system) and
which in the other group are 1000 kg (greater than original

system), respectively. It can be found from Fig. 9 that the
changing of satellite mass will significantly affect the criti-
cal angular velocity of the stable spin of the system, based
upon the Floquet theory. The Floquet multiplier of the sys-
temwith the satellite masses of 50 kg and 1000 kg are shown
in Fig. 9a, b, c, and d, respectively, and the critical angular
velocities are separately about 2.79 and 2.07 times of the
revolution angular velocity. This leads a conclusion that the
critical angular velocity will decrease with the increase in
satellite mass, which means that the increase in the system
inertia caused by increasing satellitemasswill reduce the sta-
ble spin condition. The critical angular velocities solved by
the Floquet theory are verified by disturbed simulations. The
configuration of the disturbed system with the satellite mass
of 50 kg, shown in Fig. 10, can hold the original configura-
tion in about 2 periods, if the spin angular velocity satisfies

| ω
�

|= 2.9 > 2.79. As shown in Fig. 11, the configuration of

(a) (b)

(c) (d)

Fig. 9 The Floquet multiplier of the system with different
masses of satellites in clockwise spin, a for the curve of Floquet
multiplier and spin angular velocity with the satellite masses of
50 kg, b for the local enlargement of the curve shown in (a), (c)

for the curve of Floquet multiplier and spin angular velocity with
the satellite masses of 1000 kg, and d for the local enlargement
of the curve shown in (c)
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(a) (b) (c)

(d) (e) (f)

Fig. 10 The simulation results of the system with the satellite
mass of 50 kg. a for the orbit of each satellite when the clockwise
spin angular velocity of the system satisfies |ω|= 2.5�, b for the
top viewof (a), (c) for the relative deviation of the system satisfies

|ω|= 2.5�, d for the orbit of each satellite when the clockwise
spin angular velocity of the system satisfies |ω|= 2.9�, e for the
top view of (d), and (f) for the relative deviation of the system
satisfies |ω|= 2.9�

the disturbed system with the satellite mass of 1000 kg can
be converged to the original configuration in about 3 periods,

if the spin angular velocity satisfies (| ω
�

|= 2.2 > 2.07). The

relative deviationof each satellite in the disturbed systemwill
gradually decay to 0 to restore the initial steady state configu-
ration in a limited time when and only when the spin angular
velocity is larger than the critical angular velocity, shown in
Figs. 10c, f and 11c, f. Secondly, the applicability of the gen-
eral model and its stability discrimination method for com-
plex systemwithmulti-body is demonstrate. Considering the
3-star system consisted of multi-beads (more than 3) with
different masses, introduced by the mass effect of tethers.
Assuming the tether connecting two satellites with the mass
satisfiesM = 1000 kg can be divided into two segmentswith
the center mass ism = 10 kg. Considering that each tether is
divided into two segments, and the steady-state configuration
of 3-star systemwith 6 beads is shown inFig.12. The parame-
ters R1 and R2 can be determined by the following equations

{−ω2R1 = v̇1|t=0,

−ω2R2 = cos
(
α + π

2

)
u̇2|t=0+ sin

(
α + π

2

)
v̇2|t=0.

(54)

The critical angular velocity of the 6-bead system can be
determined by analyzing the Floquet multiplier in Fig. 13,
which implies a conclusion similar to that shown in Fig. 9d,
that is |ω|≈ 2.08�. The simulation results of the stability
of the disturbed 6-bead system under different spin angular
velocities are shown in Fig. 14. It can be found that the sim-
ulation results verified the correctness of the stability condi-
tion implied by the results of the Floquet multiplier shown in
Fig. 13. The trajectory of each bead of the disturbed system
will gradually approach a circular orbit in about 10 periods
in order to stabilize the system configuration, when the spin
angular velocity is larger than the critical angular velocity
(|ω|≈ 2.08�). On the contrary, the system cannot maintain
configuration steadily when the spin angular velocity is not
large enough. However, the 6-bead system cannot approach
the initial stable configuration in a limited time even when
the spin angular velocity is greater than the critical angu-
lar velocity. It is means that a rapid enough spin can keep
the configuration stable but cannot completely suppress the
vibration, for the system with more than 3 beads.

In other words, it is obvious from Fig. 15a and c that the
relative deviation of the center distance of each beads can-
not approach to 0, whether or not the spin angular velocity
is greater than the critical angular velocity; but the relative
deviation of the tether length can approach to 0, only when
the spin angular velocity is greater than the critical angu-
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(a) (b) (c)

(d) (e) (f)

Fig. 11 The simulation results of the system with the satellite
mass of 1000 kg. a for the orbit of each satellite when the clock-
wise spin angular velocity of the systemsatisfies |ω|= 1.5�,b for
the top view of (a), (c) for the relative deviation of the system sat-

isfies |ω|= 1.5�, d for the orbit of each satellite when the clock-
wise spin angular velocity of the system satisfies |ω|= 2.2�, e
for the top view of (d), and f for the relative deviation of the
system satisfies |ω|= 2.2�

Fig. 12 The steady-state configuration of 3-star system with 6
beads

lar velocity. Considering there are multiple solutions of the
geometry of the system with the constant tether length but
different included angles, when the number of beads in the
system exceeds 3. The kinetic energy causing the change
of the included angle of adjacent tethers will not be dis-
sipated, since there is no constraint on the rotational rela-
tionship between each bead and tether. Therefore, it can be
concluded that although the spin stability conditions of the
closed-loop system with more than 3-bead can be accurately
analyzed by the general model and the method proposed in

Fig. 13 The Floquet multiplier of the 6-beads system

this paper, the periodic change of configuration caused by
the variation of tether angle cannot be suppressed only by
accelerating the spin angular velocity.
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Fig. 14 The simulation results of the 6-bead system. a for the
orbit of each bead when the clockwise spin angular velocity of
the system satisfies |ω|= 1.5�, b for the top view of a, c for the

orbit of each bead when the clockwise spin angular velocity of
the system satisfies |ω|= 2.2�, d for the top view of (c)

4 Conclusion and outlooks

In this paper, a general dynamic model of n-star tethered
satellite systemwith closed-loop configuration has been pro-
posed. An analytical method of periodic solution stability of
the general dynamicmodel is provided based on Floquet the-
ory, which proves that the periodic solution stability of the
system depends on the maximummodulus of the eigenvalue
for a matrix related to the Jacobian matrix of the system. On
the basis of the general periodic solution stability analysis
method, taking a 3-star system with the initial configura-
tion of equilateral triangle, the critical stable clockwise spin
angular velocity of the system is analyzed, and the numeri-
cal simulation is carried out to verify the results. The results
show that the analytical method of periodic solution stability
can solve the critical stable spin angular velocity of the TSS

accurately. The system can guarantee stable spin when the
value of its spin angular velocity is higher than the critical
stable spin angular velocity; otherwise, the disturbed system
will not be able to re-converge to the initial configuration in
finite time. The periodic oscillation of the stable configura-
tion consistedofmore than3beads, causedbyvariationof the
included angle of the tethers, cannot be suppressed only by
accelerating the spin angular velocity. Therefore, the vibra-
tion suppression scheme except changing the spin angular
velocity is of great significance for themulti-bead (more than
3) system, which is being actively studied by the authors.
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(a) (b)

(c) (d)

Fig. 15 Relative deviation of the system. a for the distance from
each bead to the center of the systemwith the spin angular veloc-
ity of |ω|= 1.5�, b for the length of each tether with the spin
angular velocity of |ω|= 1.5�, c for the distance from each

bead to the center of the system with the spin angular velocity
of |ω|= 2.2�, and (b) for the length of each tether with the spin
angular velocity of |ω|= 2.2�
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