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Abstract In thiswork, the issue of input-output finite-
time stabilization of fractional-order nonlinear systems
represented by interval type-2 fuzzy models is dis-
cussed. Specifically, the addressed system takes into
account more realistic factors such as uncertainties,
nonlinearities, disturbances, and state delays. A new
dynamic sliding-mode control (SMC) scheme for inter-
val type-2 fuzzy models is developed in order to elim-
inate the commonly held assumption that all subsys-
tems share the same input matrix (i.e. Bi �= B), which
is considered in the majority of fuzzy SMC scheme
results. Based on input-output finite-time stabilization
properties and the proposed control scheme, the goal
of this work is to reduce the impact of uncertain-
ties, nonlinearities, disturbances, and state delayswhile
ensuring that the signal variables arrive at a domain
within the designed fixed-time level. Furthermore, the
required criteria are expressed as linear matrix inequal-
ities, which can be solved by using MATLAB linear
matrix inequality toolbox. Following that, three numer-
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ical examples, including the permanent magnet syn-
chronous motor model and the single-link robot arm
model, are provided to validate the proposed control
scheme.
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1 Introduction

Fractional calculus is a powerful tool for describing
memory and hereditary qualities in different kinds of
real-world fields, such as mathematics, biology, engi-
neering and so on. Many irregular engineering mod-
els can be represented precisely and concisely with
the help of fractional-order (FO) derivatives, making
the research of fractional calculus more meaningful. It
is also mentioned that the fractional calculus can be
considered as a superset of integer calculus, which is
another significant benefit. As a result, FO systems are
more accurate and reliable than integral-order systems
in representing mathematical models in a variety of
areas of researches, including dynamical systems and
control theory [1–6]. For instance, the control algo-
rithm for Lithium-ion battery applications based on FO
electrical systems can be presented in [6].

The concept of the type-1 fuzzy set together with
their fuzzy logic model has been proven to be an effi-
cient tool for representing various situations in fuzzy
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set theory [7–11]. However, the results are not avail-
able for type-1 fuzzy models when the grades of mem-
bership contain uncertain information. It is essential
to find out an approach to solve the problem that the
grades of membership contain uncertain information.
Mendel et al. [12] proposed an interval type-2 (IT2)
fuzzy logic model which can be used to handle uncer-
tain grades of membership. Due to the merits of IT2
fuzzy sets over type-1 fuzzy sets, the authors in [13]
introduced a lower and upper membership functions
approach to deal with the parameter uncertainties in
the nonlinear plants and designed an IT2 fuzzy state
feedback controller for IT2 fuzzy models. In partic-
ular, the introduction of the IT2 fuzzy set is to com-
pensate for the inefficiency of the type-1 fuzzy set in
modeling uncertainties. In recent years, the IT2 fuzzy
models have been used effectively in a wide range of
applications, including control classifications [14–18].
The authors in [14] investigated the relation between
type-1 and IT2 fuzzy models via using type-reduction
and defuzzification methods. In [17], the issue of IT2
sampled data stability results have been investigated for
nonlinear systems against parameter uncertainties. By
using IT2 fuzzymodels, the authors in [18] investigated
the stabilization problem for nonlinear networked con-
trol systems under cyber attacks.With the rapid growth
of fuzzy logic theory, several works have been reported
by combining fractional calculuswith fuzzy logicmod-
els [19–23].

Uncertainties and disturbances are frequently enco
untered in practical control systems, because it is very
difficult to obtain exact mathematical models because
of many reasons such as environmental noises, model
errors, and aging of systems. The presence of uncer-
tainties and disturbances may cause instability or bad
performance on controlled systems. As a well-known
robust control method in the control fields, the sliding-
mode control (SMC) scheme has a lot of attractivemer-
its, such as good transient performance, system order
reduction, high convergence speed and strong robust-
ness against systemuncertainties, external disturbances
and model errors. The basic procedure of SMC is that,
in finite time, a suitable discontinuous control law is
used to drive the system states to the sliding surface and
then drive the states to move along the surface to the
origin. Several interesting results on the SMC-based
stabilization problem for various fuzzy models have
been addressed during the past few decades [24–27].

It is noted that all those SMC schemes in above
results rely on an assumption that all linear local mod-
els of the fuzzy system share a common input matrix,
that is, the input matrices Bi for all the subsystems
is the same (i.e. Bi = B), which is very restrictive.
It is noted that many real plants, such as the well-
known inverted pendulum on a cart, permanent mag-
net synchronous motor, single-link robot arm model,
do not satisfy this assumption. In order to overcome
this constraint assumption, the dynamic SMC scheme
is developed for fuzzy systems under robust H∞ con-
trol designs [28]. Recently, there are only a few effec-
tive results in the literature that remove the restrictive
assumption that all local models share the same control
input matrix [29–32]. Furthermore, the fuzzy FOSMC
has emerged as a powerful control design [33]. The
application of FO calculus provides an extra degree of
freedom that facilitates the design of more flexible and
powerful control methods that satisfy system specifi-
cations. The FOSMC designs were shown to exhibit
minimal chattering, robust performance against varia-
tions in gain, and the ability to reject noise and out-
put disturbances [22,23]. In order to get more accurate
model, the FOSMC design is developed for a class of
IT2 fuzzy models.

Furthermore, we generally require system outputs to
stay within a specified bound during a short operation
time period. However, most of the stabilization results
cannot meet our requirements under these conditions.
As a result, the concept of finite-time stabilization for
linear time-varying systems was established in [34].
Following that, Amato et al. [35] introduced a special
case of finite-time stabilization known as input-output
finite-time stabilization for linear systems. The input-
output finite-time stabilization focuses exclusively on
the input-output features or state fluctuations of the
dynamical system within a finite predefined time inter-
val. In particular, if the system’s input is bounded in
a specified time interval, the system’s output must be
also bounded during that time interval. Out of that finite
time interval, the system may become unstable. The
specified finite time interval is employed in the system
states, which is proved to be efficient in improving the
system performance [36–40].

Motivated by the above facts, this paper studies the
dynamic SMC scheme for a class of IT2FO fuzzy sys-
tems against uncertainties, nonlinearities, disturbances
and state delays. The main contributions of this paper
are listed as follows:
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(1) An input-output finite-time stabilization problem
for delayed FO nonlinear systems with IT2 fuzzy
models is presented for the first time.

(2) In contrast to the existing fuzzy SMC scheme in
[24–27,37], this work employs the FO dynamic
SMC scheme, in which the control input coefficient
matrices of all linear subsystems do not have to be
the same (i.e. Bi �= B).

(3) The desired stabilization criteria of IT2FO fuzzy
augmented system is investigated using input-
output finite-time stabilization properties by con-
structing an appropriate FO Lyapunov functional
in conjunction with the Schur complement.

Finally, the derived theoretical results are validated
through three numerical examples, including the per-
manent magnet synchronous motor and single-link
robot armmodels. The validation section demonstrates
that the results developed in this paper are effective for
the system under consideration and reduce the conver-
gence time when compared to recent result in [37].

2 Problem formulation and preliminaries

2.1 IT2FO fuzzy system description

There are several definitions that exist for the FO
derivative of xt . In particular, the most commonly
used FOderivatives are Riemann-Liouville, Grunwald-
Letnikov and Caputo FO derivatives. The Caputo FO
derivative is used in this paper because it is more appro-
priate in many engineering applications.

Definition 1 [1,2] The Caputo fractional derivative of
FO α of function c(t) is defined as

Dαc(t) = 1

Γ (κ − α)

dκ

dtκ

∫ t

t0
(t − i)κ−α−1c(i)di,

where α is the order of the derivative, such that κ −1 ≤
α < κ, κ ∈ Z

+ and Γ (r) = ∫ ∞
0 tr−1e−t dt .

Consider the FO system with uncertainties, time delay,
nonlinearities and disturbances that is modeled by
using IT2 fuzzy models with the i th rule as follows:
IF S1(xt ) is si1, S2(xt ) is si2, . . . , and Sr (xt ) is sir ,
THEN

Dαxt =(Ai + ΔAi
t )xt + (Aτ i + ΔAτ i

t )x(t−τ)

+ (Bi + ΔBi
t )ut + Ei f (t, xt ) + Bwiwt ,

zt =Ci xt ,

xt = φt , t ∈ [−τ, 0], i ∈ S := {1, 2, . . . , n} (1)

where Sς (xt ) is the premise variable; siς (i ∈
S and ς = {1, 2, . . . , r}) indicates the IT2 fuzzy set;
xt ∈ Rn , zt ∈ Rz , ut ∈ Rm , wt ∈ Rw, denote the sys-
tem state, controlled output, control input and exter-
nal disturbances, respectively; Ai , Aτ i , Bi , Bwi , Ei

and Ci (i ∈ S) are known real matrices; τ denotes
the constant time delay and φt indicates an initial state
value defined on [−τ, 0]. The unknown nonlinear vec-
tor function f (t, xt ) satisfies the local Lipschitz con-
dition on Σ ⊂ Rn , that is, there exists a known real
constant matrix F so that || f (t, x1t ) − f (t, x2t )|| ≤
||F (x1t − x2t )||, ∀ {x1t , x2t } ∈ Σ . This model uncer-
taintiesΔAi

t ,ΔBi
t andΔAτ i

t are unknownmatrices fol-
lowing [ΔAi

t ΔBi
t ΔAτ i

t ] = N 1iνt [N 2i N 3i N 4i ],
where N ḡi (ḡ = 1, 2, 3, 4, & i ∈ S) are known con-
stant matrices and νt indicates an unknown matrix in
which satisfies νTt νt < I .

Here, the scalars r and n denote the number of
premise variables and IF-THEN rules of the system,
respectively. Then, the firing strength of the i th rule
can be expressed in the following form:

V i (xt ) = [vi (xt ), vi (xt )], i ∈ S,

where vi (xt ) = ∏r
ς=1 lsiς (�ς (xt )) ≥ 0, vi (xt ) =

r∏
ς=1

lsiς (�ς (xt )) ≥ 0. The upper and the lower grade

of membership, the upper and the lower member-
ship functions are depicted by lsiς (�ς (xt )) ∈ [0, 1],
lsiς (�ς (xt )) ∈ [0, 1], vi (xt ) and vi (xt ), respectively.

According to the property lsiς (�ς (xt )) ≤ lsiς (�ς (xt ))

that vi (xt ) ≤ vi (xt ) is always satisfied for all i . Then,
the defuzzified systems are written as

Dαxt=
n∑

i=1

vi (xt )
[
(Ai+ΔAi

t )xt+(Aτ i+ΔAτ i
t )x(t−τ)

+ (Bi + ΔBi
t )ut + Ei f (t, xt ) + Bwiwt

]
,

zt =
n∑

i=1

vi (xt )C
i xt , (2)
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with vi (xt ) = mi (xt )vi (xt ) + mi (xt )vi (xt ), where
mi (xt ) andmi (xt ) are nonlinear functions such that the
following conditions are satisfied:mi (xt )+mi (xt ) = 1,
0 ≤ mi (xt ) ≤ mi (xt ) ≤ 1 and

∑m
p=1 vi (xt ) = 1 in

which vi (xt ) is regarded as the grade of fuzzy mem-
bership functions.

The primary objective of this paper is to design the
dynamic SMC scheme, such that the IT2FO argument
system is input-output finite-time stabilization. In order
to achieve the desired objective, the following defini-
tion and lemma are presented.

Definition 2 According to [40], for given scalars c1 >

0, c2 > 0, T > 0 and weight matrix F > 0, under
the zero initial condition, φt = 0, the system (2) is
input-output finite-time stabilization with the parame-
ters (c1, c2, F , T ), if system (2) satisfies

∀wt ∈ R 	⇒ zTt F zt < c22, ∀t ∈ [0, T ],

where R = {wt ∈ L2[0, T ] : ∫ T
0 wT

u wudu ≤ c21}.
Lemma 1 [1] Given matrices ξ1 = ξ T1 , ξ2 and ξ3 of
appropriate dimensions, the relationship

ξ1 + ξ2δtξ3 + ξ T3 δTt ξ T2 < 0,

is verified for all δt satisfying δTt δt ≤ I , if and only if
there exists some λ > 0 such that

ξ1 + λξ2ξ
T
2 + λ−1ξ T3 ξ3 < 0.

Remark 1 This paper focuses on designing a dynamic
SMC scheme to deal with delayed IT2FO fuzzy sys-
tems, in which, the sliding surface function is com-
bined linearly with states and inputs. The results in
[24–27,37] require that all the control coefficientmatri-
ces of the addressed systems are same. However, this
requirement is not realistic for many real-world sys-
tems. To be precise, in this paper, the restriction on the
input matrices of the considered systems is relaxed.

3 Dynamic SMC analysis and synthesis

In this section, we mainly study the input-output finite-
time stabilization of IT2FO fuzzy systems (2). To effec-
tively handle the stabilization criteria, a fuzzy dynamic
SMC is developed. Based on the designed IT2FO fuzzy

augmented system, three theorems on input-output
finite-time stabilization for IT2FO fuzzy systems (2)
are proposed via dynamic SMC scheme with and with-
out uncertainties.

3.1 Design of dynamic SMC scheme

Although fuzzy SMC scheme have been widely dis-
cussed to study the stabilization of fuzzy systems in
[24–27,37], these controls are applicable only when a
very restrictive assumption is satisfied, that is, all local
linear models of fuzzy systems share the same input
matrix. Interestingly, newly developed dynamic SMC
schemes do not need such a restrictive assumption [28].
Then, the design of the sliding surface is provided in
the following form:

st = Ox xt + Ouut = Ōx̄t = 0, (3)

where x̄t = [x1t , . . . , xnt , u1t , . . . , umt ]T , Ox ∈
Rm×n , Ou ∈ Rm×m , Ō = [Ox ,Ou], and Ou is
assumed to be nonsingular.

Then, to stabilize the IT2FO fuzzy systems (2), the
FO dynamic SMC scheme is constructed in the follow-
ing form:

Dαut=
n∑

i=1

vi (xt )
[−Oux

(
Ai xt+Aτ i x(t−τ)+Biut

)]

− (p + lt )O−1
u sgn(st ), (4)

where Oux = O−1
u Ox , lt = ∑n

i=1 vi (xt )||Ox || ×[
||N 1i ||||N 2i ||||xt || + ||N 1i ||||N 4i ||||x(t−τ)||

+ ||N 1i ||||N 3i ||||ut ||+||Ei |||| f (t, xt )||+||Bwi ||ct
]
,

where p > 0, and ct is the known uniform upper bound
of the disturbance wt .

Let L1 = [In, 0n×m]T , L2 = [0m×n, Im]T , Āi =
[Ai , Bi ], Āτ i = [Aτ i , 0n×m], Δ Āi

t = [ΔAi
t ,ΔBi

t ],
Δ Āτ i

t = [ΔAτ i
t , 0n×m] and C̄i = [Ci , 0n×m]. On the

basis of above, the IT2FO fuzzy systems (2) with the
designed controller (4) can be rewritten in a compact
form as

Dα x̄t =
n∑

i=1

vi (xt )
[(

(L1 − L2Oux ) Ā
i + L1Δ Āi

t

)
x̄t

+ (
(L1 − L2Oux ) Ā

τ i + L1Δ Āτ i
t

)
x̄(t−τ)
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+ L1E
i f (t, xt ) + L1B

wiwt
]

− L2(p + lt )O−1
u sgn(st ),

zt =
n∑

i=1

vi (xt )C̄
i x̄t . (5)

Subsequently, we will prove that the states of the
augmented system will be drifted and kept on the
sliding-mode surface in a finite time. In other words,
the reachability of the sliding surface is guaranteed by
the following theorem.

Theorem 1 The states of the IT2FO fuzzy augmented
system (5) will be reached onto the sliding-mode sur-

face (3) in a finite time t ≤ α

√
||s0||2Γ (α+1)

2p .

Proof Choose the function St = sTt st for all t > 0.
Then, along the states of the IT2FO augmented system
(5), one has

DαSt = 2sTt Dαst

= 2sTt ŌDα x̄t

= 2
n∑

i=1

vi (xt )s
T
t Ō

[(
(L1 − L2Oux ) Ā

i

+ L1Δ Āi
t

)
x̄t + (

(L1 − L2Oux ) Ā
τ i

+ L1Δ Āτ i
t

)
x̄(t−τ) + L1E

i f (t, xt )

+ L1B
wiwt − L2(p + lt )O−1

u sgn(st )
]
. (6)

With the fact that Ō(L1 − L2Oux ) = 0, one has

DαSt = 2
n∑

i=1

vi (xt )s
T
t Ō

[
L1Δ Āi

t x̄t + L1Δ Āτ i
t x̄(t−τ)

+ L1E
i f (t, xt ) + L1B

wiwt

− L2(p + lt )O−1
u sgn(st )

]

= 2
n∑

i=1

vi (xt )s
T
t Ox

[
Δ Āi

t x̄t + Δ Āτ i
t x̄(t−τ)

+ Ei f (t, xt ) + Bwiwt
] − 2lt ||st || − 2p||st ||

≤ − 2p||st || = −2p
√
St

≤ − 2p < 0, for all st �= 0. (7)

To demonstrate that the slidingmotion occurs in a finite
time, we utilize Lemma 1 in [3] and (7) that

Dα||st ||2 ≤2sTt Dαst ≤ −2p, (8)

which implies that there exists Mt ≥ 0 such that

Dα||st ||2 ≤ −2p − Mt . (9)

Taking Laplace transform on both sides of (9), one has

sαNs − sα−1n0 = − 2p

s
− Ms,

	⇒ Ns =n0
s

− 2p

sα+1 − Ms

sα
. (10)

where Ns = ∫ ∞
0 e−st nt dt , Ms = ∫ ∞

0 e−st Mtdt , and
nt = ||st ||2. Taking inverse Laplace transform on (10),
it yields

||st ||2 = ||s0||2 − 2ptα

Γ (α + 1)
−

∫ t

0
(t − τ)(α−1)Mτdτ.

(11)

In this way, ||st ||2 = 0 implies that the system states
converge to the sliding surface s(t) = 0, that is

||s0||2 − 2ptα

Γ (α + 1)
−

∫ t

0
(t − τ)(α−1)Mτdτ = 0.

(12)

Since
∫ t
0 (t − τ)(α−1)Mτdτ ≥ 0, from (12) one has

||s0||2 − 2ptα

Γ (α + 1)
≥0.

	⇒ t ≤ α

√
||s0||2Γ (α + 1)

2p
.

Hence, the system states can arrive at the sliding surface

(3) within a finite time t ≤ α

√
||s0||2Γ (α+1)

2p . Hence, the
proof of this theorem is completed. ��

3.2 Analysis of the sliding motion

It is noted that in Theorem 1, the reachability of the
system states (2) in a finite-time is established with the
aid of dynamic SMC scheme (4). In this subsection, we
will analyze the input-output finite-time stabilization of
the sliding motion.

Theorem 2 Consider the IT2FO fuzzy systems (2)with
ΔAi

t = 0,ΔBi
t = 0,ΔAτ i

t = 0 and let τ , c1 > 0, c2 >

0, T > 0, a > 0, α ∈ (0, 1] be given scalars. Under
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a given matrix F , the IT2FO fuzzy augmented system
(5) is input-output finite-time stabilization with respect
to (c1, c2,F , T ), if there exist positive definite matrix
P ∈ R(m+n)×(m+n), the real matrices Z T

g = Zg ∈
R(m+n)×(m+n), K gi ∈ Rm×(m+n), (g = 1, 2, & i ∈
S) such that the following inequalities are satisfied:

[φ̄]6×6 =
⎡
⎣[φ]4×4 ϑ1 ταα−1Z2ϑ2

∗ −I 0
∗ ∗ −ταα−1Z2

⎤
⎦ < 0, (13)

(C̄i )TFC̄i − P < 0, (14)

R <
c22

eaT c21
I, (15)

[
Z1 0
0 Z2

]
≥ 0, (16)

where

φ11 =P
(
L1 Ā

i − L2K
1i ) + (

L1 Ā
i − L2K

1i )TP
+ ταα−1Z1 + (1 − a)P, φ13 = PL1B

wi ,

φ12 =P
(
L1 Ā

τ i − L2K
2i ), φ14 = PEiL1,

φ22 = − P, φ33 = −R, ϑ1 = [F 0 0 0]T ,

φ44 = − I, ϑ2 = [L1 Ā
i L1 Ā

τ i L1B
wi L1E

i ]T

and the remaining terms of [φ̄]6×6 are zero.

Proof WechooseP = X −1 and aLyapunov function
for the IT2FO fuzzy augmented system (5) as

Wt =x̄ Tt P x̄t . (17)

The constructed sliding surface matrix is provided as
st = L T

2 P x̄t , then we determine that L T
2 P x̄t = 0

on the sliding surface. In light of [1,2], one can compute
the derivative of the Lyapunov functional as

DαWt ≤Sym
{
x̄ Tt P

n∑
i=1

vi (xt )
[
L1 Ā

i x̄t + L1 Ā
τ i x̄(t−τ)

+ L1E
i f (t, xt ) + L1B

wiwt

]}
. (18)

Furthermore, for any real matrices Zg = Z T
g , g =

1, 2, satisfying diag{Z1,Z2} ≥ 0, the following
inequality holds:

ταα−1
[

x̄t
Dα(x̄t )

]T [
Z1 0
0 Z2

] [
x̄t

Dα(x̄t )

]
−

∫ t

t−τ

(t − v)α−1
[

x̄t
Dα(x̄t )

]T [
Z1 0
0 Z2

] [
x̄t

Dα(x̄t )

]
dv ≥ 0.

(19)

From (18) and (19), we can obtain that

DαWt ≤ Sym
{
x̄ Tt P

n∑
i=1

vi (xt )
[
L1 Ā

i x̄t + L1 Ā
τ i x̄(t−τ)

+ L1E
i f (t, xt ) + L1B

wiwt
]}

+ ταα−1 x̄ Tt Z1 x̄t + ταα−1(Dα(x̄t ))
TZ2D

α(x̄t )

−
∫ t

t−τ

(t − v)α−1
[

x̄t
Dα(x̄t )

]T [
Z1 0
0 Z2

]

×
[

x̄t
Dα(x̄t )

]
dv. (20)

Moreover, it can be shown that

x̄ Tt F
TF x̄t − f T (t, xt ) f (t, xt ) ≥ 0. (21)

Since x̄t satisfies for −τ ≤ θ ≤ 0, q > 1 and W (t +
θ, x̄(t + θ)) ≤ qW (t, x̄t ), one can conclude that

qx̄Tt P x̄t − x̄ T(t−τ)P x̄(t−τ) ≥ 0. (22)

On the basis ofL T
2 P x̄t = 0, the derivative of Wt can

be obtained as follows

DαWt ≤
n∑

i=1

vi (xt )
[
Sym

{
x̄ Tt P

[
L1 Ā

i x̄t + L1 Ā
τ i x̄(t−τ)

+ L1E
i f (t, xt ) + L1B

wiwt
]} + qx̄Tt P x̄t

+ ταα−1 x̄ Tt Z1 x̄t + ταα−1(Dα(x̄t ))
TZ2D

α(x̄t )

− x̄ T(t−τ)P x̄(t−τ) − Sym{x̄ Tt PL2︸ ︷︷ ︸
0

[Oux Ā
i x̄t

+ Oux Ā
i x̄(t−τ)

]}] −
∫ t

t−τ

(t − v)α−1
[

x̄t
Dα(x̄t )

]T

×
[
Z1 0
0 Z2

] [
x̄t

Dα(x̄t )

]
dv,

=
n∑

i=1

vi (xt )
[
Sym

{
x̄ Tt P

[
L1 Ā

i x̄t + L1 Ā
τ i x̄(t−τ)

+ L1E
i f (t, xt ) + L1B

wiwt
]}
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+ ταα−1 x̄ Tt Z1 x̄t + ταα−1
(
L1 Ā

i x̄t

+ L1 Ā
τ i x̄(t−τ) + L1E

i f (t, xt ) + L1B
wiwt

)T

× Z2

(
L1 Ā

i x̄t + L1 Ā
τ i x̄(t−τ) + L1E

i f (t, xt )

+ L1B
wiwt

)
+ qx̄Tt P x̄t − x̄ T(t−τ)P x̄(t−τ)

− Sym
{
x̄ Tt PL2︸ ︷︷ ︸

0

[
K 1i x̄t + K 2i x̄(t−τ)

]}]

−
∫ t

t−τ

(t − v)α−1
[

x̄t
Dα(x̄t )

]T [
Z1 0
0 Z2

]

×
[

x̄t
Dα(x̄t )

]
dv, (23)

where Kgi ∈ Rm×(m+n), g = 1, 2, are matrices to be
determined.

Let us denote ΩT
t =

[
x̄ Tt x̄ T(t−τ) wT

t f (t, xt )
]
.

The following bound relationship can be easily derived
on the basis of the derivation so far:

DαWt − aWt − wT
t Rwt ≤

n∑
i=1

vi (xt )

[
ΩT

t [φ]4×4Ωt

+ x̄ Tt F
TF x̄t + ταα−1

(
L1 Ā

i x̄t + L1 Ā
τ i x̄(t−τ)

+ L1E
i f (t, xt ) + L1B

wiwt

)T
Z2

(
L1 Ā

i x̄t

+ L1 Ā
τ i x̄(t−τ) + L1E

i f (t, xt ) + L1B
wiwt

)]

−
∫ t

t−τ

(t − v)α−1
[

x̄t
Dα(x̄t )

]T [
Z1 0
0 Z2

] [
x̄t

Dα(x̄t )

]
dv,

(24)

where the elements of [φ]4×4 are displayed in theorem
statement.

Now talking q → 1+ in (24), the following inequal-
ity holds for some small h > 0,

DαWt ≤ − h||x̄t ||2 −
∫ t

t−τ

(t − s)α−1
[

x̄t
Dα(x̄t )

]T

×
[
Z1 0
0 Z2

] [
x̄t

Dα(x̄t )

]
ds ≤ −h||x̄t ||2. (25)

In the view of Schur complement, the following
inequality is true if the condition in (13) is met:

DαWt − aWt − wT
t Rwt < 0. (26)

Multiplying e−at on both sides of the above inequality
and integrating it from 0 to t , one can obtain

e−atWt − W0 <

∫ t

0
e−auwT

u Rwudu, (27)

which can be further written, under the zero initial con-
dition x0 = 0, as follows:

Wt < eat
∫ t

0
e−auwT

u Rwudu. (28)

In addition, for any weight matrix F , the controlled
output vector zt and subject to the conditions (15) and
(28), we can obtain that

zTt Fzt =
n∑

i=1

vi (xt )x̄
T
t (C̄i )TFC̄i x̄t ≤ x̄t e

−atP x̄t ≤ Wt

≤ eatλmax(R)

∫ t

0
wT
u Rwudu

< eaT
c22

eat c21
c21 = c22, ∀t ∈ [0, T ]. (29)

In the viewofDefinition 1, it can be seen that the IT2FO
fuzzy augmented system (5) is input-output finite-time
stabilization with respect to (c1, c2,F , T ). Hence, the
proof is completed. ��

The established sufficient conditions in Theorem 2
are not in the form of linear matrix inequalities (LMIs)
due to the presence of the time-varying structural uncer-
tainties. In this regard, one can determine the gain
matrices of the dynamic SMC scheme to stabilize the
system (2) by using the following theorem.

Theorem 3 For given scalars τ , c1 > 0, c2 > 0, T >

0, a > 0, α ∈ (0, 1] and a matrix F , the IT2FO
fuzzy augmented system (5) is input-output finite-time
stabilizationwith respect to (c1, c2,F , T ), if there exist
the positive definite matrix X ∈ R(m+n)×(m+n), real
matrices M gi ∈ Rm×(m+n), (g = 1, 2, & i ∈ S) and
scalars εi , (i ∈ S) ensuring the following constraints:

⎡
⎣[φ̂]6×6 W̃1 εi W̃2

∗ −εi I 0
∗ ∗ −εi I

⎤
⎦ < 0, (30)

[−X (C̄iX )T

∗ −F I

]
< 0, (31)
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R <
c22

eaT c21
I, (32)

where [φ̂]6×6 =
⎡
⎣[φ̃]4×4 ϑ̃1 ταα−1ϑ̃2

∗ −I 0
∗ ∗ −ταα−1 I

⎤
⎦

φ̃11 =(
L1 Ā

iX − L2M
1i ) + (

L1 Ā
iX − L2M

1i )T
+ X (ταα−1 + 1 − a),

φ̃12 =(
L1 Ā

τ iX − L2M
2i ), φ̃13 = L1B

wi ,

φ̃14 =EiL1, φ̃22 = −X , φ̃33 = −R, φ̃44 = −I,

ϑ̃1 =[FX 0 0 0]T ,

ϑ̃2 =[L1 Ā
iX L1 Ā

τ iX L1B
wi L1E

i ]T ,

W̃1 =[ ¯N 2iX ¯N 4iX 0 0 0 0]T ,

W̃2 =[(L1 ¯N 1i )T 0 0 0 (ταα−1L1 ¯N 1i )T 0]T

and the remaining terms of [φ̃]8×8 are zero. In addi-
tion, we can obtain the sliding surface matrix Ō =
L T

2 X −1.

Proof According to Lemma 1 and the inequality (24),
by replacingL1 Āi = (

L1 Āi +L1Δ Āi
t

)
andL1 Āτ i =(

L1 Āτ i + L1Δ Āτ i
t

)
, one can observe that [φ̄]6×6 is

equivalent to the following condition:

[ ˆ̄φ]6×6 =[φ̄]6×6 + W1νtW2 + WT
2 νTt W

T
1

≤[φ̄]6×6 + εiW1W
T
1 + (εi )−1WT

2 W2, (33)

where W1 = [
(P ¯N 1i )T 0 0 0 0 (ταα−1 I ¯N 1i )T

]T
,

W2 = [
L1 ¯N 2i L1 ¯N 4i 0 0 0 0

]
and the elements of

[φ̄]6×6 are displayed in Theorem 1. Based on Schur
complement, the term in right-hand side of (33) is true
if and only if there exist scalars εi , (i ∈ S) such that

[ϑ]8×8 =
⎡
⎣[φ̄]6×6 εiW1 εiW T

2
∗ −εi I 0
∗ ∗ −εi I

⎤
⎦ . (34)

Pre- and post-multiplying the matrix [ϑ]8×8 by
diag{X ,X , I, I, I, I, I, I }, and letting M 1i

= K 1iX , M 2i = K 2iX , P = Z1, I = Z2, the
inequality (34) can be rewritten as (30). Thus, the proof
is completed. ��
Remark 2 Theorems 2 and 3 present the input-output
finite-time stabilization conditions for IT2FO fuzzy

systems with and without uncertainties and time delays
by using dynamic SMC scheme. Next, if we consider
ΔBi

t = 0, Aτ i = 0, ΔAτ i
t = 0 in (2) then the IT2FO

fuzzy augmented system (5) can be rewritten as follows

Dα x̄t =
n∑

i=1

vi (xt )
[(

(L1 − L2Oux ) Ā
i + L1Δ Āi

t

)
x̄t

+ L1E
i f (t, xt ) + L1B

wiwt
]

− L2(p + lt )O−1
u sgn(st ), (35)

where L1 = [In, 0n×m]T , L2 = [0m×n, Im]T , Āi =
[Ai , Bi ], Δ Āi

t = [ΔAi
t , 0n×m]. In order to better illus-

trate the benefits of the proposed control design, Corol-
lary 1 is given. Subsequently, using the same lines as
in the proof of Theorems 1 and 2, we can obtain the
following results.

Corollary 1 Let c1 > 0, c2 > 0, T > 0, a > 0,
α ∈ (0, 1] be given scalars. Assume that there exist
positive definite matrix X ∈ R(m+n)×(m+n), any real
matrices M i ∈ Rm×(m+n), (i ∈ S) and scalars εi ,
(i ∈ S), such that the following constraints hold:

[φ̌]6×6 < 0, (36)[−X (C̄iX )T

∗ −F I

]
< 0, (37)

R <
c22

eaT c21
I, (38)

where

φ̌11=
(
L1 Ā

iX −L2M
i )+(

L1 Ā
iX −L2M

i )T − aX

φ̌12 =L1E
i , φ̌13 = L1B

wi , φ̌22 = −I,

φ̌33 = − R, φ̌14 = X F T , φ̌15 = ( ¯N 2iX )T ,

φ̌16 =εi ¯N 1i , φ̌44 = −I, φ̌44 = −εi I, φ̌66 = −εi I.

Then, the IT2FO fuzzy augmented system (5) is input-
output finite-time stabilization with respect to (c1, c2,
F , T ). Furthermore, the control gain can be calculated
by Ō = L T

2 X −1.

Remark 3 In recent years, the investigation of the
dynamic SMC scheme for fuzzy systems has achieved
an enormous growth [29–32]. Unfortunately, majority
of the investigated results are based onLyapunov stabil-
ity over an infinite-time interval with no consideration
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for prescribed performance. However, in many real-
world systems, the researchers need the prescribed sys-
tem performance within a finite-time interval. For this
reason, the input-output finite-time stabilization prob-
lem for IT2FO fuzzy systems via the dynamic SMC
scheme is addressed in this paper.

Remark 4 Note that the designeddynamicSMCscheme
in (4) contains a switching term sgn(s(t)), whichwould
create a chattering phenomenon when executed. In
order to reduce that phenomenon, a smooth continu-
ous term st/(||st || + 0.01) can be utilized in the place
of sgn(st ). Thus, the above-mentioned factors are used
during the simulations in Sect. 4.

4 Illustrative examples

This section provides three examples to show the
usefulness and superiority of the constructed control
method. In Example 1, we utilized artificial parame-
ters to demonstrate the effectiveness of the proposed
dynamic SMC scheme. In Example 2, the efficiency
of the designed dynamic SMC scheme is validated
via a permanent magnet synchronous motor (PMSM)
model [23]. At last, Example 3 compares the designed
dynamic SMCschemewith fuzzy SMCscheme in [37].

Example 1 Consider the IT2FO fuzzy systems with
two fuzzy rules and the following parameters as

A1 =
⎡
⎣−2 4 1

7 2.8 2
9 4 −8.5

⎤
⎦ , Aτ1 =

⎡
⎣0.5 0.4 0.7

1 0.5 0.1
0.3 0.1 0.2

⎤
⎦ ,

E1 = 0.1I,

A2 =
⎡
⎣−2 5 1

7 1.8 2
9 4 −8

⎤
⎦ , Aτ2 =

⎡
⎣0.2 0.2 0.4

1 0.3 0.1
0.5 0.2 0.1

⎤
⎦ ,

E2 = 0.2I,

B1 =
⎡
⎣ 2

0
−0.7

⎤
⎦ , Bw1 =

⎡
⎣ 0.3

−0.4
0.1

⎤
⎦ ,N 11 =

⎡
⎣−1

1
0

⎤
⎦ ,

B2 =
⎡
⎣ 3

0
−0.6

⎤
⎦ , Bw2 =

⎡
⎣ 0.4

−0.1
0.2

⎤
⎦ ,N 12=

⎡
⎣ 1

−1
0

⎤
⎦ ,

N 21= [−1 1 0
]
,N 31=0.1,N 41 = [

0.5 0.2 0.3
]
,

N 22 = [
1 0 −1

]
,N 32 = 0.2,N 42 = [

0.2 0.1 0.2
]
,

Table 1 Sliding surface gain matrices Hx and Hu

Cases Hx Hu

Case (i) [23.6478 24.5597 5.4172] 4.1141

Case (ii) [42.9429 43.5328 9.1784] 5.9163

Case (iii) [67.0106 73.9049 19.0162] 7.0639

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0
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Fig. 1 Membership function
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14 10
23

Fig. 2 State responses of the open-loop system

C1 = [
1 0 0

]
,C2 = [

2 0 0
]
,F = 0.9I.

Figure 1 is an image of the curves about the upper
and lower membership functions which is selected as

v1(x
1
t ) = −r + rmax

rmax − rmin
, v2(x

1
t ) = r − rmin

rmax − rmin

with h = 5,

v1(x
1
t ) = −r + rmax

rmax − rmin
, v2(x

1
t ) = r − rmin

rmax − rmin

with h = 8.
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Table 2 Minimum c2 for different c1 and T in Example 1

T/c1 c1 = 0.1 c1 = 0.2 c1 = 0.3 c1 = 0.4 c1 = 0.5

T = 5 0.1816 0.3632 0.5448 0.7264 0.9079

T = 7 0.2007 0.4014 0.6021 0.8027 1.0034

T = 10 0.2332 0.4663 0.6995 0.9327 1.1658

where r = −h − 0.09h(x1t )
2 in which rmax = −5,

rmin = −10.88 and choose the uncertain parameter
h ∈ [5, 8]. Correspondingly, we choose mi (x

1
t ) =

0.5(sin(x1t ))
2, mi (x1t ) = 1 − mi (x

1
t ), for all i = 1, 2,

which satisfy
∑2

i=1 vi (xt ) = 1 to indicate the non-
linear functions of the proposed IT2FO fuzzy systems
(2).

Meanwhile, the parameters concerned with proposed
approach are given as α = 0.96, τ = 0.5, a = 0.1,
c1 = 0.2, c2 = 0.3632, p = 1.2, T = 5, and F = 2.
To distinguish the efficiency between the addressed
system and its deduced systems, three cases are con-
sidered, which are Case (i) Without uncertainties and
nonlinearities; Case (ii) Without uncertainties and with
nonlinearities; and Case (iii) With uncertainties and
nonlinearities. Utilizing Theorem 3 with the above-
mentioned parameter values, a feasible solution of the
LMIs in (30)-(32) are obtained with the dynamic SMC
gains and unknown matrices, which are displayed in
Table 1.

Based on input-output finite-time stabilization prop-
erty, the dynamic SMC scheme is as follows:

Dαut =
2∑

i=1

vi (xt )
[ − O−1

u Ox
(
Ai xt + Aτ i x(t−τ) + Biut

)]

− (1.2 + lt )O−1
u sgn(st ),

where lt = ∑2
i=1 vi (xt )||Ox ||

[
||N 1i ||||N 2i ||||xt ||

+ ||N 1i ||||N 4i ||||x(t−τ)||+||N 1i ||||N 3i ||||ut ||+
||Ei |||| f (t, xt )|| + ||Bwi ||ct

]
.

Table 2 demonstrates the optimal minimum values
of c2 for ensuring the IT2FO fuzzy augmented sys-
tem finite-time bounded for various c1 and T . At the
same time, we choose the disturbance vectors and ini-
tial conditions as wt = 0.01 sin(π t)

e0.02t
, φt = [0, 0]T ,

and u0 = 0. The unknown nonlinear functions as
f (t, xt ) = [ιt (x1t )3 ιt (x2t )

3 ιt (x1t )
3]T , where ιt stands

for random input vector with an upper bound of 0.4.
With the obtained dynamic SMC gains, the simulation

graphs of the IT2FO fuzzy systems (2) are displayed in
Figs. 2-6. When there are no dynamic SMC gains, the
unstable state trajectories of the uncontrolled IT2FO
fuzzy augmented system can be easily inspected as
shown in Fig. 2. Based on the obtained dynamic SMC
gains Ox and Ou , we can find the IT2FO fuzzy aug-
mented system is input-output finite-time stabilization
in Fig. 3. Meantime, the evaluation of the dynamic
SMC input and sliding-surface trajectories are dis-
played in Figs. 4 and 5. Eventually, the simulation of
zTt F zt under the dynamic SMCgainsOx andOu is pre-
sented in Fig. 6, where the objective constraint of this
paper is satisfied. The necessity and importance of the
designed dynamic SMC scheme are therefore observed
in Fig. 6. In other words, depending on the behavior
of the IT2FO fuzzy augmented system, the simulation
curve does not exceed the value of c2 = 0.3632. As
a result, clearly reveals that a satisfactory performance
is achieved in all three cases, however the system per-
formance under the three case is more effective. This
illustrates the adaptability and superiority of the pro-
posed design strategy.

Example 2 For the sake of verifying the proposed
results, the PMSM [23] model is considered. It is
expected that there happens to be a time delay in this
system, which is described as:

D0.97xt =
2∑

i=1

vi (xt )
[
(1 − c)(Ai + ΔAi

t )xt + c(Ai+

ΔAi
t )x(t−τ) + Biut + Ei f (t, xt ) + Bwiwt

]
,

zt =
2∑

i=1

vi (xt )C
i xt ,

where

A1 =
⎡
⎣−l1 0 l1

0 −1 l3
l2 −l3 −1

⎤
⎦ , E1 =

⎡
⎣0.16 0.25 0.14
0.02 0.03 0.01
0.12 0.12 0.13

⎤
⎦ ,
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Table 3 Minimum c2 for different c1 and T in Example 2

T/c1 c1 = 0.1 c1 = 0.2 c1 = 0.3 c1 = 0.4 c1 = 0.5

T = 10 0.2332 0.4663 0.6995 0.9327 1.1658

T = 50 1.7229 3.4457 5.1686 6.8915 8.6143

T = 100 20.9888 41.9776 62.9664 83.9552 104.1044

A2 =
⎡
⎣−l1 0 l1

0 −1 l4
l2 −l4 −1

⎤
⎦ , E2 =

⎡
⎣0.25 0.13 0.12
0.03 0.02 0.02
0.13 0.17 0.15

⎤
⎦ ,

Bi =
⎡
⎣1
0
0

⎤
⎦ , Bwi =

⎡
⎣1
0
0

⎤
⎦ ,N 11 =

⎡
⎣−1

0
1

⎤
⎦ ,

N 12 =
⎡
⎣ 1

0
−1

⎤
⎦ ,

N 21 = [−1 1 0
]
,N 22 = [

1 0 −1
]
,Ci = [

1 0 0
]
,

F = 0.5I,

with c = 0.1, l1 = −1.9, l2 = 5, l3 = −1.5, l4 = 3 and
i = 1, 2. The upper and lower membership functions
of the IT2FO fuzzy systems are borrowed from [16].
Furthermore, we choose α = 0.97, τ = 0.6, a = 0.1,
c1 = 0.1, c2 = 0.2332, p = 1.2, T = 10 and F = 2.
Based on the LMIs (30)-(32), by utilizing the toolbox
of MATLAB 2017b, we can obtain the dynamic SMC
gains as follows:

Ox=
[
31.3305 3.2072 21.6726

]
, and Ou=0.0902.

The unknownnonlinearities, disturbances and initial
conditions are taken the same as in Example 1. The val-
idation of the simulations are displayed in Figs. 7-10.
It is clear from Fig. 7 that the designed dynamic SMC
scheme can effectively eliminate the effects of uncer-
tainties, nonlinearities and disturbances, and guaran-
tee the input-output finite-time stabilization of the
IT2FOfuzzy augmented systems.The control input and
sliding-surface trajectories are plotted in Figs. 8 and 9,
respectively. The simulation zTt F zt curve imply that
the aimed object is well achieved (i.e. zTt F zt < c22)
in Fig. 10. On the basis of the LMIs (30)-(32), the
optimal minimum value c2 which ensures the input-
output finite-time stabilization of the considered sys-
tem addressed is calculated for different values of c1
and T . Detailed statistics is provided in Table 3.

Remark 5 If we consider the α = 1 in system (2), then
the fractional-order IT2 fuzzy systems with uncertain-
ties anddisturbanceswill degenerate to an integer-order
one. Correspondingly, the input-output stability results
in Theorem 3 and Corollary 1 are still valid for the inte-
ger order type-1 fuzzy model, which were discussed in
[37].

Example 3 For comparison purpose, we consider the
single-link robot arm model whose dynamics are spec-
ified in [37] and are not provided here for brevity. The
corresponding system matrices are chosen as follows:

Dαxt=
2∑

i=1

vi (xt )
[
(Ai+ΔAi

t )xt+Biut+Ei f (t, xt )

+ Bwiwt

]
,

zt =
2∑

i=1

vi (xt )C
i xt ,

where

A1 =
[

0 1
−G1G2 −G3

]
, A2 =

[
0 1

−cG1G2 −G3

]
,

Bi =
[
0
1

]
, Bwi =

[
0.1
0

]
,N 1i =

[
0
0.3

]
,

Ei = I,N 2i = [
0.1 −0.1

]
,Ci = [

1 0
]
, i = 1, 2,

with c = 0.01/π , G1 = 9.81, G2 = 0.5 and G3 = 2.
The parameters are chosen wt = 0.1e−0.001t , p = 1.2,
c1 = 0.1, c2 = 0.7, F = I and T = 1. Solving the
LMIs (36)-(38), by utilizing the toolbox of MATLAB
2017b, we can obtain that

Ox = [
0.0205 0.0039

]
, and Ou = 0.0001.
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Fig. 6 The trajectory of the weighted output zTt Fzt
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Fig. 10 The trajectory of the weighted output zTt Fzt
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For comparison, the parameter in dynamic SMC
scheme is chosen as

Dαut =
2∑

i=1

vi (xt )
[ − O−1

u Ox
(
Ai xt + Biut

)]

− (1.2 + lt )O−1
u sgn(st ),

where lt = ∑2
i=1 vi (xt )||Ox ||

[
||N 1i ||||N 2i ||||xt || +

||N 1i ||||N 3i ||||ut || + ||Ei |||| f (t, xt )|| + ||Bwi ||ct
]
.

With the same initial condition φt = [0.8, 1.2]T , Figs.
10-13 show the same system states, control input, and
weighted output under the methods in [37] and this
paper with different α. From Figs. 11 and 14, it can be
seen that the designed dynamic SMC scheme in this
paper shows faster sates responses than those of the
paper [37]. Then, the corresponding control inputs are
plotted in Fig. 12. In particular, Fig. 13 shows that the
weighted output zTt F zt of SMC scheme [37] based
input-output finite-time stabilization is significantly
larger than dynamic SMC scheme proposed in this
paper, which means that the input-output finite-time
stabilization of the system addressed is achievedwithin
the suggested time interval andveryquick convergence,
that is zTt F zt ≤ 0.7 for t ∈ [0, 2]. Fig. 15 plots the
sliding-surface of the designed control scheme. All
those figures strongly demonstrate the superiority of
the designed dynamic SMC scheme.

Remark 6 It is worth pointing out that the design algo-
rithm proposed in Theorems 2 and 3 depends on several
positive scalars, namely τ , c1, c2, a and εi (i ∈ S). In
general, these parameters are chosen in a randomman-
ner within the margin level specified in their definitions
and without violating the feasibility of the obtained
LMI-based criterion during the investigation of sys-
tem stability. Among these scalars, c2 plays a vital role
in obtaining the desired finite-time stability criterion.
Since it ensures the settling time of achieving stability
over a finite domain, the choice of values of c2 highly
affects the feasibility of the proposed stability condi-
tion in Theorem 3. Moreover, it is worth noting that in
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practical situations, it is more reasonable to choose suf-
ficiently small values for c2. Furthermore, the matrices
X , M gi , (g = 1, 2, & i ∈ S), denote the positive
definite matrix and real matrices, respectively. Accord-
ing to the systemmatrices and above-mentioned scalars
values, the matricesX ,M gi , (g = 1, 2, & i ∈ S) can
be determined by solving Theorem 3 using a standard
convex optimization toolbox.

5 Conclusion

The finite-time prescribed performance control design
for delayed FOnonlinear systems against uncertainties,
nonlinearities and disturbances was investigated in this
paper. In particular, IT2 fuzzy models were utilized to
identify the local nonlinear dynamics and a new set
of parameters were used to achieve the desired system
performance. The dynamic SMC was then designed
in such a way that the IT2FO fuzzy systems achieves
input-output finite-time stabilization with a specified
time interval. The stabilization criteriawere established
in terms of linear matrix inequalities via Lyapunov
functional methods. At last, the developed results were
verified through three numerical examples.
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