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Abstract This paper presents a novel multi-variable
high-order sliding mode quasi-optimal control method
for unmanned helicopters. In order to facilitate the the-
oretical design and engineering implementation, the
control system is divided into attitude and position sub-
system, and the latter is further subdivided into two
parts, horizontal and vertical position control. Then the
multi-variable adaptive high-order continuous sliding
mode controllers are designed for attitude and posi-
tion, respectively, based on integral sliding mode sur-
face. A new quadratic performance index is proposed
in the design process, which enables the control sys-
tem to converge in finite time, and the convergence
rate can be adjusted by control parameters. Finally, the
effectiveness and robustness of the proposed method
are verified and compared with existing literature by
simulation and practical experiments. The comparison
results show that the proposedmethod has higher track-
ing accuracy and better robustness.
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1 Introduction

Due to their unique flight capabilities such as vertical
take-off and landing, hovering and strong maneuver-
ability, unmanned helicopters have received continu-
ous attention and research from scholars in the past
decades, and have shown wide application prospects in
military and civil fields. A stable and reliable flight
control system is an important prerequisite for the
application of various unmanned helicopters. With the
rapid expansion of the application field, the demand
for autonomous flight technology of unmanned heli-
copter is higher. For example, customers not only need
stable and reliable flight control system, but also need
unmanned helicopters with higher response speed and
stronger anti-interference ability to perform specific
missions in harsher environment. Therefore, it is of
great academic significance and application value to
explore autonomous flight control system of unmanned
helicopter with stronger control performance.

In recent years, researchers have devoted a lot of
efforts to the autonomous flight control technology of
unmanned helicopter, which has provided a great deal
of valuable experience. Because small unmanned heli-
copter is a nonlinear, high-order and highly coupled
complex model, it is very difficult to obtain its accurate
nonlinear model, lots of researchers use PID control
method to design the flight control system. Researchers
from Applied Nonlinear Controls Lab (ANCL) of Uni-
versity of Alberta have designed an attitude controller
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for unmanned helicopter by combining PID control
and feedforward control, and verified it in real flight
[12]. Then, the researchers further add position con-
trol in [29] and conduct detailed stability analysis by
usingLyapunov theory. Finally, the effectiveness is ver-
ified by actual flight experiment. However, the tradi-
tional PID controlmethod has poor robustness tomodel
uncertainties and external disturbances. Therefore, one
of the aims of this paper is to improve the robustness
of the closed-loop system by combining sliding mode
control with optimal control theory [40].

Linear control method plays an important role in
the design of flight control system and is widely used in
various aircrafts [8,9,20]. One of the unavoidable prob-
lems in the design of unmanned helicopter control sys-
tem using H∞ control technology is the high order of
controller, which leads to the difficulty in engineering
application.Ahierarchical control structure is designed
for a small unmanned helicopter in [35]. The inner loop
adopts H∞ control to stabilize the attitude, and the
outer loop uses PI controller to track the reference posi-
tion, reducing the order of thewhole system.Of all H∞
methods, loop shaping is widely favored due to its sim-
ple design process. A hover controller is designed using
extended loop shaping in [31,32] and good simulation
results are achieved, but the unmanned helicopter can
only fly autonomously under flight modes of hovering
and low forward speed. In addition, linear controlmeth-
ods such as LQR [19,27], LQG [25,36] andLPV [4,17]
are also widely used in autonomous flight of unmanned
helicopters. However, linear control method must rely
on the model linearized at the equilibrium point, only
the autonomous flight near the equilibrium point can be
guaranteed theoretically, which limits the large enve-
lope flight of the unmanned helicopter, leading to rel-
atively conservative control performance. On the con-
trary, the proposed method makes full use of the high
maneuverability of the unmanned helicopter, resulting
in a larger flight envelope of the control system, which
breaks away from the limit of the equilibrium point.

Because of the advantages of simple structure and
small amount of calculation, backstepping control is
widely used in autonomous flight of unmanned heli-
copter, and can be combined with other nonlinear
control methods [1,3,6,7,21,28,37,43,44]. In [37],
the attitude control system is designed by combin-
ing backstepping control and adaptive technology with
unknown system parameters, which is proved to be
asymptotically stable by Lyapunov stability theory,

and the effectiveness is verified by simulation and
actual flight experiments.The authors of [14,21] regard
model uncertainty and external disturbance as lumped
unknown disturbance, and design an autonomous flight
controller combining backstepping control and nonlin-
ear disturbance observer. The adaptive backstepping
controller of unmanned helicopter is also designed by
combining backstepping control with adaptive radial
basis function neural network (RBFNN) using online
parameter updating law with the least parameters in
[41]. Although this method significantly reduces the
computational burden of the control system, the cost is
the loss of partial robustness.

In order to obtain faster dynamic response and more
robust control performance,many researchers turn their
attention to finite time and sliding mode control meth-
ods [5,13,16,26,30]. In [18], the finite-time stability
of the trajectory tracking control system of unmanned
helicopter is studied, and the finite-time convergence
of the system is guaranteed by combining sliding mode
observer and hybrid active disturbance rejection tech-
nology. In [34], adaptive finite time control and radial
basis function neural network are combined to study
the formation reconstruction of unmanned helicopters.
The authors of [5] provide a novel second-order slid-
ing mode control strategy worth learning, which can
avoid overestimation of slidingmode gain and does not
need the boundedness of the derivatives of uncertain-
ties. In the case of constrained state, the application of
robust fractional sliding mode control in autonomous
flight of unmanned helicopter in uncertain environment
is studied in [15]. In [38], a combination of contin-
uous terminal sliding mode control and disturbance
observer is adopted to focus on the autonomous landing
of an unmanned helicopter on a moving ship. High-
order sliding mode observer is used to estimate the
concentrated interference in [39], and then a compos-
ite controller is designed by combining hybrid dynamic
inverse and non-singular terminal slidingmode control.
Finally, the asymptotic convergence of tracking error is
obtained even in the presence of time-varying interfer-
ence. Although the above researches can achieve finite
time convergence, they cannot constrain or control the
convergence speed of the system, and the problem of
overestimation of adaptive sliding mode gain has not
been effectively solved. In view of these shortcomings,
a new solution is proposed in this paper and verified by
simulation and practical experiment.
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In order to improve the robustness of unmanned heli-
copter in autonomous flight to parametric and exter-
nal uncertainties without knowing the boundedness
of uncertainties and avoid overestimation of adaptive
gain, a multi-variable adaptive high-order slidingmode
quasi-optimal control (AHOSMQC) is proposed in this
paper. First of all, the main rotor flapping motion of
unmanned helicopter is analyzed and simplified, then
the position and attitude dynamics are expressed as
multi-variable integral chain with additive and mul-
tiplicative uncertainties, and the proposed method is
applied, respectively. Finally, the feasibility and robust-
ness of the proposed method is verified by digital sim-
ulation and actual flight experiments. The main high-
lights of this paper are summarized as follows.

Firstly, a multi-variable adaptive high-order slid-
ing mode controller is proposed based on redesigned
quadratic performance index and multi-variable finite-
time control law. Different from previous literature,
it is quasi-optimal and the convergence speed can be
adjusted by control parameter, resulting in a faster con-
vergence rate. Moreover, the chattering phenomenon
can be effectively eliminated by the proposed high-
order slidingmode algorithm, which ismore conducive
to the engineering implementation of the control algo-
rithm.

Secondly, the boundary of uncertainty is not needed
in the design process of the proposed adaptive high-
order sliding mode controller. At the same time, the
possible additive andmultiplicative uncertainties of the
system are considered, and the problem of overestima-
tion of adaptive sliding mode gain is solved.

Finally, the whole closed-loop system is proved to
converge in finite time by Lyapunov stability theory.
What’s more, the effectiveness and robustness of the
whole unmanned helicopter control system are veri-
fied and compared with the method in [41] by chal-
lenging and high maneuvering flight experiments. The
simulation and practical experimental results show the
superiority of the proposed method.

The organization structure of the remaining text is
as follows. Section 2 presents the modeling process.
The process of model simplification and analysis is
described in Sect. 3. Detailed control design and stabil-
ity analysis are given in Sect. 4. Section 5 presents the
actual flight experiment results and some discussion.
Section 6 concludes the paper.

Fig. 1 Schematic diagram of inertial coordinate system and
body coordinate system

2 Problem formulation

The definition of relevant coordinate system is shown
in Fig. 1, where O − xyz and Ob − xb ybzb represent
inertial coordinate system and body coordinate sys-
tem, respectively. [u, v, w]T and [p, q, r ]T are, respec-
tively, linear velocity and angular rate vector of the
unmanned helicopter in the body coordinate system.
a and b are flapping angles of the main rotor in the
longitudinal and lateral direction.

According to the Newton–Euler equation [28],
the rigid body kinematics and dynamics of a small
unmanned helicopter system can be expressed by the
following equations

Ṗ = V (1)

mV̇ = R(Θ)F + mgEz (2)

Θ̇ = T (Θ)ω (3)

Jω̇ = −ω × Jω + M (4)

where P = [x, y, z]T is the position vector in the
inertial coordinate system, V = [vx , vy, vz]T repre-
sents the linear velocity vector of the center of grav-
ity Ob in the inertial coordinate system, m is the
mass of the whole system, attitude is represented by
Θ = [φ, θ, ψ]T . R(Θ) is the transformation matrix
from body coordinate system to inertial coordinate sys-
tem, defined as

R(Θ)

=
⎡
⎣

c(θψ) s(φθ)c(ψ) − c(φ)s(ψ) c(φψ)s(θ) + s(φψ)

c(θ)s(ψ) s(φθψ) + c(φψ) c(φ)s(θψ)−s(φ)c(ψ)

−s(θ) s(φ)c(θ) c(φθ)

⎤
⎦

Abbreviation c(·) and s(·) represents trigonometric
functions cos(·) and sin(·). c(φθψ) = c(φ)c(θ)c(ψ),
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s(φθψ) = s(φ)s(θ)s(ψ), and so on. ω = [p, q, r ]T is
the angular rate vector, Ez is a unit vector and Ez =
[0, 0, 1]T , T (Θ) is a 3×3 matrix, defined as

T (Θ) =
⎡
⎣
1 s(φ)t(θ) c(φ)t(θ)

0 c(φ) −s(φ)

0 s(φ)/c(θ) c(φ)/c(θ)

⎤
⎦ (5)

Besides, J = diag{Ix , Iy, Iz} is thematrix of rotational
inertia.

All external forces except gravity F and all external
torques M can be expressed in the body coordinate
system as follows

F =
⎡
⎣
Fx
Fy

Fz

⎤
⎦ =

⎡
⎣

Xmr + Xfd

Ymr + Yfd + Yvt + Ytr
Zmr + Zfd + Zht

⎤
⎦ (6)

M =
⎡
⎣
Mx

My

Mz

⎤
⎦ =

⎡
⎣

Lmr + Lvt + L tr

Mmr + Mht

Nmr + Nvt + Ntr

⎤
⎦ (7)

where Xmr, Ymr and Zmr are the components on the
xb, yb and zb axes of the body coordinate system,
respectively, Xfd, Yfd and Zfd are the components of
the airframe resistance on the xb, yb and zb axes of the
body coordinate system, respectively, Zht and Mht are
the forces and moments generated by the horizontal
tail, respectively, Yvt, Lvt and Nvt are the forces and
moments generated by the vertical tail, respectively,
Ytr , L tr and N tr are the forces and moments generated
by the tail rotor, Lmr, Mmr and Nmr are the components
of the main rotor torques on the xb, yb and zb axes of
the body coordinate system, respectively.

Main rotor flapping dynamics is a unique and impor-
tant feature of unmanned helicopters, which must be
considered, and modeled as follows

[
ȧ
ḃ

]
= γmΩ

γ 2
m + 64

⎡
⎢⎢⎣

− 4kβ
IβΩ2 − 8 γm − 32kβ

γm IβΩ2

32kβ
γm IβΩ2 − γm − 4kβ

IβΩ2 − 8

⎤
⎥⎥⎦
[
a
b

]

−
[
q
p

]
+ γmΩ

γ 2
m + 64

[−γm 8
8 γm

] [
θlat
θlon

]
(8)

where θlon, θlat indicate the cyclic pitch angles of the
main blade in the longitudinal and lateral direction,
which are determined by the servos of the pitch and
roll channel. γm is the total locke number of two main
rotor blades, Ω is the main rotor rotation speed, Iβ is
the moment of inertia of the main blades.

Interested readersmay refer to [42] formore detailed
modeling and parameter determination details.

3 Model preprocessing and analysis

Since the dominant force on the helicopter airframe
is the component of the main rotor lift along the
body frame zb axis, for convenience, XMr and YMr are
ignored here and are regarded as part of the lumped
interference in the design process. Generally, both the
longitudinal and lateral flapping angles are very small,
so it is reasonable to assume c(a) ≈ 1 and c(b) ≈ 1.
Thus, the external force can be written in a form con-
sisting of the following two parts

F =
⎡
⎣

0
0

−Tmr

⎤
⎦

︸ ︷︷ ︸
Fn

+
⎡
⎣
dx
dy
dz

⎤
⎦

︸ ︷︷ ︸
dF

(9)

where dF is lumped interference composed of ignored
forces and other external uncertainties, such as ignored
fuselage drag, vertical and horizontal tail aerodynam-
ics. Similarly, the torque of the unmanned helicopter
mainly comes from the lift force of the main rotor and
the pull force of the tail rotor, so other smaller torque
components can be treated as interference. According
to the hypothetical conditions s(a) ≈ a and s(b) ≈ b,
the external torque acting on the unmanned helicopter
can be expressed as

M =
⎡
⎣
(
kβ + T Hmr

)
b + L tr(

kβ + T Hmr
)
a

Ntr

⎤
⎦

︸ ︷︷ ︸
Mn

+
⎡
⎣
dp
dq
dr

⎤
⎦

︸ ︷︷ ︸
dM

(10)

where dM is the disturbance torque composed of other
neglected torques and external uncertainties.

In addition, the flapping dynamics model of the
main rotor is an important motion characteristic of the
unmanned helicopter, and has a strong coupling effect
with the rigid body dynamics model of the fuselage,
which is directly related to the dynamic response of
the whole system, so it must be taken into consider-
ation in the control design procedure. However, the
flapping angle of the main propeller cannot be effec-
tively measured by any sensor. If the flapping motion
is completely ignored, the performance of the con-
trol system may be degraded. Therefore, this section
attempts to adopt a compromise static quasi-stable flap-
ping dynamicmodel to approximately replace the com-
plete flapping dynamic model, and verifies the feasibil-
ity of this method in both frequency domain and time
domain.
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According to the system parameters finally deter-
mined in [42], the flapping dynamics model (8) of the
main rotor can be written as the following state space[
ȧ
ḃ

]
=

[−37.7214 3.2200
−3.2200 −37.7214

] [
a
b

]

+
[

0 −1
−1 0

] [
p
q

]

+
[−1.8543 8.5527

8.5931 1.8456

] [
δlat
δlon

]

+
[−7.9211 36.7068
36.7068 7.9211

] [
θlat0
θlon0

]
(11)

where δlat, δlon are aileron servo input and elevator
servo input.

It can be seen that the two characteristic roots corre-
sponding to the flapping dynamics model of the main
rotor are−37.7214+3.2200i and−37.7214−3.2200i ,
the undamped natural frequency is 37.8586 rad /s, the
corresponding time constant is 0.0264 second, and the
damping ratio is 0.9964.

Since the main rotor flapping motion has a much
faster response than the rigid body motion of the fuse-
lage, assuming its response speed is fast enough and
ignoring its transient response process, the following
simplified static flappingmotionmodel can be obtained

βm = A−1
m Bu1 ω̄ − A−1

m Bu2δcyc − A−1
m Bd̄θcyc (12)

where

Am =
[−37.7214 3.2200

−3.2200 −37.7214

]
, Bu1 =

[
0 1
1 0

]
,

Bu2 =
[−1.8543 8.5527

8.5931 1.8456

]
, Bd̄ =

[−7.9211 36.7068
36.7068 7.9211

]
,

βm =
[
a
b

]
, ω̄ =

[
p
q

]
, δcyc =

[
δlat
δlon

]
, θcyc =

[
θlat0
θlon0

]
,

According to the body rotation dynamics (4), ignor-
ing the nonlinear cross term and considering only the
dominant torque component in the external torque M,
the following relation can be obtained{

ṗ = (
kβ + TmrHmr

)
b

q̇ = (
kβ + TmrHmr

)
a

(13)

Next, taking roll angular rate as an example, the
dynamic responses of the simplified and full flapping
dynamics model to the roll angular rate are analyzed
in the hovering flight mode. When a helicopter is hov-
ering, the lift of the main rotor is approximately equal
to its own weight, i.e., Tmr ≈ Thov = mg. By inserting
equations (13) into equations (12) and (11), respec-
tively, the transfer function of roll angular rate under
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Fig. 2 Bode graph curves of roll angular rate under two flapping
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Fig. 3 Step response curves of roll angular rate under two flap-
ping models

the input signal δlat can be obtained. The open-loop
bode graph curve and step response curve are shown in
Figs. 2 and 3, respectively.

The frequency characteristic curves show that the
simplified model can accurately reflect the dynamic
response of the complete model at low frequencies,
although some errors still exist at high frequencies. The
rise time and adjustment time of the step response of the
simplified model are 0.042 s and 0.21 s, respectively,
while the rise time and adjustment time of the complete
model are 0.053 s and 0.0893 s, respectively. It can be
found that the rise time of the two is very close, and the
adjustment time is also close. Both frequency domain
and time domain analysis results show that the sim-
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plified flapping dynamics can effectively approximate
the complete flapping model of unmanned helicopter.
Therefore, it is feasible to design the flight control sys-
tem based on the simplified flapping model, and the
approximate errors will be compensated by adaptive
sliding mode control in the subsequent design.

4 Control design and stability analysis

Consider the following nonlinear system with uncer-
tainty

ẋ = F(x, t) + G(x, t)u

y = H(x, t)
(14)

where x ∈ R
n is the state vector, and u ∈ R

m indicates
the control input. F(x, t) ∈ R

n and G(x, t) ∈ R
n×m

are smooth and unknown functions.
F(x, t) = F0(x, t) + FΔ(x, t),

G(x, t) = G0(x, t) + GΔ(x, t)

where F0(x, t) and G0(x, t) are known parts of
F(x, t) and G(x, t), FΔ(x, t) and GΔ(x, t) are
unknown parts of F(x, t) and G(x, t), respectively. y
is a smooth output vector function. Define the sliding
mode variable as

s(x, t) = H(x, t) − Hd(x, t) (15)

where Hd(x, t) is a smooth reference trajectory.
For the sake of convenience, the state vector is

extended to xext = [
xT, t

]T
. The extended equation

of state can be expressed as

ẋext = Fext + Gextu (16)

where Gext = [
(G0 + GΔ)T, Gext,0

]T
, Gext,0 = 0 ∈

R
m , Fext = [

(F0 + FΔ)T, 1
]T
. Fext,n = [

FT
0 , 1

]T
and Gext,n = [

GT
0 , Gext,0

]T
are the known nominal

parts of Fext and Gext, respectively.

Assumption 1 It is assumed that the relative order of
the nonlinear system (14) about the sliding mode vari-
able s(x, t) is constant l and the internal dynamics is
stable.

Then control signal u will appear for the first time
in the l-th time derivative of the system sliding mode
variable, i.e.,

s(l)(x, t) = Φ(x, t) + Υ (x, t)u − H(l)
d (17)

where Φ = Ll
Fext

H , Υ = LGext L
l−1
Fext

H . LGext , L
l
Fext

,

and Ll−1
Fext

are Lie derivatives of Gext and Fext with the
corresponding orders.

Definition 1 Consider nonlinear system (14) and the
sliding mode variable s(x, t), and assume that the time
derivatives of s, ṡ, ..., s(l−1) are continuous. Then

Ξ l =
{
x|s = ṡ = · · · = s(l−1) = 0

}
(18)

is called the sliding mode set of order l. If it is non-
empty and is a local integral set in the sense of Filippov
[10], themotion overΞ l is called slidingmode of order
l with respect to the sliding mode variable s.

Therefore, the l-order sliding mode control problem
of the nonlinear system (14) with respect to the sliding
mode variable s is equivalent to the finite time control
problem of the following systems

żi = zi+1

żl = Φ + Υ u − H(l)
d

(19)

where z = [z1, z2, . . . , zl ]T = [
s, ṡ, . . . , s(l−1)

]T
,

i = 1, 2, ..., l − 1.

Assumption 2 Function Φ and Υ can be expressed as
{

Φ = Φn + ΔΦ

Υ = Υ n + ΔΥ
(20)

where Φn and ΔΦ are the nominal portion and the
uncertain one of Φ, Υ n and ΔΥ denote the nominal
and uncertain parts ofΥ , respectively.Φn = Ll

Fext,n
H ,

Υ n = LGext,nL
l−1
Fext,n

H , ΔΦ = Ll
Fext

H − Ll
Fext,n

H ,

ΔΥ = LGext L
l−1
Fext

H − LGext,nL
l−1
Fext,n

H . Suppose the
existence of three unknown constants εΦ1, εΦ2 and εΥ

to make the following constraint relation for the uncer-
tain function valid

‖ΔΦ‖ ≤ εΦ1 + εΦ2‖x‖, ‖ΔΥ ‖
‖Υ n‖ ≤ εΥ < 1 (21)

Remark 1 For anunmannedhelicopter in a typical non-
acrobatic flight envelope, both the uncertain portions of
Φ andΥ are bounded. In addition, after high-precision
model identification and verification, it can be assumed
that the norm of the uncertain part ΔΦ is less than the
norm of the nominal portion Φn.

The control objective is tomake s, ṡ, . . . , s(l−1) con-
verge to the origin in finite time under bounded additive
and multiplied uncertainties.

Consider the following integral chain system

żi = zi+1

żl = vn
(22)
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where i = 1, 2, ..., l−1, zi = [
zi1, · · · , zi j , · · · , zin

]T
∈ R

n , j = 1, 2, ..., n, vn ∈ R
n . Lemma 1 proves the

existence of continuous finite time feedback control for
system (22) by giving an explicit structure with small
parameters.

Lemma 1 ([2]). Assume that K 1, K 2, ..., K l are real
positive definite diagonal matrices and the polynomial
λl +kl jλl−1+· · ·+k2 jλ+k1 j is Hurwitz stable. There
is a parameter ε ∈ (0, 1), for any α ∈ (1 − ε, 1), so
that feedback control (23) exists, which makes states of
system (22) converge to origin in finite time

vn0 = −K 1Sgn(z1) − · · · − K i Sgn(zi ) − · · ·
−K l Sgn(zl) (23)

where sign function Sgn(zi ) andmatrix K i are defined
as

Sgn(zi ) =
[
sign(zi1)|zi1|αi1; · · · ; sign(zi j )

∣∣zi j
∣∣αi j ;

· · · ; sign(zin)|zin|αin
]

K i = diag(ki1, · · · , ki j , · · · , kin),
i = 1, 2, . . . , l,
j = 1, 2, . . . , n

αi j satisfies the following constraints

α(i−1) j = αi jα(i+1) j

2α(i+1) j − αi j
,

i = 2, 3, . . . , l,
j = 1, 2, . . . , n

α(l+1) j = 1, αl j = α, j = 1, 2, . . . , n

(24)

Remark 2 In Lemma 1, the following conclusions can
be drawn by induction

0 < αi j < 1, i = 1, 2, . . . , l, j = 1, 2, . . . , n (25)

When i = l, then

αl j = α < α(l+1) j = 1 (26)

When i = l − k, suppose the following inequality is
true

α(l−k) j < α(l−k+1) j (27)

When i = l−k−1, according to (24), it can be obtained

α(l−k−1) j = α(l−k) jα(l−k+1) j

2α(l−k+1) j − α(l−k) j

= α(l−k) jα(l−k+1) j

α(l−k+1) j + (
α(l−k+1) j − α(l−k) j

)
(28)

By combining the expression (27) and (28), it can be
obtained

α(l−k−1) j <
α(l−k) jα(l−k+1) j

α(l−k+1) j
= α(l−k) j (29)

So we can generalize

0 < α1 j < α2 j < · · · < αl j < 1, j = 1, 2, . . . , n

(30)

Since 0 < αi j < 1, i = 1, 2, . . . , l, j = 1, 2, . . . , n,
even a large value of the state variable will not cause
the power function in (23) to grow rapidly. Therefore,
when the initial value of the system state is large, the
convergence rate of the closed loop systemwill be slow.

Next, based on Lemma 1, a quasi-optimal finite time
control method is proposed to improve the transient
process.

Theorem 1 Consider system (22) and linear quadratic
performance indicator (31)

J = 1

2

∫ ∞

0
e2δt

(
zT(t)Qz(t) + vTn (t)Rvn(t)

)
dt (31)

z = (
zT1 , . . . , zTl

)T ∈ R
ln , Q ∈ R

ln×ln , Q = QT =
DTD ≥ 0, R ∈ R

n×n is a positive definite matrix,
and δ is a positive constant. The system state z(t) will
converge to the origin in finite time under feedback
control (32), and the convergence rate is not less than
e−δt .

vn = −R−1BT
n P

(
S(z1,α1)

T, · · · , S(zl ,αl)
T
)T

(32)

where

S(zi , αi ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
sign(zi1)|zi1|αi1 , · · · , sign(zin)|zin|αin

)T
,

if max
1≤i≤l

(‖zi‖) ≤ 1

zi , if max
1≤i≤l

(‖zi‖) > 1

αi1, αi2, · · · , αin are the elements on the main diago-
nal of diagonal matrix αi , and P is the positive definite
solution of the Riccati equation (33). �	

P (An + δ I ln×ln) + (An + δ I ln×ln)
T P

+Q − PBnR−1BT
n P = 0 (33)

where

An =
[
0(l−1)n×n I (l−1)n×(l−1)n

0n×n 0n×(l−1)n

]
, Bn =

[
0(l−1)n×n

In×n

]

0(•)×(•) and I (•)×(•) denote the zero matrix and the
identity matrix of corresponding dimension.
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Proof System (22) is re-expressed as follows

ż(t) = An z(t) + Bnvn(t) (34)

By defining the following variable transformation
{
z̄(t) = eδt z(t)
v̄n(t) = eδtvn(t)

(35)

State space equation (34) can be re-expressed as

˙̄z(t) = (An + δ I ln×ln) z̄(t) + Bnv̄n(t) (36)

The corresponding quadratic performance indicator
(31) can be rewritten as

J = 1

2

∫ ∞

0

(
z̄T(t)Qz̄(t) + v̄Tn (t)Rv̄n(t)

)
dt (37)

In this way, the problem is transformed into a common
linear time-invariant infinite time LQRproblem,whose
optimal control is

v̄n(t) = −R−1BT
n P z̄(t) (38)

Corresponding to the original system equation (34), the
optimal control is

vn,opt(t) = −R−1BT
n Pz(t) (39)

Lemma 2 ([40]). Assuming that (An + δ I ln×ln, Bn)

can be stabilized and (An + δ I ln×ln, D) can be
detected, for system (34) and performance index (31),
under the action of optimal control (39), the state con-
vergence rate of the closed-loop system is not less than
e−δt .

Proof The proof is shown in Appendix. �	
Remark 3 According to the modal criterion, the con-
trollability of matrix (An, Bn) is equivalent to that of
(An + δ I ln×ln, Bn), while the observability of matrix
(An, D) is equivalent to that of (An + δ I ln×ln, D).
Thus, when matrices (An, Bn) and (An, D) are con-
trollable and observable, (An + δ I ln×ln, Bn) is stabi-
lized and (An + δ I ln×ln, D) is detectable.

Assume that the states of system (22) are far from
the origin, i.e., max

1≤i≤l
(‖zi‖) > 1. According to the defi-

nition of equation S(zi , αi ), the control input of system
(22) becomes equation (39).

Since matrix An and matrix Bn are the state matrix
and inputmatrix of system (22), respectively, according
to their definitions, the rank of controllability discrim-
inant matrix is rank(

[
Bn, AnBn, · · · , Aln−1

n Bn
]
) =

ln, system (22) is completely controllable, and the sys-
tem states can be completely observable by choosing
the appropriate Q matrix. In addition, since the P is a
positive definite solution of the algebraic Riccati equa-
tion (33), the control input (39) is optimal with respect
to the performance index (31), and the system state zi
will converge asymptotically to the origin in an optimal
way. It also means that the states of the system (22) will
converge to the following region in finite time with a
speed of no less than e−δt .

Onei =
{
z| max

1≤i≤l
‖zi‖ ≤ 1

}
(40)

When z ∈ Onei, according to S(zi , αi ), the control
input for system (22) takes the following form

vn,qpt(t) = −R−1BT
n P

(
S(z1, α1)

T, · · · , S(zl , αl )
T
)T

(41)

By expanding equation (41) using matrix multipli-
cation, we can get

vn,qpt(t) = −K 1S(z1,α1) − · · · − K i S(zi ,αi )

− · · · − K l S(zl ,αl) (42)

Since the matrix P is a positive definite solution of the
algebraic Riccati equation (33), the polynomial λl +
kl jλl−1+· · ·+k2 jλ+k1 j is Hurwitz stable. According
to Lemma 1, the control input (42) can ensure that the
system state converges to zero in finite time. Therefore,
the closed-loop system formed by equations (22) and
(32) is globally finite time stable, that is, the states of
system (22) will converge to zero in finite time under
the control (32). �	

4.1 Attitude control

In order to apply the control method proposed in The-
orem 1, the attitude kinematics and dynamics of the
unmanned helicopter are transformed into the follow-
ing forms based on equations (3), (4) and (10)

Θ̈ = Ṫ (Θ)ω − T (Θ)J−1Sk(ω)Jω

+T (Θ)J−1dM + T (Θ)J−1Mn (43)

By using the simplified flapping dynamics model
(12) and the follow feedback control

Ttr,ctr = kped,ctrδped − kr,ctrr (44)

where δped is the rudder servo input, and kped, kr are
constants, equation (43) can be transformed into

Θ̈ =
(
Ṫ (Θ) − T (Θ)J−1Sk(ω)J

)
ω
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Multi-variable adaptive high-order sliding mode 3679

+
(
T (Θ)J−1 (M1A − kr,ctrM2

))
ω

+T (Θ)J−1 (kped,ctrM2 − M1B
)
δaer

+T (Θ)J−1MΔ (45)

where δaer = [δTcyc, δped]T ,

MΔ =
⎡
⎣

MΔ1

MΔ2

Nmr + Nvt + Ntr − DtrTtr,ctr

⎤
⎦ + dM

MΔ1 = (
kβ + TmrHmr

)
sin(b) − (

kβ + ThovHmr
)
b +

Lvt+L tr−HtrTtr,ctr andMΔ2 = (
kβ + TmrHmr

)
sin(a)−(

kβ + ThovHmr
)
a + Mht. Redefine the state vector of

the attitude subsystem as x1
Δ= [

ΘT,ωT
]T
, and let the

known part and the unknown part of the system be

Υ 1n = T (Θ)J−1
n

(
kped,ctrM2 − M1B

)
Φ1n = (

Ṫ (Θ) − T (Θ)J−1
n Sk(ω)Jn

)
ω

+ T (Θ)J−1
n

(
M1A − kr,ctrM2

)
ω

(46)

and

ΔΥ1 = − T (Θ)J−1
n

(
kped,ctrM2 − M1B

)

ΔΦ1 = T (Θ)
(
−J−1Sk(ω)J + J−1

n Sk(ω)Jn
)

ω

+ T (Θ)(J−1 − J−1
n )

(
M1A − kr,ctrM2

)
ω

+ T (Θ)J−1MΔ

(47)

where J = Jn + JΔ, Jn is the measured nominal
moment of inertia matrix, and JΔ is the measurement
error of moment of inertia. The sliding mode variable
is designed as zatt,1 = satt = Θ −Θd, and zatt,2 = ṡatt,
where Θd is the expected attitude angle vector. Then
equation (45) can be rewritten as

żatt,1 = zatt,2

żatt,2 = Φ1n + ΔΦ1 + (Υ 1n + ΔΥ1)δaer − Θ̈d
(48)

Assumption 3 The roll and pitch angle of small
unmanned helicopter in the whole autonomous flight
process always meet the following constraints

− π

2
< φ <

π

2
, −π

2
< θ <

π

2
(49)

Remark 4 Since the Euler angle is used to represent the
attitude of the unmanned helicopter in this paper, the
pitch angle needs to be limited to (−90◦, 90◦) to avoid
suffering fromgimbal lock. In addition, in order to limit
the maneuvering range of the unmanned helicopter to
the typical flight envelope so that Assumption 2 can be
reasonably established, the roll angle is also limited to
(−90◦, 90◦).

On the basis of Assumption 2 and 3, assume that
there are three positive real numbers εΦ1, εΦ2 and εΥ 1,
such that the following inequality holds
⎧⎪⎪⎨
⎪⎪⎩

‖ΔΦ1‖ ≤ εΦ1 + εΦ2‖χ1‖, ‖χ1‖ = max
(
‖x1‖, ‖x1‖2

)

‖ΔΥ1‖
‖Υ 1n‖ ≤ εΥ 1 < 1, ‖Υ 1n‖ �= 0

(50)

Let’s define α1
Δ= diag(α11, α12, α13), and α2

Δ=
diag(α21, α22, α23), and design functions S(zatt,1,α1)

and S(zatt,2,α2) as follows

S(zatt,1, α1)

=

⎧⎪⎪⎨
⎪⎪⎩

[
sign(φe) |φe|α11 , sign(θe) |θe|α12 , sign(ψe) |ψe|α13

]T
,

if max
(∥∥zatt,1

∥∥ ,
∥∥zatt,2

∥∥) � 1

zatt,1, if max
(∥∥zatt,1

∥∥ ,
∥∥zatt,2

∥∥) > 1

(51)

S(zatt,2, α2)

=

⎧⎪⎪⎨
⎪⎪⎩

[
sign(φ̇e)

∣∣φ̇e
∣∣α21 , sign(θ̇e)

∣∣θ̇e
∣∣α22 , sign(ψ̇e)

∣∣ψ̇e
∣∣α23 ]T ,

if max
(∥∥zatt,1

∥∥ ,
∥∥zatt,2

∥∥) � 1

zatt,2, if max
(∥∥zatt,1

∥∥ ,
∥∥zatt,2

∥∥) > 1

(52)

where φe = φ − φd, θe = θ − θd, ψe = ψ − ψd, φd,
θd and ψd are the desired roll, pitch and yaw angle,
respectively. According to equation (32), the virtual
control is designed as follows

νn = [
νn,1, νn,2, νn,3

]T

= −R−1
1 BT

n1P1

[
S(zatt,1, α1)

T, S(zatt,2, α2)
T
]T (53)

where R1 ∈ R
3×3 is a positive definite matrix, P1 is

the positive definite solution of the Riccati equation of
the following algebraic matrix

P1 (An1 + δ1 I6×6) + (An1 + δ1 I6×6)
T P1

+ Q1 − P1Bn1R
−1
1 BT

n1P1 = 0
(54)

where δ1 is a positive real number by design, An1 =[
03×3 I3×3

03×3 03×3

]
, Bn1 =

[
03×3

I3×3

]
, and Q1 =

[
I3×3 03×3

03×3 03×3

]
.

The first integral sliding mode surface is designed
as

σ 1 = [σ11, σ12, σ13]
T = zatt,2 − νns (55)

where

νns = [
νns,1, νns,2, νns,3

]T

=
[∫ t

0
νn,1dτ,

∫ t

0
νn,2dτ,

∫ t

0
νn,3dτ

]T (56)

It is assumed that the final input signal consists of nom-
inal control and adaptive control, i.e.,

δaer = uatt,n + uatt,a (57)
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3680 B. Zhou

Sincematrix
(
kped,ctrM2 − M1B

)
is invertible,Υ 1n

is also invertible under Assumption 3, then the nominal
control uatt,n can be designed as

uatt,n = −Υ −1
1n

(
Φ1n − Θ̈d − νn + K τ1σ 1 + Kη1S(σ 1)

)

(58)

where S(σ 1) =
⎡
⎢⎣
sign(σ11)|σ11| 12
sign(σ12)|σ12| 12
sign(σ13)|σ13| 12

⎤
⎥⎦, K τ1 and Kη1 are

positive definite diagonal matrices.
The adaptive control uatt,a is designed as

uatt,a

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− Υ −1
1n

(
ĉ1 + ĉ2‖χ1‖ + ĉ3‖Φ1n − νn − Θ̈d‖) σ1

‖σ1‖ ,

if ‖σ1‖
(
ĉ1 + ĉ2‖χ1‖ + ĉ3‖Φ1n − νn − Θ̈d‖) > ka1

− Υ −1
1n

(
ĉ1 + ĉ2‖χ1‖ + ĉ3‖Φ1n − νn − Θ̈d‖)2 σ1

ka1
,

if ‖σ1‖
(
ĉ1 + ĉ2‖χ1‖ + ĉ3‖Φ1n − νn − Θ̈d‖) ≤ ka1

(59)

where ka1 is a constant to be designed, and control
parameters ĉ1, ĉ2 and ĉ3 are estimated values of the
unknown parameters c1, c2 and c3, respectively. c1, c2
and c3 are defined as follows

c1 = εΦ1

1 − εΥ 1
, c2 = εΦ2

1 − εΥ 1
, c3 = εΥ 1

1 − εΥ 1
(60)

Next, the adaptive laws are designed as
⎧⎨
⎩

˙̂c1 = −o1ĉ1 + p1‖σ 1‖˙̂c2 = −o2ĉ2 + p2‖σ 1‖‖χ1‖˙̂c3 = −o3ĉ3 + p3‖σ 1‖‖Φ1n − νn − Θ̈d‖
(61)

where oi > 0 and pi > 0, i = 1, 2, 3 are control
parameters to be designed.

4.2 Vertical position control

Using a similar method to the tail rotor force, the main
rotor lift Tmr in equation (9) can be rewritten as follows

Tmr = kint1w + kint1kint2kcolδcol − kint1vim,hov + dT

(62)

where kint1 and kint2 are model parameters, dT = dT −
kint1(vim − vim,hov), dT is the approximation error in
the calculation model of the main rotor force. δcol is the
collective pitch servo input of the unmanned helicopter.
vim indicates the induced velocity of the main rotor,
while vim,hov denotes the induced velocity in hover.

Define the slidingmodevariable about the altitude as
zver,1 = sver = z − zd, zver,2 = ṡver. Combining equa-
tions (62), (1) and (2), the vertical position dynamics

of the small unmanned helicopter can be described as

żver,1 = zver,2

żver,2 = Φ2n + ΔΦ2 + (Υ2n + ΔΥ2)δcol − z̈d
(63)

where Υ2n = kint1kint2kcolc(φ)c(θ)

mn
, Φ2n =

kint1(w − vim,hov)c(φ)c(θ)

mn
+ g, ΔΥ2 =

kint1kint2kcolc(φ)c(θ)(mn − m)

mmn
,ΔΦ2 = (d̄T+dF)c(φ)

c(θ), z̈d is the desired acceleration in the vertical direc-
tion of the inertial coordinate system, and mn is the
measured mass of the aircraft.

Define x2
Δ= [

z, vz
]T, and suppose that positive real

numbers εΦ3, εΦ4 and εΥ 2 exist so that the following
inequality holds
⎧⎪⎨
⎪⎩

|ΔΦ2 | ≤ εΦ3 + εΦ4‖χ2‖, ‖χ2‖ = max
(
‖x2‖, ‖x2‖2

)

|ΔΥ2 |
|Υ2n| ≤ εΥ 2 < 1, |Υ2n| �= 0

(64)

Select functions S(zver,1, ᾱ1) and S(zver,2, ᾱ2) as

S(zver,1, ᾱ1)

=
{
sign(ze) |ze|ᾱ1 , if max

(∣∣zver,1
∣∣ , ∣∣zver,2

∣∣) � 1

zver,1, if max
(∣∣zver,1

∣∣ , ∣∣zver,2
∣∣) > 1

(65)

S(zver,2, ᾱ2)

=
{
sign(że) |że|ᾱ2 , if max

(∣∣zver,1
∣∣ , ∣∣zver,2

∣∣) � 1

zver,2, if max
(∣∣zver,1

∣∣ , ∣∣zver,2
∣∣) > 1

(66)

where ze = z − zd, zd is the expected altitude in iner-
tial coordinates. Similar to equation (53), the designed
vertical position virtual control is

μn = −R−1
2 BT

n2P2

[
S(zver,1, ᾱ1)

T, S(zver,2, ᾱ2)
T
]T

(67)

where R2 ∈ R is a real number greater than zero, P2 is
the positive definite solution of the following algebraic
matrix Riccati equation

P2 (An2 + δ2 I2×2) + (An2 + δ2 I2×2)
T P2

+Q2 − P2Bn2R
−1
2 BT

n2P2 = 0 (68)

where δ2 a positive control parameter, An2 =
[
0 1
0 0

]
,

Bn2 =
[
0
1

]
, and Q2 =

[
1 0
0 0

]
.

Select the second integral sliding mode surface as

σ2 = zver,2 − μns (69)

where μns = ∫ t
0 μndτ . The control input of the alti-

tude servo is divided into nominal control and adaptive
control, as follows

δcol = uver,n + uver,a (70)
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obviously, Υ2n �= 0. Design the nominal control as

uver,n = −Υ −1
2n

(
Φ2n − z̈d − μn + Kτ2σ2 + Kη2S(σ2)

)

(71)

where S(σ2) = sign(σ2)|σ2| 12 , Kτ2 and Kη2 are posi-
tive design parameters.

Then design the adaptive control uver,a as

uver,a

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− Υ −1
2n

(
ĉ4 + ĉ5‖χ2‖ + ĉ6|Φ2n − μn − z̈d|

) σ2

|σ2| ,
if |σ2|

(
ĉ4 + ĉ5‖χ2‖ + ĉ6|Φ2n − μn − z̈d|

)
> ka2

− Υ −1
2n

(
ĉ4 + ĉ5‖χ2‖ + ĉ6|Φ2n − μn − z̈d|

)2 σ2

ka2
,

if |σ2|
(
ĉ4 + ĉ5‖χ2‖ + ĉ6|Φ2n − μn − z̈d|

) ≤ ka2

(72)

where ka2 is a constant, c4, c5 and c6 are unknown
parameters, whose estimated values are ĉ4, ĉ5 and ĉ6,
defined as follows

c4 = εΦ3

1 − εΥ 2
, c5 = εΦ4

1 − εΥ 2
, c6 = εΥ 2

1 − εΥ 2
(73)

In order to obtain the estimated values, the three adap-
tive laws are designed as
⎧⎨
⎩

˙̂c4 = −o4ĉ4 + p4|σ2|˙̂c5 = −o5ĉ5 + p5|σ2|‖χ2‖˙̂c6 = −o6ĉ6 + p6|σ2||Φ2n − μn − z̈d|
(74)

where oi > 0, pi > 0, i = 4, 5, 6.

4.3 Horizontal position control

Compared with attitude, the dynamic response of posi-
tion of small unmanned helicopters is slower. They can
be divided into inner and outer loops to carry out the
control design. The dynamic model of the horizontal
position can be approximately equivalent to a typical
second order integral chain model, which is especially
suitable for the control method proposed in this paper.

To facilitate the design, the horizontal position
model is extracted from equations (1) and (2), and
rewritten as follows{

Ṗh = V h

V̇ h = ahd
(75)

where Ph = [x, y]T and V h = [vx , vy]T are the hori-
zontal position and velocity vector in the inertial coor-
dinate system, respectively, ahd = [ahd,x, ahd,y]T is
the horizontal position virtual control. Similar to 4.1

and 4.2, let zhon,1 = shon = Ph − Phd be the sliding
mode variable, and zhon,2 = ṡhon. Phd is the expected
horizontal position vector. Then equation (75) can be
rewritten as
żhon,1 = zhon,2

żhon,2 = Φ3n + ΔΦ3 + (Υ 3n + ΔΥ3)ahd − P̈hd
(76)

where Υ 3n =
[
1 0
0 1

]
, Φ3n =

[
0
0

]
, ΔΦ3 and ΔΥ3 can

be obtained from equation (2). Based on Assumptions
2 and 3, assume that there exist three positive real num-
bers εΦ5 εΦ6 and εΥ 3 such that the following inequality
is always true⎧⎪⎪⎨
⎪⎪⎩

‖ΔΦ3‖ ≤ εΦ5 + εΦ6‖χ3‖, ‖χ3‖ = max
(
‖x3‖, ‖x3‖2

)

‖ΔΥ3‖
‖Υ 3n‖ ≤ εΥ 3 < 1, ‖Υ 3n‖ �= 0

(77)

where x3 is defined as x3
Δ= [

PT
h , VT

h

]T
.

Define α1 = diag(α11, α12), α2 = diag(α21, α22),
and design functions S(zhon,1,α1), S(zhon,2,α2) as

S(zhon,1,α1)

=

⎧⎪⎨
⎪⎩

[
sign(xe) |xe|α11 , sign(ye) |ye|α12

]T
,

if max
(∥∥zhon,1

∥∥ ,
∥∥zhon,2

∥∥) � 1

zhon,1, if max
(∥∥zhon,1

∥∥ ,
∥∥zhon,2

∥∥) > 1

(78)

S(zhon,2, α2)

=

⎧⎪⎨
⎪⎩

[
sign(ẋe) |ẋe|α21 , sign(ẏe) |ẏe|α22

]T
,

if max
(∥∥zhon,1

∥∥ ,
∥∥zhon,2

∥∥) � 1

zhon,2, if max
(∥∥zhon,1

∥∥ ,
∥∥zhon,2

∥∥) > 1

(79)

where xe = x − xd, ye = y − yd, xd and yd are the
desired longitudinal and lateral horizontal positions,
respectively. According to (32), design virtual control
νhon = [

νhon,1, νhon,2
]T

= −R−1
3 BT

n3P3

[
S(zhon,1,α1)

T, S(zhon,2, α2)
T
]T (80)

where R3 ∈ R
2×2 is a positive definite matrix, P3 is

the positive definite solution of the following algebraic
Riccati equation

P3 (An3 + δ3 I4×4) + (An3 + δ3 I4×4)
T P3

+ Q3 − P3Bn3R
−1
3 BT

n3P3 = 0
(81)

where δ3 is a designed constant greater than zero,

An3 =
[
02×2 I2×2

02×2 02×2

]
, Bn3 =

[
02×2

I2×2

]
, and Q3 =

[
I2×2 02×2

02×2 02×2

]
.
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The third integral sliding surface σ 3 is designed as

σ 3 = [σ31, σ32]
T = zhon,2 − νhons (82)

where νhons =
[∫ t

0 νhon,1dτ,
∫ t
0 νhon,2dτ

]T
. Similarly,

the virtual control of horizontal position consists of
nominal control and adaptive control

ahd = uhon,n + uhon,a (83)

Design the nominal control uhon,n as follows

uhon,n
= −Υ −1

3n

(
Φ3n − P̈hd − νhon + K τ3σ 3 + Kη3S(σ 3)

)

(84)

where S(σ 3) =
[
sign(σ31)|σ31| 12 , sign(σ32)|σ32| 12

]T
,

K τ3 and Kη3 are positive definite diagonal matrices.
In addition, the adaptive control uhon,a is designed

as follows

uhon,a

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

− Υ −1
3n

(
ĉ7 + ĉ8‖χ3‖ + ĉ9‖Φ3n − νhon − P̈hd‖

) σ 3

‖σ 3‖ ,

if ‖σ 3‖
(
ĉ7 + ĉ8‖χ3‖ + ĉ9‖Φ3n − νhon − P̈hd‖

)
> ka3

− Υ −1
3n

(
ĉ7 + ĉ8‖χ3‖ + ĉ9‖Φ3n − νhon − P̈hd‖

)2 σ 3

ka3
,

if ‖σ 3‖
(
ĉ7 + ĉ8‖χ3‖ + ĉ9‖Φ3n − νhon − P̈hd‖

) ≤ ka3

(85)

where ka3 is a design parameter that needs to be selected
appropriately, ĉ7, ĉ8 and ĉ9 are, respectively, estimated
values of unknown parameters c7, c8 and c9, which are
defined as

c7 = εΦ5

1 − εΥ 3
, c8 = εΦ6

1 − εΥ 3
, c9 = εΥ 3

1 − εΥ 3
(86)

In order to stabilize the closed-loop system, the three
adaptive laws are designed as
⎧⎨
⎩

˙̂c7 = −o7ĉ7 + p7‖σ 3‖˙̂c8 = −o8ĉ8 + p8‖σ 3‖‖χ3‖˙̂c9 = −o9ĉ9 + p9‖σ 3‖‖Φ3n − νhon − P̈hd‖
(87)

where oi > 0, pi > 0, i = 7, 8, 9.
Next, the desired longitudinal and lateral accelera-

tion in the inertial coordinate system needs to be con-
verted into the desired pitch Angle and roll Angle in
the body coordinate system. Taking the expected lon-
gitudinal acceleration and the desired pitch angle as an
example, the conversion relationship between them is
shown in Fig. 4.

where xb0 and zb0 are the x− and z−axis of the ini-
tial body coordinate systemof the small unmannedheli-
copter. For the convenience of description, it is assumed

Fig. 4 Conversion between expected longitudinal acceleration
and pitch angle

that they are recombinedwith the x− and z−-axis of the
inertial coordinate system, respectively. Ob−xb1yb1zb1
is the desired body coordinate system, where the yb1-
axis is recombined with its yb0 axis in Ob − xb0yb0zb0,
both represented by the black solid points in Fig. 4, and
their direction is vertical to paper and pointing outward.

Firstly, it is assumed that the unmanned helicopter
is stable on the z−axis of the inertial coordinate system
and the yaw angle is zero. According to the definition
of the coordinate system in Fig. 1, the desired pitch
θd is opposite to the expected longitudinal acceleration
ahd,x , then

θd = arctan

(
−ahd,x

g

)
(88)

So similarly,

φd = arctan

(
ahd,y cos(θd)

g

)
(89)

Assuming that the force of the unmanned helicopter
is balanced on z−axis in the inertial coordinate system,
but the yaw angle is not zero, the following equation is
established

m

⎡
⎢⎣
ahd,x

ahd,y

0

⎤
⎥⎦ = R(θ)

⎡
⎢⎣

0

0

−Tmr

⎤
⎥⎦ + m

⎡
⎢⎣
0

0

g

⎤
⎥⎦ (90)

which indicates that

ahd,x = −Tmr

m
(cos(φ) sin(θ) cos(ψ) + sin(φ) sin(ψ))

ahd,y = −Tmr

m
(cos(φ) sin(θ) sin(ψ) − sin(φ) cos(ψ))

Tmr = mg

cos(φ) cos(θ)
(91)

Combining the three equations of (91), one can get
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θd = arctan

(
− cos(ψ)ahd,x + sin(ψ)ahd,y

g

)

φd = arctan

(
−
(
sin(ψ)ahd,x − cos(ψ)ahd,y

)
cos(θd)

g

)
(92)

4.4 Stability analysis

Lemma 3 According to the adaptive laws given in
equations (61), (74) and (87), the adaptive parameters
ĉi (i = 1, 2, . . . , 9) have upper bounds. That is, there
ar positive real numbers c̄i , such that the inequalities
0 < ĉi ≤ c̄i and 0 < ci ≤ c̄i are always true for all
t > 0.

Theorem 2 Under Assumptions 1, 2 and 3, the nonlin-
ear dynamics model of the small unmanned helicopter
described in equation (1), (2), (3), (4) and (8) is consid-
ered. By defining the integral sliding mode surface as
shown in formulas (55), (69) and (82), and the virtual
control as shown in formulas (53), (67) and (80), and
then designing an adaptive high-order continuous slid-
ing mode quasi-optimal controller composed of equa-
tions (57), (58), (59), (61), (70), (71), (72), (74), (83),
(84), (85) and (87), the attitude and position tracking
errors of the system can converge to the vicinity of the
origin in finite time. Moreover, the convergence rate of
attitude, vertical position andhorizontal position track-
ing errors can be guaranteed to be no less than e−δ1t ,
e−δ2t and e−δ3t , respectively. �	
Proof Design the first Lyapunov function as

V1 = 1

2
σT
1σ 1 + 1 − εΥ 1

2

3∑
i=1

(
ci − ĉi

)2
pi

(93)

The following two cases are analyzed.
Case 1: when

‖σ 1‖
(
ĉ1 + ĉ2‖χ1‖ + ĉ3‖Φ1n − νn − Θ̈d‖

)
> ka1

Let c̄ = ĉ1+ĉ2‖χ1‖+ĉ3‖Φ1n−νn−Θ̈d‖. By substitut-
ing equation (57), (58) and (59) into the time derivative
of equation (93), and considering equation (50), it can
be obtained

V̇1 = −σT
1 σ̇ 1 + (1 − εΥ 1)

3∑
i=1

(
ĉi − ci

) ˙̂ci
pi

≤ − (1 − εΥ 1) λmin(K τ1)‖σ 1‖2
− (1 − εΥ 1) λmin(Kη1)σ

T
1 S(σ 1) + εΦ1‖σ 1‖

+εΦ2‖χ1‖‖σ 1‖ + εΥ 1‖Φ1n − νn − Θ̈d‖‖σ 1‖

−(1 − εΥ 1)c̄‖σ 1‖

+(1 − εΥ 1)

⎛
⎝

3∑
i=1

(
ĉi − ci

) ˙̂ci
pi

⎞
⎠ (94)

According to (61) and using the definition of c1, c2
and c3, one can obtain

(1 − εΥ 1)

3∑
i=1

(
ĉi − ci

) ˙̂ci
pi

= − (1 − εΥ 1)

3∑
i=1

oi
(
ĉi − ci

)
ĉi

pi

+ (1 − εΥ 1)
(
ĉ1 − c1

) ‖σ 1‖
+ (1 − εΥ 1)

(
ĉ2 − c2

) ∥∥χ1
∥∥ ‖σ 1‖

+ (1 − εΥ 1)
(
ĉ3 − c3

) ∥∥Φ1n − νn − Θ̈d
∥∥ ‖σ 1‖

= − (1 − εΥ 1)

3∑
i=1

oi
(
ĉi − ci

)
ĉi

pi

+ (1 − εΥ 1) c̄ ‖σ 1‖
− (1 − εΥ 1)

(
c1 + c2

∥∥χ1
∥∥

+c3
∥∥Φ1n − νn − Θ̈d

∥∥) ‖σ 1‖

= − (1 − εΥ 1)

3∑
i=1

oi
(
ĉi − ci

)
ĉi

pi

+ (1 − εΥ 1) c̄ ‖σ 1‖
− (

εΦ1 + εΦ2
∥∥χ1

∥∥ + εΥ 1
∥∥Φ1n − νn − Θ̈d

∥∥) ‖σ 1‖
(95)

Then, substituting equation (95) into inequality (94),
we get

V̇1 ≤ − (1 − εΥ 1) λmin(K τ1)‖σ 1‖2
− (1 − εΥ 1) λmin(Kη1)σ

T
1 S(σ 1)

− (1 − εΥ 1)

3∑
i=1

oi
(
ĉi − ci

)
ĉi

pi

(96)

Based on the Cp inequality, one knows that

‖σ 1‖ 3
2 =

(
|σ11|2 + |σ12|2 + |σ13|2

) 3
4

≤ |σ11| 32 + |σ12| 32 + |σ13| 32 = σT
1 S(σ 1)

(97)

Therefore, equation (96) can be further deduced as

V̇1 ≤ − (1 − εΥ 1) λmin(K τ1)‖σ 1‖2
− (1 − εΥ 1) λmin(Kη1)‖σ 1‖ 3

2

−(1 − εΥ 1)

3∑
i=1

oi
(
ĉi − ci

)
ĉi

pi
(98)
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In addition, it is obvious that the following inequality
always holds

− (
ĉi − ci

)
ĉi = −

(
ĉi − ci

2

)2 + c2i
4

≤ c2i
4

(99)

According to the inequality (99), equation (98) can be
changed into

V̇1 ≤ − (1 − εΥ 1)

⎛
⎝λmin(K τ1)‖σ 1‖2 +

3∑
i=1

(ĉi − ci )
2

⎞
⎠

− (1 − εΥ 1)

⎛
⎝λmin(Kη1)‖σ 1‖

3
2 +

3∑
i=1

(ĉi − ci )
3
2

⎞
⎠

+ (1 − εΥ 1)

⎛
⎝

3∑
i=1

oi c
2
i

4pi
+

3∑
i=1

(ĉi − ci )
2

⎞
⎠

+ (1 − εΥ 1)

3∑
i=1

(ĉi − ci )
3
2

(100)

Based on Lemma 3, it can be known that

|ĉi − ci | ≤ c̄i (101)

By substituting inequality (101) into equation (100),
and using the Cp inequality again, (100) can be further
transformed into

V̇1 ≤ − (1 − εΥ 1)

⎛
⎝λmin(K τ1)‖σ 1‖2 +

3∑
i=1

(ĉi − ci )
2

⎞
⎠

− (1 − εΥ 1)

⎛
⎝λmin(Kη1)‖σ 1‖

3
2 +

3∑
i=1

(ĉi − ci )
3
2

⎞
⎠

+ (1 − εΥ 1)

⎛
⎝

3∑
i=1

(
oi
4pi

+ 1

)
c̄2i +

3∑
i=1

c̄
3
2
i

⎞
⎠

≤ − μ1V1 − μ2V
3
4
1 + η1

(102)

where

μ1 = min (2λmin(K τ1)(1 − εΥ 1), 2pi ) , i = 1, 2, 3

μ2 = min

(
2
3
4 λmin(Kη1)(1 − εΥ 1),

(
8p3i (1 − εΥ 1)

) 1
4

)
,

η1 = (1 − εΥ 1)
3∑

i=1

((
oi
4pi

+ 1

)
c̄2i + c̄

3
2
i

)

Case 2: when

‖σ 1‖
(
ĉ1 + ĉ2‖χ1‖ + ĉ3‖Φ1n − νn − Θ̈d‖

) ≤ ka1

the time derivative of equation (93) can be expressed
as

V̇1 ≤ − (1 − εΥ 1) λmin(K τ1)‖σ 1‖2
− (1 − εΥ 1) λmin(Kη1)σ

T
1 S(σ 1) + εΦ1‖σ 1‖

+ εΦ2‖χ1‖‖σ 1‖ + εΥ 1‖Φ1n − νn − Θ̈d‖‖σ 1‖

− (1 − εΥ 1)

⎛
⎝

3∑
i=1

oi
(
ĉi − ci

)
ĉi

pi
+ ĉ1 + ĉ2‖χ1‖

⎞
⎠

− (1 − εΥ 1)
(
ĉ3‖Φ1n − νn − Θ̈d‖

)2 ‖σ 1‖2
ka1

≤ − (1 − εΥ 1)
(
λmin(K τ1)‖σ 1‖2

)

− (1 − εΥ 1)λmin(Kη1)‖σ 1‖
3
2

+ (1 − εΥ 1)
(
ĉ1 + ĉ2‖χ1‖

) ‖σ 1‖
+ (1 − εΥ 1)ĉ3‖Φ1n − νn − Θ̈d‖‖σ 1‖

− (1 − εΥ 1)c̄
2 ‖σ 1‖2

ka1

− (1 − εΥ 1)

3∑
i=1

oi
(
ĉi − ci

)
ĉi

pi

(103)

Considering that the following inequality is always
true

− (1 − εΥ 1)

(
c̄2

‖σ 1‖2
ka1

− c̄‖σ 1‖ + ka1
4

)

+ (1 − εΥ 1)
ka1
4

≤ (1 − εΥ 1)
ka1
4

(104)

then equation (103) can be further written as

V̇1 ≤ − (1 − εΥ 1)
(
λmin(K τ1)‖σ 1‖2

)

− (1 − εΥ 1)λmin(Kη1)‖σ 1‖ 3
2

− (1 − εΥ 1)

3∑
i=1

oi
(
ĉi − ci

)
ĉi

pi
+ (1 − εΥ 1)

ka1
4

(105)

By comparing equations (105) with (98), it is not diffi-
cult to see that

V̇1 ≤ −μ1V1 − μ2V
3
4
1 + η2 (106)

where η2 = (1 − εΥ 1)
3∑

i=1

((
oi
4pi

+ 1

)
c̄2i + c̄

3
2
i

)
+

(1 − εΥ 1)
ka1
4
.
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Combining case 1 and case 2, one can get

V̇1 ≤ −μ1V1 − μ2V
3
4
1 + ηmax (107)

where ηmax = max (η1, η2) = η2.
Similarly, the second and third Lyapunov functions

are defined as

V2 = 1

2
σ 2
2 + 1 − εΥ 2

2

6∑
i=4

(
ci − ĉi

)2
pi

V3 = 1

2
σT
3σ 3 + 1 − εΥ 3

2

9∑
i=7

(
ci − ĉi

)2
pi

(108)

By using a proof process similar to V̇1, it can be
obtained

V̇2 ≤ −μ3V2 − μ4V
3
4
2 + η̄max

V̇3 ≤ −μ5V3 − μ6V
3
4
3 + η

max

(109)

where

μ3 = min (2Kτ2(1 − εΥ 2), 2pi ) , i = 4, 5, 6

μ4 = min

(
2
3
4 Kη2(1 − εΥ 2),

(
8p3i (1 − εΥ 2)

) 1
4

)
,

η̄max = (1 − εΥ 2)
6∑

i=4

((
oi
4pi

+ 1

)
c̄2i + c̄

3
2
i

)

+(1 − εΥ 2)
ka2
4

μ5 = min (2λmin(K τ3)(1 − εΥ 3), 2pi ) , i = 7, 8, 9

μ6 = min

(
2
3
4 λmin(Kη3)(1 − εΥ 3),

(
8p3i (1 − εΥ 1)

) 1
4

)
,

ηmax = (1 − εΥ 3)
9∑

i=7

((
oi
4pi

+ 1

)
c̄2i + c̄

3
2
i

)

+(1 − εΥ 3)
ka3
4

Now, the Lyapunov function of the whole closed-
loop control system can be defined as

V = V1 + V2 + V3 (110)

According to equation (107), (109) and theCp inequal-
ity, the time derivative of equation (110) can be
expressed as

V̇ ≤ − μ1V1 − μ2V
3
4
1 + ηmax − μ3V2 − μ4V

3
4
2

+ η̄max − μ5V3 − μ6V
3
4
3 + ηmax

≤ − min(μ1, μ3, μ5) (V1 + V2 + V3) + ηmax + η̄max

− min(μ2, μ4, μ6)

(
V

3
4
1 + V

3
4
2 + V

3
4
3

)
+ ηmax

≤ − min(μ1, μ3, μ5)V − min(μ2, μ4, μ6)V
3
4

+ ηmax + η̄max + ηmax

(111)

Therefore, the attitude and position tracking errors
of the closed-loop system are limited in a small set
containing the origin in finite time, i.e., the following
inequality holds

‖σ‖ ≤ min

{√
2

(
ηmax + η̄max + η

max

min(μ1, μ3, μ5)

) 1
2

,

√
2

(
ηmax + η̄max + η

max

min(μ2, μ4, μ6)

) 2
3
} (112)

where σ = [
σT
1 , σ2, σ

T
3

]T
. By synthesizing case 1 and

case 2, it can be found that the system state trajectory
converges to the neighborhood of the integral sliding
mode σ 1 = 0, σ2 = 0 and σ 3 = 0 in finite time. In
addition, when the integral sliding mode is reached, it
can be obtained

żatt,2 = νn + ϑ1(t)
żver,2 = μn + ϑ2(t)
żhon,2 = νhon + ϑ3(t)

(113)

where ϑ1(t), ϑ2(t) and ϑ3(t) are time-varying func-
tions generated by σ̇ 1, σ̇2 and σ̇ 3, respectively. Accord-
ing toTheorem1, both the first-order slidingmode vari-
able zatt,1, zver,1, zhon,1 and the second-order sliding
mode variable zatt,2, zver,2, zhon,2 can converge to the
origin in finite time, that is, they can reach the second-
order sliding mode relative to satt, sver and shon in finite
time, and the tracking error convergence rate of attitude,
vertical position and horizontal position is no less than
e−δ1t , e−δ2t and e−δ3t , respectively. �	

5 Simulation and practical experiment

5.1 Simulation results

In this section, simulation and physical experiment are,
respectively, used to verify the performance of the con-
trol system designed in this paper, and it is compared
with the adaptive radial basis function neural network
control (ARBFNNC) in [41]. In order to show the
comparative effect clearly, we separate the simulation
results from the actual experiment results. The effec-
tiveness of the proposed control method is tested using
a typical flight action that reflects all coupling effects of
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Fig. 5 Gust disturbance model in the body coordinate system

unmanned helicopter. The reference trajectory is given
by

⎡
⎣
xd
yd
zd

⎤
⎦ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[0, 0, 0]T, if t ≤ 5
⎡
⎢⎢⎣
5
(
1 − cos

( π

10
(t − 5)

))

−5 sin
( π

10
(t − 5)

)

−20 + 20e(−0.06(t−5))

⎤
⎥⎥⎦ , if t > 5

(114)

ψr =
⎧⎨
⎩
0, if t ≤ 5
π

10
(t − 5), if t > 5

(115)

The above-mentioned reference flight trajectory
expects the small unmanned helicopter to maneuver
simultaneously in all directions, which requires high
dynamic performance of the control system. For the
first 5 seconds, the helicopter is hovering at its original
position. From the 5th second on, the helicopter makes
a horizontal circularmaneuverwith the nose pointing at
the center of the circle. At the same time, the helicopter
makes a upward movement in the vertical direction. In
the actual flight process, the unmanned helicopter is
mainly disturbed by the longitudinal and lateral gusts
in the body coordinate system, especially the lateral
gusts seriously affects the stability of the yaw control.
Therefore, the gust model adopts the cosine form with
a period of 20 seconds as suggested in [11]. Gust inter-
ference is shown in Fig. 5.

The main control parameters are selected as fol-
lows. K τ1 = diag([15, 15, 15]), kτ2 = 10, K τ3 =
diag([5, 3]), Kη1 = diag([15, 15, 15]), kη2 =
10, Kη3 = diag([5, 3]), R1 = diag([3, 3, 3]), R2 =
1, R3 = diag([5, 5]), ka1 = 80, ka2 = 60, ka3 =
80, δ1 = 1.5, δ2 = 0.1, δ3 = 0.1.

Fig. 6 Tracking trajectory in three-dimensional space in simu-
lation experiment

Under the same reference trajectory and interfer-
ence environment, the control method (AHOSMQC)
designed in this paper is compared with the method
(ARBFNNC) in [41], and the simulation results are
shown in Fig. 6, 7, 8 and 9. The results show that
the controller designed in this paper has better control
precision and stronger anti-interference ability, and the
overall performance is more satisfactory. Figures 6 and
7 show that AHOSMQC can track the desired trajec-
tory more quickly, showing a faster response speed. In
addition, it can be seen from Fig. 9 that the dynamic
and static tracking errors of themethod designed in this
paper are smaller than those of the method in [41] in
the same interference environment, which is especially
true in horizontal positions.

5.2 Practical experiment results

This section first introduces the hardware system of
the small unmanned helicopter, whose framework is
depicted in Fig. 10, and then shows the test results of
the autonomous flight experiment.

The unmanned helicopter system (Heli800E) is
reconstructed based on the TREX 800E F3C electric
model helicopter, as shown in Fig. 11 and Fig. 12,
whose length is 1.478 m, and the main rotor diame-
ter is 1.74 m. The airborne electronic system is the
brain of the unmanned helicopter, responsible for col-
lecting control input signals and necessary state infor-
mation, performing state estimation, filtering algorithm
and control algorithm, which requires strong real-time
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Fig. 7 Horizontal position tracking trajectory in simulation
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Fig. 8 Position and yaw tracking results in simulation experi-
ment

processing ability. In addition, high reliability and secu-
rity are required. After comprehensive consideration,
this paper adopts the open-source hardware and soft-
ware scheme based on Pixhawk and APM. Pixhawk
is selected as the hardware circuit foundation of the
unmanned helicopter system platform, and APM is
selected as the software foundation of the platform.
Selecting the existing open-source project as the basis
of the research can greatly simplify the platform con-
struction process, so that we can focus on the flight
control algorithm of unmanned helicopter.

The ground station is responsible for the commu-
nication between the airborne avionics system and the
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Fig. 9 Position andyaw tracking errors in simulation experiment

Fig. 10 System framework of the unmanned helicopter

Fig. 11 Heli800E system
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Fig. 12 Heli800E in autonomous flight

ground operators. It is mainly used to display and mon-
itor the flight status of the helicopter in real time. At the
same time, it is used to adjust the control parameters
online, which significantly improves the efficiency of
parameter adjustment and makes the flight experiment
more convenient. A pair of 915 MHz wireless modems
are responsible for real-time information transmission
between the ground station and the airborne avionics
system. Flight data can be downloaded from the ground
station after the flight.

The effectiveness of the proposed control method
was tested using a typical flight action that reflects
all coupling effects of unmanned helicopter. The
unmanned helicopter starts from the hovering state and
flies around the circlewith a radius of 6m, always point-
ing at the center of the circle, while rising at a constant
speed of 0.6 meters per second. When t ≤ 5, the refer-
ence trajectory is set as xd = 0, yd = 0, zd = 0.8 and
ψd = 5.24 rad(300 degree). The initial altitude of the
automatic flight is 0.8 meters, and the initial yaw is 300
degree, mainly to ensure the safety of the experiment.
For t ≥ 5, the reference trajectory is given by
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xd = 6
(
1 − cos

(π

6
(t − 5)

))

yd = −6 sin
(π

6
(t − 5)

)

zd = 0.8 + 0.6(t − 5)

ψd = 5.24 + π

6
(t − 5)

(116)

The actual flight experiments are carried out in a windy
environment, and the average gust wind speed was
about 3.5 m/s.

Fig. 13 Tracking trajectory of 3-D positions in practical exper-
iment
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Fig. 14 Tracking trajectory of horizontal positions in practical
experiment

As with the simulation experiment, the control per-
formance of the method designed in this paper is com-
pared with that designed in [41] under the same envi-
ronment and input conditions.

The practical experimental results are shown in
Fig. 13, 14, 15, 16, 17, 18 and 19. The three dimen-
sional position and horizontal position tracking curves
are given in Fig. 13 and Fig. 14, respectively, from
which it can be seen that the proposed control method
can obtain better control performance even in a windy
environment compared with the method in [41].

The single tracking curves of the positions and yaw
angle are shown in Fig. 15.

It is obvious from the figure that the unmanned heli-
coptermoves in four channels at the same time. In order
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Fig. 15 Tracking curves of positions and yaw angle in practical
experiment
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Fig. 16 Velocity in the inertial coordinate system during flight

to achieve the goal, the proposed control system needs
to overcome the inherent coupling effect and uncer-
tainty of the model as well as external gust interfer-
ence, showing strong maneuverability and robustness.
The linear velocity, attitude, angular rate and control
input signals in the autonomous flight of the unmanned
helicopter are shown in Fig. 16, 17, 18 and 19, respec-
tively. The mean absolute values of the control inputs
δlat , δlon , δcol and δped are 0.0205, 0.0399, 0.5855 and
0.7381, respectively, which are all kept within a rea-
sonable range.

Remark 5 While the main rotor of the unmanned heli-
copter rotates to generate lift, it exerts a counter-torque
on the fuselage. There are many ways to counteract the
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Fig. 17 Attitude of the unmanned helicopter during flight
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Fig. 18 Angular velocity of the unmanned helicopter during
flight

0 5 10 15 20 25 30 35 40
-0.2

-0.1

0

0.1

la
t

0 5 10 15 20 25 30 35 40

-0.1

-0.05

0

0.05

lo
n

0 5 10 15 20 25 30 35 40
0.4

0.5

0.6

co
l

0 5 10 15 20 25 30 35 40
Time (s)

0.6

0.7

0.8

pe
d
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anti-torque force in a helicopter, the most common is
to use the tail rotor. For example, if the main rotor turns
clockwise, it exerts a counterclockwise torque on the
fuselage, and the tail rotor must be pushed or pulled
to generate a clockwise push to counteract the coun-
tertorque of the main rotor. Meanwhile, the tail rotor
pushing or pulling force has a side force on the fuse-
lage, and this force is usually offset by the roll angle of
helicopter fuselage. Combined with the specific track-
ing route, the nonzero roll angle is finally generated, as
seen in Fig. 17.

6 Conclusion

In this paper, a multi-variable adaptive high-order slid-
ing mode quasi-optimal controller is designed. The
control structure is based on a redesigned quadratic
performance index, leading a quasi-optimal property
with variable convergence rate. It is proved theoret-
ically that the position and yaw tracking errors can
converge in finite time and the convergence speed is
not lower than the design value. In addition, the uncer-
tainty bound required in general sliding mode con-
trol is not needed in this paper. Finally, a challenging
high-mobility experiment is used to test the theoretical
design method. The simulation and practical experi-
ment results show that the proposed control system has
better tracking effect on position and yaw, and better
robustness to internal uncertain system parameters and
external gust.

The research focus of this paper is the control of a
single unmanned helicopter. However, multi-agent sys-
tems have shown more and more potential applications
in various fields [22–24]. Our subsequent research will
focus on related control problems of multi-agent sys-
tems. In addition, due to structural differences, fixed-
wing UAV may land safely even in the case of power
loss or sensor faults, while traditional unmanned heli-
copter or quadrotor is often difficult to do so [33].
Therefore, the safety control of unmanned helicopter is
also a research direction we will focus on in the future.
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Appendix

Lemma 4 ([40]). Assuming that (An, Bn) is stabi-
lized and (An, D) is detectable, then the linear time-
invariant infinite time LQR optimal control is asymp-
totically stable. If (An, D) is observable, then the solu-
tion P̄ of the Riccati matrix algebraic equation (117)
is positive definite.

P̄ An + AT
n P̄ + Q − P̄ BnR−1BT

n P̄ = 0 (117)

�	
Proof of Lemma 2 Sincematrix (An + δ I ln×ln, Bn) is
stabilized and (An + δ I ln×ln, D) is detectable, accord-
ing to Lemma 4, for the linear time-invariant infinite
time LQR problem described by system (36) and per-
formance index (37), the optimal control is given by
equation (38), then the system (36) is asymptotically
stable. In other words, z̄(t) is bounded and asymptoti-
cally approaches zero. Thus,

z(t) = e−δt z̄(t) → 0, t → ∞
That’s to say, the state z(t) converges to the origin at a
rate no less than the exponential function e−δt . �	
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