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Abstract In this paper, we construct new exact solu-
tions of some (2+1)-dimensional Burgers-type systems
by using corresponding Cole–Hopf-type transforma-
tions. The obtained linear equations show that abun-
dant (2+1)-dimensional soliton structures can be con-
structed for the physical quantity W = λ(ln f )xy by
selecting appropriate parameters. In particular, new
meshy soliton structures and interactions are revealed
for the first time.

Keywords Burgers-type system · Cole–Hopf trans-
formation · Meshy soliton structure · Lump

1 Introduction

In the past four decades, solitons are receiving much
attention in many natural sciences such as biology,
chemistry, mathematics, communication, and espe-
cially in almost all branches of physics like condense
matter physics, quantum field theory, plasma physics,
fluidmechanics and nonlinear optics. Usually, one con-
siders that the solitons are the basic excitations of inte-
grable systems, while the chaos and fractals are the
basic behaviors of non-integrable systems. Actually,
this consideration may not be complete especially in

K. Zhou· J.-D. Peng · G.-F. Wang·S.-J. Zhan ·S. Shen·
Y. Jin (B)
Department of Applied Mathematics, Zhejiang University
of Technology, Hangzhou 310023, China
e-mail: yongyangjin@163.com

higher-dimensional integrable systems. The fact is that
there may be some lower-dimensional arbitrary func-
tions in exact solutions of higher-dimensional inte-
grable systems. That means any lower-dimensional
chaotic and/or fractal solutions can be used to construct
exact solutions of higher-dimensional integrable sys-
tems. Thus, one of the most important research fields
in soliton theory is to seek for exact solutions of inte-
grable systems and use these solutions to simulate var-
ious natural science phenomena [1–8].

Solving nonlinear systems is much more difficult
than solving the linear ones. In linear case, the Fourier
transformation method and the variable separation
approach (VSA) are two most important approaches
to find the exact solutions. It is known that the famous
inverse scattering transformation (IST) can be consid-
ered as a nonlinear extension of the Fourier transforma-
tion. However, it is difficult to extend the VSA to non-
linear case consistently. Fortunately, the multi-linear
variable separation approach (MLVSA) was estab-
lished first for the Davey–Stewartson (DS) equation.
Thismethodhas been developedwell for various (2+1)-
dimensional integrable systems like the Nizhnik–
Novikov–Veselov (NNV) equation, the Broer–Kaup–
Kupershmidt equation, the long wave-short wave inter-
action equation, the (2+1)-dimensional Burgers equa-
tion and the (2+1)-dimensional sine-Gordon equation
recently [9–11]. Let us give a brief account of this
method. For a given (2+1)-dimensional equation,
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�(u, ux , uy, ut , uxx , · · · ) = 0,

where � is a function of u and of its derivatives with
respect to the space variables {x, y} and the time vari-
able {t}. First, we select a suitable Bäcklund transfor-
mation,

u = �( f, fx , · · · ) + u0,

which can be obtained usually by Painlevé analysis.
Here f ≡ f (x, y, t), u0 ≡ u0(x, y, t). Then we set a
seed solution u0 andmake assumption about separation
of variables for f . The basic form of function f reads
f = q0(y, t) + ∑M

j=1 p j (x, t)q j (y, t). By substitut-
ing these formulas into the original equation and using
symbolic calculation software, we can construct new
MLVS solutions. More detailed steps can be found in
Ref. [11]. Obviously, f = 1+∑M

j=1 exp(a j x +b j y+
c j t + d j ) is a typical form of the multi-linear variable
separation ansatz.

We can see that the universal formula W ≡
λ(ln f )xy is valid for suitable fields or potentials of
all the above-mentioned integrable systems. For (2+1)-
dimensional integrable systems, there are more abun-
dant soliton structures of this universal formula than
in (1+1)-dimensional case because some types of
low-dimensional arbitrary functions can be included.
Recently, soliton structures such as dromions, lumps,
ring solitons, breathers, instantons, and compactons
have been obtained. These studies are restricted in the
single-valued situations. For more complicated cases,
multivalued-functions also have been used to construct
folded solitary waves and foldons. For example, the
dromion structures, which decay exponentially in all
directions, can be obtained by two non-perpendicular
line solutions for the Kadomtsev–Petviashvilli (KP)
equation, while for the DS and NNV equations, the
dromion solutions are constructed by two perpendicu-
lar line solutions.

However, there are few works to study equation
hierarchy of any order because of the difficulties of
symbolic calculation. In addition, new nonlinear evo-
lution equations continue to appear in various research
fields. Motivated by these reasons, the first purpose
of this paper is to consider solving some Burgers-
type systems in Sect. 2. The second purpose of this
paper is to construct new soliton structures in Sect. 3,
which are called the meshy soliton structures. It is
known that KP-type equations have various spider-web
solutions. Under some suitable conditions, the meshy
solitons and spider-web solutions are the same. How-

ever, under other conditions, these meshy solitons have
richer structures such as parabolic meshy structures. It
should be emphasized that some new coherent struc-
tures such as the meshy soliton structure, multilayer
network model structure and four petal-type rogue
wave have been studied recently by authors in Refs.
[12–15]. A brief discussion and summary are given in
the final section.

2 Exact solutions of Burgers-type systems

The (1+1)-dimensional Burgers hierarchy [16] is writ-
ten as

ut +
N∑

j=0

β j
∂

∂y

(
∂

∂y
+ u

) j

u = 0. (1)

Here u ≡ u(x, t) is the velocity of the wave in the x
direction. For N = 1 and N = 2, Eq. (1) corresponds
to the Burgers equation and the Sharma-Tasso-Olver
equation, respectively. OperatorL ≡ ∂

∂y +u has a com-

puting rule L j = LL j−1. Thus, this equation (1) has a
natural (2+1)-dimensional generalization, namely, the
following new (2+1)-dimensional high-order Burgers
hierarchy

{
ut + ∑N

j=0β j
∂
∂y

(
∂
∂y + u

) j
u + γ (2vux + uxx ) = 0,

vy = ux .

(2)

Here N is a positive integer and β j , γ are real constant
parameters. For N = 1, Eq. (2) corresponds to the
(2+1)-dimensional Burgers equation [17]. In Ref. [17],
authors have constructed many new types of soliton
structures of periodic waves investigated both analyti-
cally and graphically.

The first step of theMLVSA is to transform the orig-
inal equation into a general multi-linear form bymeans
of a suitable transformation. For the (2+1)-dimensional
Burgers hierarchy (2), through the standard leading
order analysis and the Weiss–Tabor–Carnevale trun-
cated expansion, we have the following Bäcklund
(Cole–Hopf) transformation

{
u = fy

f + u0,

v = fx
f + v0,

(3)
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where f ≡ f (x, y, t) and {u0 ≡ u0(x, y, t), v0 ≡
v0(x, y, t)} is an arbitrary known seed solution of Eq.
(2). The second key step of the MLVSA is to select
some types of seed solutions for the sake of including
as many arbitrary functions as possible. It is straight-
forward that, {u0 = 0, v0 ≡ v0(x, t)} is one of the
appropriate seed solutions.

Substituting Eq. (3) with this seed solution into Eq.
(2) yields

f fty − ft fy
f 2

+
N∑

j=0

β j
f( j+2)y f − f( j+1)y fy

f 2

+ γ

[

2

(
fx
f

+ v0

) (
f fxy − fx fy

f 2

)

+ f fxxy − 2 fx fxy − fxx fy
f 2

+ 2
f 2x fy
f 3

]

= 0.

To solve this equation, we change it to the form
(

f
∂

∂y
− fy

)

⎛

⎝ ft + 2γ v0 fx + γ fxx +
N∑

j=0

β j f( j+1)y

⎞

⎠ = 0. (4)

This is also the key to the successful calculation of the
results. In order to find more exact solutions of Eq.
(2), we us the multi-linear variable separation ansatz
f = q0 + ∑M

j=1 p jq j to the reduced linear equation
of Eq. (4),

ft + 2γ v0 fx + γ fxx +
N∑

j=0

β j f( j+1)y = 0. (5)

Here {q j ≡ q j (y, t), j = 0, 1, · · · , M} and {p j ≡
p j (x, t), j = 1, 2, · · · , M}, respectively. Thus we can
get the following relations,

p j t = −2γ v0 p j x − γ p j xx , j = 1, 2, · · · , M, (6)

q j t = −
N∑

k=0

βkq j (k+1)y, j = 0, 1, 2, · · · , M, (7)

by a direct computation. There are two caseswith phys-
ical signification that need to be determined.

Case 1 v0 ≡ v0(x, t). In this case, we let M = 1
and it means

p1t = −2γ v0 p1x − γ p1xx ,

⇒ v0 = −γ p1xx + p1t
2γ p1x

.

So we have an exact solution of Eq. (2)

{
u = q0 y+p1q1 y

q0+p1q1
,

v = p1x
q0+p1q1

− γ p1xx+p1 t
2γ p1x

.
(8)

Here functions q0, q1 satisfy constraint equation (7).
Obviously, there is a solution

q j = 1 +
M∑

k=1

exp

[

b jk y −
(

N∑

i=0

βi b
i+1
jk

)

t + d jk

]

,

j = 0, 1.

Case 2 v0 is a constant. In this case we can construct
solution (3) with

f = 1 +
M∑

k=1

exp [akx + bk y

−
⎛

⎝2γ v0ak + γ a2k +
N∑

j=0

β j b
j+1
k

⎞

⎠ t + dk

⎤

⎦ .

Next, we focus on the following Burgers-type sys-
tem [18,19],

{
ut − 2uux − vxx = 0,
vyt − uxxy − 2uvxy − 2uxvy = 0.

(9)

Substituting

{
u = fx

f + h(y),

v = u + α,
(10)

into the above system, we have the following linear
equation,

ft − 2h(y) fx − fxx = 0. (11)

Here f ≡ f (x, y, t) and α is an arbitrary constant.
Obviously, the Cole–Hopf-type transformation (10)
reduces Eq. (9) to the heat conduction type equation
(11). Moreover, another Burgers-type system is given
in Refs. [18,19] as

⎧
⎨

⎩

ut + 3u2ux + uxxx + 3
2 (uvx )x + 3

2∂
−1
y (uvy)xx = 0,

vyt + 3
2 (vxvy)x + vxxxy + 3(u2vy)x

+ 3
2 (uuy)xx + 3

2 (uuxy)x = 0.

(12)
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By means of Eq. (10), we have the following linear
equation

ft + 3h2(y) fx + 3h(y) fxx + fxxx = 0. (13)

Exact solutions of these linear equations (11) and (13)
are similar to that one (5), which will be given in the
next section for the sake of simplicity.

Remark 1 The (2+1)-dimensional high-order Burgers
hierarchy (2) can be easily extended to the (3+1)-
dimensional case.

Remark 2 For nonlinear equation
(

∂
∂x + um

)n
u = 0,

we have ( f
1
m
x )nx = 0 by setting u = a( fx/ f )

1
m , am =

1
m . So we can obtain fx = (

∑n−1
j=0 c j x

j )m , which is
equivalent to the result in Ref. [20].

3 Meshy soliton structures and interactions

To study the soliton structures and interactions is very
important and significant for nonlinear physics. InRefs.
[9,10], it is pointed out that the interactions among ring
type solitons and some types of compactons are com-
pletely elastic and the interactions among peakons, or
among some other types of compactons are not com-
pletely elastic because their shapes are changed dur-
ing the interactions. In addition, it also is well known
that soliton fission and fusion phenomena have been
recently discovered both theoretically and experimen-
tally in Refs. [6,7]. The relevant results can be naturally
extended to the (2+1)-dimensional Burgers system (2).
For example, when β0 = 1, β1 = 1, β2 = 3, β3 = −1,
v0 = 0 and γ = 1, we can get line soliton fission
phenomenon for the physical quantity

W = λ(ln f )xy = λ
fxy f − fx fy

f 2
, (14)

by making f = 1 + e−3t+x+y + e−t−x−y−30 +
e−21t+3x+3y−50 + e−15t−3x−3y+30 in Eq. (5). Here λ is
a constant, just for the sake of computer simulation and
drawing.We take the value of λ to be−1. Therefore, we
focus on new soliton structures via suitable selections
of function f in Eqs. (11) and (13) in this section.

If we set f = 1 + ∑N
j=1 c j e

a j x+b j y+a2j t+d j in Eq.
(11) with h(y) = 0, where a j , b j , c j , d j are appro-
priate constants, then we have dromion structure or

multiple solitoff structure. Here we call a half-straight
line soliton structure as a solitoff. These conclusions
have been presented in many literatures. Thanks to
the arbitrariness of the constants b j , we can construct
newMeshy soliton structure. The obtained results may
be able to simulate and explain the water wave phe-
nomenon in Internet Fig. 1, which has happened on a
sea surface in France.

By setting

f1 = 1 + e−4x+y+16t + e4x−y+16t−30

+e−12x+3y+144t−50 + ex−4y+t + e−3x−3y+9t

+e5x−5y+25t−30 + e−11x−y+121t−50

+e−x+4y+t−30 + e−5x+5y+25t−30

+e3x+3y+9t−60 + e−13x+7y+169t−80

Fig. 1 Meshy wave on a sea surface in France. This picture is
taken from Internet

Fig. 2 Meshy kink-soliton structure of the field function −u in
Eq. (10) by using f1 at t = −1
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Fig. 3 Meshy soliton structure of W by using f1 at t = −1

+e3x−12y+9t−50 + e−x−11y+t−50

+e7x−13y+49t−80 + e−9x−9y+81t−100, (15)

we can obtain Meshy kink-soliton structure of the field
function−u (orW ). Figures 2, 3, 4, 5, 6 and 7 show the
detail on the interaction property. One can see that the
shape of meshy soliton structure is most regular as the
time variable goes to 0 and becoming a parallelogram
type soliton structure. This is because Eq. (15) is

f1 = 1 + e−4x+y + e4x−y−30 + e−12x+3y−50

+ ex−4y + e−3x−3y + e5x−5y−30

+ e−11x−y−50 + e−x+4y−30 + e−5x+5y−30

+ e3x+3y−60 + e−13x+7y−80

+ e3x−12y−50 + e−x−11y−50

+ e7x−13y−80 + e−9x−9y−100

=
(
1 + e−4x+y + e4x−y−30 + e−12x+3y−50

)

(
1 + ex−4y + e−x+4y−30 + e3x−12y−50

)
, (16)

when time t equals 0. Theoretically, we give the inter-
pretation of water wave simulation in Fig. 1.

To consider furthermore, we write another kind of
meshy soliton structure by using the following func-
tional expression (17), which is composed of linear
solitons and parabolic solitons.

f2 = 1 + ex−4y+t + e−x+4y+t−30 + e3x−12y+9t−50

+ e−4x+y2+16t + e−3x−4y+y2+9t

+ e−5x+4y+y2+25t−30 + e−x−12y+y2+t−50

+ e4x−y2+16t−30 + e5x−4y−y2+25t−30

+ e3x+4y−y2+9t−60 + e7x−12y−y2+49t−80

+ e−12x+3y2+144t−50 + e−11x−4y+3y2+121t−50

Fig. 4 Density plot of W by using f1 at t = −1

Fig. 5 Meshy kink-soliton structure of the field function −u in
Eq. (10) by using f1 at t = 0

Fig. 6 Meshy soliton structure of U by using f1 at t = 0
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Fig. 7 Density plot of U by using f1 at t = 0

Fig. 8 Meshy soliton structure of W by using f2 at t = 0

+ e−13x+4y+3y2+169t−80 + e−9x−12y+3y2+81t−100.

(17)

For the sake of readability and simplicity, we present
only two figures to illustrate this soliton structure (see
Figs. 8 and 9).

Finally,we construct the interactionbehavior between
meshy soliton structure and Lump structure by using
the following functional expression,

f3 = f1 + x2 + 2t + y2 − 39

20
. (18)

Figures 9 and 10 show the interaction behavior at t = 0,
which has parallelogram-type soliton-Lump structure.
For f4 = f2 + x2 + 2t + y2 − 39

20 , we have an almost
similar result. Obviously, we also can construct meshy
soliton-Lump structure in a similar way and analyze
the interaction behavior (Fig. 11).

Fig. 9 Density plot of W by using f2 at t = 0

Fig. 10 Interaction behavior between meshy soliton structure
and Lump structure of W by using f3 at t = 0

Fig. 11 Density plot of W by using f3 at t = 0
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Remark 3 The choice of function f ≡ f (x, y, t)
depends on the constraint equations (11) or (13). In
fact, starting from the following generalized constraint
equation

ft +
N∑

j=1

h j (y) f j x = 0, (19)

and correspondingCole–Hopf-type transformation, we
can construct some new integrable systems from the
inverse problem point of view. We can also consider
differential-difference equations and nonlocal con-
straint equations such as ft +h(y) fx (−x)+ fxxx = 0.

Remark 4 We can also study meshy peakon structure
and meshy loop-soliton structure.

4 Conclusions

We have considered some (2+1)-dimensional Burgers-
type systems, which are reduced to corresponding lin-
ear constraint equations. Namely, starting from aBäck-
lund (Cole–Hopf) transformation and taking special
ansatzs for the function f and seed solution u0, we
can obtain much more general exact solutions of given
equations. As the same time, it should be pointed out
that the new (2+1)-dimensional high-order Burgers
hierarchy (2) is first proposed by us, which is a general-
ization of the (1+1)-dimensional case (1). Although the
construction of (2+1)-dimensional soliton structures is
more difficult than that of (1+1)-dimensional soliton
structures [7,9–11,15,16,21,22], new meshy soliton
structures represented by Figs. 2, 3, 4, 5, 6, 7 and 8
for the physical quantity W = λ(ln f )xy are obtained,
which can be linear or parabolic. These results may
be used to simulate the water wave phenomenon in
Fig. 1, which has happened on a sea surface in France.
In Figs. 9 and 10, interaction between meshy soliton
structure andLump structure is also revealed. Through-
out the article, we use symbolic computing software
Maple 9 for image processing.

It is well known that Burgers equation provides the
simplest nonlinear model of turbulence. In this let-
ter, new meshy soliton structures and interactions of
Burgers-type systems are first found. Whether these
phenomena exist in other higher-dimensional nonlin-
ear systems is worthy of further study. The existence of
relaxation time or delayed time is an important feature
in reaction-diffusion and convection-diffusion systems.

The approximate theory of shockwave propagation has
been applied to viscous fluid described by the perturbed
Burgers equation. It is worth studying how to apply this
theory to high-order Burgers-type equations.
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