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Abstract The three-dimensional Muthuswamy–
Chua–Ginoux (MCG, for short) circuit system based
on a thermistor is a generalization of the classi-
cal Muthuswamy–Chua circuit differential system. At
present, there are only partial numerical simulations
for the qualitative analysis of the MCG circuit sys-
tem. In this work, we study local stability and Hopf
bifurcations of the MCG circuit system depending on
8 parameters. The emerging of limit cycles under zero-
Hopf bifurcation and Hopf bifurcation is investigated
in detail by using the averaging method and the cen-
ter manifolds theory, respectively. We provide suffi-
cient conditions for a class of the circuit systems to
have a prescribed number of limit cycles bifurcating
from the zero-Hopf equilibria by making use of the
third-order averaging method, as well as the methods
of Gröbner basis and real solution classification from
symbolic computation. Such algebraic analysis allows
one to study the zero-Hopf bifurcation for any other
differential system in dimension 3 or higher. After, the
classical Hopf bifurcation of the circuit system is ana-
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lyzed by computing the first three focus quantities near
theHopf equilibria. Someexamples andnumerical sim-
ulations are presented to verify the established theoret-
ical results.
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1 Introduction

The invention of electronic circuits has brought a pro-
found impact on human behavior and society. Nowa-
days, circuits have played an important role in many
aspects of social life. More and more complex circuits
have been designed in the electronics field. Initially,
the electrical engineers believed that all circuits only
can be decomposed into three classical passive circuit
elements: the resistor, the capacitor and the inductor.
In 1971, Chua [1] broke this traditional point and pro-
posed the fourth fundamental circuit element, which is
known as memristor. Chua also characterized the prop-
erties of memristor. After Chua, memristor seems to be
hidden until Hewlett Packard Lab in 2008 observed
that memristance phenomenon occurs in a novel TiO2

nanoscale systems [2]. The memristor has gained wide
attention since Hewlett Packard Lab’s discovery. Over
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nearly ten years, memristor has important effect in
applied science and engineering, specially in chaotic
circuits [3–6] and neural networks [7,8].

Since the memristor can provide chaotic signals,
the majority of modern chaotic circuits are con-
structed by it. The circuits based on memristors can
exhibit rich complex dynamical behaviors, such as self-
excited chaos, hyperchaos and hidden chaotic attrac-
tor. In 1833, electromagnetic pioneer Faraday real-
ized that the resistance of a thermistor varies non-
linearly with temperature. Most notably, Chua in [9]
showed that the thermistor is functionally equivalent to
memristive devices. The authors in [10] constructed
a chaotic circuit based on a thermistor, which they
named Muthuswamy–Chua–Ginoux circuit (MCG cir-
cuit). The MCG circuit can be described by the follow-
ing system of differential equations

ẋ = k1y,

ẏ = k2 (x + f (y) + R (z) y) ,

ż = R (z) y2 − εz,

(1)

where k1 = 1/α, k2 = −1/η, f (y) = ay + by3

and R (z) = cz2 + dz + s. The interest in system (1)
basically comes from two main reasons. The first one
is because it is a new three-dimensional autonomous
dynamical system exhibiting very particular properties
such as the transition from torus breakdown to “double
spiral-chaos.” The second one is because the system
should credibly model some important unsolved prob-
lem in nature and shed insight on that problem and
should exhibit some behavior previously unobserved.

In the qualitative theory of differential equations,
one of the main subjects is to find limit cycles of differ-
ential equations. In general, the periodic orbits are stud-
ied numerically because, usually, their analytical study
is very difficult. Here, using the third-order averaging
method and the center manifolds theory, we shall study
analytically the periodic orbits of the three-dimensional
MCG circuit system (1) which bifurcate firstly from a
zero-Hopf bifurcation and secondly from a classical
Hopf bifurcation.

The zero-Hopf and Hopf bifurcations analysis are
powerful tools to find limit cycles, and they have been
successfully applied to various concrete models [11–
15]. Cândido and Llibre [16] reported that in many
cases the periodic solutions that generate (via period-
doubling) the chaotic attractor started with a periodic
solution coming from a zero-Hopf or a Hopf bifurca-
tion. This helps us to understand the mechanism of

chaos in some systems. As far as we know, the study
of zero-Hopf bifurcation and Hopf bifurcation in the
MCG system has not been considered in the literature.
In this work, we have this objective.

The rest of this paper is organized as follows. In
Sect. 2, we present the description and equilibrium
points of theMCG system.We briefly recall somemain
tools for proving the main results in Sect. 3, including
the averaging method of third order, focus quantities
and the theory of Hopf bifurcation. Section 4 is devoted
to the study of zero-Hopf bifurcation and number of
bifurcating limit cycles. The Hopf bifurcation and the
number of bifurcated limit cycles are investigated in
Sect. 5. Finally, we make a conclusion and give some
future directions.

2 Muthuswamy–Chua–Ginoux system:
description and equilibrium points

The MCG circuit can be designed as in Fig. 1.
In fact, the MCG circuit is a generalization of the
Muthuswamy–Chua circuit (MC circuit [17]). In terms
of application, scholars are extremely concerned about
the long-term dynamical behaviors of a circuit, espe-
cially the stability and the existence or non-existence
of oscillation. From the qualitative theory of differen-
tial equations point of view, a nice way to answer these
questions is to investigate the qualitative behaviors of
circuit systems including the local stability of equilib-
rium point and limit cycles (oscillation). In [10], the
numerical simulations suggest that system (1) can dis-
play “2-torus,” “limit cycle,” “spiral-chaos” and “dou-
ble spiral-chaos” for appropriately choice of the param-
eter values of k1, k2, ε, a, b, c, d, s, see Fig. 2.

Remark 1 For system (1), we can assume ε ≥ 0,
because ε < 0 can be translated into ε > 0 by the
change of variables (x, y, z, t) �→ (x, y,−z,−t).

The next result is about the stability conditions for
the equilibrium point of the MCG system (1).

Theorem 1 The MCG system (1) has the equilibrium
points (x, y, z) = (0, 0, z) (here z ∈ R) when ε = 0.
The origin (0, 0, 0) is the unique equilibrium point of
system (1) when ε �= 0, and it is asymptotically stable
when one of the following conditions holds:

[0 < ε, 0 < k1, k2 < 0, −s < a],
[0 < ε, k1 < 0, 0 < k2, a < −s]. (2)
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Fig. 1 Muthuswamy–Chua–Ginoux circuit

Proof It is obvious that (x, y, z) = (0, 0, z) for any
z ∈ R is the equilibrium point of system (1) when ε =
0; and (x, y, z) = (0, 0, 0) is the unique equilibrium
point of system (1)when ε �= 0.Moreover, the Jacobian
matrix of system (1) at (x, y, z) = (0, 0, 0) is
⎛
⎝

0 k1 0
k2 k2(a + s) 0
0 0 −ε

⎞
⎠ . (3)

The characteristic polynomial of matrix (3) is given by

p (λ) = (λ + ε)
(
λ2 − k2(a + s)λ − k1k2

)
. (4)

One can easily check that this polynomial has three
roots with negative real parts if and only if the condi-
tions in (2) hold. This completes the proof. ��

We remark that the investigation in this paper is
restricted to the equilibrium point (0, 0, 0). The follow-
ing example provides a numerical simulation of Theo-
rem 1.

Example 1 Consider the following parameter vector

(a, b, c, d, s, k1, k2, ε) = (1, 3, 3,−2, 0.25, 1,−0.01, 0.6) .

Such values of parameters satisfy the conditions inThe-
orem 1. Hence, the origin of system (1) is asymptoti-
cally stable, see Fig. 3.

3 Preliminaries to the study of zero-Hopf and
Hopf bifurcations

In this section, we recall the averaging method of third-
order andHopf bifurcationmethod for proving themain
results.

(a) “2-Torus” in the phase space. (k1 = 20)

(b) “Limit cycle” in the phase space. (k1 = 10)

(c) “Spiral-chaos” in the phase space. (k1 = 2)

(d) “Double spiral-chaos” in the phase space. (k1 = 5/6)
Fig. 2 Numerical phase portraits of MCG system (1) for
k2 = −5/61, a = −6, b = c = s = 3, d = −2, and ε = 0.6.
The red spot is the origin of MCG system (1).

Fig. 2 Numerical phase portraits of MCG system (1) for k2 =
−5/61, a = −6, b = c = s = 3, d = −2, and ε = 0.6. The red
spot is the origin of MCG system (1) (Color figre online)
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(a) .

(b)

Local asymptotically stable for the origin

Projection of orbit in the xy-plane.

Fig. 3 Numerical simulations of local phase por-
trait of system (1) for (a, b, c, d, s, k1, k2, ε) =
(1, 3, 3,−2, 0.25, 1,−0.01, 0.6)

3.1 Averaging method of third order

The averaging method for studying periodic solutions
up to third order in ε was developed in [18]. Recently,
the averaging method for computing periodic solutions
to an arbitrary order in ε was provided in [19]. An
expository account of recent work in this area can be
found in [20].

Consider the differential system

ẋ = εF1(t, x) + ε2F2(t, x) + ε3F3(t, x) + ε4R(t, x, ε),

(5)

where F1, F2, F3 : R × D → R
n , R : R × D ×

(−ε f , ε f ) → R
n are continuous functions, T -periodic

in the variable t , and D is a bounded open subset ofRn .
To determine the limit cycles of system (5), we

define the averaged functions f1, f2, f3 : D → R
n

as

f1(z) = 1

T

∫ T

0
F1(s, z)ds,

f2(z) = 1

T

∫ T

0
[DzF1(s, z) · y1(s, z) + F2(s, z)]ds,

f3(z) = 1

T

∫ T

0

[
1

2
D2
z F1(s, z) · y21 (s, z) + 1

2
DzF1(s, z)

× y2(s, z) + DzF2(s, z) · y1(s, z) + F3(s, z)
]
ds,

(6)

where

y1(s, z) =
∫ s

0
F1(t, z)dt,

y2(s, z) = 2
∫ s

0
[DzF1(t, z) · y1(t, z) + F2(t, z)]dt.

Theorem 2 For the differential system (5), we assume
the following conditions hold.

(i) F1(t, ·) ∈ C2(D), F2(t, ·) ∈ C1(D) for all t ∈ R,
F1, F2, F3, R, D2

x F1 and DxF2 are locally Lipschitz
in the variable x, and R is twice differentiable in ε.

(ii) Assume that fi = 0 for i = 1, 2, . . . , j − 1 and
f j �= 0 with j ∈ {1, 2, 3} (here, f0 = 0). Suppose
that for some z∗ ∈ D with f j (z∗) = 0, there exists a
bounded open set V ⊂ D of z∗ such that f j (z) �= 0
for all z ∈ V̄ \ {z∗}, and that dB( f j (z), V, 0) �= 0,
where dB( f j (z), V, 0) �= 0 is the Brouwer degree
of f j at 0 in the set V .

Then, for ε �= 0 sufficiently small, there exists a
T -periodic solution ϕ(·, ε) of system (5) such that
ϕ(0, ε) → z∗ when ε → 0.

The proof of Theorem 2 can be found in [20].
Remark that, the Brouwer degree of f j at 0 is given
by

dB( f j (z), V, 0) =
∑

z∈Z f j

sign
(
J f j (z)

)
,

where Z f j = {z ∈ V : f j (z) = 0}. In this case,
J f j (z

∗) �= 0 implies dB( f j (z), V, 0) �= 0. For more
properties of the Brouwer degree, we refer to [21].

We also remark that the stability of the limit cycles
associated with the simple zero z∗ is controlled by the
eigenvalues of the Jacobian of f j evaluated at z∗. From
Lemma 1 of [19], we know that the limit cycle associ-
ated with the zero z∗ of f3(z) when f1(z) = f2(z) = 0
is given by

x(t, z∗, ε) = z∗+εy1(t, z∗) + ε2
y2(t, z∗)

2
+O(ε3).

(7)
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3.2 Focus quantities and the theory of Hopf
bifurcation

3.2.1 Focus quantities

Consider the following smooth differential equations

ẋ = f (x) , x ∈ R
3. (8)

Suppose that f (0) = 0 and the Jacobian matrix Df (0)
has a pair of purely imaginary eigenvalues±iω,ω > 0,
and one nonzero. After a linear change in the coordi-
nates and a rescaling of the time variable, system (8)
can be written in the form

ẋ = −y + P̃ (x, y, z) = P (x, y, z) ,

ẏ = x + Q̃ (x, y, z) = Q (x, y, z) ,

ż = μz + S̃ (x, y, z) = S (x, y, z)

(9)

with μ ∈ R \ {0}. Denoted by X the corresponding
vector field

X = P
∂

∂x
+ Q

∂

∂y
+ S

∂

∂z
.

Let U be an open set of R3. A non-locally constant
differentiable function 
 : U → R is called a first
integral of system (9) if it is constant along any solution
trajectories of system (9), or equivalently,

X
 = P
∂


∂x
+ Q

∂


∂y
+ S

∂


∂z
≡ 0. (10)

The first integral 
 is a formal power series if 
 is a
formal power series in x , y and z.

The linear eigenspace of Df (0) corresponding to
±iω is denoted by T c. From Theorem 5.1 of [22], we
have that there exists a locally two-dimensional invari-
ant manifold W c

loc of system (9) that is tangent to T c at
the origin. We say that the invariant manifold W c

loc is a
center manifold of system (9).

The origin is a monodromic singular point (the tra-
jectories near the origin turn around the origin either
in forward or in backward time) for the vector field X
restricted to the center manifold W c

loc. For an analytic
vector field, a monodromic singular point is either a
center or a focus, see [23].Oneof the classical problems
is to distinguish between a center and a focus, which
was called center problem. This problemwas solved by
Poincaré andLyapunov inR2, see for instance [24]. The
necessary and sufficient conditions for the existence of

a center on W c
loc of system (9) are characterized by the

following theorem, whose proof can be found in [25].

Theorem 3 For system (9), the following statements
are equivalent.

(i) The origin of system (9) is a center on a center
manifold W c

loc.
(ii) System (9) in a neighborhood of the origin

has a local analytic first integral of the form

(x, y, z) = x2 + y2 + · · · .

(iii) System (9) in a neighborhood of the origin has
a formal first integral of the form 
(x, y, z) =
x2 + y2 + · · · .

The equivalence of statements (a) and (b) is known as
the Lyapunov Center Theorem. Theorem 3 tells us that
the center problem of system (9) on W c

loc is transformed
to detect whether system (9) has a first integral of the
form 
(x, y, z) = x2 + y2 + · · · in a neighborhood
of the origin.

Let P̃ (x, y, z), Q̃ (x, y, z) and S̃ (x, y, z) be poly-
nomials in system (9). In order to simplify the compu-
tation, we apply the complex coordinates

(x, y, z) �→
(

x + y

2
,− i (x − y)

2
, z

)
.

Therefore, the complexification of system (9) is given
by

ẋ = ix +
n∑

i+ j+l=2

ai jl x
i y j zl ,

ẏ = −iy +
n∑

i+ j+l=2

bi jl x
i y j zl ,

ż = μz +
n∑

i+ j+l=2

ci jl x
i y j zl ,

(11)

where b jil = āi jl and the coefficients ci jl are such that∑n
i+ j+l=2 ci jl xi x̄ j zl is real for all x ∈ C and z ∈ R.

Note that system (9) has a first integral of the form

(x, y, z) = x2 + y2 + · · · if and only if system (11)
has a first integral of the form

H (x, y, z) = xy + ∑
i+ j+l=3 vi, j,l x i y j zl . (12)

Denoted by X the vector field associated with (11).
Then, we obtain

X H =g0,0,0xy + g1,1,0 (xy)2 + g2,2,0 (xy)3 + · · · ,

(13)
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1140 Y. Tian, B. Huang

see [25] for more details. As was done in [25], the
coefficient gk,k,0 of (xy)k+1 in Eq. (13) is called the
kth focus quantity and also is denoted by νk . Obviously,
ν0 = 0. Edneral et al. [25] proved that system (11) has
a formal first integral of the form (12) if and only if the
focus quantity νk is to vanish for all k ≥ 1.

3.2.2 Basic theory of Hopf bifurcation

Under appropriate perturbations, small amplitude limit
cycles may be bifurcated from the Hopf equilibrium
point of system (9), which is called Hopf bifurcation.
For more details about the Hopf bifurcation, we refer
to the book [26].

In the polar coordinates (θ, ρ), the local center man-
ifold W c

loc can be parametrized by θ and ρ, and ρ = 0
corresponds to the origin of system (9). Thismeans that
system (9) restricted to W c

loc becomes a planar differen-
tial system.We can define the Poincaré return map in a
neighborhood of the origin and introduce displacement
map �(ρ) − ρ, that is,

�(ρ) − ρ = l1ρ + l2ρ
2 + · · · .

The mth Lyapunov coefficient is defined by the coeffi-
cient lm .

The next result follows immediately from Theorem
3.1.5 of [24].

Theorem 4 For system (9), the following statements
hold.

(i) The origin of system (9) on W c
loc is a center if and

only if all the Lyapunov coefficients vanish.
(ii) If l1 �= 0 or for some k ∈ N such that

l1 = l2 = · · · = l2k = 0, l2k+1 �= 0, (14)

then the origin of system (9) on W c
loc is stable focus

(respectively, unstable focus) if l1 < 0 or (14) holds
with l2k+1 < 0 (respectively, l1 > 0 or (14) holds
with l2k+1 > 0).

The origin of system (9) is called a fine focus of
order k if (14) holds for k ≥ 1. Under appropriate
perturbations, Roussarie [27] showed that at most k
limit cycles can bifurcate from a fine focus of order k
of system (9).

The relation between the focus quantities and the
Lyapunov coefficients is algebraic equivalence, that is,

〈ν1, ν2, ν3, . . .〉 = 〈l1, l2, l3, . . .〉 = 〈l3, l5, l7, . . .〉,
(15)

see Corollary 6.2.4 in [24]. More concretely, we have
the following proposition, see for instance page 263 of
[24].

Proposition 5 A fine focus of system (9) is of order k
if and only if

ν1 = ν2 = · · · = νk−1 = 0, νk �= 0.

Theorem 6 Let � be a parameter space of system (8).
Suppose that system (8) has a fine focus of order k
with τ ∈ �. If the linear parts of the focus quantities
νi1 , . . . , νi�−1 for 0 < i1 < · · · < i�−1 < k (with
respect to the expansion of ν j about τ ) are linearly
independent, then system (8) has exactly � limit cycles,
which can bifurcate from a fine focus for parameter
value τ .

For more details about a proof of Theorem 6 see [28,
29].

Remark 2 From the above relation (15) andTheorem6,
we will use the focus quantities instead of the Lya-
punov coefficients to investigate Hopf bifurcations in
this paper.

4 Zero-Hopf bifurcation and number of
bifurcating limit cycles

Recall that an equilibrium point of system (1) is called
a zero-Hopf equilibrium point if its linear part has a
zero eigenvalue λ1 = 0 and a pair of purely imaginary
eigenvalues λ2,3 = ±iω �= 0. The next result char-
acterizes the zero-Hopf equilibrium point of the MCG
system.

Proposition 7 The origin of system (1) is a zero-Hopf
equilibrium point when ε = 0, k1k2 = −ω2 and s =
−a.

Proof If the origin is a zero-Hopf equilibrium point
of system (1), then the characteristic polynomial p (λ)

must be of the form p (λ) = λ
(
λ2 + ω2

)
with ω �= 0.

The desired conditions: ε = 0, k1k2 = −ω2 and s =
−a follow from equation (4). This completes the proof
of the result. ��
Remark 3 We remark that there exists other zero-Hopf
equilibrium points of system (1) besides the origin if
we consider the equilibrium points (x, y, z) = (0, 0, z)
for z ∈ R when ε = 0. In this paper, we are interested
in the number of limit cycles that can bifurcate from
the origin in a zero-Hopf bifurcation.
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Local stability and Hopf bifurcations analysis... 1141

To study the zero-Hopf bifurcation of the MCG sys-
temby using the third-order averagingmethod,we con-
sider the vector (a, b, c, d, s, k1, k2, ε) given by

a ← a +
3∑

i=1

εi ai , b ← b +
3∑

i=1

εi bi , c ← c +
3∑

i=1

εi ci ,

d ← d +
3∑

i=1

εi di , s ← −a, k1 ← k1 +
3∑

i=1

εi�i ,

k2 ← −ω2

k1
+

3∑
i=1

εi mi , ε ←
3∑

i=1

εiεi , (16)

where ε is a small parameter. Applying (16) to system
(1) and after some calculations, we obtain the following
MCG-like perturbations of system (1)

ẋ = k1y +
3∑

i=1

εiαi y,

ẏ = −ω2

k1
(by3 + cyz2 + dyz + x) +

3∑
i=1

εi [βi,1x

+ βi,2y + βi,3y3 + y(βi,4z2 + βi,5z + βi,6)],

ż = y2(cz2 + dz − a) +
3∑

i=1

εi [y2(γi,1z2 + γi,2z

+ γi,3) − γi,4z],

(17)

where the constants αi = �i , βi, j1 for i = 1, 2, 3
and j1 = 1, 2, . . . , 6 are expressions in the vari-
ables k1, ω, bi , ci , di , �i , mi , and γi,1 = ci , γi,2 = di ,
γi,3 = −ai , γi,4 = εi are all real numbers. We remark
that for the procedure of how system (17) is derived
from system (1), we refer the reader to the study of a
Chua system in [30].

Our result on the number of limit cycles of system
(17) is stated as follows.

Theorem 8 The following statements hold for ε �= 0
sufficiently small,

(i) Up to the first-order averaging, system (17) has at
most 1 limit cycle bifurcates from the origin, and
this number can be reached;

(ii) Up to the second-order averaging, system (17) has
at most 2 limit cycles bifurcate from the origin,
and this number can be reached if one of the eight
following conditions holds:

C1 = [R1 < 0, R2 < 0, R3 < 0, R4 < 0, R5 ≤ 0, 0 < R6],

C2 = [R1 < 0, R2 < 0, 0 < R3, R4 < 0, 0 ≤ R5, 0 < R6],
C3 = [R1 < 0, 0 < R2, R3 < 0, 0 < R4, R5 ≤ 0, 0 < R6],
C4 = [R1 < 0, 0 < R2, 0 < R3, 0 < R4, 0 ≤ R5, 0 < R6],
C5 = [0 < R1, R2 < 0, R3 < 0, 0 < R4, 0 ≤ R5, 0 < R6],
C6 = [0 < R1, R2 < 0, 0 < R3, 0 < R4, R5 ≤ 0, 0 < R6],
C7 = [0 < R1, 0 < R2, R3 < 0, R4 < 0, 0 ≤ R5, 0 < R6],
C8 = [0 < R1, 0 < R2, 0 < R3, R4 < 0, R5 ≤ 0, 0 < R6];

(18)

(iii) Up to the third-order averaging, system (17) has
at most 3 limit cycles bifurcate from the origin,
and this number can be reached if one of the four
following conditions holds:

C̄1 = [R̄1 < 0, R̄2 < 0, 0 < R̄3, R̄4 ≤ 0, R̄5 ≤ 0, R̄6 < 0],
C̄2 = [R̄1 < 0, 0 < R̄2, 0 < R̄3, R̄4 ≤ 0, 0 ≤ R̄5, R̄6 < 0],
C̄3 = [0 < R̄1, R̄2 < 0, R̄3 < 0, 0 ≤ R̄4, 0 ≤ R̄5, R̄6 < 0],
C̄4 = [0 < R̄1, 0 < R̄2, R̄3 < 0, 0 ≤ R̄4, R̄5 ≤ 0, R̄6 < 0],

(19)

where the expressions of Ri and R̄i for i = 1, 2, . . . , 6
are given in (32) and (37), respectively.

Proof In order to study the zero-Hopf bifurcation of
system (17), we need to write the linear part of system
(17) at the origin in its real Jordan normal form, i.e.,
into the form⎛
⎝

0 ω 0
−ω 0 0
0 0 0

⎞
⎠ .

In the new variables defined by (x, y, z) �→ ( −
y/ω, x/k1, z

)
, system (17) becomes

ẋ = ωy − ω2

k31

(
cz2k21 + dzk21 + bx2

)
x +

(
− k1β1,1y

ω

+ β1,2x + β1,3x3

k21
+ xz2β1,4 + xzβ1,5 + xβ1,6

)
ε

+
(

− k1β2,1

ω
y + β2,2x + β2,3

k21
x3 + β2,4xz2 + β2,5xz

+ β2,6x
)
ε2 +

(
− k1β3,1

ω
y + β3,2x + β3,3

k21
x3 + β3,4xz2

+ β3,5xz + β3,6x
)
ε3,

ẏ = −ωx − ω

k1
(α1ε + α2ε

2 + α3ε
3)x,

ż = 1

k21
(z(cz + d) − a)x2 +

(γ1,1

k21
x2z2 + γ1,2

k1

2
x2z

+ γ1,3

k1

2
x2 − γ1,4z

)
ε +

(γ2,1

k21
x2z2 + γ2,2

k21
x2z
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+ γ2,3

k21
x2 − γ2,4z

)
ε2 +

(γ3,1

k21
x2z2 + γ3,2

k21
x2z

+ γ3,3

k21
x2 − γ3,4z

)
ε3. (20)

Taking the rescaling of variables (x, y, z) �→
(εx, εy, εz), we obtain the differential system

ẋ = ωy +
5∑

i=1

εi hi (x, y, z),

ẏ = −ωx − ω

k1

(
α1ε + α2ε

2 + α3ε
3
)

x,

ż = 1

k21

[
(−γ1,4k21 z − ax2)ε + (dx2z − γ2,4k21 z + γ1,3x2)

× ε2 + (cx2z2 + γ1,2x2z − k21γ3,4z + γ2,3x2)ε3

+ (γ1,1z2 + γ2,2z + γ3,3)x2ε4 + (γ2,1z + γ3,2)x2zε5

+ γ3,1x2z2ε6
]
, (21)

where

h1(x, y, z) = − 1

ωk1

(
ω3dxz − β1,2ωk1x − β1,6ωk1x

+ k21β1,1y
)
,

h2(x, y, z) = − 1

ωk31

(
ω3bx3 + k41β2,1y − β2,2k31ωx

− β1,5k31ωxz + ω3ck21xz2 − β2,6k31ωx
)
,

h3(x, y, z) = 1

ωk21

(
β1,3ωx3 − k31β3,1y + β3,2k21ωx

+ β2,5k21ωxz + β1,4k21ωxz2 + β3,6k21ωx
)
,

h4(x, y, z) = 1

k21

(
k21β2,4z2 + k21β3,5z + β2,3x2

)
x,

h5(x, y, z) =
(
k21β3,4z2 + β3,3x2

)
x

k21
.

Using the cylindrical changeof variables (x, y, z) �→
(r sin θ, r cos θ, z), we obtain a differential system
{dr/dt, dθ/dt, dz/dt}. Note that dθ/dt �= 0 in a suit-
able small neighborhood of (r, z) = (0, 0). By taking θ

as the new independent variable of the differential sys-
tem and carrying out Taylor expansions in the variable
ε around ε = 0, we get

dr

dθ
=

3∑
i=1

εi Fi,1 (θ, r, z) + O
(
ε4

)
,

dz

dθ
=

3∑
i=1

εi Fi,2 (θ, r, z) + O
(
ε4

)
, (22)

where

F1,1 (θ, r, z) = cos θ

ω2k1
(− cos θβ1,6ωk1 + sin θα1ω

2

− cos θβ1,2ωk1 + dω3 cos θ z + k21β1,1 sin θ)r,

F1,2 (θ, r, z) = 1

2ωk21
(ar2 cos (2θ) + 2γ1,4zk21 + ar2),

the expressions of F2,1 (θ, r, z), F3,1 (θ, r, z), F2,2

(θ, r, z) and F3,2 (θ, r, z) are quite long, so we omit
them for brevity.

For performing the averaging method, system (22)
is written in the normal form (5) with t = θ , T =
2π , x = (r, z), and it satisfies all the assumptions of
Theorem 2. According to Eq. (6), we have

f1,i (r, z) = 1

2π

∫ 2π

0
F1,i (θ, r, z) dθ, i = 1, 2. (23)

A direct computation shows that

f1,1(r, z) = r

2ωk1

(
dω2z − k1(β1,2 + β1,6)

)
,

f1,2(r, z) = 1

2ωk21

(
ar2 + 2zk21γ1,4

)
.

(24)

Note that r > 0, the above first-order averaged func-
tion ( f1,1(r, z), f1,2(r, z)) has a unique solution

r̄1 =
√

−2
k31γ1,4

(
β1,2 + β1,6

)

dω2a
, z̄1 = k1

(
β1,2 + β1,6

)

dω2 ,

if k1γ1,4(β1,2 +β1,6)da < 0. The corresponding Jaco-
bian of ( f1,1(r, z), f1,2(r, z)) at (r̄1, z̄1) takes the value

J (r̄1, z̄1) = det

(
∂ f1,1
∂r

∂ f1,1
∂z

∂ f1,2
∂r

∂ f1,2
∂z

)
|(r,z)=(r̄1,z̄1)

=
(
β1,2 + β1,6

)
γ1,4

ω2 �= 0.

(25)

According to Theorem 2, we conclude that, up to the
first-order averaging, system (17) has at most 1 limit
cycle, and this number can be reached. This completes
the proof of statement (a) of Theorem 8.

In order to consider the second-order averaging,
we must use the conditions of f1,1(r, z) ≡ 0 and
f1,2(r, z) ≡ 0. The averaged function ( f1,1(r, z), f1,2
(r, z)) is identically zero if and only if

a = 0, d = 0, γ1,4 = 0, β1,6 = −β1,2. (26)
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Using the above conditions to update the normal form
of averaging (22), we then compute the following
expression:⎛
⎝

∂ F1,1
∂r

∂ F1,1
∂z

∂ F1,2
∂r

∂ F1,2
∂z

⎞
⎠

⎛
⎝

∫ θ

0 F1,1(s, r, z)ds
∫ θ

0 F1,2(s, r, z)ds

⎞
⎠

+
(

F2,1(θ, r, z)

F2,2(θ, r, z)

)
.

(27)

Computing the integral of equation (27) between 0 and
2π and dividing by 2π , we obtain the second-order
averaged function

f2,1(r, z) = r

8ωk31

(
4cω2k21z2 + 3bω2r2 − 4k31β1,5z

− 4k31β2,2 − 4k31β2,6

)
,

f2,2(r, z) = − 1

2ωk21

(
− 2k21γ2,4z + γ1,3r2

)
.

(28)

To analyze the zeros of system (28), we compute the
Gröbner basis of the polynomial set

{4cω2k21z2+3bω2r2−4k31β1,5z − 4k31β2,2 − 4k31β2,6,

− 2k21γ2,4z + γ1,3r2}

with respect to the lexicographic term ordering deter-
mined by z � r . One finds that a Gröbner basis is given
by G1 = [g1, g2], where
g1 = −4k51β2,2γ

2
2,4 − 4k51β2,6γ

2
2,4 +

(
3bω2k21γ

2
2,4

− 2k31β1,5γ1,3γ2,4

)
r2 + γ 2

1,3cω2r4,

g2 = 2k21γ2,4z − γ1,3r2.

(29)

Note that r > 0, so system (29) has atmost 2 suitable
solutions. Therefore, system (17), up to second-order
averaging, has at most 2 limit cycles bifurcating from
the origin. To show this number can be reached,we con-
sider the following Jacobian of ( f2,1(r, z), f2,2(r, z))

J1(r, z) = det

(
∂ f2,1
∂r

∂ f2,1
∂z

∂ f2,2
∂r

∂ f2,2
∂z

)
= J̄1(r, z)

8ω2k31
, (30)

where

J̄1(r, z) =
(
8cω2γ1,3z + 9γ2,4ω

2b − 4k1β1,5γ1,3

)
r2

+ 4γ2,4ω
2ck21z2−4γ2,4k31β1,5z

−4γ2,4k31β2,2 − 4γ2,4k31β2,6.

According to Theorem 2 and the above analysis, sys-
tem (17) has exactly 2 limit cycles bifurcating from the
origin if the following semi-algebraic system

{
g1 = g2 = 0, r > 0, J̄1(r, z) �= 0, k1 �= 0

}

(31)

has exactly 2 distinct real solutions. The above semi-
algebraic systemmay be solved by the method of Yang
and Xia [31] for real solution classification (imple-
mented as a Maple package DISCOVERER by Xia
[32], see also recent improvements in the Maple pack-
age RegularChains[SemiAlgebraicSetTools]), or the
method of discriminant varieties of Lazard and Rouil-
lier [33] (implemented as a Maple package DV by
Moroz and Rouillier [34]).

By using the package of RegularChains in Maple,
we obtain the semi-algebraic system (31) has exactly
2 distinct real solutions if and only if one of the eight
conditions in (18) holds, where

R1 = c, R2 = k1, R3 = γ2,4, R4 = β2,2 + β2,6,

R5 = 3bω2γ2,4 − 2k1β1,5γ1,3,

R6 = 9b2γ 2
2,4ω

4 − 12bω2k1β1,5γ1,3γ2,4 + 16cω2k1β2,2γ
2
1,3

+ 16cω2k1β2,6γ
2
1,3 + 4β2

1,5γ
2
1,3k21 .

(32)

Aswe see, up to the second-order averaging, there exist
many systems expressed like (17) which have exactly
2 limit cycles bifurcating from the origin. In fact, we
not only introduce a systematic approach to construct-
ing such systems by symbolic computation methods,
but also provide explicit conditions on the parameters
satisfying this property. In summary, we conclude that
applying the second-order averaging method system
(17) has at most 2 limit cycles, and this number can be
reached. Hence, statement (b) of Theorem 8 is proved.

To consider the third-order bifurcation of system
(17), we must verify that the second-order averaged
function ( f2,1(r, z), f2,2(r, z)) is identically zero. For
this, we take

b = 0, c = 0, γ1,3 = 0, γ2,4 = 0, β1,5 = 0,

β2,2 = −β2,6.
(33)

Now, update the normal formof averaging (22) byusing
the conditions (26) and (33). To apply the third-order
averaging method, according to Theorem 2, we must
know the following expressions.

y1,1(θ, r, z) =
∫ θ

0
F1,1(s, r, z)ds

= r

4ω2k1

(
ω2α1+k21β1,1

)
(1 − cos(2θ)) ,

y1,2(θ, r, z) =
∫ θ

0
F1,2(s, r, z)ds = 0,
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and

y2,1(θ, r, z) = 2
∫ θ

0

(
F2,1(s, r, z) + ∂ F1,1

∂r
y1,1(s, r, z)

+ ∂ F1,1

∂z
y1,2(s, r, z)

)
ds

= r

32ω4k21

(
3α2

1ω
4 cos (4θ) + 6α1β1,1k21ω

2 cos (4θ)

+ 3k41β
2
1,1 cos (4θ) − 16α2k1ω

4 cos (2θ)

+ 4α2
1ω

4 cos (2θ) − 16k31β2,1ω
2 cos (2θ)

− 8α1β1,1k21ω
2 cos (2θ) − 12k41β

2
1,1 cos (2θ)

+ 16α2k1ω
4 − 7α2

1ω
4 + 16k31β2,1ω

2

+ 2α1β1,1k21ω
2 + 9k41β

2
1,1

)
,

y2,2(θ, r, z) = 2
∫ θ

0

(
F2,2(s, r, z) + ∂ F1,2

∂r
y1,1(s, r, z)

+ ∂ F1,2

∂z
y1,2(s, r, z)

)
ds

= 0.

Now, computing the third-order averaged function,
we obtain

f3,1(r, z) = 1

2π

∫ 2π

0

[
F3,1(θ, r, z) + ∂ F2,1

∂r
y1,1(θ, r, z)

+ ∂ F2,1

∂z
y1,2(θ, r, z) + 1

2

(∂ F1,1

∂r
y2,1(θ, r, z)

+ ∂ F1,1

∂z
y2,2(θ, r, z)

)
+ 1

2

(∂2F1,1

∂r2
y21,1(θ, r, z)

+ ∂2F1,1

∂r∂z
y1,1(θ, r, z)y1,2(θ, r, z)

+ ∂2F1,1

∂z∂r
y1,1(θ, r, z)y1,2(θ, r, z)

+ ∂2F1,1

∂z2
y21,2(θ, r, z)

)]
dθ

= − r

8ωk21

(
4k21β1,4z2 + 4k21β2,5z + 3β1,3r2

+ 4k21β3,2 + 4k21β3,6

)
,

f3,2(r, z) = 1

2π

∫ 2π

0

[
F3,2(θ, r, z) + ∂ F2,2

∂r
y1,1(θ, r, z)

+ ∂ F2,2

∂z
y1,2(θ, r, z) + 1

2

(∂ F1,2

∂r
y2,1(θ, r, z)

+ ∂ F1,2

∂z
y2,2(θ, r, z)

)
+ 1

2

(∂2F1,2

∂r2
y21,1(θ, r, z)

+ ∂2F1,2

∂r∂z
y1,1(θ, r, z)y1,2(θ, r, z) + ∂2F1,2

∂z∂r
y1,1(θ, r, z)

× y1,2(θ, r, z) + ∂2F1,2

∂z2
y21,2(θ, r, z)

)]
dθ

= − 1

2ωk21

(
γ1,2r2z + γ2,3r2 − 2k21γ3,4z

)
.

To analyze the zeros of { f3,1(r, z) = 0, f3,2(r, z) =
0}, we compute the Gröbner basis of the polynomial
set

{4k21β1,4z2+4k21β2,5z+3β1,3r2+4k21β3,2 + 4k21β3,6,

γ1,2r2z + γ2,3r2 − 2k21γ3,4z}

with respect to the lexicographic term ordering deter-
mined by z � r . One finds that a Gröbner basis is given
by G2 = [ḡ1, ḡ2], where

ḡ1 = 16k61γ
2
3,4β3,2 + 16k61γ

2
3,4β3,6 +

(
12k41β1,3γ

2
3,4

+ 8k41β2,5γ2,3γ3,4 − 16k41β3,2γ1,2γ3,4

− 16k41β3,6γ1,2γ3,4

)
r2 +

(
− 12k21β1,3γ1,2γ3,4

+ 4k21β1,4γ
2
2,3 − 4k21β2,5γ1,2γ2,3 + 4k21β3,2γ

2
1,2

+ 4k21β3,6γ
2
1,2

)
r4 + 3γ 2

1,2β1,3r6,

ḡ2 = 8k41β3,2γ1,2γ3,4 + 8k41β3,6γ1,2γ3,4 +
(
6k21β1,3γ1,2γ3,4

− 4k21β1,4γ
2
2,3 + 4k21β2,5γ1,2γ2,3 − 4k21β3,2γ

2
1,2

− 4k21β3,6γ
2
1,2

)
r2 + 8k41zβ1,4γ2,3γ3,4 − 3γ 2

1,2β1,3r4.

(34)

Note that r > 0, so system (34) has at most 3
suitable solutions. Therefore, the averaging method
up to third order provides the existence of at most
3 limit cycles of system (17). To show this number
can be reached, we consider the following Jacobian of
( f3,1(r, z), f3,2(r, z))

J2(r, z) = det(M) = det

(
∂ f3,1
∂r

∂ f3,1
∂z

∂ f3,2
∂r

∂ f3,2
∂z

)
= J̄2(r, z)

16ω2k41
,

(35)

where

J̄2(r, z) = 9γ1,2β1,3r4 +
(
4γ1,2β3,2k21 − 12γ1,2β1,4k21 z2

+ 4γ1,2β3,6k21 − 4γ1,2β2,5k21 z − 18k21β1,3γ3,4

− 16k21β1,4γ2,3z − 8γ2,3β2,5k21

)
r2 − 8k41β1,4γ3,4z2

− 8k41β2,5γ3,4z − 8β3,2γ3,4k41 − 8β3,6γ3,4k41 .
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Using a similar argument to the second-order anal-
ysis, we know that system (17) has exactly 3 limit
cycles bifurcating from the origin if the following semi-
algebraic system
{
ḡ1 = ḡ2 = 0, r > 0, J̄2(r, z) �= 0, k1 �= 0

}

(36)

has exactly 3 real solutions. Using the package of Reg-
ularChains inMaple, we obtain the semi-algebraic sys-
tem (36) has exactly 3 distinct real solutions if and only
if one of the four conditions in (19) holds, where

R̄1 = β1,3, R̄2 = γ3,4, R̄3 = β3,2 + β3,6,

R̄4 = 3β1,3γ1,2γ3,4 − β1,4γ
2
2,3 + β2,5γ1,2γ2,3

− β3,2γ
2
1,2 − β3,6γ

2
1,2,

R̄5 = −3β1,3β
2
2,5γ

2
1,2γ

2
2,3γ3,4+18β2

1,3γ1,2γ
2
3,4β1,4γ

2
2,3

+ 24β1,3β3,2γ
4
1,2γ3,4β3,6 − 20β2,5β3,2γ

4
1,2γ2,3β3,6

+ 12β2
3,6γ

4
1,2γ3,4β1,3 − 3β1,3β

2
1,4γ

4
2,3γ3,4

+ 9β2
1,3γ

3
1,2γ

2
3,4β3,2 + 9β2

1,3γ
3
1,2γ

2
3,4β3,6

+ 12β2
3,2γ

4
1,2γ3,4β1,3 + 8β2

2,5β3,2γ
3
1,2γ

2
2,3

+ 8β2
2,5β3,6γ

3
1,2γ

2
2,3 + 4β1,4β

2
2,5γ

4
2,3γ1,2

+ 8β2
3,2γ

3
1,2β1,4γ

2
2,3 − 10β2

3,2γ
4
1,2β2,5γ2,3

+ 8β2
3,6γ

3
1,2β1,4γ

2
2,3 − 10β2

3,6γ
4
1,2β2,5γ2,3

+ 4β2
1,4β3,2γ1,2γ

4
2,3 + 4β2

1,4β3,6γ1,2γ
4
2,3

+ 16β1,4β3,2γ
3
1,2γ

2
2,3β3,6 − 12β1,4β3,6γ

2
1,2γ

3
2,3β2,5

− 12β1,4β3,2γ
2
1,2γ

3
2,3β2,5 + 12β2

3,2γ
5
1,2β3,6 (37)

− 2β3
2,5γ

2
1,2γ

3
2,3 − 2β2

1,4β2,5γ
5
2,3

+ 12β2
3,6γ

5
1,2β3,2 + 18β1,3β2,5γ1,2γ

3
2,3γ3,4β1,4

+ 3β1,3β2,5γ
3
1,2γ2,3γ3,4β3,2 + 3β1,3β2,5γ

3
1,2γ2,3γ3,4β3,6

− 39β1,4β3,2γ
2
1,2γ

2
2,3γ3,4β1,3 − 39β1,4β3,6γ

2
1,2γ

2
2,3γ3,4β1,3

+ 4β3
3,2γ

5
1,2 + 4β3

3,6γ
5
1,2,

R̄6 = 90β2
1,3β1,4β2,5γ1,2γ2,3γ

2
3,4 − 12β1,3β

2
1,4β2,5γ

3
2,3γ3,4

+ 108β2
1,3β1,4β3,2γ

2
1,2γ

2
3,4 + 108β2

1,3β1,4β3,6γ
2
1,2γ

2
3,4

+ 72β1,3β1,4β
2
3,2γ

3
1,2γ3,4 + 72β1,3β1,4β

2
3,6γ

3
1,2γ3,4

− 4β4
2,5γ

2
1,2γ

2
2,3 + 16β3

1,4β3,2γ
4
2,3 − 4β2

1,4β
2
2,5γ

4
2,3

+ 16β3
1,4β3,6γ

4
2,3 + 16β1,4β

3
3,6γ

4
1,2 + 16β1,4β

3
3,2γ

4
1,2

+ 48β1,4β
2
3,2β3,6γ

4
1,2 + 48β1,4β3,2β

2
3,6γ

4
1,2

− 8β2
2,5β3,2β3,6γ

4
1,2 + 32β2

1,4β
2
3,2γ

2
1,2γ

2
2,3

+ 32β2
1,4β

2
3,6γ

2
1,2γ

2
2,3 + 8β1,4β

3
2,5γ1,2γ

3
2,3

+ 54β3
1,3β1,4γ1,2γ

3
3,4 − 9β2

1,3β
2
1,4γ

2
2,3γ

2
3,4

− 9β2
1,3β

2
2,5γ

2
1,2γ

2
3,4 + 8β3

2,5β3,2γ
3
1,2γ2,3

+ 8β3
2,5β3,6γ

3
1,2γ2,3 − 12β1,3β

2
2,5β3,2γ

3
1,2γ3,4

− 12β1,3β
2
2,5β3,6γ

3
1,2γ3,4 + 8β1,4β

2
2,5β3,6γ

2
1,2γ

2
2,3

− 32β1,4β2,5β
2
3,2γ

3
1,2γ2,3 − 32β1,4β2,5β

2
3,6γ

3
1,2γ2,3

− 32β2
1,4β2,5β3,6γ1,2γ

3
2,3 + 64β2

1,4β3,2β3,6γ
2
1,2γ

2
2,3

+ 8β1,4β
2
2,5β3,2γ

2
1,2γ

2
2,3 − 32β2

1,4β2,5β3,2γ1,2γ
3
2,3

− 12β1,3β
3
2,5γ

2
1,2γ2,3γ3,4 + 12β1,3β1,4β2,5β3,2γ

2
1,2γ2,3γ3,4

+ 12β1,3β1,4β2,5β3,6γ
2
1,2γ2,3γ3,4

− 64β1,4β2,5β3,2β3,6γ
3
1,2γ2,3

+ 144β1,3β1,4β3,2β3,6γ
3
1,2γ3,4

+ 48β1,3β1,4β
2
2,5γ1,2γ

2
2,3γ3,4

− 120β1,3β
2
1,4β3,2γ1,2γ

2
2,3γ3,4

− 120β1,3β
2
1,4β3,6γ1,2γ

2
2,3γ3,4

− 4β2
2,5β

2
3,6γ

4
1,2 − 4β2

2,5β
2
3,2γ

4
1,2.

��
In the following, we provide an example which has

exactly 3 limit cycles bifurcating from the origin.

Example 2 Consider the polynomial differential sys-
tem

ẋ = (1 + ε)y,

ẏ = −x + ε
(
−50y3 + yz2

)
− ε2yz + 10ε3y,

ż = −2εy2z + 10ε2y2 + 10ε3z.

(38)

The corresponding system (22) associated with system
(38) satisfies

F1,1(θ, r, z) = 1

2
r sin (2θ) ,

F2,1(θ, r, z) = −1

8
r
(
sin (4θ) + 2 sin (2θ)

)
,

F3,1(θ, r, z) = 1

32

[
200

(
cos(4θ) + 4 cos(2θ) + 3)r3

− 16((cos(2θ) + 1)z2 + 16(cos(2θ) + 1)z + sin(6θ)

+ 4 sin(4θ) + 5 sin(2θ) − 160 cos(2θ) − 160)r
]
,

F1,2(θ, r, z) = 0,

F2,2(θ, r, z) = 0,

F3,2(θ, r, z) = (cos (2θ) z − 5 cos (2θ) + z − 5) r2 − 10z.

In order to find the limit cycles of system (38), we must
study the real roots of the third-order averaged function
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f3,1(r, z) = r

4

(
75r2 − 2z2 + 2z − 20

)
,

f3,2(r, z) = r2z − 5r2 − 10z.
(39)

Using the RootFinding[Isolate] command built-in
Maple to isolate the real roots of the polynomial system
[75r2 − 2z2 + 2z − 20, r2z − 5r2 − 10z], we obtain
three real solutions:

r1 =
[
146501178860233

281474976710656
,
36625294715059

70368744177664

]
≈ 0.52,

z1 =
[
− 156747130244935

1125899906842624
,− 78373565122467

562949953421312

]
≈ −0.14,

r2 =
[
194420694065201

70368744177664
,
388841388130409

140737488355328

]
≈ 2.76,

z2 =
[
−70933937689247

4398046511104
,−283735750756985

17592186044416

]
≈ −16.13,

r3 =
[
505394075053437

140737488355328
,
505394075053463

140737488355328

]
≈ 3.59,

z3 =
[
391738040933555

17592186044416
,
391738040933563

17592186044416

]
≈ 22.27.

According to (35), we have the determinants of the
Jacobian matrix M at the points (r1, z1), (r2, z2),
(r3, z3) are J2(r1, z1) ≈ −97.05 �= 0, J2(r2, z2) ≈
4686.44 �= 0 and J2(r3, z3) ≈ 11094.61 �= 0, respec-
tively. This verifies that system (38) has exactly 3
limit cycles bifurcating from the origin. Now, we shall
present the expressions of these 3 limit cycles. The limit
cycles �i for i = 1, 2, 3 of system (22) associated
with system (38) and corresponding to the zeros (ri , zi )

given by (39) can bewritten as {(̃ri (θ, ε), z̃i (θ, ε)), θ ∈
[0, 2π ]}, where from (7) we have

�i : =
(

r̃i (θ, ε)

z̃i (θ, ε)

)
=

(
ri

zi

)
+ ε

(
y1,1(θ, ri , zi )

0

)

+ ε2
(

y2,1(θ, ri , zi )/2
0

)
+ O(ε3), i = 1, 2, 3,

(40)

where

y1,1(θ, ri , zi ) = −ri

4
(cos (2θ) − 1) ,

y2,1(θ, ri , zi ) = ri

32

(
− 7 + 3 cos (4θ) + 4 cos (2θ)

)
.

Moreover, the eigenvalues of the Jacobian matrix M
(see (35)) at the points (r1, z1), (r2, z2), (r3, z3) are,
respectively, about

(10.07,−9.64), (266.29, 17.60), (462.49, 23.99).

Wehave the corresponding limit cycles�1 is semistable,
�2 and �3 are unstable. We remark that one can

obtain the expressions of the 3 limit cycles of sys-
tem (38) by going back through the changes of vari-
ables: (x, y, z) �→ (r sin θ, r cos θ, z), (x, y, z) �→
(εx, εy, εz), and (x, y, z) �→ (−y/ω, x/k1, z) with
ω = k1 = 1. Here, we do not provide them for brevity.

Hence, we complete the proof of Theorem 8.

5 Hopf bifurcation and number of bifurcating
limit cycles

We call an equilibrium point of system (1) a Hopf
equilibrium point if its linear part has one eigenvalue
λ1 �= 0 and a pair of purely imaginary eigenvalues
λ2,3 = ±iω �= 0. The next result characterizes the
Hopf equilibrium point of the MCG system.

Proposition 9 The origin of system (1) is a Hopf equi-
librium point when ε > 0, k1k2 = −ω2 and s = −a.

Proof Using similar arguments to the proof of Propo-
sition 7, we obtain directly the desired conditions for
the origin to be a Hopf equilibrium point. ��
In the following, we study the classical Hopf bifurca-
tion of theMCG system. By using an alternative simple
method proposed by Edneral et al. [25], we obtain the
following result.

Theorem 10 Consider the differential system

ẋ = k1
ω

y,

ẏ = − ω

k1

(
by3 + cyz2 + dyz + x

)
,

ż = y2

ω

(
cz2 + dz − a

)
− ξ z

(41)

with ξ = ε/ω, ad �= 0, and ε > 0. Let p =
(a, b, c, d, ξ, ω, k1) be the parameter vector, denote

the hypersurfaces by S1 =
{

(a, b, c, d, ξ, ω, k1) :
(
3ξ2 + 8

)
ad − 3ξω

(
ξ2 + 4

)
b = 0

}
and

S2 =
{

(a, b, c, d, ξ, ω, k1) : 8adω
(

ad
(
ξ2 + 4

)
− 6bξω

)

+ aξk1
((

ξ2 + 4
) (

5ξ2
(

d2 − ac
)

− 8ac
)

+ 32d2
)

= 0
}
.

Then, the following statements hold.

(i) For p /∈ S1, system (41) can have exactly 1 limit
cycle bifurcates from the origin.

(ii) For p ∈ S1 \S1 ∩S2, system (41) can have exactly
2 limit cycles bifurcate from the origin.
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(iii) Let ξ∗ be the positive zero of equation δ (ξ) defined
in (48). If p ∈ S1 ∩ S2 with ξ ∈ (ξ∗,+∞), then
system (41) can have exactly 3 limit cycles bifurcate
from the origin. Moreover, ξ∗ is a unique positive
zero of equation δ (ξ) given by (48) and

ξ∗ ∈
[
587457651

536870912
,
1174915303

1073741824

]
.

Proof Using the conditions of Proposition 9, we write
system (1) as

ẋ = k1y,

ẏ = −ω2

k1

(
by3 + cyz2 + dyz + x

)
,

ż = y2
(

cz2 + dz − a
)

− εz.

(42)

Performing the change of variables

x = − X

ω
, y = Y

k1
, z = Z ,

system (42) becomes

Ẋ = −ωY,

Ẏ = ωX − ω2Y
(
bY 2 + ck21 Z2 + dk21 Z

)

k31
,

Ż =
(

cZ2 + d Z − a
) Y 2

k21
− εZ .

(43)

Doing the scaling dt = dτ/ω, we obtain

X ′ = −Y,

Y ′ = X − ωY
(
bY 2 + ck21 Z2 + dk21 Z

)

k31
,

Z ′ =
(

cZ2 + d Z − a
) Y 2

ωk21
− ξ Z ,

(44)

where ξ = ε/ω and the prime denotes derivative with
respect to τ . For convenience, we also denote

X → x, Y → y, Z → z, X ′ → ẋ, Y ′ → ẏ, Z ′ → ż.

System (44) can be written as

ẋ = −y,

ẏ = x − ωy
(
by2 + ck21z2 + dk21z

)

k31
,

ż =
(

cz2 + dz − a
) y2

ωk21
− ξ z,

(45)

where ξ = ε/ω > 0. After the complex variables
(x, y, z) �→ ((x + y) /2,− (x − y) i/2, z), the com-
plexification of system (45) is

ẋ = ix − ωz(x − y)(cz + d)

2k1
+ bω(x − y)3

8k31
,

ẏ = −iy + ωz(x − y)(cz + d)

2k1
− bω(x − y)3

8k31
,

ż = −ξ z + (a − z (cz + d)) (x − y)2

4k21ω
.

(46)

Let H (x, y, z) = xy + ∑
σ+β+γ≥3 vσ,β,γ xσ yβ zγ

and denote byX the vector field associated with system
(46). Then, we have

X (H (x, y, z)) =
∑
m≥2

hm (x, y, z) , (47)

where hm are homogeneous polynomials of degree
m in the variables x , y and z. It is easy to get that
h2 (x, y, z) ≡ 0. The coefficients vσ,β,γ of H (x, y, z)
can be obtained from the linear equations defined by
all the vanishing of the coefficients of hm (x, y, z)with
σ + β + γ ≤ m.

With the aid of computer algebra system Maple, we
get that the first three nonzero focus quantities are as
follows:

ν1 = g1,1,0 = ϒ1 (a, b, c, d, ξ, ω, k1)

4ξ
(
ξ2 + 4

)
k31

,

ν2 = g2,2,0 = ϒ2 (a, b, c, d, ξ, ω, k1)

8k61ξ
3
(
ξ2 + 4

)2
ω

,

ν3 = g3,3,0 = ϒ3 (a, b, c, d, ξ, ω, k1)

1024k91ξ
5
(
ξ2 + 4

)4 (
ξ2 + 16

) (
ξ2 + 1

)
ω2

,

where

ϒ1 (a, b, c, d, ξ, ω, k1) = (
3ξ2 + 8

)
ad − 3ξω

(
ξ2 + 4

)
b,

ϒ2
(
a, b, c, d, ξ, ω, k1

) = 8adω
(
ad

(
ξ2 + 4

) − 6bξω
)

+ aξk1
((

ξ2 + 4
)(
5ξ2

(
d2 − ac

) − 8ac
) + 32d2),

ϒ3
(
a, b, c, d, ξ, ω, k1

) = 663b3ξ5
(
ξ2 + 1

)(
ξ2 + 4

)4

× (
ξ2 + 16

)
ω5 − ab2dξ2

(
ξ2 + 1

)(
ξ2 + 4

)

× (
1989ξ10 + 51976ξ8 + 389040ξ6 + 1088640ξ4

+ 578560ξ2 − 589824
)
ω4 + a2d2bξ

(
ξ2 + 1

)(
1989ξ12

+ 56588ξ10 + 509296ξ8 + 1927488ξ6 + 2585600ξ4

− 1089536ξ2 − 3538944
)
ω3 +

(
48abξ2k1

(
ξ2 + 4

)
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× ac
(
ξ2 + 4

)(
11ξ8 + 213ξ6 + 640ξ4 + 3808ξ2 + 2560

)

− 3d2(ξ2 + 1
)(
3ξ8 + 64ξ6 + 272ξ4 + 2816ξ2 + 4096

)

− a3d3(ξ2 + 1
)(

ξ2 + 4
)(
663ξ10 + 15220ξ8 + 86208ξ6

+ 130304ξ4 − 118784ξ2 − 327680
))

ω2 + 8a2dξk1

×
(

d2(ξ2 + 1
)(
9ξ10 + 856ξ8 + 11984ξ6 + 87040ξ4

+ 262144ξ2 + 262144
) − ac

(
ξ2 + 4

)(
21ξ10 + 837ξ8

+ 9172ξ6 + 50944ξ4 + 108032ξ2 + 57344
))

ω

+ 16ξ2k21ad
(
ξ4 + 5ξ2 + 4

)(
d2(35ξ8 + 680ξ6

+ 2800ξ4 + 7680ξ2 + 8192
) − ac

(
105ξ8 + 2380ξ6

+ 13152ξ4 + 28160ξ2 + 24576
))

.

The first focus quantity ν1 and the second focus
quantity ν2 vanish on the hypersurfaces

S1 = {(a, b, c, d, ξ, ω, k1) : ϒ1 (a, b, c, d, ξ, ω, k1) = 0}

and

S2 = {(a, b, c, d, ξ, ω, k1) : ϒ2 (a, b, c, d, ξ, ω, k1) = 0} ,

respectively.
(i) For the parameter vector p /∈ S1, the origin of

system (42) is a fine focus of order 1. Adding the lin-
ear perturbation term in system (42), system (42) has
exactly 1 limit cycle, which can bifurcate from the ori-
gin. Statement (i) holds.

(ii) The intersection of hypersurfaces S1 and S2 is

S1 ∩ S2 =
{(

a, b, c, d, , ω, k1
) : b = ad

(
3ξ2 + 8

)

3ξ
(
ξ2 + 4

)
ω

,

c = d2
(
8aξω

(
ξ2 + 2

) + (
ξ2 + 4

)(
5
(
ξ2 + 4

)
ξ2 + 32

)
k1

)

ak1
(
ξ2 + 4

)2(5ξ2 + 8
)

}
.

We have ν1 |S1= 0 and ν2 |S1\S1∩S2 �= 0. So, the ori-
gin of system (42) is a fine focus of order 2 with the
parameters vector p ∈ S1\S1 ∩ S2. Since

dν1

db
|S1\S1∩S2= − 3ω

4k31
�= 0,

by the Theorem 6, the origin of system (42) can exactly
bifurcate 2 limit cycles for the parameters vector p ∈
S1\S1 ∩ S2. Statement (ii) is confirmed.

(iii) The third focus quantity ν3 restricted to the
hypersurfaces S1 ∩ S2 becomes

ν3 |ν1=ν2=0= ν3 |S1∩S2

= ad3ϒ̃3 (χ)

32k91ξ
3
(
ξ2 + 4

)5 (
ξ2 + 16

) (
5ξ2 + 8

) ,

where

ϒ̃3
(
χ

) = −(
ξ2 + 4

)(
380672ξ4 + 458752ξ2 + 5

(
35ξ6

+ 962ξ4 + 8256ξ2 + 34144
)
ξ6 + 262144

)
χ2

− 8aξ
(
44544ξ2 + 5

(
3
(
ξ4 + 41ξ2 + 372

)
ξ2

+ 4544
)
ξ4 + 32768

)
χ − 8a2(25ξ10 + 390ξ8

+ 1764ξ6 + 2336ξ4 − 640ξ2 − 2048
)

with χ = k1/ω.
Note that ϒ̃3 (χ) is a quadratic equationwith respect

to χ . Its discriminant is � = −32a2δ (ξ) with

δ (ξ) = 4375ξ24 + 205550ξ22 + 3933700ξ20 + 41035990ξ18

+ 261993040ξ16 + 1073396320ξ14 + 2817146368ξ12

+ 4377710592ξ10 + 2588950528ξ8 − 3643932672ξ6

− 8789164032ξ4 − 7113539584ξ2 − 2147483648.

(48)

By commandRealRoot in Maple with accuracy 10−8,
we obtain that δ (ξ) has a unique positive zero

ξ∗ ∈
[
587457651

536870912
,
1174915303

1073741824

]
,

that is, δ (ξ∗) = 0. It is easy to check that δ (ξ) > 0
for ξ ∈ (ξ∗,+∞). So � < 0 for ξ ∈ (ξ∗,+∞).
This implies that ν3 |ν1=ν2=0 �= 0 with p ∈ S1 ∩ S2

and ξ ∈ (ξ∗,+∞). Therefore, the origin of system
(42) is a fine focus of order 3 with p ∈ S1 ∩ S2 and
ξ ∈ (ξ∗,+∞).

Since

det

(
∂ (ν1, ν2)

∂ (b, c)

)
|S1∩S2=

3a2
(
5ξ2 + 8

)

32k81ξ
2
(
ξ2 + 4

) �= 0,

it follows from Theorem 6 that system (42) has exactly
3 limit cycles that can bifurcate from the origin.

This ends the proof of Theorem 10. ��
In the following, we present some examples and

numerical simulations to illustrate the obtained theo-
retical results.

Remark 4 Under the condition of the existence ofHopf
equilibrium point, system (41) and system (1) have
essentially the same phase portrait. The computation of
focus quantities are quite hard and tedious. As applica-
tions of Theorem 10, the following examples are used
to make easier the calculation of the focus quantities.
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Example 3 Let

p = (a, b, c, d, ξ, ω, k1) = (−1, 0, 3,−1, 1, 1, 1) .

Consider the perturbed system

ẋ = y,

ẏ = −
(
3yz2 − yz + x

)
− εy,

ż = y2
(
3z2 − z − 1

)
− z.

(49)

When ε = 0, system (49) becomes the unperturbed
system (41) with the parameter vector p /∈ S1. For ε =
10−5, the perturbed focus quantities are ν0 = −10−5

and ν1 = 11/20. By statement (i) of Theorem 10, the
perturbed system (49) has one limit cycle bifurcating
from the origin, see (a) of Fig. 4.

Example 4 Let

pε = (a, b, c, d, ξ, ω, k1) =
(

− 1, 1, 0,−1, 1,

11

15
− ε, 1 − 60872ε

72567

)
.

Consider the perturbed system

ẋ = 5(60872ε − 72567)

24189(15ε − 11)
y,

ẏ = −24189(15ε − 11)
(
x + y3 − yz

)
5(60872ε − 72567)

− 10εy,

ż = 15y2(z − 1)

15ε − 11
− z.

(50)

When ε = 10−6, the perturbed focus quantities are
ν0 = −10−5, ν1 ≈ 7.50002 × 10−7 and ν2 ≈
−0.364638. Using statement (ii) of Theorem 10, the
perturbed system (50) can have two limit cycles that
bifurcate from the origin, see (b) of Fig. 4.

Example 5 Let

pε = (a, b, c, d, ξ, ω, k1) =
(
1,−1, 1,−1,

2 − 203099678278ε

973677
,
101552760170ε

2921031
+ 5

12
,

2234301906905ε

93472992
+ 5

32

)
.

(a) One limit cycle by Hopf bifurcation of system (49) .

(b) Two limit cycles by Hopf bifurcation of system (50).

Fig. 4 Numerical simulations of phase portraits for Exam-
ples 3, 4 and 5 , respectively. The red spot is the origin. (Color
figre online)

Consider the perturbed system

ẋ = 446860381381ε + 2921031

8(81242208136ε + 973677)
y,

ẏ = −8(81242208136ε + 973677)
(
x − y

(
y2 − z2 + z

))

446860381381ε + 2921031

− 100000εy,

ż = 11684124y2
(
z2 − z − 1

)
5(81242208136ε + 973677)

+
(
203099678278ε

973677
− 2

)
z.

(51)

When ε = 10−10, the perturbed focus quantities are
ν0 = −10−5, ν1 ≈ 1.342253157 × 10−8, ν2 ≈
−5.344257264×10−7 and ν3 ≈ 186101.2208. Apply-
ing statement (iii) of Theorem 10, the perturbed system
(51) can have three limit cycles that bifurcate from the
origin, see (c) of Fig. 4.

6 Conclusion

In this paper, we study two kinds of bifurcations for the
MCG system (1), i.e., zero-Hopf bifurcation and Hopf
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bifurcation. Using the averaging method and the Lya-
punov coefficient method, we obtained the number of
limit cycles for the MCG-like system (17) and the dif-
ferential system (41), respectively.Moreover, we found
that the number of limit cycles that can bifurcate from
the origin for the two differential systems (17) and (41)
is the same for each order (up to the third order).

We conjecture that the averaging method and the
focus quantity method of the same order can produce
the same number of limit cycles for the two differen-
tial systems (17) and (41), but the relationship between
these two methods for the study of limit cycles com-
ing from a singular equilibrium point is still not clear
at the present time. We leave this as a future research
problem.
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