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Abstract We study the problem of gravity sur-
face waves for the ideal fluid model in the (2+1)-
dimensional case. We apply a systematic procedure for
deriving theBoussinesq equations for a prescribed rela-
tionship between the orders of four expansion param-
eters, the amplitude parameter α, the long-wavelength
parameter β, the transverse wavelength parameter γ ,
and the bottom variation parameter δ. We also take
into account surface tension effects when relevant. For
all considered cases, the (2+1)-dimensionalBoussinesq
equations cannot be reduced to a single nonlinear wave
equation for surface elevation function. On the other
hand, they can be reduced to a single, highly nonlinear
partial differential equation for an auxiliary function
f (x, y, t) which determines the velocity potential but
is not directly observed quantity. The solution f of this
equation, if known, determines the surface elevation
function. We also show that limiting the obtained the
Boussinesq equations to (1+1)-dimensions one recov-
ers well-known cases of the KdV, extended KdV, fifth-
order KdV, and Gardner equations.
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1 Introduction

The Korteweg–de Vries equation [1] is one of the most
widely used nonlinear wave equations. It was derived
by the perturbation calculus method from a model
of an ideal fluid (nonviscous and incompressible) in
which the motion is irrotational in (1+1)-dimensions
and the bottom of the fluid container is flat. The sim-
plest nonlinear wave equation in (2+1)-dimensions is
the Kadomtsev–Petviashvili (KP for short) equation
[2,3]. Both the KdV and KP equations are integral and
satisfy many conservation laws. Their analytical solu-
tions are also known.

Since nonlinear waves on the surface of seas and
oceans are very important in practice, there are many
studies in the literature on (2+1)-dimensional equations
of the KdV or KP type, see, e.g. [4–13]. The equa-
tions used in these studies are also integral, allowing
their authors to construct analytical solutions of various
types (solitons, periodic solutions, lumps, breathers).

The extension of the ideal fluid model to the (2+1)-
dimensional case leads to significantly more compli-
cated equations. The only such attempt known to us is
the work [14]. Unfortunately, this particular paper is
erroneous, as we demonstrated in [15]. To the best of
our knowledge, there are no correct (2+1)-dimensional
studies that take into account themodel of an ideal fluid
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in full detail. The reason is that the resulting equations
are nonintegrable.

In this paper, we generalise the perturbative
approach described in [16] and [17] for the (1+1)-
dimensional case. The authors of [16] showed that for
the flat bottom, the KdV, extended KdV, fifth-order
KdV, and Gardner equations can be derived for dif-
ferent relations between small parameters determining
nonlinearity (α) and dispersion (β). In [17], we gener-
alised this approach for the casewith an uneven bottom,
assuming that the bottom variations are much smaller
than the fluid’s depth. Here, we follow [17] attempt-
ing to derive analogous wave equations for the (2+1)-
dimensional case. It turns out that while it is possible
to derive a system of appropriate (2+1)-dimensional
Boussinesq equations, it is rather intractable to reduce
them to a wave equation on the surface of a fluid. How-
ever, it is possible to obtain a single nonlinear partial
differential equation of the wave type in which the
argument is an auxiliary function that determines the
velocity potential. The solution of such an equation,
if known, determines the (2+1)-dimensional function
representing the time-dependent surface profile.

The paper is organised as follows: In Sect. 2, we
recall the model, define small parameters α, β, γ, δ,
and set up the set of Euler’s equations in scaled dimen-
sionless variables. In Sect. 3, the case when all small
parameters are of the same order is considered. For
γ = 0 and (1+1)-dimensions, this case leads to the
Korteweg–de Vries equation extended for an uneven
bottom, derived by us in [17], and when the bottom
is flat (δ = 0) it reduces to the usual Korteweg–de
Vries equation. Section 4 is devoted to the case when
α, γ are of the order of β, but δ is of the order of β2.
This case, for γ = 0 and (1+1)-dimensions, leads to
the extended KdV equation generalised for an uneven
bottom, derived in [17], and when the bottom is flat
(δ = 0), it leads to the extended KdV equation derived
by Marchant and Smyth in [21]. In Sect. 5, we con-
sider the case when parameters α, γ, δ are of the order
of β2 and perturbation approach is extended to sec-
ond order. Here, limitation to (1+1)-dimensions leads
to fifth-order KdV equation generalised in [17] for an
uneven bottom. Section 6 deals with the case when α

is the leading parameter, β, γ, δ are of the order or α2,
and derivations are performed up to second order. In
this case, limitation to (1+1)-dimensions leads to the
Gardner equation extended for an uneven bottom [17],
and when δ = 0, that is, when the bottom is flat, it

reduces to the usual Gardner equation. Section 7 con-
tains conclusions.

2 Description of the model

Let us consider the inviscid and incompressible fluid
model whose motion is irrotational in a container with
an impenetrable bottom. In dimensional variables, the
set of hydrodynamical equations has the following
form:

φxx + φyy + φzz = 0, in volume, (1)

φz − (ηxφx + ηyφy + ηt ) = 0, at surface, (2)

φt + 1

2
(φ2

x + φ2
y + φ2

z ) + gη + ps
�

= 0, at surface,

(3)

φz − hxφx − hyφy = 0, at bottom. (4)

Here φ(x, y, z, t) denotes the velocity potential,
η(x, y, t) denotes the surface profile function, g is the
gravitational acceleration, � is fluid’s density. Here
and thereafter indexes denote partial derivatives, i.e.

φxx ≡ ∂2φ

∂x2
, ηt = ∂η

∂t , and so on. In (4), ps is the
additional pressure due to the surface tension [18]

ps = −T ∇ ·
( ∇η

(1 + |∇η|2)1/2
)

= T

(
1 + η2y

)
ηxx + (

1 + η2x
)
ηyy − 2ηxηyηxy(

1 + η2x + η2y

)3/2 ,

(5)

where T is fluid’s surface tension coefficient, and ∇ =
(∂x , ∂y) is two-dimensional gradient. The bottom can
be nonflat and is described by the function h(x, y).

The next step consists in introducing a standard scal-
ing to dimensionless variables (in general, it could be
different in x-, y-, and z-directions)

x̃ = x/L , ỹ = y/ l, z̃ = z/H, t̃ = t/(L/
√
gH),

η̃ = η/A, φ̃ = φ/(L
A

H

√
gH), h̃ = h/ah (6)

where A is the amplitude of surface distortions from
equilibrium shape (flat surface), H is the average fluid
depth, L is the average wavelength (in x-direction), l
is a wavelength in the y-direction, and ah denotes the
amplitude of bottom variations. In general, l should be
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Boussinesq’s equations for (2+1)-dimensional surface gravity 4071

the same order as L , but not necessarily equal. Then,
the set (1)–(4) takes in scaled variables the following
form (here and next, we omit the tilde signs and work
in dimensionless variables)

βφxx + γφyy + φzz = 0, (7)

ηt + α(ηxφx + γ

β
ηyφy) − 1

β
φz = 0,

for z = 1 + αη, (8)

φt + 1

2
α

(
φ2
x + γ

β
φ2
y + 1

β
φ2
z

)
+ η + ST = 0,

for z = 1 + αη, (9)

φz − βδhxφx − γ δhyφy = 0,

for z = δh. (10)

Wewill explain the details of the scaling transformation
using Eq. (4) as an example. We have

φz = ∂φ

∂ z̃

∂ z̃

∂z
= L

A

H2

√
gH φz̃,

φx = ∂φ

∂ x̃

∂ x̃

∂x
= A

H

√
gH φx̃ ,

φy = ∂φ

∂ ỹ

∂ ỹ

∂y
= L

A

H l

√
gH φỹ,

hx = ∂h

∂ x̃

∂ x̃

∂x
= ah

L
hx̃ , hy = ∂h

∂ ỹ

∂ ỹ

∂y
= ah

l
h ỹ .

Then dividing (4) by the factor L A
H2

√
gH and intro-

ducing notation of β, γ, δ one obtains

φz̃ − βδhx̃φx̃ − γ δh ỹφỹ = 0,

that is, Eq. (10). Simultaneously the condition ‘at the
bottom’, i.e. z = h, after division by H receives the
form z̃ = δh̃. Equations (1)–(3) are transformed in
an analogous way. The condition ‘at surface’, i.e. z =
H + η, after division by H becomes z̃ = 1 + αη̃.

Besides standard small parameters α = A
H , β = ( H

L

)2
and γ = ( H

l

)2
, which are sufficient for the flat bottom

case, we introduced another one defined as δ = ah
H [17,

20]. In the perturbation approach, all these parameters,
α, β, γ, δ, are assumed tobe small but not necessarily of
the same order. ST is the term originating from surface
tension. The explicit form of this term and its useful
approximation up to second order are given below, in

(11). For details, see Appendix A.

ST = −τ
θ(η, α, β, γ )(

1 + α2βη2x + α2γ η2y

)3/2
= −τ (βηxx + γ ηyy + O(β4)), (11)

where

θ(η, α, β, γ ) = β
(
1 + α2βη2y

)
ηxx

+ γ
(
1 + α2βη2x

)
ηyy

− 2α2βγ ηxηyηxy

TheBond number is defined as τ = T
�gH2 . For shallow-

water waves, when H � 1 m, ST term can be safely
neglected, since τ < 10−7, but it becomes impor-
tant for waves in thin fluid layers. Interesting prop-
erties occur when τ is of the order of 1

3 . For water,
it occurs when H is of the order of 1 millimetre, for
mercury, where both elevation and depression solitons
were observed in [19], H is of the order of 5 millime-
tres. In Sects. 3 and 4, we neglect surface tension terms;
in Sects. 5 and 6 we take them into account.

The standard perturbation approach to the system of
Euler’s Eqs. (7)–(10) consists of the following steps.
First, the velocity potential is sought in the form of
power series in the vertical coordinate

φ(x, y, z, t) =
∞∑

m=0

zm φ(m)(x, y, t), (12)

where φ(m)(x, y, t) are yet unknown functions. The
Laplace Eq. (7) determines φ in the form which
involves only two unknown functions with the lowest
m-indexes, f (x, y, t) := φ(0)(x, y, t) and
F(x, y, t) := φ(1)(x, y, t) and their space derivatives.
Hence,

φ(x, y, z, t) =
∞∑

m=0

(−1)m

(2m)! z
2m (β∂xx + γ ∂yy)

m f (x, y, t)

+
∞∑

m=0

(−1)m

(2m + 1)! z
2m+1 (β∂xx + γ ∂yy)

mF(x, y, t). (13)

The explicit form of this velocity potential reads as

φ = f − 1

2
z2(β f2x + γ f2y)

123



4072 A. Karczewska, P. Rozmej

+ 1

24
z4(β2 f4x + 2βγ f2x2y + γ 2 f4y) + · · ·

+ zF − 1

6
z3(βF2x + γ F2y)

+ 1

120
z5(β2F4x + 2βγ F2x2y + γ 2F4y) + · · ·

(14)

Next, the boundary condition at the bottom (10) is
utilised. For the flat bottom case, it implies F = 0, sim-
plifying substantially next steps. In particular, F = 0
makes it possible to derive the Boussinesq equations
up to arbitrary order. For an uneven bottom, Eq. (10)
determines a differential equation relating F to f .
This differential equation can be resolved to obtain
F( f, fx , fxx , h, hx ), but this solution can be obtained
only up to someparticular order in leading small param-
eter. Then, the velocity potential is substituted into
kinematic and dynamic boundary conditions at the
unknown surface (8)–(9). Retaining only terms up to a
given order, one obtains the Boussinesq system of two
equations for unknown functions η, f valid only up to
a given order in small parameters. The resulting equa-
tions, however, depend substantially on the ordering of
small parameters.

In 2013, Burde and Sergyeyev [16] demonstrated
that for the case of (1+1)-dimensional and the flat bot-
tom, the KdV, the extended KdV, fifth-order KdV, and
Gardner equations can be derived from the same set of
Euler’s Eqs. (7)–(10). Different final equations result
from the different ordering of small parameters and
consistent perturbation approach up to first or second
order in small parameters.

In 2020, we extended their results to cases with an
uneven bottom in [17], but still in (1+1)-dimensional
theory. We showed that the terms originating from
the bottom have the same universal form for all these
four nonlinear equations. However, the validity of the
obtained generalised wave equations is limited to the
cases when the bottom functions are piecewise linear.
On the other hand, the corresponding sets of theBoussi-
nesq equations are valid for the arbitrary form of the
bottom functions.

In the present paper, there are four small parame-
ters, α, β, γ, δ. In order to make calculations easier,
we will follow the idea from [16,17], relating all small
parameters to a single one, called leading parameter.
This method allows us for easier control of the order of
different terms, but the final forms of the obtained equa-

tions are presented in original parametersα, β, γ, δ.We
discuss several cases, which are listed in Table 1. The
table does not contain all possible second-order cases,
but only those that lead to well-known KdV-type and
Gardner equations when reduced to (1+1)-dimensions.

In Table 1, the abbreviations are used, lead means
leading parameter, (1+1)means (1+1)-dimensions, ext
KdV means the extended KdV.

3 Case 1: α = O(β), γ = O(β), δ = O(β)

Let us begin with the assumption that all small param-
eters are of the same order. For easier control of the
orders of different terms, let us denote

α = A β, γ = G β, δ = D β,

where A,G, D are arbitrary but close to 1.
Inserting the velocity potential (14) into the bound-

ary condition at the bottom (10) imposes the following
relation

F = β2D
(
hx fx + Ghy fy + h( fxx + G fyy)

)

+ β3D2
(
hhx Fx + Ghhy Fy + 1

2
h2(Fxx + GFyy)

)

+ O(β5). (15)

Equation (15), when only terms up to second order in
small parameters, is retained, that is

F = β2D
(
hx fx + Ghy fy + h( fxx + G fyy)

)
(16)

allows us to express F by f and reduce the set of
unknown functions to only η and f . In higher-order
approximation, Eq. (15) cannot be resolved for F .
Then, retaining only terms up to second order, one
obtains the velocity potential, valid up to second-order
approximation, expressed in terms of a single unknown
function f (x, y, t) as

φ = f − 1

2
β z2( fxx + G fyy)

+ 1

24
β2 z4( fxxxx + 2G fxxyy + G2 fyyyy)

+ β2z D
(
hx fx + Ghy fy + h( fxx + G fyy)

)
.

(17)

Now, we substitute the velocity potential (17) into
(8) and (9), keeping terms only up to first order. Due to
the term 1

β
φz in (8) and only second-order valid expres-

sion for the potential (17), we can obtain valid Boussi-
nesq’s equations only in first order in α, β, γ, δ.
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Table 1 Different orderings of small parameters considered in the paper

Case α β γ δ (1+1), δ = 0

1 O(β) Lead O(β) O(β) KdV

2 O(β) Lead O(β) O(β2) Ext KdV

3 O(β2) Lead O(β2) O(β2) 5th-ord KdV

3 Lead O(α2) O(α2) O(α2) Gardner

From (8) and (9), we get, respectively,

ηt + fxx + γ

β
fyy + α

(
(η fx )x + γ

β

(
η fy

)
y

)

− 1

6
β

(
f4x + 2

γ

β
f2x2y +

(
γ

β

)2

f4y

)

− δ

(
(h fx )x + γ

β

(
h fy

)
y

)
= 0, and (18)

η + ft + 1

2
α

(
f 2x + γ

β
f 2y

)
− 1

2
β

(
fxxt + γ

β
fyyt

)
= 0.

(19)

Equations (18)–(19) are the first-order Boussinesq
equations for the (2+1)-dimensional shallow water
problem with an uneven bottom.

Let us checkwhether the reduction of Eqs. (18)–(19)
to (1+1)-dimensions leads to correct results. When we
reduce these equations to (1+1)-dimensional (assuming
translational invariance in y direction, that is, setting all
y-derivatives equal zero), then we arrive at

ηt + fxx + α (η fx )x − 1

6
β f4x − δ (h fx )x = 0, (20)

η + ft + 1

2
α f 2x − 1

2
β fxxt = 0. (21)

Denoting w = fx and taking x-derivative of (21), one
gets this set of Boussinesq’s equation in the following
form:

ηt + wx + α (ηw)x − 1

6
βwxxx − δ (hw)x = 0, (22)

wt + ηx + αwwx − 1

2
βwxxt = 0, (23)

identical toEqs. (17)–(18) derived by us in [17]. In [17],
we also demonstrated that these two equations could
be made compatible and reduced to the KdV equation
generalised for uneven bottom [17, Eq. (29)], when the
bottom profile h(x) is a piecewise linear function. This
equation has the following form:

ηt + ηx + 3

2
αηηx + 1

6
ηxxx − 1

4
δ(2hηx + hxη) = 0.

(24)

For the flat bottom, δ = 0, Eq. (24) reduces to the usual
Korteweg–de Vries equation.

In [14], the authors presented the derivation of two
new (2+1)-dimensional third- and fifth-order nonlinear
evolution equations when α, β, γ are of the same order
and the bottom is flat (δ = 0). However, as we proved
in [15], all results shown in [14] are false since the
derivation is inconsistent and violates the fundamental
property of the velocity potential. When the method
used by the authors is applied consistently, the problem
is reduced to thewell-knownKdVequation. For details,
see [15].

Boussinesq Eqs. (18)–(19) look very complicated.
It is hard to imagine how one can get a single equation
for wave profile from them. On the other hand, one can
reduce this set to a single equation by inserting η =
−

[
ft + 1

2α
(
f 2x + γ

β
f 2y

)
− 1

2 β
(
fxxt + γ

β
fyyt

)]
determined from (19) into (18) and retaining only terms
up to first order. The result is

fxx + γ

β
fyy − ft t − α

[
ft

(
fxx + γ

β
fyy

)
+

(
f 2x + γ

β
f 2y

)
t

]

− β

[
1

6

(
f4x + 2

γ

β
f2x2y +

(
γ

β

)2

f4y

)

−1

2

(
fxxtt + γ

β
fyytt

)]
−δ

[
(h fx )x + γ

β

(
h fy

)
y

]
= 0. (25)

Equation (25) can be simplified utilising zeroth-order
solutions. In zeroth order, we have from (18)–(19)

ηt + fxx + γ

β
fyy = 0 and η + ft = 0. (26)

So, ft = −η and ft t = −ηt = fxx + γ
β
fyy . Then, we

have

fxxtt = ∂2

∂x2

(
fxx + γ

β
fyy

)
= f4x + γ

β
fxxyy,

fyytt = ∂2

∂y2

(
fxx + γ

β
fyy

)
= fxxyy + γ

β
f4y,
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and the first-order term

−1

2

(
fxxtt + γ

β
fyytt

)
=−1

2

(
f4x +2

γ

β
f2x2y+

(
γ

β

)2

f4y

)

receives the same form like the term with the factor 1
6

in front. Then, Eq. (25) receives the simpler form

fxx + γ

β
fyy − ft t −α

[
ft

(
fxx + γ

β
fyy

)
+

(
f 2x + γ

β
f 2y

)
t

]

+ β

[
1

3

(
f4x + 2

γ

β
f2x2y +

(
γ

β

)2

f4y

)]

− δ

[
(h fx )x + γ

β

(
h fy

)
y

]
= 0. (27)

If the solution f (x, y, t) to (27) is known, Eq. (19)
supplies the surface profile function

η(x, y, t)= −
[
ft+ 1

2
α

(
f 2x + γ

β
f 2y

)

−1

2
β

(
fxxt+ γ

β
fyyt

)]
. (28)

A preliminary idea is how to look for solution to Eq.
(27) is presented in appendix B.

4 Case 2: α = O(β), γ = O(β), δ = O(β2)

Denote now

α = A β, γ = G β, δ = D β2.

In this case, the boundary condition at the bottom (10)
imposes the following relation

F = β3D
[
(h fx )x + G(h fy)y

]
+ 1

2
β5D2

[
(h2Fx )x + G(h2Fy)y

]
+ O(β7),

(29)

which gives F = β3D
[
(h fx )x + G(h fy)y

]
valid up

to fourth order. Therefore, in this case, it is possible to
obtain the Boussinesq equations valid up to third order
in small parameters.

From (8), we get (up to second order)

ηt + fxx + γ

β
fyy + α

[
(η fx )x + γ

β
(η fy)y

]

− 1

6
β

[
f4x + 2

γ

β
f2x2y +

(
γ

β

)2

f4y

]

− 1

2
αβ(η f3x )x − 1

2
αγ

[
ηx fx2y + 2η f2x2y + ηy f2xy

]

− 1

120
β2 f6x

− 1

40
βγ

[
f4x2y + γ

β
f2x4y + 1

3

(
γ

β

)2

f6y

]

− δ

[
(h fx )x + γ

β
(h fy)y

]
= 0, (30)

whereas the result from (9), up to second order, is

η + ft + 1

2
α

(
f 2x + γ

β
f 2y

)
− 1

2
β

(
fxxt + γ

β
fyyt

)

+ αβ

[
1

2
( f 2xx − fx f3x ) − η fxxt

]

+ αγ

[
η fyyt + fxx fyy − 1

2
( fx fxyy + fy fxxy)

+γ

β
( f 2yy − fy f3y)

]

+ 1

24
β2

[
f4xt + 2

γ

β
f2x2yt +

(
γ

β

)2

f4yt

]
= 0.

(31)

Note that the term with δ in (30), originating from the
uneven bottom, has identical form as such term in (18)
although now it is of second order. Let us rewrite (31)
in the form

η
(
1− αβ fxxt −αγ fyyt

) = −
{
ft + 1

2
α

(
f 2x + γ

β
f 2y

)

− 1

2
β

(
fxxt + γ

β
fyyt

)
+ αβ

[
1

2
( f 2xx − fx f3x )

]

+ αγ

[
fxx fyy − 1

2
( fx fxyy + fy fxxy)

+γ

β
( f 2yy − fy f3y)

]

+ 1

24
β2

[
f4xt + 2

γ

β
f2x2yt +

(
γ

β

)2

f4yt

]}
. (32)

Multiplying both sides by
(
1 + αβ fxxt + αγ fyyt

)
and

retaining only terms up to second order, we obtain

η = −
{
ft + 1

2
α

(
f 2x + γ

β
f 2y

)
− 1

2
β

(
fxxt + γ

β
fyyt

)

+ αβ

[
1

2
( f 2xx − fx f3x )

]

+ αγ

[
fxx fyy− 1

2
( fx fxyy+ fy fxxy)

+γ

β
( f 2yy− fy f3y)

]
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+ 1

24
β2

[
f4xt + 2

γ

β
f2x2yt +

(
γ

β

)2

f4yt

]}

+ ft
(
αβ fxxt + αγ fyyt

)
. (33)

Substituting η defined by (33) into (30) and keeping
only the terms up to second order allows us to obtain a
nonlinear (2+1)-dimensional differential equation for
the function f (x, y, t). This equation has form (34).
In (34), we did not come back to original parame-
ters α, β, γ, δ for easier recognition of first-order and
second-order terms.

fxx + G fyy − ft t − A( ft t f2xt + ft f2x2t )

− AG( ft t fyyt + ft f2y2t )

+ β

[
− GA2 (

fyyt fx fxt + ft fx fx2yt + ft fyyt fxx

+ fy fxy f2xt + ft fyy f2xt − ft fy f2xyt + ft fyy
)

− G2A2 (
fy fxy fyyt + ft fyy fyyt + ft fy f3yt

)
− A2 ( fx fxt f2xt − ft fxx f2xt − ft fx f3xt )

− 2GAfy fxy − 2 fx fxt − A ft fxx + 1

2
G f2y2t

− 1

6
G2 f4y + 1

2
f2x2t − 1

3
G f2x2y − 1

6
f4x

]

+ β2
[
A2G3 (

fxy fyyt f3y + ft f3y f3yt + ft fyyt f4y
)

+ 1

120
G3 f6y

+ A2G2
(

−3

2
f 2y fyy + 1

2
fyyt fxt fx2y + 1

2
ft fx2y fx2yt

+ 1

2
fxy f3y f2xt + 1

2
ft f4y f2xt + 1

2
fxy fyyt f2xy

+1

2
ft f3yt f2xy + 1

2
ft f3y f2xyt + ft fyyt f2x2y

)

+ AG2
(

−1

2
fyy fyyt + fxy f3y + fy f3yt + 1

2
ft f4y

)

+ A2G

(
− 1

2
fyy f

2
x − 1

2
f 2y fxx + 1

2
fxt fx2y f2xt

+ 1

2
fxy f2xt f2xy + 1

2
ft f2xy f2xyt + 1

2
fyyt fxt f3x

+ 1

2
ft fx2yt f3x + 1

2
ft fx2y f3xt + 1

2
ft fyyt f4x

+ ft f2xt f2x2y − 2 fy fx fxy

)

+ G2
(

− 1

24
f4y2t + 1

40
f2x4y

)

+ DG
(−hh fy − h fyy

)
− D (h fx + h fxx )

+ AG

(
+ fxt fx2y + fx fx2yt − 1

2
fyyt fxx

− 1

2
fyy f2xt + fxy f2xy + fy f2xyt + ft f2x2y

)

+ G

(
− 1

12
f2x2y2t + 1

40
f4x2y

)

+ A

(
−1

2
fxx f2xt + fxt f3x + fx f3xt + 1

2
ft f4x

)

+ A2
(
1

2
fxt f2xt f3x + 1

2
ft f3x f3xt + 1

2
ft f2xt f4x

)

− 1

24
f4x2t + 1

120
f6x

]
= 0. (34)

Equation (34) is the single nonlinear wave equation for
auxiliary function f determining the velocity potential,
second order in small parameters for the case α =
O(β), γ = O(β), δ = O(β2).

In principle, if the solution f (x, y, t) to (34) is
known, Eq. (33) supplies the surface profile function.
The complexity of Eqs. (33) and (34) may be the rea-
son why there are so many small amplitude wrinkles
and ripples that are observed on the surface of seas and
oceans. However, the complexity of Eq. (34) gives a
little hope for finding the solution.

Let us check how the Boussinesq Eqs. (30)–(31)
look like when they are reduced to (1+1)-dimensions.
From (30), we get (denoting w = fx )

ηt + wx + α(ηw)x − 1

6
βw3x − 1

2
αβ(ηw2x )x

− 1

120
β2w5x − δ(hw)x = 0, (35)

whereas from (31), after differentiation over x , we
obtain

ηx + wt + αwwx − 1

2
βw2xt − αβ

[
1

2
(wxw2x − ww3x )

− (ηwxt )x

]
+ 1

24
β2w4xt = 0. (36)

The (1+1)-dimensional Boussinesq Eqs. (35)–(36) are
identical with [17, Eqs. (37)–(38)], and for the case of
flat bottom (δ = 0) are identical with [16, Eqs. (11)–
(12)]. In the latter case, these equations lead to the
extendedKdV equation [21]. So, the full (2+1)- dimen-
sional Boussinesq Eqs. (30)–(31) seem to be correct.
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5 Case 3: α = O(β2), γ = O(β2), δ = O(β2)

Denote now

α = A β2, γ = G β2, δ = D β2.

Now, the boundary condition at the bottom (10)
imposes the following relation

F =β3D(h fx )x+β4DG(h fy)y

− β5 1

2
D(h2Fx )x+O(β6), (37)

which gives F = β3D [(h fx )x ] and consequently the
velocity potential is valid up to fourth order. There-
fore, in this case it is possible to obtain the Boussinesq
equations valid up to third order in small parameters.
We will proceed up to second order, which is enough
complicated. From (8), we obtain

ηt + fxx − 1

6
β f4x + γ

β
fyy + α(η fx )x − 1

120
β2 f6x

− 1

3
γ f2x2y − δ(h fx )x = 0, (38)

whereas the result from (9) is

η + ft − 1

2
β fxxt + 1

2
α f 2x + 1

24
β2 f4xt − 1

2
γ fyyt = 0. (39)

In (39), we did not take into account terms from surface
tension (setting τ = 0 in (9)). This omission is fully
justified when water depth is on the order of meters.
Now, η determined from (39) is substituted into (38).
Limiting this equation up to second order, one obtains

fxx − ft t + γ

β
fyy + β

(
1

2
fxxtt − 1

6
f4x

)

− β2
(

1

24
f4x2t + 1

120
f6x

)

+ γ

(
−1

3
fxxyy + 1

2
fyytt

)

− α(2 fx fxt + ft fxx ) − δ(h fx )x = 0. (40)

Equation (40) is the single nonlinear wave equation for
auxiliary function f determining the velocity potential,
second order in small parameters for the case α =
O(β2), γ = O(β2), δ = O(β2).

For a check, let us reduce the Boussinesq Eqs. (38)–
(39) to the (1+1)-dimensional case setting γ = 0. Then,

after differentiating (39) over x and denoting w = fx ,
we obtain the set

ηt + wx − 1

6
βw3x + α(ηw)x

− 1

120
β2w5x − δ(h fx )x = 0, (41)

wt + ηx − 1

2
βwxxt + αwwx + 1

24
β2w4xt = 0. (42)

This set of equations, for δ = 0, is identical to Eqs.
(29–30) in [16], limited to second order. Eliminating
by the standard method the function w, one obtains
from them the well-known fifth-order KdV equation
when δ = 0, i.e. for the flat bottom. When δ �= 0, the
final wave equation is the fifth-order KdV generalised
for the uneven bottom [17, Eq. (68)], in which τ = 0.

5.1 Case 5a: α = O(β2), γ = O(β2), δ = O(β2),
τ �= 0

For thin fluid layers, surface tensionmay introduce sig-
nificant changes in the dynamics. Using surface tension
term in the form (11) in dynamical boundary condition
at the surface (9), that is

φt + 1

2
α

(
φ2
x + γ

β
φ2
y + 1

β
φ2
z

)

+ η − τ (βηxx + γ ηyy) = 0,

for z = 1 + αη, (43)

we obtain instead (39) more complicated equation

η + ft − β

(
1

2
fxxt + τηxx

)
+ 1

2
α f 2x + 1

24
β2 f4xt

− γ

(
1

2
fyyt + τηyy

)
= 0. (44)

In this case, because we cannot express η through only
f and its derivatives, we cannot reduce the Boussinesq
Eqs. (38)–(44) to a single equation for the function f .
However, limiting to (1+1)-dimensions (as usual set-
ting γ = 0, w = fx and differentiating (44) over x),
we obtain

ηt + wx − 1

6
βw3x +α(ηw)x

− 1

120
β2w5x −δ(h fx )x = 0, (45)
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wt + ηx − β

(
1

2
wxxt + τηxxx

)
+ αwwx

+ 1

24
β2w4xt = 0. (46)

These equations are identical to [17, Eqs. (61)–(62)],
which lead to the fifth-order KdV equation generalised
for an uneven bottom [17, Eq. (68)].

6 Case 4: β = O(α2), γ = O(α2), δ = O(α2)

Denote now

β = B α2, γ = G α2, δ = D α2.

Now, the boundary condition at the bottom (10)
imposes the following relation:

F = α4(BD(h fx )x + DG(h fy)y)

+ α6 1

2
(BD2(h2Fx )x

+ GD2(h fy)y) + O(α8), (47)

which gives F = α4(BD(h fy)y + DG(h fy)y) and
consequently the velocity potential is valid up to fourth
order in the leading parameter. Therefore, in this case,
it is possible to obtain the Boussinesq equations valid
up to third order in small parameters. We will proceed
up to the second order, which is complicated enough.
Then, we can safely neglect higher-order terms in sur-
face tension term (11) and use the dynamic boundary
condition in the form (43). From kinematic boundary
condition at the surface (8), we obtain

ηt + fxx + γ

β
fyy + α

(
(η fx )x + γ

β
(η fy)y

)

− 1

3
γ f2x2y

− 1

6
β

(
f4x + γ 2

β2 f4y

)

− δ

(
(h fx )x + γ

β
(h fy)y

)
= 0, (48)

whereas, from the dynamic boundary condition at the
surface (43), the result is

η + ft + 1

2
α

(
f 2x + γ

β
f 2y

)
− 1

2
(β fxxt + γ fyyt )

−τ(βηxx + γ ηyy) = 0. (49)

Equations (48)–(49) are the Boussinesq equations for
the case when β ≈ γ ≈ δ = O(α2).

When τ is of the order of 1, what occurs for thin
fluid layers, Eq. (49) cannot be resolved to obtain η =
G( f, fx , fy, ft , . . .), that is, as a function of f and its
derivatives only. Therefore, in this case, the Boussinesq
set (48)–(49) cannot be reduced to a single equation for
f function.
Limiting Eqs. (48)–(49) to (1+1)-dimensions by set-

ting all y-derivatives equal to zero (alternatively setting
γ = 0), we obtain from (48)

ηt + wx + α(ηw)x − 1

6
βwxxx − δ(hw)x = 0. (50)

From (49), after setting γ = 0 and differentiating over
x we have

ηx + wt + αwwx − 1

2
βwxxt − τβηxxx = 0. (51)

Equations (50)–(51) are identical with Eqs. (85)–(86)
from [17], when the latter are limited to second order.
Therefore, one can make them compatible and derive a
single wave equation for wave profile function η(x, t).
Such procedure leads to the equation identical with Eq.
(91) from [17], which is the Gardner equation gener-
alised for an uneven bottom. For δ = 0, that is for the
flat bottom, Eq. (50) receives the form [17, Eq. (92)],
the usual Gardner equation.

The reduction of Eqs. (48)–(49) to the equation for a
single unknown function f is possible for cases when
the depth of the fluid is of the order of meters. Then, τ
is so small that terms −τ(βηxx + γ ηyy) in (49) can
be safely neglected. In such case, substituting η =
−

[
ft + 1

2

(
f 2x + γ

β
f 2y

)
− 1

2 (β fxxt + γ fyyt )
]

obtained from (49)with τ = 0 into (48)we obtain a sin-
gle nonlinear wave equation for the function f (x, y, t)
in the form

fxx + γ

β
fyy − ft t

− α

[
(2 fx fxt + ft fxx ) + γ

β
(2 fy fyt + ft fyy)

]

− δ
[
(h fx )x + (h fy)y

] − 1

6
β

[
f4x +

(
γ

β

)2

f4y

]

+ 1

2
β fxxtt + 1

2
γ fyytt − 1

3
γ fxxyy
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− α2
[
3

2

(
f 2x fxx +

(
γ

β

)2

f 2y fyy

)

+ 1

2

γ

β
( f 2x fyy + f 2y fxx ) + 4 fx fy fxt )

]
= 0. (52)

Equation (52) is the single nonlinear wave equation for
auxiliary function f determining the velocity poten-
tial, second order in small parameters for the case
β = O(α2), γ = O(α2), δ = O(α2), when sur-
face tension effects are negligible (τ � 1).

7 Conclusions

TheBoussinesq’s Eqs. (18)–(19), (30)–(31), (38)–(39),
(48)–(49) are, to our best knowledge, the first (2+1)-
dimensional equations obtained from the Euler equa-
tions for an ideal fluidmodel.When restricted to (1+1)-
dimensions, the cases discussed include the Korteweg–
de Vries equation, extended KdV, fifth-order KdV, and
Gardner equations, both for a flat and an uneven bot-
tom. Even though these Boussinesq’s equations are
only first or second order in small parameters, they are
too complicated in (2+1)-dimensions to obtain single
wave equations for surface profile function η(x, y, t).

The Boussinesq equations, in each case, consti-
tute a set of coupled partial differential equations for
two functions, η(x, y, t) - surface profile function and
the function f (x, y, t) which determines the veloc-
ity potential through Eq. (13). For (1+1)-dimensions,
it is always possible to eliminate f (x, y, t) from the
Boussinesq set and arrive to a single wave equation of
the KdV type for the wave profile function η(x, y, t).
It seems to be impossible for (2+1)-dimensional cases
due to the complexity of these equations. However, for
each (2+1)-dimensional case, it is possible to eliminate
the function η(x, y, t) and obtain a single nonlinear
wave equation for the function f (x, y, t). The disad-
vantage of this result is that the function f (x, y, t) is
not a directly observed quantity. Only by knowing the
f (x, y, t) solution one can construct a solution of a
wave profile η(x, y, t).

Another possible approach is based on a consistent
application of perturbation theory. We start with zero-
order solutions. We then use the first-order Boussinesq
equations to determine the first-order corrections, and
if necessary, we determine further corrections from the
second-order Boussinesq equations. In each of these
steps, one has to solve several inhomogeneous wave

equations. This approach seems to be the most promis-
ing.
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A Surface tension terms

In the original, dimension variables, the term originat-
ing from additional pressure due to the surface tension
has the following form [18]

ST = − T

�
∇ ·

( ∇η

(1 + |∇η|2)1/2
)

= − T

�

(1 + η2x )ηyy + (1 + η2y)ηxx − 2ηxηyηxy

(1 + η2x + η2y)
3/2 .

(53)

In (53),∇ = (∂x , ∂y) is two-dimensional gradient oper-
ator, and T is fluid’s surface tension coefficient. After
transformation (6) to nondimensional scaled variables,
we obtain (tildas are again dropped)

ST=− T

�gH2

β
(
1+α2βη2y

)
ηxx +γ

(
1+α2βη2x

)
ηyy−2α2βγ ηxηyηxy(

1 + α2βη2x + α2γ η2y

)3/2

=−τ
[
β

(
1+α2βη2y

)
ηxx +γ

(
1+α2βη2x

)
ηyy

−2α2βγ ηxηyηxy

]

×
(
1 − 3

2
α2βη2x − 3

2
α2γ η2y + O(β6)

)

= −τ(βηxx + γ ηyy + O(β4)). (54)

In (54), we first expand the factor

1/
(
1 + α2βη2x + α2γ η2y

)3/2
assuming that terms

α2βη2x and α2γ η2y are small.
Since we are interested in Boussinesq’s equations

up to second order in small parameters, it is enough to
use the surface term in the form

ST = −τ (βηxx + γ ηyy). (55)
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B First step towards solving Eq. (27)

Wewill try tofind solution toEq. (27) in two steps. First,
assume that the function f (0) fulfils Eq. (27) reduced
to zeroth order, that is, the following holds

f (0)
xx + γ

β
f (0)
yy − f (0)

t t = 0. (56)

Next, postulate the solution to (27) in the form

f = f (0) + α a(x, y, t) + β b(x, y, t)

+γ g(x, y, t) + δ d(x, y, t), (57)

where a, b, g, d are first-order correction functions.
Inserting f in the form (57) into (27) and retaining
terms up to first order in small parameters yield

f (0)
xx + γ

β
f (0)
yy − f (0)

t t

+ α

(
axx + γ

β
ayy − att − 2 f (0)

x f (0)
xt − f (0)

t f (0)
xx

−γ

β

(
2 f (0)

y f (0)
yt + f (0)

t f (0)
yy

))

+ β

(
bxx + γ

β
byy − btt + 1

2
f (0)
xxtt − 1

6
f (0)
4x

)

+ δ

(
dxx + γ

β
dyy − dtt − γ

β

(
h f (0)

y

)
y
−

(
h f (0)

x

)
x

)

+ γ

(
gxx + γ

β
gyy − gtt − γ

β
f (0)
4y

+1

2
f (0)
yytt − 2 f (0)

xxyy

)
= 0. (58)

Since f (0) fulfils zeroth orderEq. (56) and small param-
eters can be arbitrary, condition (58) is equivalent to
four inhomogeneous wave equations for the correction
functions

axx + γ

β
ayy − att = 2 f (0)

x f (0)
xt + f (0)

t f (0)
xx

+ γ

β

(
2 f (0)

y f (0)
yt + f (0)

t f (0)
yy

)
,

(59)

bxx + γ

β
byy − btt = −1

2
f (0)
xxtt + 1

6
f (0)
4x , (60)

gxx + γ

β
gyy − gtt = γ

β
f (0)
4y − 1

2
f (0)
yytt + 2 f (0)

xxyy,

(61)

dxx + γ

β
dyy − dtt = γ

β

(
h f (0)

y

)
y
+

(
h f (0)

x

)
x
. (62)

For flat bottom case, δ = 0, Eq. (62) does not appear.

If solutions to Eqs. (56), (59)–(62) are known, then
the time-dependent surface profile is given by Eq. (28).
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