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Abstract Due to the nonlinearity with inner state,

memristors have been applied in vast continuous

dynamical systems. However, the application of

memristors in discrete dynamical systems has not

received enough attention, yet. Toward this end, this

paper presents a three-dimensional (3D) memristive

Hénon map by coupling a memristor to the classical

Hénon map. Using numerical measures, the memristor

effects on the presented map are exhibited and the

complex dynamical behaviors with multistability are

disclosed therein. Particularly, since the presented

map has no invariant points, a dimension-reduction

conversion method is proposed to investigate its

properties and its hidden Neimark–Sacker bifurcations

are effectively interpreted. The results demonstrate

that the introduction of discrete memristor makes the

presented map own complex hidden dynamical

behaviors, which greatly enhances the fractal structure

complexity of the chaotic attractors. In addition, a

digital hardware set is exploited to implement the 3D

memristive Hénon map and the chaotic attractors are

physically acquired thereby.

Keywords Memristive Hénon map � Memristor �
Dynamical effect � Hidden Neimark–Sacker

bifurcation � Chaotic attractor

1 Introduction

Memristor, as a special nonlinear component with

inner state, has essential difference with most con-

ventional nonlinear components [1, 2]. A memristor

remembers the charge flowing through it and exhibits

the property of pinched hysteresis loops [3]. Due to the

special nonlinearity, memristors were widely applied

in vast continuous dynamical systems and the obtained

memristor-based dynamical systems can demonstrate

complex initial condition-dependent dynamical

behaviors [4–6]. These complex dynamical behaviors

include self-excited or hidden period and chaos,

coexisting multiple attractors, periodic window,

chaotic bubble, period-doubling bifurcation, Hopf

bifurcation, Neimark–Sacker bifurcation, tangent

bifurcation, and so on [7, 8]. Therefore, the newly

introduced memristors have the dynamical effects on

the original dynamical systems and can induce more

complex dynamical behaviors. However, the applica-

tion of memristors in discrete dynamical systems has

not received enough attention, yet [9]. Hence, it is an

interesting and challenging work to apply memristors

to discrete dynamical systems and study complex
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dynamical behaviors of the obtained memristor-based

discrete systems.

Generally, the basin of attraction of a self-excited

attractor is associated with the unstable equilibrium of

the system, and thus the initial orbit beginning from an

unstable manifold in an equilibrium neighborhood can

readily tends to be unstable oscillations [10]. Different

from the self-excited attractor, a hidden attractor is a

completely new class of attractors and its attracting

basin does not intersect with the neighborhoods of

unstable equilibrium points [10–12]. Since the hidden

attractors were found, a lot of continuous dynamical

systems with hidden oscillations have been reported

[13–19]. It is relatively easy to generate hidden

attractors by constructing some continuous dynamical

systems with only stable equilibrium points or with no

equilibrium points [20]. Different from a continuous

dynamical system, a discrete dynamical system is a

particular case of dynamical system whose instanta-

neous states are described by discrete variables.

Recently, the hidden attractors have also been discov-

ered in some discrete dynamical systems such as the

sine hyperchaotic map [21], Vertigo-2 and Vertigo-10

maps [22], polynomial maps [23], and quadratic

chaotic maps [24]. Furthermore, Ref. [25] proposed

a new two-dimensional (2D) chaotic map with hidden

attractors and tested the complexity of output time

series, while Ref [26] constructed a fractional-order

map with hidden attractors and studied its dynamical

behaviors by deriving the fractional Caputo-type

version of a standard integer-order map. Therefore,

the hidden attractors in discrete dynamical systems

have been accepted much attention. Nevertheless, the

internal bifurcation mechanism of such a hidden

attractor has not been reported in any literature, yet.

Toward this end, a three-dimensional (3D) memristive

Hénon map with no invariant points is presented in this

paper and its hidden Neimark–Sacker bifurcations are

investigated in depth.

More recently, using some discrete models of

memristors, several memristor-based discrete dynam-

ical systems have been successively presented

[9, 27–31]. By coupling a discrete model of memristor

to an existing chaotic map, Ref. [9] constructed a

general two-dimensional (2D) memristive mapping

model and applied it to secure communication appli-

cation. According to the difference modeling theory,

Ref. [27] designed a discrete model of memristor and

then proposed a discrete memristor-based Hénon map.

By building a unified discrete memristor mapping

model, Ref. [28] devised four 2D discrete memristor-

based hyperchaotic maps directly. By applying a

discrete model of memristor to the sine map, Ref. [29]

established a discrete memristor-based hyperchaotic

map and explored its nonparametric bifurcation

mechanism. Moreover, Ref. [30] implemented a 2D

sine hyperchaotic map using a discrete model of

memristor and disclosed its initials-boosted coexisting

behaviors, and Ref. [31] proposed a 3D memristive

Rulkov neuron model through employing a discrete

memristor to simulate the magnetic induction effects

and found its regime transition behaviors, transient

chaotic bursting regimes, and hyperchaotic firing

behaviors. As the same with the continuous model of

memristor, these presented discrete models of mem-

ristors can also be applied to some existing chaotic

maps. Therefore, constructing memristor-based chao-

tic maps are an important research area with theoret-

ical meanings and application values.

Motivated by the above idea of constructing

memristor-based chaotic maps, this paper presents a

novel memristive Hénon map and studies its hidden

Neimark–Sacker bifurcations. The contributions of

our paper are summarized as follows. (1) A memris-

tive Hénon map with no invariant points is presented

by introducing a discrete memristor into the classical

Hénon map and its complex hidden dynamical

behaviors are thereby revealed using the parameter-

plane plots and phase orbits. (2) A dimension-reduc-

tion conversion method is firstly proposed by con-

verting the memristor inner state into the cumulative

sum form of the memristor input variable, and then the

hidden Neimark–Sacker bifurcations of the memris-

tive Hénon map are effectively interpreted. (3) A

digital hardware set is exploited to implement the

memristive Hénon map based on a high-performance

microcontroller, and the chaotic attractors are exper-

imentally acquired to validate the numerical simula-

tions. As a result, the discrete memristor can make the

presented map have complex hidden dynamical

behaviors, which greatly enhances the fractal structure

complexity of the chaotic attractors.

The remainder of the paper is arranged as follows.

In Sect. 2, a memristive Hénon map is presented and

the dynamical effects induced by memristor are

studied. In Sect. 3, a dimension-reduction conversion

method for studying the memristor-induced hidden

Neimark–Sacker bifurcations is proposed. Complex
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hidden dynamical behaviors with multistability are

disclosed in Sect. 4 and the chaotic attractors are

physically acquired in Sect. 5. The last section con-

cludes this paper.

2 Discrete memristor-based Hénon map

This section presents a memristive Hénon map with no

invariant points by introducing a discrete model of

memristor into the classical Hénon map. The param-

eter-plane plots and phase orbits are used for studying

the dynamical effect of the memristor on the memris-

tive Hénon map.

2.1 Discrete model with no invariant points

The well-known Hénon map is a 2D discrete system

[32], and it is one of the most studied paradigms of

discrete systems owning chaotic dynamics. The 2D

Hénon map is described as

xnþ1 ¼ 1 � ax2
n þ yn;

ynþ1 ¼ bxn;

�
ð1Þ

where x and y represent two state variables, and a and

b represent two adjustable parameters. For the classi-

cal values a = 1.4 and b = 0.3, the Hénon map has two

invariant points and displays a chaotic attractor [32].

However, the chaotic attractor fractal structure is

relatively simple.

Following the continuous model of memristor

presented in [33], a discrete model of memristor can

be easily derived using the Euler difference method.

For the input vn, output in and inner flux un at the n-th

iteration as well as the inner fluxun?1 at the (n ? 1)-th

iteration, the discrete model of memristor can be

modeled as

in ¼ WðunÞvn ¼ tanhðunÞvn;
unþ1 ¼ un þ vn;

�
ð2Þ

Therefore, the memductance WðunÞ ¼ tanhðunÞ in

(2) is threshold as the hyperbolic tangent function is

bounded above and below.

To enhance the fractal structure complexity of the

chaotic attractor generated by the Hénon map, a novel

3D memristor-based Hénon map is presented by

introducing the discrete model of memristor in (2)

into the existing Hénon map. Denote the state yn in the

Hénon map as the input of the discrete model of

memristor and the state zn as the inner state of

memristor. Then the 3D memristive Hénon map is

mathematically modeled as

xnþ1 ¼ 1 � ax2
n þ yn;

ynþ1 ¼ bxn þ kyn tanhðznÞ;
znþ1 ¼ yn þ zn;

8<
: ð3Þ

where k represents the coupling strength of the discrete

memristor and Hénon map. Due to the introduction of

the memristor, the 3D memristive Hénon map has

more complex algebraic structure, resulting in the

emergence of complex dynamics.

The 3D memristive Hénon map described by (3) is

completely distinguishing from the memristor-based

Hénon map designed in [27]. The inner state of the

memristor always has an unbounded divergent behav-

ior, which means that the memristor-based Hénon map

in [27] is invalid. However, our presented memristive

Hénon map has a bounded iterative behavior in the

appropriate parameter regions.

Assume P = (X, Y, Z) as an invariant point of the

memristive Hénon map. So the invariant point P must

satisfy the following conditional equations

X ¼ 1 � aX2 þ Y ;
Y ¼ bX þ kY tanh Z;
Z ¼ Y þ Z:

8<
: ð4Þ

From the third equation of (4), one gets Y = 0.

Substituting Y = 0 into the second equation of (4),

there yields X = 0. However, when substituting X = 0

and Y = 0 into the first equation of (4), the first

equation of (4) does not have a solution, indicating that

P = (X, Y, Z) is not a solution to (4). In other words, the

memristive Hénon map can not map any point into

itself. Thus, the memristive Hénon map has no

invariant points. It indicates that once various bounded

iterative oscillations occur in the memristive Hénon

map, all its dynamical behaviors are hidden. Conse-

quently, the memristive Hénon map is a hidden

discrete system and can also be named a hidden

memristive Hénon map.

2.2 Memristor-induced dynamical effects

A colorful 2D parameter-plane plot is depicted by

detecting the periodicities of the iteration sequence in

a discrete-time map [27]. Using the colorful 2D
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parameter-plane plots, we can demonstrate the dynam-

ical effects of the memristor on the 3D memristive

Hénon map, as shown in Figs. 1 (left), 2 and 3, where

the truncated interval of iteration sequence is [4900,

5000]. The initial conditions are fixed as (x0, y0,

z0) = (0, 0, 0), and the two adjustable parameters a and

b are used to build the 2D parameter-plane. The

parameter regions emerging the iteration sequences

with different periodicities are painted by different

colors. The red marked by CH stands for chaos, the

dark green by QP for quasi-period, the purple by MP

for multi-period (i.e., the periodicities greater than 8),

the magenta by SP for stable point, and the other colors

by P2 to P8 for period-2 to period-8. Note that the

quasi-period QP is examined by the first Lyapunov

exponents of the 3D memristive Hénon map being

zero.

If the coupling strength is set as k = 0, the 3D

memristive Hénon map degenerates to the original 2D

Hénon map. When the parameter regions are consid-

ered to be adjusted in a [ [0, 2] and b [ [-1,1], the

colorful 2D parameter-plane plot of the original 2D

Hénon map is depicted, as shown in Fig. 1 (left). The

2D parameter-plane plot is composed of bounded

dynamical behavior in color and unbounded dynam-

ical behavior in white. The bounded dynamical

behavior mainly presents chaotic behavior in red and

periodic behaviors in other colors. When setting the

adjustable parameters as a = 1.4 and b = 0.3, the well-

known representative chaotic attractor with fractal

structure is displayed in the x-y plane and shown in

Fig. 1 (right), where the iteration length is set as

3 9 105. Using the Wolf’s algorithm with the iteration

length 2 9 105, the two Lyapunov exponents (LE1,

LE2) of the representative chaotic attractor are calcu-

lated and also marked in Fig. 1 (right). As shown in

Fig. 1 (left), as the increase of the adjustable param-

eters a and b in a specific region, the 2D Hénon map

has a route to chaos via period-doubling bifurcation

and exhibits the dynamics of period, chaos, and

periodic windows.

Figure 2 displays the colorful 2D parameter-plane

plots of the 3D memristive Hénon map under four

different negative values of the coupling strength k by

setting the parameter regions a [ [0, 0.9] and b [ [0,

1.1]. Similarly, Fig. 3 reveals the colorful 2D param-

eter-plane plots of the 3D memristive Hénon map

under four different positive values of the coupling

strength k by setting the parameter regions a [ [0, 0.8]

and b [ [-1.1, -0.6]. The colorful 2D parameter-

plane plots in Figs. 2 and 3 intuitively exhibit the

dynamical effects of the memristor on the 3D mem-

ristive Hénon map. In summary, the memristor can

greatly affect the bounded dynamical distributions and

dynamical behaviors of the 3D memristive Hénon

map, and the bounded dynamical regions are relatively

narrowed as the increase or decrease of the coupling

strength k. However, with the introduction of mem-

ristor with an appropriate coupling strength, the

dynamical distribution of the 3D memristive Hénon

map becomes more complex.

The colorful 2D parameter-plane plots in Figs. 2

and 3 are composed of bounded dynamical behaviors

in colors and unbounded dynamical behavior in white.

The bounded dynamical behavior in Fig. 2 mainly

possesses the period-2 in dark-blue, period-4 in pink,

period-8 in yellow, and chaos in red. For the fixed

adjustable parameter b, the 3D memristive Hénon map

b

a x

y

(LE1, LE2) = (0.418, −1.622)

(a, b) = (1.4, 0.3)

Fig. 1 For fixed (x0, y0, z0) = (0, 0, 0), the colorful 2D

parameter-plane plot (left) and representative chaotic attractor

(right) of the 2D Hénon map

k = −0.9 k = −0.7

k = −0.5 k = −0.3

a

b

(a) (b)

(c) (d)

Fig. 2 For fixed (x0, y0, z0) = (0, 0, 0), the colorful 2D

parameter-plane plots of the 3D memristive Hénon map under

different negative values of the coupling strength k. a k = -0.9.

b k = -0.7. c k = -0.5. d k = -0.3
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has the route to chaos via forward or reverse period-

doubling bifurcation as the increase or decrease of the

adjustable parameter a. By contrast, the bounded

dynamical behaviors in Fig. 3 have quite complicated

and irregularly distributions in the parameter-plane

and are greatly affected by the coupling strength k. All

in all, these results in Figs. 2 and 3 indicate that the

memristor has complex dynamical effects on the 3D

memristive Hénon map.

Accordingly, one parameter point (k, a, b) (or

model parameters) is picked from the red-painted

region of each of the eight figures in Figs. 2 and 3. The

phase orbits of the 3D memristive Hénon map under

these eight parameter points are drawn and shown in

Fig. 4, where the iteration length 3 9 105 is used. As

can be found, eight strange chaotic attractors are

demonstrated, and their fractal structures are much

more complex than that of the original Hénon map.

Besides, we also calculate out three Lyapunov expo-

nents (LE1, LE2, and LE3) of the 3D memristive

Hénon map for these eight parameter points using the

Wolf’s algorithm with the iteration length 2 9 105,

and the results are simultaneously marked in Fig. 4.

Note that, for convenience, only the first two Lya-

punov exponents (LE1, LE2) are labeled in Fig. 4,

because the third Lyapunov exponent (LE3) is always

negative. Comparatively speaking, the 3D memristive

Hénon map exhibits hyperchaotic behavior with two

positive Lyapunov exponents at the parameter point

(k, a, b) = (-0.9, 0.25, 0.51), and chaotic behaviors

with the largest first Lyapunov exponent at (k, a,

b) = (-0.5, 0.79, 0.6) and the smallest first Lyapunov

exponent at (k, a, b) = (-0.3, 0.09, 0.87). Conse-

quently, the memristor can significantly improve the

complexity of the chaotic attractor fractal structure of

the original 2D Hénon map, in other words, compared

with most discrete chaotic maps reported in the

literature [21–30], the 3D memristive Hénon map

can produce the chaotic attractor with more complex

fractal structures.

3 Memristor-induced hidden Neimark–Sacker

bifurcations

Neimmark–Sacker bifurcation is a qualitative change

[34, 35] that a closed invariant curve is born from a

fixed point in a discrete-time dynamical system

a

b
k = 0.5 k = 0.7

k = 0.8 k = 1

(a)

(c)

(b)

(d)

Fig. 3 For fixed (x0, y0, z0) = (0, 0, 0), the colorful 2D

parameter-plane plots of the 3D memristive Hénon map under

different positive values of the coupling strength k. a k = 0.5.

b k = 0.7. c k = 0.8. d k = 1

x

(k, a, b) = (−0.3, 0.09, 0.87)

y

(k, a, b) = (−0.5, 0.79, 0.6)

(k, a, b) = (−0.7, 0.11, 0.68)(k, a, b) = (−0.9, 0.25,  0.51)

(a)

x

y
(k, a, b) = (0.5, 0.15, −1.05) (k, a, b) = (0.7, 0.27, −1.05)

(k, a, b) = (0.8, 0.15, −1.07)  (k, a, b) = (1, 0.27, −0.82)

(b)

(LE1, LE2) = (0.170, 0.020) (LE1, LE2) = (0.215, −0.073)

(LE1, LE2) = (0.244, −0.187) (LE1, LE2) = (0.037, −0.029)

(LE1, LE2) = (0.089, −0.018) (LE1, LE2) = (0.110, −0.053)

(LE1, LE2) = (0.123, −0.051) (LE1, LE2) = (0.154, −0.121)

Fig. 4 The phase orbits of the 3D memristive Hénon map for

eight sets of model parameters under the initial conditions (x0,

y0, z0) = (0, 0, 0). The model parameters k, a, b are also provided

in the figures. a Four negative values of k. b Four positive values

of k
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(iteration map) when the fixed point changes its

stability through a pair of complex eigenvalues with

unit modules [36, 37]. Because the memristive Hénon

map has no invariant points, we can not study the map

stability using the stable manifold and unstable man-

ifold of the invariant points. To solve this issue, we

propose a novel dimension-reduction conversion

method for studying the memristor-induced hidden

Neimark–Sacker bifurcations in the memristive

Hénon map.

3.1 Dimension-reduction conversion method

The variable z (i.e., the memristor inner state) in the

third equation of (3) is expressed as the difference

iteration form of the variable y (i.e., the memristor

input), which can be converted into the cumulative

sum form of the variable y [29]. Thus, the memristive

Hénon map in (3) can be rewritten in the following

form as

xnþ1 ¼ 1 � ax2
n þ yn;

ynþ1 ¼ bxn þ kyn tanhðz0 þ
Pn�1

l¼0

ylÞ;

8<
: ð5Þ

where z0 is the initial state of the memristor.

Denote

M ¼ k tanhðz0 þ
Xn�1

l¼0

ylÞ; ð6Þ

as a memristor-related parameter. Since the hyperbolic

tangent function tanh(�) is a monotonic continuous

function bounded above and below, i.e., - 1\
tanh(�)\ 1, we have

�k\M\k: ð7Þ

Thus, a dimension-reduction model of the memris-

tive Hénon map can be deduced as

xnþ1 ¼ 1 � ax2
n þ yn;

ynþ1 ¼ bxn þMyn;

�
ð8Þ

where the memristor-related parameter M is an

adjustable parameter in the interval [-k, k].

The stability of the dimension-reduction model (8)

can be discussed using its determined invariant point.

The invariant point F = (X, Y) of (8) is obtained by

solving the following equations

X ¼ 1 � aX2 þ Y ;
Y ¼ bX þMY

�
ð9Þ

There yields

Fþ ¼ ðXþ; b
0XþÞ;

F� ¼ ðX�; b
0X�Þ;

ð10Þ

where b0 ¼ b=ð1 �MÞ, Xþ ¼ ðb0�1Þþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb0�1Þ2þ4a

p
2a , and

X� ¼ ðb0�1Þ�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb0�1Þ2þ4a

p
2a . Since b’ is a nonlinear function

ofM, the positions of the two invariant points F± in the

phase space change with the value of M.

The Jacobian matrix at these two determined

invariant points F± is given as

JF� ¼ �2aX� 1

b M

� �
: ð11Þ

Thereafter, the corresponding characteristic poly-

nomial is generated by

PðkÞ ¼ k2 þ ð2aX� �MÞk� 2aMX� � b: ð12Þ

Hence, two eigenvalues k1 and k2 are finally solved

as

k1;2 ¼ ð0:5M � aX�Þ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð0:5M þ aX�Þ2 þ b

q
:

ð13Þ

The results given in (13) indicate that the memris-

tor-related parameter can alter the stability of the

dimension-reduction model (8).

Clearly, if |k1|\ 1 and |k2|\ 1, the invariant points

F± are stable; otherwise they are unstable. Thus, once

the adjustable parameters a, b and memristor-related

parameter M are fixed, the eigenvalues k1 and k2 in

(13) can be figured out and the stability of the

memristive Hénon map can be then obtained.

First, a set of adjustable parameters are fixed as

a = 0.27 and b = - 1.05. For the invariant point F?,

the stable interval of the memristor-related parameter

is yielded from (13) as

0:2288\M\0:8754: ð14Þ

i.e., if the memristor-related parameter is located

into the stable interval given in (14), the invariant

point F? is stable. Thus, when M = 0.2288 and

0.8754, there exists |k1,2|= 1, leading to the occurrence

of Neimark–Sacker bifurcations. However, the invari-

ant point F- is always unstable, regardless of the

memristor-related parameter.
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Second, another set of adjustable parameters are

fixed as a = 0.27 and b = - 0.82. For the invariant

points F? and F-, the stable intervals of the memris-

tor-related parameter can be obtained from (13) as

�0:5618\M\1:0000; ð15Þ

and

1:0000\M\1:1833; ð16Þ

respectively. Thus, when M = -0.5618, the Nei-

mark–Sacker bifurcation occurs at the invariant point

F?; whereas when M = 1.1833, the Neimark–Sacker

bifurcation occurs at the invariant point F-.

In particular, when M = 1, the dimension-reduction

model given in (8) has a unique invariant point

F = (0, - 1). Thus, the two eigenvalues k1 and k2 at

F = (0, - 1) are transformed from (13) as

k1;2 ¼ 0:5b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:25 þ b

p
; ð17Þ

indicating that k1 and k2 are only dependent on the

adjustable parameter b. Accordingly, the stable inter-

val of the adjustable parameter b can be solved from

(17) as

�1\b\0:3944: ð18Þ

When b = -1, there are |k1,2|= 1, leading to the

occurrence of the Neimark–Sacker bifurcation at the

unique invariant point F. By contrast, when

b = 0.3944, there are k1 = 1 and k2 = -0.6055,

resulting in the occurrence of fold bifurcation at the

same invariant point.

3.2 Memristor-induced hidden Neimark–Sacker

bifurcations

When the memristor-related parameter M increases

within the respective regions under these two sets of

adjustable parameters, we can calculate the two

eigenvalues k1 and k2 in (13) and draw their loci in

Fig. 5. As illustrated in Fig. 5a and 5c, when

M = 0.2288 or -0.5618, the loci of the conjugate

complex eigenvalues at the invariant point F? are

going from outside the unit circle to inside the unit

circle, leading to the occurrence of the Neimark–

Sacker bifurcation. As demonstrated in Fig. 5b, when

M = 0.8754, the loci of the conjugate complex eigen-

values at the invariant point F? are crossing the unit

circle from inside to outside, resulting in the

occurrence of the Neimark–Sacker bifurcation. More-

over, as shown in Fig. 5d, when M = 1.1833, the loci

of the conjugate complex eigenvalues at the invariant

point F– are passing the unit circle from inside to

outside, also indicating the occurrence of the Nei-

mark–Sacker bifurcation. Consequently, the results in

Fig. 5 show that the invariant points of the dimension-

reduction model become unstable via the Neimark–

Sacker bifurcations.

Using the dimension-reduction model described by

(8), the initial conditions are determined as (x0,

y0) = (0, 0) and the memristor-related parameter

M is regarded as a variable parameter. Corresponding

to the loci of the two eigenvalues shown in Fig. 5, the

bifurcation diagrams of the two variables x and

y relative to M can be numerically depicted in

Fig. 6. It demonstrates that the dimension-reduction

model undergoes a quasi-periodic bifurcation scenario

with respect to the memristor-related parameter and

the four Neimark–Sacker bifurcation points are con-

sistent with the theoretical results in (14), (15), and

(16). Since there are no invariant points, all the quasi-

periodic bifurcations of the memristive Hénon map are

hidden. Therefore, using the proposed dimension-

reduction conversion method, the memristor-induced

hidden Neimark–Sacker bifurcations can be intu-

itively revealed and effectively interpreted.

M  [−0.7, −0.3]

(a, b) = (0.27, −0.82)

λ2λ1

(a, b) = (0.27, −0.82)

M  [1.05, 1.35]

λ2λ1

Re(λ1,2)

Im
(λ

1,
2)

λ2λ1

M  [0.1, 0.5]

(a, b) = (0.27, −1.05)

M  [0.59, 0.99]

(a, b) = (0.27, −1.05)

λ2λ1

(a) (b)

(c) (d)

Fig. 5 The loci of two eigenvalues relative to the memristor-

related parameter M, demonstrating the occurrence of the

Neimark–Sacker bifurcations in the dimension-reduction

model. For fixed (a, b) = (0.27, -1.05), a M increasing from

0.1 to 0.5 and b M increasing from 0.59 to 0.99. For fixed (a,

b) = (0.27, -0.82), c M increasing from -0.7 to -0.3 and

d M increasing from 1.05 to 1.35
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Interestingly, such a hidden Neimark–Sacker bifurca-

tion has not been reported in the literature.

It should be noticed that the dimension-reduction

model given in (8) has the unique invariant point

F = (0, -1) at M = 1, and its stability only relates to

the adjustable parameter b. For the special case M = 1,

when b increases within b [ [-1.1, -0.9] and

b [ [0.3, 0.5], respectively, the two eigenvalues k1

and k2 in (17) are calculated and their loci can be

drawn in Fig. 7a and b. As can be seen, when b = -1,

the loci of the conjugate complex eigenvalues at the

unique invariant point F are crossing the unit circle

from outside to inside, resulting in the occurrence of

Neimark–Sacker bifurcation. Conversely, when

b = 0.3944, the locus of k1 at the unique invariant

point F passes through the unit circle from inside to

outside at ?1, while that of k2 at the invariant point

F remains inside the unit circle, meaning the occur-

rence of the fold bifurcation rather than the Neimark–

Sacker bifurcation at this parameter point. Accord-

ingly, for three different settings of the adjustable pa-

rameter a, the bifurcation diagrams of the variable

x with respect to the adjustable parameter b are

numerically depicted based on the dimension-

reduction model (8), and they are shown in Fig. 7c.

One can see that the dimension-reduction model

undergoes exactly the same quasi-periodic bifurcation

scenario with respect to the adjustable parameter b for

three different settings of a. The results in Fig. 7

confirm that the numerically simulated Neimark–

Sacker bifurcation point is consistent with the theo-

retical result given in (18), no matter what the

adjustable parameter a is. Besides, the numerical

result clarifies that if b[ 0, an unbounded dynamical

behavior appears in the dimension-reduction model.

4 Bifurcation plots and basins of attraction

In this section, we explore the bifurcation plots and

local basins of attraction to disclose rich and complex

hidden dynamical behaviors with multistability in the

memristive Hénon map.

4.1 Coupling strength-dependent bifurcation plots

To obtain the bifurcation plots of the memristive

Hénon map, the adjustable parameters are determined

as (a, b) = (0.25, 0.51) and (0.27, -0.82), respec-

tively, the initial conditions are fixed as (x0, y0,

z0) = (0, 0, 0), and the coupling strength k is taken as a

bifurcation parameter. When k increases within the

(a, b) = (0.27, −1.05)

(a, b) = (0.27, −0.82)

(a, b) = (0.27, −0.82)

M

x,
y

x
y

x

y

x
y

x

y

(a, b) = (0.27, −1.05)

Fig. 6 The bifurcation diagrams relative to the memristor-

related parameter M, illustrating the quasi-periodic bifurcation

scenarios in the dimension-reduction model. For fixed (a,

b) = (0.27, -1.05), a M increasing from 0.1 to 0.5 and

b M increasing from 0.59 to 0.99. For fixed (a,

b) = (0.27, -0.82), c M increasing from - 0.7 to -0.3 and

d M increasing from 1.05 to 1.35

b  [−1.1, −0.9]

M = 1

λ2λ1

M = 1

b  [0.3, 0.5]
λ2λ1

Re(λ1,2)

Im
(λ

1,
2)

(a) (b)

a = −0.5

b

x a = 0.5
a = 1

(c)

Fig. 7 For the special memristor-related parameter M = 1, the

loci of two eigenvalues and bifurcation diagrams with respect to

the adjustable parameter b with respect to the memristor-related

parameter. a The loci of two eigenvalues when b increases

from -1.1 to -0.9. b The loci of two eigenvalues when

b increases from 0.3 to 0.5. c The bifurcation diagrams under

three different values of the adjustable parameter a when

b increases from -1.1 to -0.9
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regions [-0.9, -0.85] and [0.7, 1.05] respectively, the

bifurcation diagrams of variables x, y, z and corre-

sponding Lyapunov exponent (LE) spectra are

depicted and shown in Fig. 8, where the LEs are

computed using the Wolf’s Jacobian algorithm.

As demonstrated in Fig. 8a, the memristive Hénon

map can display hyperchaos and has a reverse period-

doubling route to chaos with the increase of k. When

decreasing k, the orbit of the map begins with period-2

with negative first LE at k = -0.85, breaks into

period-4 at k = -0.8546, period-8 at k = -0.8633,

and period-16 at k = -0.8675 via the reverse period-

doubling bifurcation successively, then enters into

chaos with one positive LE at k = -0.8708, and

finally goes into hyperchaos with two positive LEs at

k = -0.8916.

Meanwhile, as illustrated in Fig. 8b, the memristive

Hénon map can display chaos and has a quasi-periodic

route to chaos with the increase of k. When increasing

k, the orbit of the map starts with period-3 limit cycle

with negative first LE at k = 0.7, goes into quasi-

period with zero first LE at k = 0.7568 via the quasi-

periodic bifurcation, then mutates into multi-period

with negative first LE at k = 0.8204, and finally turns

into chaos with one positive LE at k = 0.8316.

It should be noted that there are some obvious

periodic windows within a relatively wider chaotic

interval. Therefore, the memristive Hénon map can

generate complex dynamical behaviors, including

chaos, hyperchaos, quasi-period, period, and periodic

windows. The bifurcation analyses show that with the

intervention of memristor, the dynamical behaviors of

the memristive Hénon map become richer and more

complex.

Besides, the original Hénon map in [32] only has

the period-doubling route to chaos with the variations

of its adjustable parameters. However, with the

increase of the coupling strength k, the presented

memristive Hénon map has not only the period-

doubling route to chaos, but also the quasi-periodic

route to chaos [38]. The results indicate that the

memristive Hénon map possesses more complex

hidden bifurcation scenarios than most reported maps.

4.2 Basins of attraction for detecting

multistability

Multistability is an intrinsic characteristic for many

nonlinear dynamical systems [39] and it can cause

multiple attractors to be coexisted in the initial space.

With the multistability, the long-term motions of a

nonlinear dynamical system are different and they are

totally dependent on the initial conditions in the basin

of attraction. In particular, the multistability can be

readily found in the dynamical systems based on

continuous or discrete models of memristors [2, 40].

As discussed in Sect. 3, the 3D memristive Hénon map

has no invariant points, but the memristor-related

parameter can induce the hidden Neimark–Sacker

bifurcations therein, leading to the emergence of the

stable manifold and unstable manifold of hidden

invariant points. Thus, for some specific adjustable pa-

rameters, the memristive Hénon map can show

multistability and has coexisting multiple attractors

k

x,
y,

z

x

y

LE2

LE1

z

LE
s

LE3
(a, b) = (0.25, 0.51)

(a) 

k

x,
y,

z

x

y

LE2

LE1

z

LE
s

LE3(a, b) = (0.27, −0.82)

(b)

Fig. 8 For fixed initial conditions (x0, y0, z0) = (0, 0, 0), the

coupling strength-dependent bifurcation diagrams of the vari-

ables x, y, z (bottom) and corresponding LE spectra (top). a For

fixed (a, b) = (0.25, 0.51), numerical plots of the memristive

Hénon map with k [ [-0.9, -0.85]. b For fixed (a,

b) = (0.27, -0.82), numerical plots of the 3D memristive

Hénon map with k [ [0.7, 1.05]
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when some initial conditions are chosen in the initial

space.

To measure the coexisting multiple attractors’

behaviors, the basins of attraction are painted with

different colors to divide the initial space according to

the long-term motions of the memristive Hénon map.

When two sets of model parameters (k, a, b) = (1,

0.25, -0.75) and (-0.3, 0.05, 0.85) are considered,

their basins of attraction are depicted through detect-

ing every initial condition in the x0–y0 plane with

z0 = 0, as shown in Fig. 9a1 and b1. The red, black,

and orange regions represent chaos (CH), multi-period

(MP), and period-2 (P2), respectively. Note that the

white region represents the unbounded behavior. As

can be seen, the bi-stability or tri-stability phe-

nomenon of the coexisting attractors can be indeed

disclosed in the memristive Hénon map.

Furthermore, Fig. 9a2 and b2 exhibits the phase

orbits of coexisting attractors for the two sets of model

parameters. The initial conditions of the chaotic

attractors are selected from the red regions of Fig. 9a1

and b1, the limit cycles with multi-periods are

obtained using the initial conditions from the black

regions of Fig. 9a1 and b1, whereas the limit cycle

with period-2 are generated using the initial conditions

from the orange regions of Fig. 9b1. The results well

validate the emergences of bi-stability or tri-stability

in the memristive Hénon map.

5 Digital hardware experiments

In order to facilitate the implementation of the

memristive Hénon map, a digitally circuit-imple-

mented hardware set is exploited using a high-

performance microcontroller [7, 28, 41]. Based on

the hardware set, the generated chaotic attractors in

Fig. 4 can be physically acquired by a digital oscil-

loscope in the XY mode.

The powerful STM32F407 family with in-built

ARM Cortex-M4 32-bit RISC core is chosen as the

microcontroller. The hardware set mainly consists of

32-bit microcontroller STM32F407VET6, 16-bit dig-

ital-to-analog converter DAC8563, and interface level

conversion circuit. The 32-bit microcontroller is

employed to digitally implement the memristive

Hénon map, the digital-to-analog converter outputs

the analog voltage, and the interface level conversion

circuit completes the voltage polarity conversion. The

executable program for the memristive Hénon map is

programmed in C language and loaded to the 32-bit

microcontroller. All the model parameters and initial

conditions are preloaded to the built hardware set. In

addition, a digital oscilloscope is used to acquire the

phase orbits of the chaotic attractors generated from

the memristive Hénon map.

In the following hardware experiments, the selected

model parameters and initial conditions are exactly the

same as those in Fig. 4. Utilizing the digitally circuit-

implemented hardware set, the phase orbits for eight

sets of model parameters under the initial conditions

(x0, y0, z0) = (0, 0, 0) are experimentally acquired on

the digital oscilloscope, as shown in Fig. 10. Note that

Ch1 and Ch2 labeled in the captured figures represent

the channels of x-axis and y-axis, respectively, and

their values represent the scales of each division in

both directions. To better show the visual effect, the

iteration number of the memristive Hénon map is set to

2 9 105 and the time scale of the digital oscilloscope

is adjusted to 10 s. This can make sure that more

points can be captured in each unit time. The

experimental results in Fig. 10 well validate the

numerical simulations in Fig. 4, implying the feasi-

bility of the digital hardware implementation for the

presented 3D memristive Hénon map.

x0

CH

MPy 0

x

y

(0, 1, 0)

(0, −3.5, 0)

x0

y 0

x

y

(0, 0, 0)

MP
CH
P2

(0, 1, 0)

(−3, 2.7, 0)

(a1) (a2)

(b1) (b2)

Fig. 9 Coexisting multiple attractors’ behaviors in the mem-

ristive Hénon map for two sets of model parameters. a The basin

of attraction a1 and coexisting bi-stable attractors a2 for fixed (k,

a, b) = (1, 0.25, -0.75). b The basin of attraction b1 and

coexisting tri-stable attractors b2 for fixed (k, a, b) = (-0.3,

0.05, 0.85)
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6 Conclusion

In this paper, a memristor-based Hénon map with

hidden Neimark–Sacker bifurcations has been pre-

sented. The 3D memristive Hénon map was achieved

by coupling a memristor to the classical Hénon map

[32]. Using numerical measures, the memristor effects

were exhibited and the complex dynamical behaviors

with multistability were disclosed. Due to no invariant

points in the presented map, the dimension-reduction

conversion method was firstly proposed and the

hidden Neimark–Sacker bifurcations were effectively

interpreted. It was demonstrated that the memristive

Hénon map can exhibit the bounded iteration behav-

iors, and the memristor can bring complex hidden

dynamical behaviors to the presented map and greatly

enhances the fractal structure complexity of the

generated chaotic attractors. Besides, the generated

chaotic attractors have been physically acquired by the

digitally circuit-implemented hardware experiments.

However, how to introduce the discrete model of

memristor to ensure that the memristive Hénon map

exhibits the bounded iterative behaviors and what is

the application prospect for complex hidden dynam-

ical behaviors? These issues deserve further

investigation.
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32. Hénon, M.: A two-dimensional mapping with a strange

attractor. Commun. Math. Phys. 50(1), 69–77 (1976)

33. Bao, H., Hu, A.H., Liu, W.B., Bao, B.C.: Hidden bursting

firings and bifurcation mechanisms in memristive neuron

model with threshold electromagnetic induction. IEEE

Trans. Neural Netw. Learn. Syst. 31(2), 502–511 (2020)

34. Sacker, R.: On invariant surfaces and bifurcation of periodic

solutions of ordinary differential equations. Report IMM-

NYU 333, New York University (1964)

35. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With

Applications to Physics, Biology, Chemistry, and Engi-

neering, 2nd edn. CRC Press, Boca Raton (2015)

36. Kangalgil, F.: Neimark–Sacker bifurcation and stability

analysis of a discrete-time prey-predator model with Allee

effect in prey. Adv. Differ. Equ. 2019, 92 (2019)

37. Li, B., He, Q., Chen, R.: Neimark–Sacker bifurcation and

the generate cases of Kopel oligopoly model with different

adjustment speed. Adv. Differ. Equ. 2020, 72 (2020)

38. Elhadj, Z., Sprott, J.C.: A minimal 2-D quadratic map with

quasiperiodic route to chaos. Int. J. Bifurc. Chaos. 18(5),

1567–1577 (2008)

39. Pisarchik, A.N., Feudel, U.: Control of multistability. Phys.

Rep. 540(4), 167–218 (2014)

40. Natiq, H., Banerjee, S., Ariffin, M.R.K., Said, M.R.M.: Can

hyperchaotic maps with high complexity produce multi-

stability? Chaos. 29(1), 011103 (2019)

41. Zhou, X.J., Li, C.B., Li, Y.X., Lu, X., Lei, T.F.: An

amplitude-controllable 3-D hyperchaotic map with

homogenous multistability. Nonlinear Dyn. 105,

1843–1857 (2021)

Publisher’s Note Springer Nature remains neutral with

regard to jurisdictional claims in published maps and

institutional affiliations.

123

4470 K. Rong et al.


	Memristive Hénon map with hidden Neimark--Sacker bifurcations
	Abstract
	Introduction
	Discrete memristor-based Hénon map
	Discrete model with no invariant points
	Memristor-induced dynamical effects

	Memristor-induced hidden Neimark--Sacker bifurcations
	Dimension-reduction conversion method
	Memristor-induced hidden Neimark--Sacker bifurcations

	Bifurcation plots and basins of attraction
	Coupling strength-dependent bifurcation plots
	Basins of attraction for detecting multistability

	Digital hardware experiments
	Conclusion
	Data availability
	References




