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Abstract Non-stationary feature information is

common in engineering applications, and its signal

features are irregular compared to stationary signals.

Because of its strong volatility, the traditional signal

analysis method is no longer applicable. In some

environments, strong background noise makes it

difficult to extract feature information. Adaptive

cascade stochastic resonance is an effective method

to enhance the stationary signal. The weak character-

istic signal is enhanced step by step, but it is difficult to

extract non-stationary information under strong noise

background. Compared with the classical bistable sys-

tem, the piecewise linear system can overcome the

disadvantage of output saturation and has high output

signal-to-noise ratio. Therefore, an adaptive cascaded

stochastic resonance method is proposed to extract and

enhance the non-stationary weak feature information.

Firstly, the simulated non-stationary signal of a faulty

bearing is preprocessed. The non-stationary feature

information is transformed into the stationary feature

information by computed order analysis method.

Combined with maximum correlation kurtosis decon-

volution filtering, the periodic feature of the charac-

teristic signal is highlighted. Then, the adaptive

stochastic resonance in a piecewise linear system

and variational mode decomposition are applied to

enhance characteristic signal and reduce noise inter-

ference. The cascaded mechanism is used to filter the

interference signal and enhance the characteristic

information step by step. Finally, the effectiveness of

the method is verified by experimental signals, which

can significantly improve the output characteristic

amplitude and signal-to-noise ratio.
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1 Introduction

Stochastic resonance (SR) is an important discovery in

stochastic dynamics. It was first used to explain the

glacial problems in Quaternary, which described the

influence of the periodic action of the sun on the earth

on the alternation of the glacial and warm epochs in

paleo meteorology [1]. Meanwhile, it is the phe-

nomenon that the output of the nonlinear system is

enhanced by the synergy of periodic signal and

random noise [2]. It is widely used in the field of

physics [3, 4], chemistry [5], biology [6], communi-

cation [7, 8], signal processing [9–11], etc.

In stochastic dynamics, coupled oscillators have

been widely studied by scholars because of its
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interesting nonlinear dynamic phenomena and appli-

cation of signal enhancement [12]. Array coupled is a

kind of coupled SR array obtained by coupling several

oscillators. There are many kinds of connection

modes, such as chain array [13], ring array [14], and

global coupling array [15], etc., among which chain

array connection mode is cascading SR array which is

a simple connection mode. It can enhance the weak

characteristic signal step by step and improve the

output signal-to-noise ratio (SNR), so it has been

widely used [16, 17]. The basic idea of cascaded SR is

to cascade the SR system in multiple layers, that is, the

output signal of the upper-level system is input into the

lower-level system as the input signal, so that the weak

periodic signal is enhanced step by step. Cascaded SR

has made many advances and received considerable

attention. He et al. [18] addressed the nonlinear filter

characteristic of cascaded bistable SR system, which is

well applied in rolling bearing diagnosis. Li et al. [13]

studied a new adaptive cascaded SR method and

applied it to gear fault diagnosis, which realized the

step-by-step enhancement of weak gear pulse signal.

Shi et al. [19] proposed a signal enhancement method

based on cascaded multi-stable SR and empirical

mode decomposition, which used empirical mode

decomposition to filter interference noise and cas-

caded SR to enhance the weak fault signal.

In the study of SR, the bistable system is a classical

nonlinear system [20], which has been widely studied

because of the typical nonlinear effect of noise and

wide application in physics, chemistry, and other

fields, whereas its output exists saturation phe-

nomenon, which limits the enhanced efficacy in signal

processing. To solve this problem, many scholars have

studied the SR behavior of different systems and found

that different types of piecewise systems can over-

come this saturation characteristic [21, 22]. By

transforming the continuous potential function into

the piecewise potential function, the output of the

system will increase with the increase of the input

potential energy. Compared with the bistable system,

the SR in a piecewise system achieves the higher

output SNR and the more obvious signal enhancement

effect when the width and depth of the potential well

are consistent.

Some previous studies have focused on the stochas-

tic dynamics under a stationary and periodic excitation

[23–25]. In fact, non-stationary excitation occupies a

major portion in external excitations, so it is of great

engineering value to study the stochastic dynamic

response under a non-stationary excitation. Yang et al.

[26] proposed a time–frequency analysis method

based on SR for the non-stationary signal, which can

effectively enhance the non-stationary signal and

apply it to bearing fault diagnosis. Wu et al. [27] used

SR in a fractional-order system to identify the

unknown non-stationary signal under strong noise

background and effectively enhance it. Yang et al. [28]

used SR based on EMD to enhance the non-stationary

signal. It shows that the stochastic dynamicsmethod of

non-stationary signals has strong potential in signal

processing.

In the field of signal processing, one of the greatest

concerns is signal de-noising. Signals can effectively

characterize the laws of some things and are widely

present in the actual environment. In terms of the

mechanical equipment fault diagnosis, vibration sig-

nal is often used to characterize the operation state of

mechanical equipment and can effectively identify the

abnormalities and faults in the operation of the

equipment. In fact, most of the equipment works

under variable speed condition, and its vibration signal

is non-stationary. For example, during the hoisting

process of a mine hoist, the hoist frequently experi-

ences acceleration, steady speed, and deceleration

conditions, which causing relatively large impact on

bearings and other parts [29]. Industrial robots are

widely used in manufacturing assembly, welding and

other fields because of their high efficiency and

repeatability. Its operation condition is also a complex

variable speed condition, which has a great impact on

robot joints, so the bearing is also prone to damage

[30]. Therefore, the research on bearing fault diagno-

sis under variable speed condition has more practical

significance. For the fault diagnosis under variable

speed condition, there are two kinds of methods: the

order analysis (OA) method and the time–frequency

analysis method. The methods based on time–fre-

quency analysis mainly include the Wigner-Ville

time–frequency distribution [31], the short-time Four-

ier transform [32], the wavelet time–frequency anal-

ysis [33], and the generalized S transform [34], etc.

The basic principle of the method based on time–

frequency analysis is to arrange a vibration signal in its

time series and frequency by calculation. From the

time–frequency figure, the rotation frequency curve,

its frequency multiplication curve, and fault charac-

teristic frequency curve can be obtained directly.
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However, the time–frequency analysis method needs a

large amount of calculation, and the calculation is

complicated. Compared with the time–frequency

analysis method, the OA method [35] is convenient,

accurate, and fast in calculation, so it is widely used in

fault diagnosis. The basic idea of OA is to collect the

rotational speed information synchronously while

collecting the vibration signal. By interpolation and

resampling methods, the non-stationary signal in the

time domain is transformed into the stationary signal

in the angle domain for analysis. Finally, the fault

diagnosis problem under variable working condition is

transformed into the fault diagnosis problem under

constant speed working condition. OA is mainly

divided into Hardware Order Analysis (HOA) [36],

Computed Order Analysis (COA) [37] and Tachome-

ter-less Order Analysis (TOA) [38]. HOA is to sample

the pulse signal of the tachometer through the

hardware circuit. Due to the limitation of the hardware

circuit, it is difficult to extract the fault characteristic

information when speed changes rapidly, and the cost

is high. TOA is to extract instantaneous frequency

components from the vibration signal and estimate

rotation speed information to realize the conversion of

signal in the angle domain. The advantages are that

there is no need to arrange the phase detector and the

cost is low. However, this method has poor resistance

to noise. In a word, COA gets rid of the limitation and

complexity of HOA. Compared with TOA, it has

stronger ability to resist environmental noise and can

extract fault feature information under speed fluctua-

tion effectively. Variational mode decomposition

(VMD) was proposed by Dragomiretskiy et al. [39]

in 2014. Because VMD can solve the problems of

endpoint effect and modal aliasing compared with

empirical mode decomposition, so it is widely used in

signal processing of mechanical equipment [40–43].

This method is mainly used to decompose complex

signals to realize the analysis and judgment of signal

components.

In terms of fault diagnosis, bearing fault signal is

essentially a series of weak pulse signals, which is

difficult to find the relevant characteristics of the

bearing fault signal submerged by strong noise.

Maximum correlation kurtosis deconvolution

(MCKD) can extract the weak periodic pulses to

highlight the periodic fault components of a signal.

This method was proposed by McDonald et al. [44] in

2011, which effectively realized the extraction of gear

fault features by setting a series of filter parameters

and iteration periods. Following this, this method is

widely applied to the fault diagnosis of bearing and

other parts under constant speed conditions. Lyu et al.

[45] used the quantum genetic algorithm to optimize

the relevant parameters of MCKD, which realized the

adaptive parameters selection and verified the effec-

tiveness by bearing and gear fault signals. Wang et al.

[46] proposed a time–frequency method based on

MCKD, which effectively extracted the bearing fault

characteristic information under variable speed con-

dition. This method has strong ability to extract

periodic fault characteristic information and resist

noise interference.

Most of the above researches belong to weak signal

enhancement research under constant speed condition.

However, in engineering, the background noise is

strong and the strong rotation speed fluctuation of the

mechanical equipment leads to obvious non-stationary

characteristic of the signal, which means the fault

characteristic signal cannot be obtained by classical

signal processing methods. Based on this, we focus on

the problem of the signal feature extraction based on

the dynamics method under strong noise background

and variable speed condition. The content of this paper

is arranged as follows. In Sect. 2, related theories are

mainly introduced. In Sect. 3, numerical simulation is

carried out to verify the validity of the theory in

Sect. 2. In Sect. 4, the experiment is set up to verify

the effectiveness of above method. Finally, the main

conclusions of this article are provided in the last

section.

2 Theoretical formulations

The core of non-stationary signal processing in strong

noise background is the signal extraction method

based on adaptive SR. Because SR is difficult to be

used to process non-stationary signals directly, it is

necessary to realize the conversion from non-station-

ary signals to stationary signals at first. The following

systematically introduces the adaptive cascade SR

method, the signal conversion from non-stationary

characteristic to stationary characteristic based on

COA, and the specific process of fault feature

extraction method.
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2.1 Adaptive cascade SR

SR phenomenon occurs by the synergy by the periodic

force, random noise and nonlinear system. The

dynamic equation of a system is expressed as Eq. (1)

dx0ðtÞ
dt

¼ � oU0ðx0Þ
ox0

þ N0ðtÞ þ s0ðtÞ

s0ðtÞ ¼ A0 cosð2pf0tÞ

8
<

:
ð1Þ

where x0(t),U0 (x0) and s0(t) are the output response of

the system, the potential function of the system, and the

low-frequency periodic input of the system, respec-

tively. N0ðtÞ ¼
ffiffiffiffiffiffiffiffi
2D0

p
nðtÞ is the Gaussian white noise,

where n(t) and D0 are the standard Gaussian white

noise with the mean of 0 and the variance of 1 and the

noise intensity, respectively. N0(t) satisfies the fol-

lowing statistical characteristics, as shown in Eq. (2)

hN0ðtÞi ¼ 0; hN0ðtÞ;N0ð0Þi ¼ 2D0dðtÞ ð2Þ

where d(t) represents the Dirac function.
A kind of piecewise linear system is selected as the

system model. To facilitate comparison with the

bistable system, the potential function is given as follows:

U1ðxÞ ¼

� a21
4b1

ð xþ c1

c1 �
ffiffiffiffiffiffiffiffiffiffiffiffi
a1=b1

p Þ; x\�
ffiffiffiffiffiffiffiffiffiffiffiffi
a1=b1

p

ffiffiffiffiffiffiffiffiffiffiffiffi
a31=b1

p

4
x ; �

ffiffiffiffiffiffiffiffiffiffiffiffi
a1=b1

p
� x\0

�
ffiffiffiffiffiffiffiffiffiffiffiffi
a31=b1

p

4
x; 0� x\

ffiffiffiffiffiffiffiffiffiffiffiffi
a1=b1

p

a21
4b1

ð x� c1

c1 �
ffiffiffiffiffiffiffiffiffiffiffiffi
a1=b1

p Þ; x�
ffiffiffiffiffiffiffiffiffiffiffiffi
a1=b1

p

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ð3Þ

where a1 and b1 (a1[ 0, b1[ 0) are the system

parameters, and c1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2a1=b1

p
.

The potential function of the bistable system is

U2ðxÞ ¼ � 1

2
a2x

2 þ 1

4
b2x

4 ð4Þ

where a2 and b2 (a2[ 0, b2[ 0) are the system

parameters.

The potential functions of two systems are shown in

Fig. 1a when the system parameters are set as

a1 = b1 = a2 = b2 = 1, where the blue solid line

represents the potential function curve of the piece-

wise linear system, and the red dotted line represents

the potential function curve of the bistable system. As

shown in Fig. 1a, these two systems have two identical

stable equilibrium points X�
� and one identical unsta-

ble equilibrium point X�
0. Also, the depth and width of

the potential well are identical, which can be adjusted

by the system parameters a1, b1 and a2, b2.

Corresponding to the systems inFig. 1b, take the input

signal s(t) = Acos(2pft) as an example, where f = 0.01,

A = 0.5. Figure 1b shows the output SNRcurves of these

two system responses versus to noise intensity D, in

which the optimal output SNRs of the piecewise linear

system and the bistable system are obtained as 0.76 and

0.06 when D = 0.12, respectively. The results indicate

that the optimal output SNR of the piecewise linear

system is larger than that of the bistable system and has

better performance in signal enhancement.

Therefore, the piecewise linear system is taken as

the potential function. Equation (1) represents the

dynamic equation driven by a system, a periodic

driving force and noise. If the potential functionU0(x0)

in Eq. (1) is replaced with U1(x), it is called the

piecewise linear SR dynamic equation. Equation (1)

satisfies the small parameter conditions of classical

SR, that is, the signal frequency f0 and amplitude A0

should be far less than 1. In practical engineering, the

signal frequency is generally high which cannot

satisfy the conditions for SR.

The high-frequency signal s(t) is used to simulate

the real signal, and the piecewise linear system under

its excitation is expressed as:

dxðtÞ
dt

¼ Cða1; b1Þ þ sðtÞ þ
ffiffiffiffiffiffi
2D

p
nðtÞ ð5Þ

where Cða1; b1Þ ¼

�
ffiffiffiffiffi
a31

p

4ð
ffiffiffi
2

p
� 1Þ

ffiffiffiffiffi
b1

p ; x\�
ffiffiffiffiffiffiffiffiffiffiffiffi
a1=b1

p

ffiffiffiffiffiffiffiffiffiffiffiffi
a31=b1

p

4
; �

ffiffiffiffiffiffiffiffiffiffiffiffi
a1=b1

p
� x\0

�
ffiffiffiffiffiffiffiffiffiffiffiffi
a31=b1

p

4
; 0� x\

ffiffiffiffiffiffiffiffiffiffiffiffi
a1=b1

p

ffiffiffiffiffi
a31

p

4ð
ffiffiffi
2

p
� 1Þ

ffiffiffiffiffi
b1

p ; x�
ffiffiffiffiffiffiffiffiffiffiffiffi
a1=b1

p

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

and

s(t) = Acos(2pft).
Here we introduce variable substitution x(t) = z(s),

s = mt, Eq. (5) is expressed as:

dzðsÞ
ds

¼ 1

m
Cða1; b1Þ þ

A

m
cosð2pf s

m
Þ þ

ffiffiffiffiffiffi
2D

p
nð s
m
Þ

ð6Þ
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Let a3 ¼ a1
m , b3 ¼

b1
m, f3 ¼

f
m, Eq. (6) is written as:

dzðsÞ
ds

¼ Cða3; b3Þ þ
A

m
cosð2pf3sÞ þ

ffiffiffiffiffiffi
2D

m

r

nðsÞ ð7Þ

where m is the scale coefficient. Compared with

Eq. (5), the signal amplitude A/m and noise intensity

D/m are reduced to 1/m of the original ones, the system

parameters a3, b3 and signal frequency f3 satisfy the

small parameter conditions in time scale s. To match

to the classical small parameter SR conditions [see

Eq. (1)], the signal amplitude A/m and noise intensity

D/m are recovered to the original amplitudes. There-

fore, the signal amplitude A/m and noise intensityD/m

in Eq. (7) are amplified by m times, there is

dzðsÞ
ds

¼ Cða3; b3Þ þ A cosð2pf3sÞ þ
ffiffiffiffiffiffi
2D

p
nðsÞ ð8Þ

Mathematically, it is equivalent to amplifying the

signal by m times and the noise by
ffiffiffiffi
m

p
times to obtain

Eq. (8), which satisfies the small parameter conditions

of classical SR and is equivalent to Eq. (1), in which

SR will occur.

It is known from the statistical characteristics of a

Gaussian white noise:

nðmtÞ; nð0Þh i ¼ 1

m
dðtÞ

nðtÞh i ¼ 0; nðtÞ; nð0Þh i ¼ dðtÞ

8
<

:
ð9Þ

So, there is

nðmtÞ ¼
ffiffiffiffiffiffiffiffiffi
1=m

p
nðtÞ ð10Þ

Changing the time scale s to the original time scale

t, one gets

dxðtÞ
dt

¼ Cða1; b1Þ þ mA cosð2pftÞ þ
ffiffiffiffiffiffiffiffiffiffi
2Dm

p
nðtÞ

ð11Þ

Equation (11) is a large-parameter SR dynamic

equation, which has the same dynamic features as

Eq. (8), and it can detect and enhance the actual signal

of any high frequency. As the large-parameter SR

model in Eq. (11), the width and depth of the potential

well in the system become larger. In order to ensure

that the energy of Brownian particles can satisfy the

transition energy in the model, it is necessary to

amplify the amplitude and noise intensity of the input

signal in equal proportion, as given in Eq. (11).

Quantum particle swarm optimization (QPSO)

algorithm [47] is an intelligent optimization algo-

rithm, which can optimize multiple parameters at the

same time in parameter optimization. It can overcome

the dependence of PSO algorithm on the parameters

and the shortcomings of easy to fall into the local

optimal solution, so it is widely used in parameter

optimization. Here, SNR is selected as the fitness

function in QPSO algorithm. QPSO algorithm takes

the maximum SNR as the optimization objective to

realize the optimal SR response, which can achieve the

(a) (b)

Fig. 1 Comparison of the two systems: a the potential functions of the piecewise linear system and the bistable system, b the SNRs of

the output versus noise intensity D
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optimal enhancement of the characteristic signal.

Since the signal processed by COA transforms to the

signal in the angle domain, SNR in the angle domain is

defined, which is similar to the SNR in the time

domain, as follows:

SNR ¼ 10 log
SðOcÞ
AðOcÞ

SðOcÞ ¼ XðgÞj j2

AðOcÞ ¼ 1=2N
XN

p¼1

ð Xðg� pÞj j2þ Xðgþ pÞj j2Þ

8
>>>>>><

>>>>>>:

ð12Þ

where Oc, S(Oc), and A(Oc) are the characteristic

order, the energy atOc and the average energy within a

certain range at Oc, respectively. g and X(g) are the

position of the point where the characteristic order is

located and the amplitude at g-th point of the signal in

the order spectrum, respectively. N is the number of

data points with left–right symmetry of the character-

istic order Oc. SNR is the ratio of the energy of the

characteristic signal to the average energy of the

surrounding noise, reflecting the strength of the

characteristic signal.

The classical adaptive cascaded SR is described as

follows. Firstly, the weak signal submerged by noise is

input to the nonlinear system for adaptive SR

processing. Then, the output of the upper level system

is input into the next level system for adaptive SR

processing. The above steps are repeated to realize the

adaptive cascade SR until the output meets the

requirement. By cascading the system, the energy of

the high-frequency noise in the original signal is

transferred to the low characteristic frequency, so the

weak characteristic signal is enhanced step by step. If

the signal needed to be enhanced has complex

frequency and the noise interference is strong, the

classical adaptive cascade SRmay perform poor in the

signal enhancement and need more levels.

To overcome the problem above, VMD is intro-

duced in cascaded SR. VMD adopts a non-recursive

processing strategy, constructs and solves the con-

strained variational problem to decompose the signal

into several amplitude-modulation-frequency-modu-

lation (AM-FM) signals with different center frequen-

cies. These AM-FM signals are called intrinsic mode

functions (IMFs). By selecting characteristic IMF, we

can realize the judgment and extraction of bearing

fault characteristic signal under noise background.

VMD has better decomposition accuracy of complex

data and anti-noise performance than empirical mode

decomposition. Therefore, we introduce VMD to

decompose the signal components containing the

characteristic information in the cascading process

and select the characteristic IMF to put into the next

level SR system, so as to simplify the cascading

process and effectively enhance the weak character-

istic signal.

2.2 The main idea of non-stationary signal

processing

The main idea of non-stationary signal processing is

shown in Fig. 2.

Firstly, the signal collected under variable speed

condition of a faulty bearing is a non-stationary signal,

that is, a non-periodic signal, which is difficult to be

analyzed by Fourier transform method. Secondly, the

non-stationary signal in the time domain is trans-

formed into the stationary signal in the angle domain

through signal resampling by COA technology. In this

process, the aperiodic signal is effectively transformed

into periodic signal for analysis. Then, in order to

solve the problem of serious noise interference in the

spectrum, MCKD is used as the signal preprocessing

method to extract the unknown characteristic signal.

Finally, the adaptive cascaded SR is used to process

the fault characteristic signal of the previous step to

realize the adaptive signal enhancement.

Non-stationary signal in the  
time domain

COA

MCKD

An adaptive cascaded SR
mechanism

Stationary signal in the 
angle domain

Aperiodic signal

Periodic signal

Unknown characteristic 
signal extraction

Adaptive signal 
enhancement

Fig. 2 The main processing idea
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Herein, COA is a non-stationary signal analysis

method in fault diagnosis [48]. The acceleration sensor

and eddy current sensor synchronously collect the

vibration signal and speed signal of the reference

shaft. The two kinds of signals are processed through

some signal preprocessing methods, respectively. The

pulse time of equal angle sampling is determined by

the signal resampling algorithm of the speed pulses,

and the signal resampling in the angle time is realized

by the interpolation algorithm. The non-stationary

signal is effectively transformed to the stationary

signal. The stationary signal processing method can be

used to process. It is widely used in mechanical

equipment fault diagnosis because of its convenience,

low cost and good reliability. In analysis processing, a

certain shaft is selected as the reference shaft, and its

rotating frequency is used as the reference. The

multiple frequency relative to the rotating frequency

is called the order, which is defined as follows:

Oc ¼
fc
fr
¼ fc
nr=60

ð13Þ

where Oc and fc represent the characteristic order and

the characteristic frequency, respectively. fr and nr
represent the rotating frequency of the reference shaft

and the rotating speed of the reference shaft, respec-

tively. The characteristic order represents the vibration

characteristics which is independent of the rotating

frequency.

The order is defined as the number of vibrations in

per revolution of the reference shaft. The equations of

the order of different types of a faulty bearing are

shown in Eq. (14)

Oi ¼
fi
fr
¼ 1

2
ð1þ Db

Dc
cos bÞz

Oo ¼
fo
fr
¼ 1

2
ð1� Db

Dc
cos bÞz

Ob ¼
fb
fr
¼ 1

2

Dc

Db
ð1� D2

b

D2
c

cos2 bÞ

8
>>>>>>><

>>>>>>>:

ð14Þ

where Oi, Oo and Ob represent the theoretical fault

characteristic order of the inner raceway, outer

raceway, and rolling element of rolling bearing,

respectively; Db and Dc represent the diameter of the

rolling element and the pitch diameter of the bearing,

respectively. b and z represent the contact angle and

the number of rolling elements, respectively; fi, fo and

fb represent the bearing fault frequency of the inner

raceway, outer raceway, and rolling element, respec-

tively. In Eq. (14), different types of fault character-

istic orders are irrelevant to the speed working

conditions of the shaft, but only with the inherent

parameters of the bearing. Therefore, this method is

widely used in bearing fault diagnosis under variable

speed condition.

MCKD is the maximum correlation kurtosis decon-

volution, which is a technology developed on the basis

of the minimum entropy deconvolution method. It is

an effective method to extract periodic pulses by

deconvolution to highlight continuous pulses sub-

merged by strong noise background. In this paper,

MCKD is used as a preprocessing method for the weak

characteristic signal. SNR is a commonly evaluation

index for signals, which can only be used for the

measurement of known signals but cannot measure

unknown signals. Due to the interference of strong

noise, the fault characteristics are always unknown.

Therefore, MCKD is used as the signal preprocessing

algorithm to extract the unknown fault characteristics.

Proper shifts and pulse signal period are chosen to

achieve good noise reduction and highlight weak

characteristic signals.

2.3 The detail process for the method

The overall technical route is shown in Fig. 3, which is

mainly divided into the following steps:

Step 1: Collect the vibration signal of the faulty

bearing and the speed pulse signal of the reference

shaft synchronously by the acceleration sensor and

the eddy current sensor.

Step 2: Preprocess the vibration signal and speed

pulse signal, respectively. Determine the resam-

pling time of equal angle through the correlation

calculation of speed pulse signal, select the proper

resampling frequency, resample the vibration signal

through interpolation algorithm to obtain a station-

ary signal in the angle domain, where the non-

stationary vibration signal in the time domain is

transformed into a stationary signal in the angle

domain.

Step 3: MCKD is used to deconvolute the stationary

signal in the angle domain. The proper pulse shift

and period are selected to highlight the fault

characteristic order. Identify the fault characteristic

order in the output order spectrum.
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Step 4: The piecewise linear system is used as the

SR model, and the stationary signal in the angle

domain processed in step 3 is input into the SR

model. Herein, SNR is chosen as the fitness

function, and QPSO algorithm is used to adaptively

adjust the system parameters to achieve the optimal

resonance output.

Step 5: The cascade mechanism is adopted to

connect multiple SR models in series, and VMD is

applied to filter out the interference signal. Process

the output of the upper level SR system by VMD,

select the component containing fault characteris-

tics, then input the component into the next level SR

system to enhance the fault characteristics step by

step.

3 Numerical simulation analysis of bearing fault

diagnosis under variable speed condition

According to the simulated signal equation of bearing

outer raceway fault under variable speed condition

proposed by Feng et al. [49], we propose the simulated

signal of bearing outer raceway fault under linear

rising-stable-linear declining condition, as follows:

wðtÞ ¼
XM1

m1¼1

Am1
expf�2pbfn½t � vm1

ðtÞ�g sinf2pfn½t � vm1
ðtÞ� þ /gu½t � vm1

ðtÞ�

vm1
¼

Xm1

j¼1

Tj

8
>>>><

>>>>:

ð15Þ

Bearing fault simulated
signal/test signal

Tachometer signal Calculate the equal-
angle sampling time

Interpolation

Stationary signal in 
the angle domain

Envelope 
demodulationMCKD

Order analysis and 
data preprocessing

Select the IMF component 
representing fault characteristics

The second piecewise-linear system

The n-th piecewise-linear system

The n-th Optimal output response

...

IMFcn-1

IMFc1

VMD1

The first piecewise-linear system

Novel
cascaded 
mechasim

Select the IMF component  
representing fault characteristics

IMFc2

Set SNR as the fitness function 

If  iteration times  >50?

Initialize the system parameters 
a3, b3 and scale coefficient m

Use QPSO Algorithm  to 
optimize the system parameters 
a3, b3 and scale coefficient m

Output optimal parameters 
a3, b3 and m

Adaptive 
stochastic 
resonance

Optimal output 
response

xi(t)

VMD2

xn(t)

Yes

No

x1(t)

x2(t)

Fig. 3 The flow chart of the

proposed method
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where Am1 and fn are the amplitude of the m1-th fault

pulse and the natural frequency of the bearing,

respectively; b and u(t) are the damping coefficient

and unit step function, respectively; Tj, w(t) and vm1
are the repetition period of the j-th pulse at the moment

of occurrence, the simulated fault characteristic signal

and pulse time. The simulation parameters are set as

fs = 10,240 Hz, b = 12,000, fn = 2000 Hz, Am1

= 0.02 fr, / = 0.

The simulated rotational frequency is set as

fr ¼
15t ð0\t� 1Þ
15 ð1\t� 3Þ
60� 15t ð3\t� 4Þ

8
><

>:
, which satisfies the fol-

lowing equation:
Z vm

1

0

2pfrdt ¼ 2pi ð16Þ

where i represents the number of revolutions of the

bearing, and the fault characteristic order is assumed

to be 5 9 . Considering the amplitude modulation

phenomenon, Am1 is assumed as 0.02fr. In the simu-

lated process, in order to facilitate the analysis, the

signal amplitude and the amplitude by Fourier trans-

form are all set as dimensionless numbers, which are

uniformly expressed by ‘‘Amplitude.’’

The simulated fault signal is shown in Fig. 4, where

Fig. 4a and c are the time-domain waveform and

spectrum of the raw simulated fault signal, respec-

tively. Figure 4(b) is corresponding speed curve.

Gaussian white noise with a noise intensity of 0.25 is

added to the simulated fault signal to simulate the

strong noise background. Figure 4d and f are the time

domain waveform and spectrum of the simulated fault

signal submerged by noise, respectively. Figure 4e

represents the key-phase signal.

Due to the influence of speed fluctuations and

strong noise, we cannot obtain the relevant informa-

tion about the fault characteristics. Therefore, the

simulated signal submerged by noise is analyzed and

processed in Fig. 5. The non-stationary signal in the

time domain is transformed into a stationary signal in

the angle domain, as shown in Fig. 5a and b. The fault

characteristic order [5 9] is completely submerged by

noise and cannot be observed in Fig. 5b. Then, the

angle domain signal is processed by resonance

demodulation, as shown in Figs. 5c and d. The low-

frequency components are removed by high-pass

filtering, where the results are shown in Figs. 5e and

f. Due to the interference of strong background noise,

it is impossible to obtain information about the fault

characteristics through resonance demodulation.

Therefore, an effective filtering method that highlights

periodic features-MCKD is used to process the angle

domain signal to highlight the periodic fault charac-

teristic components in the noisy signal. The results of

the processing are shown in Fig. 5g and h. In this case,

the length of filter is 500, the deconvolution period is

5, and the offset is 1. The fault characteristic order

[5 9] is obviously highlighted, but there is still a lot of

interference near the high order band in the order

spectrum. Hence, the signal is processed by low-pass

filtering, and the results are shown in Figs. 5i and j.

In order to enhance and highlight the fault charac-

teristic order, adaptive SR is used to process the

angular signal in Fig. 5i. Figure 6 shows the system

output response by SR. It can be found that the fault

characteristic order [5 9] is significantly enhanced

and the amplitude in the order spectrum is enhanced to

0.0077. Meanwhile, the optimized system parameters

are a3 = 0.001, b3 = 0.0438, the scale coefficient m is

64.4479, and the output SNR is 13.6545.

Then, the signal is decomposed by VMD. The

decomposed result is shown in Fig. 7. From top to

bottom, there are different IMFs, which are repre-

sented as IMF1 * IMF9 and residual signal in turn. In

Fig. 7, the left side and the right side represent the

angle domain waveform and the order spectrum of

different IMFs. The fault characteristic order [5 9] is

observed in the order spectrum of IMF8, so the angle

domain waveform of IMF8 is extracted as the input of

the next level piecewise linear system for adaptive SR

processing.

According to the signal processing method in the

detail process [see Sect. 2.3], the responses of the

second-level SR and the third-level SR are shown in

Fig. 8. Figure 8a shows that the amplitude of the fault

characteristic order [5 9] in the order spectrum is

enhanced to 0.0658 by second-level SR processing.

The system parameters are a3 = 0.0063, b3 = 0.4789,

the scale coefficient m is 272.7031, and the output

SNR is 14.7272. By VMD, the angle domain wave-

form of IMF8 is extracted and input into the third-level

system for adaptive SR processing. In Fig. 8b, the

amplitude of the fault characteristic order [5 9] in the

order spectrum is enhanced to 0.3382 by third-level

SR processing. The system parameters are a3 = 0.001,
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b3 = 0.7234, the scale coefficient m is 163.1320, and

the output SNR is 15.4451.

Comparing the output results of the three-level

cascade SR, it can be found that with the gradual

increase of coupled level, the amplitude and SNR of

the fault characteristic signal in the order spectrum

increase step by step. Through the three-level cascade

SR processing, the fault characteristic signal has been

significantly enhanced and noise interference are

filtered out.

4 Experimental verifications

The effectiveness of the above method is verified by

two groups of measured bearing fault data. The

experimental setup is shown in Fig. 9. The experi-

mental platform is mainly composed of a 198 BGL

series spindle servo motor, a 5E103-type eddy current

sensor, a 1A206-type acceleration sensor, a laptop,

two N306E-type fault bearings, a NI9234-type signal

acquisition card, a frequency converter, etc. For the

acceleration sensor and eddy current sensor, the

collected vibration signal and the speed signal are

displayed in the form of voltage, and the unit is ‘‘mv’’.

(a) (b)

(d)

(f)

(c)

(e)

Fig. 4 The simulated signal of bearing outer raceway fault: a the time domain waveform (without noise), b the speed signal, c the
spectrum (without noise), d the time domain waveform (with noise), e the key-phase signal, f the spectrum (with noise)
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This paper mainly focuses on spectrum analysis,

which does not affect the analysis results. So the

amplitude is represented by ‘‘Amplitude’’ in the

following figures. The frequency converter is used to

control motor speed. It controls the motor to transfer

force and torque to the faulty bearing through the

coupling. We analyze the running state of the bearing

by collecting the vibration signal and the speed pulse

signal of the reference shaft synchronously. The

sampling frequency is set as 10,240 Hz. As shown in

Fig. 9, the types of bearing faults are bearing outer

raceway scratch (dimension: 1.5 9 1 mm (width 9

depth)) and rolling element scratch (dimension:

1.5 9 1 mm (width 9 depth)), respectively.

Table 1 shows the structural parameters of N306E

bearing. According to Eq. (14), the theoretical fault

characteristic orders of the bearing outer raceway

fault, inner raceway fault and rolling element fault are

calculated as 4.44 9 , 6.56 9 , 5.01 9 , respectively.

The experiment selects fault characteristic signals

of the bearing outer raceway and rolling element to

verify the above-mentionedmethod. The experimental

steps are as follows:

Step 1:As shown in Fig. 9, install the faulty bearing,

and perform debug on the sensor, signal acquisition

card and laptop.

Step 2: The frequency converter is used to control

the three-phase motor to produce the speed

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 5 Signal preprocessing: a the angle domain waveform,

b the order spectrum, c the angle domain waveform after

demodulation, d the order spectrum after demodulation, e the

angle domain waveform after filtered, f the order spectrum after

filtered, g the angle domain waveform after MCKD processed,

h the order spectrum after MCKD processed, i the angle domain

waveform after filtered, j the order spectrum after filtered
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characteristics of linear rising–steady–linear falling

(the speed of the test outer raceway fault is

1420–1500 r/min, and the speed of the test rolling

element fault is 1350–1500 r/min). The eddy current

sensor is placed in front of the reference shaft with a

fixed frame to collect the key-phase signal generated

by the rotation speed of the reference shaft. The

acceleration sensor is placed directly above the

bearing pedestal to collect the vibration signal

generated by the rotation of the bearing.

Step 3: Collect and save the measured vibration

signal data and key-phase signal data through the

laptop, and analyze the collected signals by

MATLAB and LabVIEW.

4.1 The experimental signal of bearing outer

raceway fault

For the experimental signal of bearing outer raceway

fault, Gaussian white noise with intensity of 1 is added

into the experimental signal to simulate external

interference noise, as shown in Fig. 10. Figure 10a

and c are the time domain waveform and spectrum of

the experimental signal, respectively. Figure 10b and

d are the key-phase signal collected by the eddy

current sensor and the calculated speed signal,

respectively. It is obvious that the fault signal is

generated by the speed regulation in the range of

1420–1500 r/min to simulate the bearing operating

condition under variable speed condition in Fig. 10d.

As shown in Fig. 11, the vibration signal is

preprocessed. First, the non-stationary vibration signal

in the time domain is transformed into a stationary

signal in the angle domain by COA in Fig. 11a and b,

and it is found that the fault characteristic order

[4.44 9] is completely submerged by noise. After

resonance demodulation processing in Fig. 11c and d,

the fault features still cannot be observed, and high-

pass filtering processing in Fig. 11d and e is per-

formed. The filtered signal is preprocessed by MCKD

in Figs. 11g and h.Meanwhile, the length of the filter is

620, the deconvolution period is 5 and the offset is 1.

The high-frequency interference component is filtered

by low-pass filtering in Figs. 11i and j.

The process of adaptive cascaded SR to enhance the

experimental signal is consistent with the method in

Sect. 3. The angular signal in Fig. 11i is input into the

next system for adaptive SR processing. To make the

overall content concise and clear, we only give the

output order spectrum of the first-level, second-level

and third-level SR in the subsequent processing.

Figure 12a shows the result of the first-level SR

processing, where the amplitude of the fault charac-

teristic order [4.44 9] increases to 0.0019. The system

parameters are a3 = 0.0001, b3 = 0.3459, the scale

coefficient m is 58.3713, and the output SNR is

13.5686. Figure 12b shows the result of the second-

level SR processing. The amplitude of the fault

characteristic order [4.44 9] increases to 0.1168.

The system parameters are a3 = 0.0033,

b3 = 0.5780, the scale coefficient m is 756.7491 and

the output SNR is 14.5981. Figure 12c shows the

result of the third-level SR processing. The amplitude

of the fault characteristic order [4.44 9] increases to

0.8259. The system parameters are a3 = 0.8555,

b3 = 0.0086, the scale coefficient m is 872.8246, and

the output SNR is 14.6151.

The results are consistent with the results of the

simulated fault signal. Comparing the output results of

three-level cascade SR, it is found that with the

gradual increase of coupled levels, the amplitude and

SNR of the fault characteristic order [4.44 9] grad-

ually increase. Through three-level cascade SR pro-

cessing, the fault characteristic signal has been

significantly enhanced.

4.2 The experimental signal of bearing rolling

element fault

Similarly, the experimental signal of rolling element

scratch fault is collected to verify. The vibration signal

(a)

(b)

Fig. 6 The first-level SR processing results: a the angle domain

waveform, b the order spectrum
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of bearing running is collected by setting the speed of

1350 r/min–1500 r/min. Then, Gaussian white noise

with noise intensity of 1.5 is added into the experi-

mental signal to simulate the strong interference noise.

Figure 13 shows the experimental signal of bearing

rolling element fault. From the speed curve in

Fig. 13d, it is found that the vibration signal is non-

Fig. 7 The angle domain waveforms (left) and the order spectrums (right) of IMFs by VMD processing
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stationary, from which the useful characteristic infor-

mation is unable to obtained.

The enhancement results on the fault characteristic

signal of bearing rolling element are shown in Fig. 14,

which are the output order spectrums of the first-level,

the second-level and the third-level SR processing,

respectively. Figure 14a shows the result of the first-

level SR processing, where the amplitude of the fault

characteristic order [5.01 9] increases to 0.0018. The

system parameters are a3 = 0.001, b3 = 0.2776, the

scale coefficient m is 117.6515, and the output SNR is

13.6233. Figure 14b shows the result of the second-

level SR processing, where the amplitude of the fault

characteristic order [5.01 9] increases to 0.0529. The

system parameters are a3 = 0.0033, b3 = 0.5780, the

scale coefficient m is 756.7491, and the output SNR is

14.5981. Figure 14c shows the result of the third-level

SR processing, where the amplitude of the fault

characteristic order [5.01 9] increases to 0.7850. The

system parameters are a3 = 0.3888, b3 = 5, the scale

coefficient m is 1654.36, and the output SNR is

16.6719.

Comparing the output results of three-level cas-

caded SR, it is found that with the gradual increase of

coupled levels, the amplitude and SNR of fault

characteristic order [5.01 9] gradually increase.

Through three-level cascaded SR processing, the fault

characteristic signal has been significantly enhanced.

(a)

(b)

Fig. 8 Comparison of the results of SR processing: a the second
level, b the third level

laptop

Acquisition 
card 

Eddy current 
sensor

Acceleration 
sensor 

Motor

Fault 
bearing

Frequency 
converter

Outer 
raceway fault

Rolling 
elements fault

Fig. 9 The experiment settings and bearing fault types

Table 1 The structural parameters of the bearing

Type Outer

diameter

Inner

diameter

Pitch

diameter

Thickness Roller element

diameter

Number of rolling

elements

Contact

angle

N306E 72 mm 30 mm 52 mm 19 mm 10 mm 11 0
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5 Conclusions

In this paper, extracting the non-stationary bearing

fault characteristic information by the stochastic

response of coupled oscillators is studied, where an

adaptive cascade SR method is proposed to extract

weak fault characteristic information step by step. The

effectiveness of this fault diagnosis method is verified

(a) (b)

(c) (d)

Fig. 10 The experimental

signal of bearing outer

raceway fault: a the time

domain waveform (with

noise), b the key-phase

signal, c the spectrum (with

noise), d the speed curve

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

Fig. 11 Signal

preprocessing: a the angle

domain waveform, b the

order spectrum, c the angle
domain waveform after

demodulation, d the order

spectrum after

demodulation, e the angle
domain waveform after

filtered, f the order spectrum
after filtered, g the angle

domain waveform after

MCKD processed, h the

order spectrum after MCKD

processed, i the angle
domain waveform after

filtered, j the order spectrum
after filtered
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by numerical simulation and experimental verifica-

tion. The main conclusions are as follows:

(1) Using COA to transform the non-stationary

signal reflecting bearing fault characteristics

under variable speed condition in the time

domain into a stationary signal in the angle

domain, which can effectively reduce the diffi-

culty of feature extraction.

(2) The advanced signal processing method, i.e.

MCKD, is applied to extract the non-stationary

unknown bearing fault characteristic informa-

tion under strong noise background. By MCKD,

(a)

(b)

(c)

Fig. 12 Comparison of the

results of three-level SR

processing: a the first level,

b the second level, c the
third level

(a) (b)

(c) (d)

Fig. 13 The experimental

signal of bearing rolling

element fault: a the time

domain waveform (with

noise), b the key-phase

signal, c the spectrum (with

noise), d the speed curve
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the fault characteristic information in the angle

domain is effectively extracted and whether a

fault exists and the type of bearing fault under

variable speed condition is accurately judged.

(3) A cascade SR mechanism is proposed to

enhance fault characteristic information, which

is to introduce VMD into adaptive SR in the

cascade piecewise linear system. By VMD, the

interference signal of the signal is gradually

filtered out. Through the cascade mechanism,

the weak bearing fault characteristic signals are

effectively enhanced step by step.

It is worth noting that VMD is used to process the

enhanced signal at each level. For different IMFs, we

only need to focus on extracting the IMF containing

the fault feature information, which effectively repre-

sents the state of the bearing. Then, by the signal

enhancement mechanism of adaptive SR, the high-

order noise energy is transferred to the characteristic

order and the fault characteristic information is

effectively enhanced. The method can not only be

used in the bearing fault diagnosis but also other rotary

parts of the equipment.
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