
ORIGINAL PAPER

Coexisting multi-stability of Hopfield neural network based
on coupled fractional-order locally active memristor and its
application in image encryption

Dawei Ding . Heng Xiao . Zongli Yang . Honglin Luo . Yongbing Hu .

Xu Zhang . Yan Liu

Received: 23 December 2021 / Accepted: 14 March 2022 / Published online: 1 April 2022

� The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract Locally active memristor has become a

research hotspot, and plays an important role in the

research of neural networks. In order to study the

dynamic behavior of synaptic crosstalk, coupled frac-

tional-order locally active memristor is proposed to

simulate the phenomenon of synaptic crosstalk in

Hopfield neural network (HNN). It is found that the

HNN model with coupled locally active memristor has

multi-stability under different fractional order and

coupling coefficient by phase diagram, bifurcation

diagram, Lyapunov exponents, and attraction basin.

Moreover, special phenomenon such as transient chaos

is also found. Furthermore, the proposed memristive

HNNmodel is implemented based onARMplatformby

microcomputer, and the experimental results are in good

agreementwith the numerical simulation. Finally, based

on the memristive HNN model, a color image encryp-

tion scheme based on DNA encoding and chaotic

sequence is proposed, which has great keyspace and

good encryption effect, and we implement encryption

scheme in ARM platform by microcomputer.

Keywords Fractional-order locally active

memristors � Hopfield neural network � Synaptic
crosstalk � Multi-stability � Color image encryption

1 Introduction

Based on the completeness of circuit variable combi-

nations, Chua theoretically predicted the existence of

memristor in 1971 [1]. In 2008, HP Labs reported the

realization and research results of memristor[2]. From

then on, because of its nonlinear characteristic, mem-

ristor is used in many fields, such as computer science

[3], bioengineering [4], neural network [5–7], chaotic

circuit [8,9], image encryption [10, 11]. Fractional-

order calculus dates back to Leibniz, Riemann,

Letnikov and Liouville [12]. Due to its computational

complexity and few fields can be used in reality,

fractional-order calculus is considered to be a useless

mathematical tool. Recently, some researchers have

found that fractional-order calculus is closer to reality,

and objects can be described more accurately using it

than integer-order ones. Thus, fractional-order calcu-

lus has been widely used in physical phenomena of

memory, medicine, digital image processing and other

fields [13–15]. There are two classes of methods to

solve fractional-order calculus: frequency-domain

methods and time-domainmethods [16]. TheAdomian

Decomposition Method (ADM) in the time-domain

methods is superior to the others due to its higher

operational accuracy, faster convergence and less

D. Ding � H. Xiao � Z. Yang (&) �
H. Luo � Y. Hu � Y. Liu
School of Electronics and Information Engineering,

Anhui University, Hefei 230601, China

e-mail: 07115@ahu.edu.cn

X. Zhang

China Academy of Information and Communications

Technology (CAICT), Haidian, China

e-mail: zhangxu1@caict.ac.cn

123

Nonlinear Dyn (2022) 108:4433–4458

https://doi.org/10.1007/s11071-022-07371-0(0123456789().,-volV)( 0123456789().,-volV)

http://orcid.org/0000-0002-6278-642X
http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-022-07371-0&amp;domain=pdf
https://doi.org/10.1007/s11071-022-07371-0


resource consumption [17]. Therefore, deducingmem-

ristor to fractional order may have better nonlinear and

memory properties. Coopmans et al. generalized the

memristive system to fractional order, and studied the

effect of fractional-order coefficient of memristive

system [18]. Si et al. proposed a fractional-order

charge-controlled memristor and found that the area of

the pinched hysteresis loops of the memristor

decreaseswith the decrease of the fractional order [19].

Recently, memristor with locally active character-

istics had been recognized. In 2014, Chua was the first

person to propose the concept of locally active

memristor, which is defined as a memristor with

negative differential resistance or negative conductiv-

ity in some voltage or current values [20]. Locally

activity is the root cause of complexity [21], and it has

rich nonlinear and complex dynamic characteristics,

which is important for amplifying the weak signal and

keeping oscillation in nonlinear system [22]. Ying

et al. proposed a bi-stable locally active memristor and

discussed in detail its state switching mechanism to

simulate fast switching between different switching

states [23]. Dong et al. proposed a bi-stable bi-locally

active memristor, which has two stable pinched hys-

teresis loops and two symmetrical locally active

regions [24]. The fractional-order locally active

memristor theoretically has more abundant dynamic

phenomena. Yu et al. proposed a fractional-order

chaotic system based on a locally active memristor and

found that the system has coexisting behavior [25].

Xie et al. proposed a fractional-order multi-stable lo-

cally active memristor with infinitely many coexisting

pinched hysteresis loops, and it was found that the

petal area of pinched hysteresis loops increased with

the decrease of fractional-order coefficient [26].

The human brain is one of the most complex

systems, which is composed of a large number of

interconnected neurons, and it is found that the

abnormal firing behaviors of neural network may

cause the confusion of human brain nervous system

[27, 28]. HNN is similar to human brain neural network

in structure, and the structure is simple [29]. HNN is

used to simulate human brain neural network, and

many rich and interesting dynamic phenomena are

found [30], [31]. At the same time, using memristor to

simulate the synapse of neural network greatly expands

the research significance of artificial neural network

[32], [33]. Therefore, the study of chaotic dynamics of

neural network is meaningful, which can help to better

understand the pathogenesis of some diseases of the

nervous system. Chen et al. proposed a three-order

two-neuron-based autonomous memristive HNN

by using the memristor synapse to simulate the poten-

tial difference between two neurons, and the numerical

results demonstrate coexisting multi-stable patterns of

the spiral chaotic patterns with different dynamic

amplitudes, periodic patterns with different periodic-

ities, and stable resting patternswith different positions

in the memristive HNN [34]. Bao et al. constructed a

fourth-order memristor-coupled HNN by using a new

hyperbolic memristor synapse to replace the self-

connection weight values of HNN, and the simulation

results show that the proposed HNN model has

asymmetry under different memristor parameters

[35]. In the human brain neural network, the signals

released between synapses may affect each other, and

this phenomenon is called synaptic crosstalk [36, 37].

Leng et al. proposed coupled hyperbolic memristors to

simulate the synaptic crosstalk behavior in HNN, and

the results show that synaptic crosstalk behavior can

lead to abundant nonlinear behaviors [38].

In recent years, multi-stability and extreme multi-

stability in some systems have attracted the attention of

researchers [39–46]. Lai et al. reported a novel two-

memristor-based 4D chaotic system, which can yield

infinite coexisting attractors, and studied the genera-

tion mode of infinite coexisting attractors [47]. Lai

et al. reported a new no-equilibrium chaotic system

with hidden attractors and coexisting attractors, and

discovered hidden coexisting chaotic and periodic

attractor by selecting different initial values [48].

Chang et al. proposed a chaotic system consisting of

four coupled first-order autonomous differential equa-

tions, and it’s found that the extreme multi-stability of

the system is hidden and symmetrically distributed

[49]. Lai presented a unified four-dimensional auton-

omous chaotic system with various coexisting attrac-

tors, and it is found that the dynamic behavior of the

system is determined by its special nonlinearities with

multiple zeros. The existence of symmetrically coex-

isting attractors, asymmetrical coexisting attractors

and infinitely many coexisting attractors is proved

numerically by discussing two cases of sine function

nonlinearity of the system [50]. Song et al. proposed a

non-inductive third-order Wien-bridge circuit based

on a locally active memristor and found that the main

properties of the system are coexisting attractors and

multi-stability [51]. In addition, multi-stability and
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extreme multi-stability phenomena have also been

explored in some neural networks. Li et al. proposed a

Hindmarsh–Rose neuron model of a locally active

memristor with four stable pinched hysteresis loops,

and it’s found that there are multiple firing modes

coexisting in different initial states of memristor [52].

Lin et al. established a novel Hindmarsh–Rose neuron

network with locally active memristor and demon-

strated that the proposed neuron generated multiple

firing modes, such as periodic bursting, periodic

spiking, chaotic bursting, chaotic spiking, stochastic

bursting [53]. Many researchers have proved the

existence of various attractors in HNN, such as point

attractor, chaotic attractor and hyperchaotic attractor.

Lin et al. proposed a multi-stable locally active

memristor and established a memristor synapse cou-

pled HNN with extreme multi-stability [54]. Bao et al.

revealed themulti-stability with coexistence of chaotic

attractors with different positions and periodic attrac-

tors with different periodicities in a simple HNN based

on three neurons [55].

In the information age, people pay more attention to

information security, and image security is an impor-

tant aspect of information security. The chaotic system

is very sensitive to the initial conditions, and the

chaotic motion is stochastic in the chaotic attraction

domain. Therefore, the image encryption algorithm

based on chaotic sequence is more reliable and secure

[56], [57]. DNA programming algorithm has the

characteristics of large parallelism, large storage space

and low power consumption, which includes DNA

addition, DNA subtraction, DNA complementary

operation, DNA XOR operation and so on. Therefore,

DNA computing and DNA coding technology can be

applied to information security [58]. Wu et al. pro-

posed a color image encryption scheme based on DNA

andmultiple improved chaotic systems [59]. Chai et al.

proposed an image encryption algorithm based on

DNA sequence operation and chaotic system, and

experimental results and security analysis not only

show good encryption performance, but also can resist

known attacks [60]. Fractional-order chaotic system

has strong nonlinearity, high unpredictability and

randomness, and takes the derivative order of frac-

tional-order chaotic system as the secret key, which has

a larger key space. Therefore, fractional-order chaotic

system has more advantages in image encryption [61].

At present, most studies use a single memristor to

simulate the impact of synapses on neural network, but

there are few studies on the impact of twomemristors on

neural network, and there is interaction between the two

memristors. Inspired by above discussion, a fractional-

order locally active voltage-controlled memristor is

proposed, and the effect of fractional order on the

hysteresis loops of the memristor is discussed. Then, a

coupled fractional-order locally active memristor is

introduced into the third-order HNN to simulate the

synaptic crosstalk behavior in the HNN. The dynamic

behavior of the proposed HNN is studied by phase plot,

bifurcation diagram, Lyapunov exponents and attrac-

tion basin. The innovations of this paper are listed as

follows: (1) We introduce a coupled fractional-order

locally active memristor into the third-order HNN

model; (2) We find the multi-stable coexistence behav-

iors of chaotic attractors with different locations, quasi-

periodic attractors, and periodic attractors of different

topologies, and also found special phenomena such as

transient chaotic attractors; (3) In order to further

understand the complex dynamical behaviors, we

implement the proposed HNN model based on ARM

platformbymicrocomputer and the experimental results

are in good agreement with the numerical simulation;

(4) In order to expand the application of chaotic systems,

we propose a color image encryption scheme based on

the fractional-order chaotic system and implement it

with ARM platform, and results show that the

scheme has good encryption effect.

The rest of this paper is shownas follows. InSect. 2, a

fractional-order locally active voltage controlled mem-

ristor is proposed, and the influence of fractional-order

coefficient on the hysteresis loop of memristor is

discussed. In Sect. 3, we introduce a coupled frac-

tional-order locally activememristor into the third-order

HNN model and analyze the dynamical behavior of the

proposed HNN. In Sect. 4, the digital implementation

based on the ARM of the system is introduced. In

Sect. 5, a color image encryption algorithm based on

fractional-order system is proposed. Finally, conclusion

of this paper is drawn in Sect. 6.

2 Coupled fractional-order locally active

memristor

In this section, a fractional-order locally active

voltage-controlled memristor is proposed, and a

coupled fractional-order locally active memristor

model is introduced.
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Fractional-order calculus.

Grunwald–Letnikov definition, Riemann–Liouville

definition, and Caputo definition are three commonly

used definitions of fractional-order calculus [62]. In

this paper, our work is based on the Caputo’s

definition, which is described as follows.

c
0D

q
t f ðtÞ ¼

dm

dtm
f ðtÞ; q ¼ m

1

Cðm� qÞ

Z t

0

f ðmÞðsÞ
ðt � sÞqþ1�m

ds; m� 1\q\m

8>><
>>:

ð1Þ

where f ðtÞ is a continuous function of time and CðÞ is a
gamma function with the manifestation of

CðpÞ ¼
R1
0

tp�1e�tdt.

2.1 Fractional-order locally active memristor

According to the definition of memristor, a fractional-

order locally active voltage-controlled memristor is

obtained.

Dq
t x ¼ �x3 þ x� v;

i ¼ GðxÞv:

(
ð2Þ

where GðxÞ ¼ a� b tanhðxÞ is memductance, a and b

are two constants. v, i and x are input voltage, output

current and state variable, respectively. q 2 ð0; 1�,
when q ¼ 1, the memristor becomes an integer-order

one.

Set the parameters q ¼ 0:9,a ¼ �1, b ¼ 2, and take

v ¼ A sinð2pftÞ sinusoidal voltage signal as driving

signal, where A ¼ 4V . The pinched hysteresis loops of

the memristor under different f values are shown in

Fig. 1. As can be seen from Fig. 1, the pinched

hysteresis loops tend to be a single-valued function

with the increase of f . To investigate the effect of

fractional-order coefficient q on memristor character-

istics, we set the parameters a ¼ �1, b ¼ 2, and take

v ¼ A sinð2pftÞ sinusoidal voltage signal as driving

signal, where A ¼ 4V and f ¼ 0:5Hz. The larger the

petal area of the pinched hysteresis loop, the better the

memory properties of the memristor. With different

fractional-order coefficient q, the pinched hysteresis

loops of memristor are shown in Fig. 2. The results

show that the area of the pinched hysteresis loops

increases first and decreases later with the decrease of

the value of q. Therefore, the fractional-order mem-

ristor has better memory properties than the integer-

order memristor. The fractional-order memristor has

richer memory properties with the difference of the

value of q.

Non-volatility is not a character of all memristor

devices, and it can be judged by Power-Off Plot

(POP). According to Chua’s non-volatility theorem, a

curved Dq
t xjv¼0 has multiple intersections with the

horizontal axis in POP. If there are two or more

intersections with negative slope, the memristor is

non-volatile [63]. We set the parameters a ¼ �1, b ¼
2 and q ¼ 0:9, the POP of the proposed locally active

memristor is shown in Fig. 3. It can be seen that there

are 3 points of intersection between the curve and the

horizontal axis, Q1ð�1; 0Þ, Q2ð0; 0Þ and Q3ð1; 0Þ.

Fig. 1 Pinched hysteresis loops with different f values

Fig. 2 Pinched hysteresis loops with different q values
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According to Chua’s non-volatility theorem, the

equilibrium points Q1, Q3 are asymptotically stable,

and Q2 are unstable.

Not all the memristors are locally active, and it is

difficult to judge whether the memristor is locally

active by its pinched hysteresis loops. We can judge

the locally active characteristics of memristor by DC

V-I plot [24]. The memristor is locally active if there is

a region of negative slope in the DC V-I plot.

According to Eq. (2), let Dq
t x ¼ 0, we can get Eq. (3).

v ¼ �x3 þ x;

i ¼ ða� b tanhðxÞÞv:

(
ð3Þ

Setting a ¼ �1, b ¼ 2, q ¼ 0:9 and�1:5� x� 1:5,

we intercept the DC V-I plot in the region

�0:5� v� 0:5, which shown in Fig. 4. It is found

that the blue curve has a positive slope and the red

curve has a negative slope. Therefore, the proposed

fractional-order memristor is locally active.

2.2 Coupled fractional-order locally active

memristor

In this subsection, a coupled fractional-order locally

active memristor is introduced.

Dq
t u ¼ �u3 þ u� v1;

i2 ¼ ða1 � b1 tanhðuÞÞv1:

(
ð4Þ

Dq
t w ¼ �w3 þ w� v2;

i2 ¼ ða2 � b2 tanhðwÞÞv2:

(
ð5Þ

where u and w denote the state variables of memris-

tors, a1, b1, a2 and b2 are constants.

Through coupling, the coupled fractional-order

locally active memristor can be obtained.

w1 ¼ a1 � b1 tanhðuÞ þ c1 tanhðwÞ;
w2 ¼ a2 � b2 tanhðwÞ þ c2 tanhðuÞ:

(
ð6Þ

where c1, c2 represent the crosstalk strength of the

memristors, w1 and w2 are memductance of coupled

memristor.

3 HNNwith coupled fractional-order locally active

memristor

In this section, we introduce a coupled fractional-order

locally active memristor into the third-order HNN

model. The equilibrium and stability of the proposed

HNN model are analyzed, and the multi-stable behav-

iors of the coexistence of HNN systems are studied.

HNN model.

For an HNN system with n neurons, for the neuron-

i, the circuit state equation can be expressed by

Ci
dxi
dt

¼ � xi
Ri

þ
Xn
j¼1

wij tanhðxjÞ þ Ii

where xi is the voltage across Ci. Ri, Ii denote

membrane resistance inside and outside the nerve

and input bias current, respectively. The hyperbolic

tangent function tanhðxjÞ represents neuron activation

function. The synaptic weight wij is a resistor. In this

paper, a HNN with three neurons is considered for

Ci ¼ 1, Ri ¼ 1 and Ii ¼ 0, as shown in Fig. 5 [38]. A

Fig. 3 POP curve of the memristor

Fig. 4 DC V-I plot of memristor
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coupled fractional-order locally active memristor

between neuron 1 and neuron 3 is used to simulate

the synaptic crosstalk phenomenon in HNN model,

and a fractional-order HNN model is obtained.

By introducing the memristor into the nervous

system, the synaptic coupling neuron model of the

memristor can be obtained, and its mathematical

model is as follows.

Dq
t x ¼ �xþ w11 tanhðxÞ þ w12 tanhðyÞ � k2w2 tanhðzÞ

Dq
t y ¼ �yþ w21 tanhðxÞ þ w22 tanhðyÞ þ w23 tanhðzÞ

Dq
t z ¼ �zþ k1w1 tanhðxÞ þ w32 tanhðyÞ þ w33 tanhðzÞ

Dq
t u ¼ �u3 þ uþ tanhðxÞ

Dq
t w ¼ �w3 þ wþ tanhðzÞ

w1 ¼ a1 � b1 tanðuÞ þ c1 tanhðwÞ
w2 ¼ a2 � b2 tanhðwÞ þ c2 tanhðuÞ

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð7Þ

where x, y and z are three state variables representing

the potentials across the membrane capacitors

between the inside and outside of the three neurons,

tanhðxÞ, tanhðyÞ and tanhðzÞ are three-neuron activa-

tion functions. w11 is the synaptic weight of neuron 1

itself, w12 is the synaptic weight of neuron 2 affecting

neuron 1, w21 is the synaptic weight of neuron 1

affecting neuron 2, w22 is the synaptic weight of

neuron 2 itself, w23 is the synaptic weight of neuron 3

affecting neuron 2, w32 is the synaptic weight of

neuron 2 affecting neuron 3, w33 is the synaptic weight

of neuron 3 itself. w1 ¼ a1 � b1 tanhðuÞ þ c1 tanhðwÞ
is the synaptic weight of neuron 1 affecting neuron 3,

and w2 ¼ a2 � b2 tanhðwÞ þ c2 tanhðuÞ is the synaptic
weight of neuron 3 affecting neuron 1. k1,k2 are the

strength parameters of w1 and w2, respectively. c1, c2
represent the crosstalk strength of the w1 and w2,

respectively.

3.1 Equilibrium point and stability analysis

Set Dq
t x ¼ Dq

t y ¼ Dq
t z ¼ Dq

t u ¼ Dq
t w ¼ 0, and

w11 ¼ �1:4, w12 ¼ 1:16, w21 ¼ 1:1, w22 ¼ 0,

w23 ¼ 2:82, w32 ¼ �2, w33 ¼ 4, a1 ¼ 1, a2 ¼ 8,

b1 ¼ 0:02, b2 ¼ 0:04, c1 ¼ �0:1, c2 ¼ 0:2, k1 ¼ 1,

k2 ¼ 1. According to Eq. (7), the equilibrium points

can be obtained as,

E ¼ ða tanhð _u3 � _uÞ;w21 tanhða tanhð _u3 � _uÞÞ
þ w23 tanhða tanhð _w3 � _wÞÞ; a tanhð _w3

� _wÞ; _u; _wÞ; ð8Þ

where ð _u; _wÞ are the intersection points of two

following functions as

where w1 ¼ a1 � b1 tanhðuÞ þ c1 tanhðwÞ and

w2 ¼ a2 � b2 tanhðwÞ þ c2 tanhðuÞ.

F1ðu;wÞ ¼ �a tanhðu3 � uÞ þ w11 tanhða tanhðu3 � uÞÞ þ w12 tanhðw21 tanhða tanhð _u3 � _uÞÞ
þ w23 tanhða tanhð _w3 � _wÞÞÞ � k2w2 tanhða tanhðw3 � wÞÞ;

F2ðu;wÞ ¼ �a tanhðw3 � wÞ þ k1w1 tanhða tanhðu3 � uÞÞ þ w32 tanhðw21 tanhða tanhð _u3 � _uÞÞ
þ w23 tanhða tanhð _w3 � _wÞÞÞ þ w33 tanhða tanhðw3 � wÞÞ:

8>>>><
>>>>:

ð9Þ

Fig. 5 HNN for two coupled fractional-order locally active

memristors
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ð _u; _wÞ can be determined by graphical analytic

methods. The real solutions of the functions F1ðu;wÞ
and F2ðu;wÞ is shown in Fig. 6, which has nine real

solutions ð0; 0Þ, ð0;�1Þ, ð0; 1Þ, ð�1; 0Þ, ð1; 0Þ,
ð�1;�1Þ, ð�1; 1Þ, ð1;�1Þ, ð1; 1Þ. Then, substituting
ð _u; _wÞ into Eq. (8) gets a set of equilibrium points.

The Jacobian matrix at the equilibrium points E is

derived form Eq. (7) aswhere w1 ¼ a1 � b1 tanhðuÞ
þc1 tanhðwÞ, w2 ¼ a2 � b2 tanhðwÞ þ c2 tanhðuÞ,
m1 ¼ sech2ðxÞ, m2 ¼ sech2ðyÞ, m3 ¼ sech2ðzÞ,
m4 ¼ sech2ðuÞ, m5 ¼ sech2ðwÞ.

According to the equilibrium points, we can get

m1 ¼ sech2ðxÞ ¼ 1, m2 ¼ sech2ðyÞ ¼ 1, m3 ¼ sech2

ðzÞ ¼ 1, tanhðxÞ ¼ 0, tanhðyÞ ¼ 0, tanhðzÞ ¼ 0.

Therefore, Eq. (10) can be reduced to the following

formula.

J ¼

�1þ w11 w12 �k2a2 0 0

w21 �1þ w22 w23 0 0

k1a1 w32 �1þ w33 0 0

1 0 0 �3u2 þ 1 0

0 0 1 0 �3w2 þ 1

2
66664

3
77775:

ð11Þ

According to Eq. (11), for the equilibrium point E,

the characteristic polynomial equation is yielded as,

PðkÞ ¼ detðkE � JÞ ¼ ðkþ 3u2 � 1Þðkþ 3w2 � 1Þ
ðk� 0:5346Þðkþ 0:4673þ 2:2012iÞ
ðkþ 0:4673� 2:2012iÞ:

ð12Þ

Base on the fractional-order theory, the equilibrium

points will be asymptotically stable if eigenvalues of E

meet the requirement:

argðkiÞj j ¼ argðReðkiÞ þ jImðkiÞÞj j[ 0:5qp; i
¼ 1; 2; 3; 4; 5; ð13Þ

which is equivalent to

q[ ð2=pÞ argðReðkiÞÞ þ jImðkiÞj j; ð14Þ

therefore, when q meets Eq. (14), E is unstable.

According to Eq. (12), setting qwith 0.9, one of the

eigenvalues corresponding to the equilibrium point is

always k ¼ 0:5346, which meets the unstable condi-

tion given by inequation (14). Based on above

discussion, all the real equilibrium points are unstable.

The unstable equilibrium points may lead to the

complex dynamic behavior of HNN network, such as

period and chaos.

J ¼

�1þ w11m1 w12m2 �k2w2m3 �k2c2 tanhðzÞm4 k2b2 tanhðzÞm5

w21m1 �1þ w22m2 w23m3 0 0

k1w1m1 w32m2 �1þ w33m3 �k1b1 tanhðxÞm4 k1c1 tanhðxÞm5

m1 0 0 �3u2 þ 1 0

0 0 m3 0 �3w2 þ 1

2
66664

3
77775; ð10Þ

Fig. 6 The real solutions of the functions F1ðu;wÞ and F2ðu;wÞ
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3.2 Multi-stable behaviors of coexistence

This subsection will prove the multi-stable behaviors

of the coexistence of HNN model through phase

diagrams, bifurcation diagrams, Lyapunov exponents

and attraction basin. Firstly, the effect of fractional

order q is studied. Then, the effect of coupling strength

c1 is studied. At the same time, the phenomenon of

transient chaos and two-parameter bifurcation dia-

grams are discussed.

3.2.1 Dynamic behaviors of fractional-order q.

The bifurcation diagram is used to show the topolog-

ical changes of phase space caused by the changes of

system parameters. Lyapunov exponents can charac-

terize the motion characteristics of the system, and the

value of the Lyapunov exponent along a certain

direction indicates the average divergence or conver-

gence rate of the adjacent orbits in the attractor along

this direction. Setw11 ¼ �1:4, w12 ¼ 1:16, w21 ¼ 1:1,

w22 ¼ 0, w23 ¼ 2:82, w32 ¼ �2, w33 ¼ 4, a1 ¼ 1,

a2 ¼ 8, b1 ¼ 0:02, b2 ¼ 0:04, c1 ¼ �0:1, c2 ¼ 0:2,

k1 ¼ 1, k2 ¼ 1. And set the initial values of the HNN

model as ð0;�0:1; 0; 0; 0Þ, ð0; 0:1; 0; 0; 0Þ and

ð0; 0:8; 0; 0; 0Þ, respectively. The system parameter

of fractional-order q changes within the range of

ð0:25; 1Þ, then the bifurcation diagrams and Lyapunov

exponents corresponding to q are shown in Fig. 7.

When q takes different values, the corresponding

phase plots are shown in Fig. 8. Phase plot is the

record of system motion track, which reflects the

change of system state, and it is the most direct method

to observe system dynamic behavior. From Fig. 7, it

can be seen that the bifurcation diagram and the

dynamic behavior of Lyapunov exponents are com-

pletely consistent. At the same time, we can observe

that the dynamic behavior of the parameter q is

different for the three different initial values. Red

motions represent the system orbits with the initial

value ð0; 0:1; 0; 0; 0Þ. By observing the trajectory of

the red motion, we can find that the system enters the

period-2 from the period-1, then enters the chaotic

state through the period-doubling bifurcation. Then

the state degrades from chaos to period-4 by the

reverse period-doubling bifurcation. Next, a transient

chaos window is entered through period-doubling

bifurcation again. After the narrow chaotic window

disappears, the period-4 eventually enters into the

period-2 by the reverse period-doubling bifurcation.

Green motions represent the system orbits with the

initial value ð0; 0:8; 0; 0; 0Þ. Before q ¼ 0:59, the

green trajectory is consistent with the red trajectory.

However, after q ¼ 0:59, the green trajectory jumps

from the narrow chaotic window to the period-2, and

eventually it goes into a period-1 by reverse period-

doubling bifurcation. The blue motion trajectory

corresponds to the initial value of ð0;�0:1; 0; 0; 0Þ.
Through the period-doubling bifurcation, the blue

trajectory enters the period-2 from the period-1, and

then enters the chaotic state. When q 2 ð0:5; 0:64Þ, the
system is in a short periodic window, and after

Fig. 7 Coexisting behaviors of fractional-order q 2 ð0:25; 1Þ, the red corresponds to the initial value ð0; 0:1; 0; 0; 0Þ, the green to the

initial value ð0; 0:8; 0; 0; 0Þ, and the blue to the initial value ð0;�0:1; 0; 0; 0Þ. a bifurcation diagram, b Lyapunov exponents
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q ¼ 0:64, the system enters chaos again. From Fig. 7,

it can be concluded that the proposed HNN model has

abundant coexistence multi-stability, such as the

coexistence of period of different topologies, quasi

period, chaos with different locations. The phase

diagrams of coexisting multi-stable attractors in the

x� u plane shown in Fig. 8 also prove that the

proposed HNN model has abundant coexisting multi-

stability. In Fig. 8, the red attractors correspond to the

initial value of ð0; 0:1; 0; 0; 0Þ, the green attractors to

the initial value of ð0; 0:8; 0; 0; 0Þ, and the blue

attractors to the initial value of ð0;�0:1; 0; 0; 0Þ.
To further differentiate the coexisting multi-

stable behaviors between quasi-period, period and

chaos demonstrated in Fig. 8, the corresponding z

dynamics of variable z plane using the 0–1 test are

shown in Fig. 9. The results show that the irregular

distribution corresponds to chaotic motion, while the

relatively regular distribution corresponds to quasi-

periodic motion and periodic motion.

3.2.2 Dynamic behaviors of coupling coefficient c1

Set w11 ¼ �1:4, w12 ¼ 1:16, w21 ¼ 1:1, w22 ¼ 0,

w23 ¼ 2:82, w32 ¼ �2, w33 ¼ 4, a1 ¼ 1, a2 ¼ 8,

b1 ¼ 0:02, b2 ¼ 0:04, c2 ¼ 0:2, k1 ¼ 1, k2 ¼ 1 and

q ¼ 0:9. And set the initial values of the HNN model

as ð0;�0:1; 0; 0; 0Þ, ð0; 0:1; 0; 0; 0Þ and

ð0; 0:8; 0; 0; 0Þ, respectively. The system parameter

of coupling coefficient c1 changes within the range of

ð�0:4; 0:4Þ, then the bifurcation diagram and Lya-

punov exponents corresponding to c1 are shown in

Fig. 10. In order to show more clearly the coexistence

dynamic behavior of the coupling coefficient c1 under

three different initial values, the bifurcation diagram

and Lyapunov exponents in the range of c1 2
ð�0:2; 0Þ are analyzed in detail, as shown in Fig. 11.

Similarly, the bifurcation diagram and Lyapunov

exponential dynamics behavior are consistent. Red

motions represent the system orbits with the initial

value ð0; 0:1; 0; 0; 0Þ. In the range of c1 2 ð�0:2; 0Þ,

Fig. 8 Coexisting attractors of x� u plane under different

initial values, the red corresponds to the initial value

ð0; 0:1; 0; 0; 0Þ, the green to the initial value ð0; 0:8; 0; 0; 0Þ,

and the blue to the initial value ð0;�0:1; 0; 0; 0Þ. a q ¼ 0:25, b
q ¼ 0:4, c q ¼ 0:45, d q ¼ 0:63, e q ¼ 0:7, f q ¼ 0:8
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Fig. 9 The p� q coexisting plot of variable z using 0–1 test. a q ¼ 0:25, b q ¼ 0:4, c q ¼ 0:45, d q ¼ 0:63, e q ¼ 0:7, f q ¼ 0:8

Fig. 10 Coexisting

behaviors of coupling

coefficient c1 2 ð�0:4; 0:4Þ,
the red corresponds to the

initial value ð0; 0:1; 0; 0; 0Þ,
the green to the initial value

ð0; 0:8; 0; 0; 0Þ, and the blue

to the initial value

ð0;�0:1; 0; 0; 0Þ.
a bifurcation diagram,

b Lyapunov exponents

Fig. 11 Coexisting

behaviors of coupling

coefficient c1 2 ð�0:2; 0Þ,
the red corresponds to the

initial value ð0; 0:1; 0; 0; 0Þ,
the green to the initial value

ð0; 0:8; 0; 0; 0Þ, and the blue

to the initial value

ð0;�0:1; 0; 0; 0Þ.
a bifurcation diagram,

b Lyapunov exponents
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the red bifurcate diagram from period-1 to period-2,

and then into a chaotic state by the period-doubling

bifurcation. And we can find that there is a short

period-3 window and a narrow chaotic window in the

period-1 range. Green motions represent the system

orbits with the initial value ð0; 0:8; 0; 0; 0Þ. In the

range of c1 2 ð�0:2; 0Þ, the green curve goes through

the period-doubling bifurcation, from period-1 to

period-2, and then it goes into chaos. It is also found

that there is a short period-3 window between period-1

and period-2. The blue motion trajectory corresponds

to the initial value ð0;�0:1; 0; 0; 0Þ. In the range of

c1 2 ð�0:2; 0Þ, the system starts out in a chaotic state,

then jumps to a period-3 state with three bubbles, and

eventually re-enters the chaotic state by the period-

doubling bifurcation. When c1 takes different values,

the corresponding attractors in the x� u plane are

shown in Fig. 12. From Figs. 11 and 12, it can be

found that the proposed HNN model has rich coexis-

tence multi-stable behaviors, such as the coexistence

of different topological periods, quasi-periods and

chaos with different locations can be found. In Fig. 12,

the red attractors correspond to the initial value of

ð0; 0:1; 0; 0; 0Þ, the green attractors to the initial value

of ð0; 0:8; 0; 0; 0Þ, and the blue attractors to the initial

value of ð0;�0:1; 0; 0; 0Þ.

3.2.3 Transient chaotic attractors

In addition, the phenomena of transient chaotic

attractors are found in the proposed HNN model. Set

w11 ¼ �1:4, w12 ¼ 1:16, w21 ¼ 1:1, w22 ¼ 0,

w23 ¼ 2:82, w32 ¼ �2, w33 ¼ 4, a1 ¼ 1, a2 ¼ 8,

b1 ¼ 0:02, b2 ¼ 0:04, c2 ¼ 0:2, k1 ¼ 1, k2 ¼ 1 and

q ¼ 0:9. And set c1 ¼ 0:0568 the initial value of the

HNN model as ð0; 0:8; 0; 0; 0Þ. The time domain

spectrum and attractor of the HNN model are shown

in Fig. 13. It can be seen from Fig. 13 that the attractor

first oscillates in chaos and eventually stabilizes at

period-2 oscillation. When we set c1 ¼ 0:3428 and the

initial values of the HNN model as ð0; 0:8; 0; 0; 0Þ. As
can be seen from Fig. 14, with the change of time t, the

attractor first enters the chaotic state, then passes

through the transition state, and eventually stabilizes

at period-1 oscillation. From Figs. 13 and 14, it can be

found that the transient chaotic attractor eventually

stabilizes at different periodic states, indicating that

the proposed HNN has rich dynamic phenomena.

3.2.4 Local basin of attraction and coexisting multi-

stable behaviors.

By measuring the initial values, the attraction basin of

the initial condition domain can be obtained, in which

different types of dynamic states are marked with

different colors. Set w11 ¼ �1:4, w12 ¼ 1:16,

w21 ¼ 1:1, w22 ¼ 0, w23 ¼ 2:82, w32 ¼ �2, w33 ¼ 4,

a1 ¼ 1, a2 ¼ 8,b1 ¼ 0:02, b2 ¼ 0:04, c2 ¼ 0:2,

k1 ¼ 1, k2 ¼ 1. For the fractional-order q ¼ 0:9 and

coupling coefficient c1 ¼ �0:1 in the proposed HNN

model, the local attraction basin in the yð0Þ � zð0Þ
plane with xð0Þ ¼ 0, uð0Þ ¼ 0 and wð0Þ ¼ 0 is shown

in Fig. 15, where different color regions represent

different attractors. In Fig. 15a, the attraction basin in

the plane areas of x 2 ð�1; 1Þ and y 2 ð�1; 1Þ is

drawn, in which the orange area represents chaos, the

cyan area represents period-2, the blue area represents

period-1 and the yellow area represents period-3. In

Fig. 15b, four attractors on the x� u plane correspond

to the four attraction domains of different colors in

Fig. 15a. We set the fractional-order q ¼ 0:9 and

coupling coefficient c1 ¼ �0:15 in the proposed HNN

model, the local attraction basin in the yð0Þ � zð0Þ
plane with xð0Þ ¼ 0,uð0Þ ¼ 0 and wð0Þ ¼ 0 is shown

in Fig. 16. In Fig. 16a, the attraction basin in the plane

areas of x 2 ð�1; 1Þ and y 2 ð�1; 1Þ is drawn, in

which the orange area and yellow area represent

period-3 with different positions, the cyan area and

blue area represent period-1 with different positions.

In Fig. 16b, four attractors on the x� u plane corre-

spond to the four attraction domains of different colors

in Fig. 16a. According to the above analysis, at least

four different attractors coexist in the proposed HNN

model, so the proposed HNN model has multi-

stable behaviors.

3.2.5 Dynamics analysis about the parameters c1
and q

The measurement of two parameters can be described

as a two-parameters bifurcation diagram, in which

different types of dynamic states are marked by

different colors. Two-parameters bifurcation diagram

can prove that the proposed system has rich dynamic

behaviors. When parameters c1 and q change simul-

taneously, the dynamic behavior of HNN model will

be greatly affected. Therefore, the influence of

parameter c1 and parameter q on the nervous system

123

Coexisting multi-stability of Hopfield neural network 4443



dynamic behavior is worth discussing. Set

w11 ¼ �1:4, w12 ¼ 1:16, w21 ¼ 1:1, w22 ¼ 0,

w23 ¼ 2:82, w32 ¼ �2, w33 ¼ 4, a1 ¼ 1, a2 ¼ 8,

b1 ¼ 0:02, b2 ¼ 0:04, c2 ¼ 0:2, k1 ¼ 1, k2 ¼ 1, by

scanning the values of c1 and q upward, where c1 2
ð�0:4; 0:2Þ and q 2 ð0:4; 1Þ, the two-parameter

bifurcation diagram on the c1 � q plane was obtained

through numerical simulation, as shown in Fig. 17,

where Fig. 17a, b and c corresponds to three different

initial values ð0;�0:1; 0; 0; 0Þ, ð0; 0:1; 0; 0; 0Þ and

ð0; 0:8; 0; 0; 0Þ, respectively. It can be seen that

different colors represent different oscillation states,

Fig. 12 Coexisting attractors of x� u plane under different

initial values, the red corresponds to the initial value

ð0; 0:1; 0; 0; 0Þ, the green to the initial value ð0; 0:8; 0; 0; 0Þ,

and the blue to the initial value ð0;�0:1; 0; 0; 0Þ. a c1 ¼ �0:2, b
c1 ¼ �0:165, c c1 ¼ �0:16, d c1 ¼ �0:15, e c1 ¼ �0:135, f
c1 ¼ �0:1, g c1 ¼ �0:08, h c1 ¼ �0:04, i c1 ¼ 0� 0:021
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where the blue region representing period and the

yellow region representing chaos. It can be seen from

Fig. 17 that the distribution of chaotic state and

periodic state is irregular, indicating that the proposed

system has rich dynamic behaviors.

4 Hardware experiment based on ARM platform

Hardware implementation is an important method to

verify the feasibility of chaotic system. Considering

that it is difficult to implement fractional-order system

Fig. 14 Time domain

spectrum and phase portrait

of transient chaotic attractor

with c1 ¼ 0:3428. a time

domain spectrum, b phase

portrait

Fig. 15 Local basin of

attraction. a with q ¼ 0:9
and c1 ¼ �0:1, the local
attraction basin in the y� z
plane, in which the orange

area represents chaos, the

cyan area represents period-

2, the blue area represents

period-1 and the yellow area

represents period-3, b the

four different attractors on

the y� z plane correspond
to the attraction domains of

four different colors in

Fig. 13a

Fig. 13 Time domain

spectrum and phase portrait

of transient chaotic attractor

with c1 ¼ 0:0568. a time

domain spectrum, b phase

portrait
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in analog circuit, this paper considers the digital

implementation method based on ARM platform by

microcomputer. At the same time, the digital imple-

mentation method has higher stability and accuracy

than the analog circuit [64, 65]. Therefore the

proposed fractional HNNmodel is realized by running

32-bit STM32F750 at 216 MHz. We use ADM to

discretize fractional-order HNN model, and the

specific iterative steps are in appendix.

The digital implementation based on ARM plat-

form is shown in Fig. 18. Calculate the values of all

gamma functions and hnq(n = 1,2,3) before iterative

calculation, and then perform iterative calculation on

ARM. The calculation results are displayed on the

analog oscilloscope (GWINSTEK GOS-602) through

12-bit D / A converter. When the iteration step is 0.01,

according to the analysis results in Fig. 12, different

coupling coefficient c1 were selected and tested on the

ARM platform, the other parameters are consistent

with those in Fig. 12. Figs. 19, 20 and 21 show the

phase diagrams, which are captured by the analog

oscilloscope. As a result, the experimental results

based on ARM are in good agreement with the

corresponding numerical simulation result. That is to

say, the fractional-order HNN model has been suc-

cessfully verified on the ARM platform.

5 Application in image encryption

As long as the system can generate chaotic sequences,

then chaotic sequences can be used for image encryp-

tion. Therefore, we apply the proposed HNN model to

image encryption and decryption. A DNA sequence

Fig. 17 Two-parameters bifurcation diagram in c1-q plane corresponding to different initial values. a (0,-0.1,0,0,), b (0,0.1,0,0,0), c
(0,0.8,0,0,0)

Fig. 16 Local basin of

attraction. a with q = 0.9 and

c1=-0.15, the local

attraction basin in the y-z

plane, in which the orange

area represents left period-3,

the cyan area represents

right period-1, the blue area

represents lift period-1 and

the yellow area represents

right period-3, b the four

different attractors on the

y-z plane correspond to the

attraction domains of four

different colors in Fig. 14a
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consists of four nucleic acids A(Adenine), T(Thy-

mine), C(Cytosine) and G(Guanine), in which A is

complementary to T and C is complementary to T

[66]. 00 and 11, 01 and 10 are also two complementary

pairs in binary pairs. Therefore, it is feasible to encode

four nucleic acids A, T, C and G with 00, 11, 01 and

10, and there are only 8 kinds of encoding combina-

tions satisfying the Watson–Crick complement rule

[67].

5.1 Image encryption scheme

We propose an image encryption scheme based on

DNA encoding and chaotic sequence. The encryption

scheme is shown in Fig. 22. The encryption

scheme can be divided into two parts, one is the

generation of chaotic sequence, the other is the

encryption of image by DNA coding and chaotic

sequence.

Fig. 18 The digital

implementation based on

ARM platform. a program

flow for ARM

implementation, b digital

circuit experimental

platform

Fig. 19 When the initial value (0,0.1,0,0,0), phase diagrams generated based on ARM platform and simulation image under different

c1 in x-u plane. a, e c1=-0.2, b, f c1=-0.165, c, g c1=-0.1, d, h c1=-0.04
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5.1.1 Generating chaotic sequence

In order to improve the security of image encryption,

we use the proposed HNN model to generate pseudo-

random sequence. The steps are as follows:

Step 1: The proposed memristor chaotic system is

iterated N0 þ mn times, and the last mn iterations are

regarded as valid data. Each iteration can get eight

state values xið1Þ, xið2Þ, xið3Þ, xið4Þ, xið5Þ,
xið1Þ þ xið2Þ, xið2Þ þ xið3Þ, xið3Þ þ xið4Þ, where

i 2 ½1;mn�.
Step 2: xið1Þ, xið2Þ, xið3Þ, xið4Þ, xið5Þ, xið1Þ þ xið2Þ,

xið2Þ þ xið3Þ, xið3Þ þ xið4Þ, i 2 ½1;mn� are used to

generate sequences sði; jÞ 2 ½0; 255�, i 2 ½1;mn�,
j 2 ½1; 8�½1; 8�.The specific calculation formula is as

follows.

sði; jÞ ¼ modffloorðð xiðjÞj j � floorð xiðjÞj jÞÞ
�107Þ; 256g; i 2 ½1;mn�; j 2 ½1; 8�;

ð15Þ

where mod() denotes the modulo operation and floor()

denotes flooring operation.

sðiÞ ¼ ½sði:1Þ; sði; 2Þ; sði; 3Þ; sði; 4Þ; sði; 5Þ; sði; 6Þ;
sði; 7Þ; sði; 8Þ�:

ð16Þ

Step 3: A chaotic sequence is generated, which can

be described as,

k ¼ ½sð1Þ; sð2Þ; sð3Þ; :::; sðmnÞ�: ð17Þ

5.1.2 Image encryption

The specific steps of image encryption are divided into

the following parts:

Step 1: After the chaotic sequence k is generated,

the color image P of size m� n is read and decom-

posed into R, G and B, and then R, G and B are,

respectively, converted into three binary sequences

SR, SG and SB. The chaotic sequence k is arranged in

ascending order to obtain a new sequence kx Accord-

ing to the index of sequence kx, the sequences SR, SG

and SB are scrambled to obtain three scrambled

sequences SR0, SG0 and SB0. Next, three scrambled

binary sequences SR0, SG0 and SB0 are reshaped to

obtain three reshaped arrays mR, mG and mB of size

m� n.

Step 2: According to the rules of DNA encoding

(Table 1), three DNA sequences DR, DG, DG are

obtained by encoding mR, mG, mB with the second

rules of DNA encoding. DR, DG, DB are added

according to the following formula (Table 2):

Fig. 20 When the initial value (0,0.8,0,0,0), phase diagrams

generated based on ARM platform and simulation image under

different c1 in x-u plane. a, cc1=-0.2, b, d c1=-0.04

Fig. 21 When the initial value (0,-0.1,0,0,0), phase diagrams

generated based on ARM platform and simulation image under

different c1 in x-u plane. a, c c1=-0.2, b, d c1=-0.135
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DR0ð1Þ ¼ DRð0Þ þ DRð1Þ;
DR0ðiÞ ¼ DRði� 1Þ þ DRðiÞ ; i 2 ½2; 4mn�

(

ð18Þ

DG0ð1Þ ¼ DGð0Þ þ DGð1Þ;
DG0ðiÞ ¼ DGði� 1Þ þ DGðiÞ ; i 2 ½2; 4mn�

(

ð19Þ

DB0ð1Þ ¼ DBð0Þ þ DBð1Þ;
DB0ðiÞ ¼ DBði� 1Þ þ DBðiÞ ; i 2 ½2; 4mn�

(

ð20Þ

where ? denotes the DNA addition rule and DRð0Þ,
DGð0Þ, DBð0Þ are initial value.

Step 3: DNA sequence DK is obtained by coding

the first m� n data of chaotic sequence k according to

the third coding rule of DNA. Then DR, DG, DB and

DK were, respectively, used for DNA addition oper-

ation (Table 2) to obtain DR00, DG00 and DB00.

DR00 ¼ DR0 þ DK;DG00 ¼ DG0 þ DK;DB00

¼ DB00 þ DK: ð21Þ

Step 4: A new empty sequence kx0 is constructed.
Then traverse the first 4m� n data of chaos k, and

divide the data by 256 for each traversal. If the result is

greater than or equal to 0 and less than or equal to 0.5,

0 will be stored in sequence kx
0
, if the result is greater

than 0.5 and less than 1, 1 will be stored in sequence

kx0, and we will get a 4m� n mask sequence. Finally,

DR00, DG00 and DB00 are complemented (Table 2) with

kx0, respectively, the specific formula is as follows:

DR000 ¼ DR00 � kx0 � DG000 ¼ DG00 � kx0;DB000

¼ DB00 � kx0; ð22Þ

where � is DNA complementary operation.

Step 5: The first DNA coding rule is used to decode

DR000, DG000, DB000 to obtain a binary sequence bR, bG,

bB.

Fig. 22 The flowchart of

encryption

Table 2 The operations of DNA sequences

? �

A G C T A G C T

A A G C T A G C T

G G C T A G A T C

C C T A G C T A G

T T A G C T C G A

Table 1 DNA coding rules

Rule 1 2 3 4 5 6 7 8

00 A A C T G G C T

01 C G A C A T T G

10 G C T G T A A C

11 T T G A C C G A
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Step 6: The firstm� n data of chaotic sequence k is

transformed into a binary sequence bk. A bit XOR

operation is performed between bR and bk, bG and bk,

bB and bk to obtain the binary sequence bR0, bG0 and
bB0.

Step 7: Let the sequence obtained in step 6 converts

to the cipher image QR, QG and QB.

The decryption process can be obtained by invert-

ing the encryption process.

5.2 Simulation results

We use 512 * 512 color Lena image as the original

image, the simulation results are shown in Fig. 23.

5.3 The simulation results based on the hardware

environment

Hardware implementation is an important method to

verify the feasibility of our proposed color image

encryption scheme. We use 32-bit STM32F750 to

implement the proposed encryption scheme, and the

simulation results based on the hardware environment

are shown in Fig. 24. The simulation results based on

the hardware environment are consistent with Fig. 23.

That is to say, our proposed color image encryption

scheme has been successfully verified on the hardware

platform.

Security analysis.

Fig. 23 The simulation results. a The original image; b the encrypted image; c the right decrypted image; d the error decrypted image

Fig. 24 The simulation results based on the hardware environment. a The original image; b the encrypted image
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5.4 Key sensitivity analysis

Chaotic sequence is generated by using chaotic

systems with initial values ð0;�0:1; 0; 0; 0Þ for color
image encryption. Then a chaotic sequence is gener-

ated using a chaotic system with initial value

ð0;�0:1þ 10�15; 0; 0; 0Þ to decrypt the encrypted

image. The decrypted image was found to be incon-

sistent with the original image is shown in Fig. 23. It

shows that the encryption scheme is very sensitive to

the key and has strong resistance to attack.

5.4.1 Statistical analysis

The security of image encryption scheme can be

evaluated by histogram. With gray value as abscissa

and ordinate as the frequency of gray value, the graph

representing the relationship between frequency and

gray value is the histogram of gray image. As shown

in Fig. 25a, c, e are the histogram of the original image

and (b), (d), (f) are the histogram of the encrypted

image. Through comparison, it can be found that the

histogram of the encrypted image is relatively uni-

form, whereas the histograms of the original images

are changed irregularly. Therefore, the encrypted

image can effectively resist the statistical attack.

The correlation of adjacent pixels reflects the corre-

lation of adjacent pixel values of the image. A good

image encryption algorithm should reduce the correla-

tion between adjacent pixels to zero. In general, you

should analyze the horizontal, vertical, and diagonal

pixels of the image. The specific formula is as follows,

rxy ¼ covðx; yÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðxÞDðyÞ

p
; ð23Þ

covðx; yÞ ¼ Ef½x� EðxÞ�½y� EðyÞ�g; ð24Þ

DðxÞ ¼ 1

N

XN
i¼1

½xi � EðxÞ�2; ð25Þ

EðxÞ ¼ 1

N

XN
i¼1

xi; ð26Þ

where N, EðxÞ, EðyÞ represent the total number of

pixels, xi, yi, respective, and cosðx; yÞ represents

correlation function and DðxÞ represents mean square

deviation.

From Fig. 26 and Table 3, we can see that the

correlation of the original image is high, while that of

the encrypted image is low, which shows that the

encrypted image can hide the information of the

original image well.

5.4.2 Information entropy

Information entropy can be used to evaluate the

randomness of images. When the information entropy

of the image is closer to 8, it indicates that the

randomness of the image is stronger and the effect of

image encryption is better. The calculation formula of

information entropy is as follows:

HðxÞ ¼ �
XN
i¼1

pðxiÞ logðpðxiÞÞ; ð27Þ

where N is the grayscale level, xi denotes the gray

level of the image, pðxiÞ is the probability that xi
occurs.

Fig. 25 The histogram of original image and encrypted image

Fig. 26 The correlation of original image and encrypted image
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The information entropy of the original image and

the encrypted image in R, G and B channels is shown

in Table 4. According to Table 4, it can be found that

the information entropy of encrypted images in R, G

and B channels is close to 8, which indicates that the

proposed encryption scheme is secure enough.

5.4.3 The ability to resist attacks

Images are vulnerable to noise during transmission.

Add salt and pepper noise with different noise

densities to the encrypted image, then decrypt the

encrypted image to detect the anti-noise ability of the

proposed encryption scheme. As shown in Fig. 27, it

can be found that the proposed encryption scheme has

a strong anti-noise capability.

The proposed image encryption scheme can resist

cropping attack well. As shown in Fig. 28, the

encrypted image is randomly clipped with some

Table 4 Information entropy of the original image and the

encrypted image

R G B

Original image 7.2531 7.5940 6.9684

Encrypted image 7.9979 7.9982 7.9992

Fig. 27 Decrypted images attacked by salt and pepper noise with different noise densities. a noise density is 0.04, b noise density is

0.08, c noise density is 0.16, d noise density is 0.2

Fig. 28 Cropping attack. a, c show the encrypted image after the clipping attack; b, d show the decrypted image after the clipping

attack

Table 3 Correlation coefficient of original image and

encrypted image

R G B

Original

image diagonal

vertical

horizontal

Encrypted

image diagonal

vertical

horizontal

0.9737

0.9880

0.9775

-8.9898e-4

0.0010

0.0015

0.9605

0.9817

0.9662

0.0012

0.0041

-0.0025

0.9219

0.9568

0.9304

-0.0015

-0.0013

2.5633e-4

123

4452 D. Ding et al.



effective information, then the encrypted image after

being attacked is decrypted. It can be found that the

decrypted image still contains a large number of

effective information of the original image. Therefore,

the proposed color image encryption scheme has good

robustness against cropping attack.

5.5 Comparison with other schemes

We use Lena as the test image, and compare the

proposed algorithm with other encryption schemes.

We calculated the information entropy and correlation

coefficients of the encrypted image, and compared

these results with those of other encryption schemes,

as shown in Tables 5 and 6. It can be seen from the

table that the encryption scheme we proposed has

better encryption effect than the scheme in the

references. At the same time, the proposed encryption

scheme has strong anti-noise capability and anti-attack

capability. As a consequence, the algorithm has high

security.

6 Conclusion

In this paper, a fractional-order locally active mem-

ristor is proposed, and the influence of fractional order

on hysteresis loops, locally activity and non-volatile

characteristics are studied. And we propose a novel

fractional-order memristor-coupled HNN model by a

coupling fractional-order locally active memristor for

emulating the synaptic crosstalk. It is found that chaos

with different locations, quasi-period, and period of

different topologies by changing fractional order and

coupling coefficient. Special phenomenon such as

transient chaos is also found. When the initial

conditions change, there are all kinds of coexisting

attractors. Through theoretical analysis and mathe-

matical derivation, the phase diagrams, Lyapunov

exponent diagrams, two-parameter bifurcation dia-

grams and local attraction basins of HNN model are

given. Moreover, we use ARM platform to implement

the proposed fractional-order HNN model, and the

attractors of hardware implementation are consistent

with numerical simulation. Finally, a color image

encryption scheme based on fractional-order HNN

model and DNA encoding is proposed, which has

good encryption effect and security. The encryption

process is implemented through ARM platform, and

the results show that the implementation of hardware

platform is consistent with the numerical simulation.

In the future, we will explore new locally active

memristors and design more interesting memristive

neural circuits, and we want to study the influence of

locally active memristor on the coexisting behavior of

chaotic systems. Based on the requirements of the

practical application, we will pay more attention to

using FPGA implementation.

Data availability statement Data will be made available on

reasonable request.
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Appendix

ADM for HNN based on a coupled locally active

memristor.

The system (7) is rewritten as follows for facilitat-

ing the calculation.

Let c10 ¼ xðt0Þ; c20 ¼ yðt0Þ; c30 ¼ zðt0Þ;
c40 ¼ uðt0Þ; c50 ¼ wðt0Þ, where

ðxðt0Þ; yðt0Þ; zðt0Þ; uðt0Þ;wðt0ÞÞ are the initial values

of fractional-order HNN model.

Table 5 Information entropy of this paper and other studies

R G B

Ours 7.9979 7.9982 7.9992

Ref. [68] 7.9972 7.9972 7.9972

Ref. [69] 7.9974 7.9970 7.9971

Ref. [70] 7.9918 7.9931 7.9969

Table 6 Correlation coefficient of the some encrypted images

in R channel

Horizontal Vertical Diagonal

Ours 0.0015 0.0010 -8.9898e-4

Ref. [68] -0.0024 0.0035 0.0014

Ref. [69] 0.0067 -0.0127 0.0060

Ref. [70] -0.0028 -0.0068 -0.0035
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Dq
t x ¼ �xþ w11 tanhðxÞ þ w12 tanhðyÞ � k2ða2 � b2 tanhðwÞ þ c2 tanhðuÞÞ tanhðzÞ

Dq
t y ¼ �yþ w21 tanhðxÞ þ w22 tanhðyÞ þ w23 tanhðzÞ

Dq
t z ¼ �zþ k1ða1 � b1 tanðuÞ þ c1 tanhðwÞÞ tanhðxÞ þ w32 tanhðyÞ þ w33 tanhðzÞ

Dq
t u ¼ �u3 þ uþ tanhðxÞ

Dq
t w ¼ �w3 þ wþ tanhðzÞ

8>>>>>><
>>>>>>:

ð28Þ

c12 ¼ �c11 þ w11ð�c11ðtanhðc10Þ2 � 1ÞÞ þ w12ð�w21ðtanhðc20Þ2 � 1ÞÞ � k2a2ð�c31ðtanhðc30Þ2 � 1ÞÞ
þ k2b2ð�c31 tanhðc50Þðtanhðc30Þ2 � 1Þ � c51 tanhðc30Þðtanhðc50Þ2 � 1ÞÞ � k2c2ð�c31 tanhðc40Þðtanhðc30Þ2 � 1Þ
� c41 tanhðc30Þðtanhðc40Þ2 � 1ÞÞ

c22 ¼ �c21 þ w21ð�c11 tanhðc10Þ2 � 1Þ þ w22ð�c21ðtanhðc20Þ2 � 1ÞÞ þ w23ð�c31ðtanhðc30Þ2 � 1ÞÞ
c32 ¼ �c31 þ k1a1ð�c11ðtanhðc10Þ2 � 1ÞÞ � k1b1ð�c11 tanhðc40Þðtanhðc10Þ2 � 1Þ � c41 tanhðc10Þðtanhðc30Þ2 � 1ÞÞ

þ k1c1ð�c11 tanhðc50Þðtanhðc10Þ2 � 1Þ � c51 tanhðc10Þðtanhðc50Þ2 � 1ÞÞ þ w32ð�c21ðtanhðc20Þ2 � 1ÞÞ
þ w33ð�c31ðtanhðc30Þ2 � 1ÞÞ

c42 ¼ �3c240c41 þ c41 � c11ðtanhðc10Þ2 � 1Þ
c52 ¼ �3c250c51 þ c51 � c31ðtanhðc30Þ2 � 1Þ

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

ð30Þ

c11 ¼ �c10 þ w11 tanhðc10Þ þ w12 tanhðc20Þ � k2ða2 � b2 tanhðc50Þ þ c2 tanhðc40ÞÞ tanhðc30Þ
c21 ¼ �c20 þ w21 tanhðc10Þ þ w22 tanhðc20Þ þ w23 tanhðc30Þ
c31 ¼ �c30 þ k1ða1 � b1 tanhðc40Þ þ c1 tanhðc50ÞÞ tanhðc10Þ þ w32 tanhðc20Þ þ w33 tanhðc30Þ
c41 ¼ �c340 þ c40 þ tanhðc10Þ
c51 ¼ �c350 þ c50 þ tanhðc30Þ

8>>>>>><
>>>>>>:

ð29Þ
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c13 ¼ �c12 þ w11ðc211 tanhðc10Þðtanhðc10Þ
2 � 1ÞCð2qþ 1Þ

C2ðqþ 1Þ
� c12ðtanhðc10Þ2 � 1ÞÞ þ w12ðc221 tanhðc20Þðtanhðc20Þ

2 � 1ÞCð2qþ 1Þ
C2ðqþ 1Þ

� c22ðtanhðc20Þ2 � 1ÞÞ � k2a2ðc231 tanhðc30Þðtanhðc30Þ
2 � 1ÞCð2qþ 1Þ

C2ðqþ 1Þ
� c32ðtanhðc30Þ2 � 1ÞÞ

þ k2b2ðc31c51ðtanhðc30Þ2 � 1Þðtanhðc50Þ2 � 1ÞCð2qþ 1Þ
C2ðqþ 1Þ

� c52 tanhðc30Þðtanhðc50Þ2 � 1Þ � c32 tanhðc50Þðtanhðc30Þ2 � 1Þ

þ c231 tanhðc30Þ tanhðc50Þðtanhðc30Þ
2 � 1ÞCð2qþ 1Þ

C2ðqþ 1Þ
þ c51 tanhðc30Þ tanhðc50Þðtanhðc50Þ2 � 1ÞCð2qþ 1Þ

C2ðqþ 1Þ
Þ

� k2c2ðc31c41ðtanhðc30Þ2 � 1Þðtanhðc40Þ2 � 1ÞCð2qþ 1Þ
C2ðqþ 1Þ

� c42 tanhðc30Þðtanhðc40Þ2 � 1Þ � c32 tanhðc40Þðtanhðc30Þ2 � 1Þ

þ c231 tanhðc30Þ tanhðc40Þðtanhðc30Þ
2 � 1ÞCð2qþ 1Þ

C2ðqþ 1Þ
þ c241 tanhðc30Þ tanhðc40Þðtanhðc30Þ

2 � 1ÞCð2qþ 1Þ
C2ðqþ 1Þ

Þ

c23 ¼ �c22 þ w21ðc211 tanhðc10Þðtanhðc10Þ
2 � 1ÞCð2qþ 1Þ

C2ðqþ 1Þ
� c12ðtanhðc10Þ2 � 1ÞÞ þ w22ðc221 tanhðc20Þðtanhðc20Þ

2 � 1ÞCð2qþ 1Þ
C2ðqþ 1Þ

� c22ðtanhðc20Þ2 � 1ÞÞ þ w23ðc231 tanhðc30Þðtanhðc30Þ
2 � 1ÞCð2qþ 1Þ

C2ðqþ 1Þ
� c32ðtanhðc30Þ2 � 1ÞÞ

c33 ¼ �c32 þ k1a1ðc211 tanhðc10Þðtanhðc10Þ
2 � 1ÞCð2qþ 1Þ

C2ðqþ 1Þ
� c12ðtanhðc10Þ2 � 1ÞÞ � k1b1ðc11c41ðtanhðc10Þ2 � 1Þðtanhðc40Þ2 � 1ÞCð2qþ 1Þ

C2ðqþ 1Þ

� c42 tanhðc10Þðtanhðc40Þ2 � 1Þ � c12 tanhðc40Þðtanhðc10Þ2 � 1Þ þ c211 tanhðc10Þ tanhðc40Þðtanhðc10Þ
2 � 1ÞCð2qþ 1Þ

C2ðqþ 1Þ

þ c241 tanhðc10Þ tanhðc40Þðtanhðc40Þ
2 � 1ÞCð2qþ 1Þ

C2ðqþ 1Þ
Þ þ k1c1ðc11c51ðtanhðc10Þ2 � 1Þðtanhðc50Þ2 � 1ÞCð2qþ 1Þ

C2ðqþ 1Þ
�

c52 tanhðc10Þðtanhðc50Þ2 � 1Þ � c12 tanhðc50Þðtanhðc10Þ2 � 1Þ þ c211 tanhðc10Þ tanhðc50Þðtanhðc10Þ
2 � 1ÞCð2qþ 1Þ

C2ðqþ 1Þ
þ

c251 tanhðc10Þ tanhðc50Þðtanhðc50Þ
2 � 1ÞCð2qþ 1Þ

C2ðqþ 1Þ
Þ þ w32ðc212 tanhðc20Þðtanhðc20Þ

2 � 1ÞCð2qþ 1Þ
C2ðqþ 1Þ

� c22ðtanhðc20Þ2 � 1ÞÞþ

w33ðc231 tanhðc30Þðtanhðc30Þ
2 � 1ÞCð2qþ 1Þ

C2ðqþ 1Þ
� c32ðtanhðc30Þ2 � 1ÞÞ

c43 ¼ �3c42c
2
40 � 3c40c

2
41 þ c42 þ c211 tanhðc10Þðtanhðc10Þ

2 � 1ÞCð2qþ 1Þ
C2ðqþ 1Þ

� c12ðtanhðc10Þ2 � 1Þ

c53 ¼ �3c52c
2
50 � 3c50c

2
51 þ c52 þ c231 tanhðc30Þðtanhðc30Þ

2 � 1ÞCð2qþ 1Þ
C2ðqþ 1Þ

� c32ðtanhðc30Þ2 � 1Þ

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð31Þ

~xðtÞ ¼ c10 þ c11
ðt � t0Þq

Cðqþ 1Þ þ c12
ðt � t0Þ2q

Cð2qþ 1Þ þ c13
ðt � t0Þ3q

Cð3qþ 1Þ

~yðtÞ ¼ c20 þ c21
ðt � t0Þq

Cðqþ 1Þ þ c22
ðt � t0Þ2q

Cð2qþ 1Þ þ c23
ðt � t0Þ3q

Cð3qþ 1Þ

~zðtÞ ¼ c30 þ c31
ðt � t0Þq

Cðqþ 1Þ þ c32
ðt � t0Þ2q

Cð2qþ 1Þ þ c33
ðt � t0Þ3q

Cð3qþ 1Þ

~uðtÞ ¼ c40 þ c41
ðt � t0Þq

Cðqþ 1Þ þ c42
ðt � t0Þ2q

Cð2qþ 1Þ þ c43
ðt � t0Þ3q

Cð3qþ 1Þ

~wðtÞ ¼ c50 þ c51
ðt � t0Þq

Cðqþ 1Þ þ c52
ðt � t0Þ2q

Cð2qþ 1Þ þ c53
ðt � t0Þ3q

Cð3qþ 1Þ

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

ð32Þ
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