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Abstract A two-strain model, comprising of drug-
sensitive and drug-resistant strains, is proposed for the
dynamics of Human Immunodeficiency Virus (HIV)
spread in a community. A treatment model is intro-
duced by taking drug adherence into account. The
treatment-free model is analyzed for the effect of
treatment availability and drug adherence on disease
dynamics. The analysis revealed that for the treatment-
free model, at least one strain faces competitive exclu-
sion, and co-existence of both strains is not possible.
On the contrary, both strains may co-exist in pres-
ence of treatment. The analysis carried out was both
local, as well as global. A comprehensive bifurcation
analysis showed periodic behaviour and all solutions
approached a stable limit cycle for awide range of para-
metric values. Overall, we concluded that the treatment
availability and drug adherence play a significant role
in determining the dynamics of HIV spread. Numeri-
cal simulations are performed to validate the analytical
results using MATLAB.
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1 Introduction

From the epidemiological perspective, Human Immun-
odeficiency Virus (HIV) is a RNA retrovirus that pro-
gressively weakens the hosts’ immune system by tar-
geting the helper CD4+ T cells [1,2]. The entry of HIV
into CD4+ T cells happens through the translation of
RNA into DNA, using a viral enzyme called reverse
transcriptase. The level of severity of HIV infection
can be measured by the viral load or the CD4+ T cell
count. In particular, an HIV-infected patient is classi-
fied as having Acquired Immunodeficiency Syndrome
(AIDS), if the CD4+ T cell count decreases from the
normal level (of around 1000 mm−3) to 200 mm−3

or below [2]. In the absence of any treatment, HIV
infection is almost certainly fatal, leading to the death
of an infected person within 5–10 years [3]. Despite
the continuous progress in the field of treatment and
prevention, there is no cure or vaccine for HIV infec-
tion yet. However, there are therapeutic interventions
like antiretroviral therapy (ART), which reduces the
replication of HIV significantly, thereby improving the
prognosis for the infected person [4]. Clinical trials and
observational studies have shown a substantial reduc-
tion in mortality and morbidity, leading to increased
life expectancy in HIV-infected patients treated with
ART [4–7]. With the enhanced accessibility to medical
facilities, around 73% of individuals living with HIV
had started ART by the end of 2020 [8].
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Drug adherence usually refers to the degree towhich
a patient adheres to the prescribed medications, and
plays a vital role in the control of chronic diseases,
in general. The viral suppression of HIV replication
is significantly associated with the adherence to ART
regimens [9]. Optimal adherence to ART helps in pre-
venting onward HIV transmission to others [10,11],
minimizing the emergence of drug resistance [12,13]
and brings down the HIV related mortality [14]. There
are several factors, namely, personal attributes, institu-
tional management, treatment related factors and psy-
chological factors that lead to ART non-adherence, in
developing as well as developed countries [15]. The
fear of disclosure of HIV diagnosis and subsequent
stigma in the society [16–18], low self-efficacy and
reading ability [19], aswell asmental illness [17,20] are
some major concerning factors related to ART adher-
ence. The situation gets exacerbated when two major
diseases collide. In this context, the COVID-19 pan-
demic has severely affected the ART adherence in HIV
patients. On one hand, COVID-19 has interrupted the
ART drug supply due to transportation difficulties (as
most cities have implemented some formof lockdown),
while on the other hand, overstretched healthcare sys-
tem under COVID-19 resulted in lower quality of clin-
ical care for HIV patients, in addition to suspension
of HIV testing [21–23]. It has also increased the cases
of mental health issues such as depression and anxiety
[24]. In July 2020, WHO announced that 73 countries
have warned of being at risk of stock of ARTmedicines
running out because of the COVID-19 pandemic, and
24 countries reported having either an extremely low
stock of ARTs or disruptions in the supply of these vital
medicines [25]. Therefore, it becomes very crucial to
study the impact of drug adherence on the dynamics of
HIV infection in a population.

The phenomenon of HIV drug resistance (HIVDR)
continuously remains amajor clinical and public health
issue, because resistant HIV not only increases the vul-
nerability of the infected patients, but also the like-
lihood of transmission to others [26,27]. The drug-
resistantmutant generally develops via inadequate drug
concentration during the treatment. There are lot of rea-
sons of inadequate drug level such as poor adherence,
treatment interruptions, host genetics, or use of sub-
optimal drug combinations [13]. HIVDR can be classi-
fied as primary (transmitted) and secondary (acquired).
Primary HIVDR exists even before the initiation of
ART.This type of resistance is usually transmitted from

other drug-resistant infected person or acquired during
previous treatment to eliminate vertical transmission of
HIV [28]. This leads to the failure of first-line regimens,
especially when not identified at the time ofART initia-
tion [29].On the other hand, secondaryHIVDRevolves
through selection process between virus mutants under
sub-optimal drug adherence [13]. The development of
drug resistance can be easily represented by the follow-
ing schematic diagram.

HIV Infection ART + Sub-optimal Adherence Emergence of Drug Resistance

Among people failing ART, the levels of resistance
reached up to 97% [30]. ART is highly exposed to poor
or sub-optimal drug adherence due to the above dis-
cussed factors. As a result, the risk of emergence of
drug resistance is increasing, concurrently, with the
improvement in the coverage of ART. To control the
development of HIVDR, it is extremely important to
study the impact of ART and its adherence to the
dynamics of drug resistance in HIV infected popula-
tion.

Mathematicalmodelling has been useful in epidemi-
ology over the years to determine the major contribut-
ing factors to the disease dynamics. Several researchers
have analyzed the within-host [2,31–33] and between-
host [3,34–40] dynamics of HIV spread. The initial
efforts towards modelling the HIV dynamics in a com-
munity were carried out in [34,35] and subsequently
various refinements have been added to the modelling
frameworks. In [3], Cai et al. considered an HIV/AIDS
treatment model by dividing the period of infection
into the asymptomatic and the symptomatic phases
and showed the dependency of disease status on dif-
ferent treatment levels. Naresh et al. [37] proposed a
mathematical model for the spread of HIV/AIDS in a
population of varying size with immigration of infec-
tives and deduced that the restriction on a direct inflow
of infective population can slow down the spread of
infection. A different HIV/AIDS epidemic treatment
model with nonlinear incidence rate showed that appre-
ciable change in the susceptible individual’s sexual
habits reduces both incidence and prevalence of the dis-
ease [39]. Recent studies [36,41–43] have shown the
dynamics of multiple pathogen strains of various infec-
tious diseases including HIV. Sharomi et al. [36] devel-
oped a two-strain HIVmodel of six compartments with
the inclusion of drug-sensitive and drug-resistant HIV-
infected populations. In this study, the authors analyzed
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the impact of ART on HIV dynamics and concluded
that the widespread use of ART, despite the risk of the
development and transmission of drug-resistant strain,
can lead to a significant reduction in disease burden or
even eradicate the HIV infection from a community,
under certain conditions. Further, Kuddus et al. [43]
investigated a two-strain model for general infectious
diseases that have a protracted infectious period with
treatment. They suggested that the emergence of drug
resistance could be reduced if the treatment rate is suf-
ficient to eliminate the drug-sensitive strain from the
population. We note that none of the related prior stud-
ies have explored the role of drug adherence in the pres-
ence of treatment. Also, the effect of drug adherence
on the drug-resistant infected population has not been
studied yet. In this study, we develop a novel mathe-
maticalmodel that includes two separate compartments
for the infected population, namely, the drug-sensitive
and the drug-resistant, and analyze the impact of treat-
ment, and its adherence on the community transmission
of HIV. In particular, we focus on the role of treat-
ment availability and its adherence, in the control of
transmission and emergence of drug-resistant strain in
a community. The key features of relevant models in
literature along with the novelty of the model proposed
here are summarized in Table 1.

To the best of the knowledge of the authors, a rigor-
ous study of the dynamics of HIV spread under treat-
ment in presence of drug-sensitive and drug-resistant
infected population has not be conducted using math-
ematical modelling. Keeping all these facts in mind,
we presented a mathematical model in Sect. 2 and rest
of this article is organized as follows. In Sect. 3, we
analyzed the treatment-free model, followed by the

treatment model. In this section, we discussed non-
negativity and boundedness of the solutions, existence
of equilibriumpoints and their local and global stability
followed by bifurcation analysis. Section 4 is devoted
to the estimation of all the parameters and interpretation
of all analytic results with the help of numerical simu-
lations. Finally, in Sect. 5, we concluded this article by
discussing various possible biological interpretations
of obtained results.

2 Formulation of mathematical model

The model divides the total sexually active population
into four mutually exclusive groups, namely, suscep-
tible (S), infected individuals with the drug-sensitive
strain (IS), infected individuals under treatment (T) and
infected individuals with the drug-resistant strain (IR).
We assume that the individuals are homogeneously dis-
tributed in the given population. The susceptible pop-
ulation increases through the process of recruitment of
individuals, who enter into the sexually active class,
at a constant rate λ. The susceptibles become infected
after an effective contact either with the drug-sensitive
infected or the drug-resistant infected individuals with
the incidence rates of α IS S and β IR S, respectively.
Here α and β represent the effective contact rates of
susceptible with the drug-sensitive infected and the
drug-resistant infected individuals, respectively. Gen-
erally, α is larger than β, since most mutant strains are
less fit than the wild-type strains. We assume that an
effective contact transmits the same type of strain in the
newly infected person. The primary reason for the drug
resistance in the infected population is its acquisition
from the failure of treatment, and not the transmission

Table 1 Comparison between present work and previously existed studies based on various factors

HIV/AIDS dynamics With treatment
class

Multiple strain
study

Incorporation of
drug adherence

With drug
resistant
infected class

References

Yes No No No No [37]

Yes Yes No No No [3,38,39]

Yes No Yes No Yes [40]

No No Yes No No [41]

No Yes Yes No Yes [42]

No No Yes Yes Yes [43]

Yes Yes Yes Yes Yes Present work
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Fig. 1 Schematic representation of the model (2.1)

[44]. Therefore, we do not consider the transmission
of resistance from drug-sensitive infected population.
Further, individuals in each of the groups die naturally
at the rate μ. The poor economic condition of infected
patients, in addition to limited medical infrastructure,
restricts the reach of treatment to only a fraction (η)
of the whole drug-sensitive infected population. More-
over, we assume that only a fraction (ε) of total pop-
ulation under treatment adheres to it, as directed. The
remaining fraction (1−ε) of the treatment class is non-
adherent to the prescribed drugs,which causes this pop-
ulation to develop a drug-resistant strain of the virus.
As a result, individuals of the treatment class will trans-
fer to the drug-resistant infected class at the rate of
(1−ε)T . Also, these remaining fraction of the popula-
tion in the drug-sensitive infected (1−η) and treatment
(1 − ε) compartments die with disease induced death
rate of μS . This population also develops drug resis-
tance because of the sub-optimal adherence to the treat-
ment. Here we are considering only the sub-optimal
adherence to the treatment as the reason for the devel-
opment of drug resistance. The drug-resistant infected
population dies with the disease induced death rate of
μR . We also assume that a drug-resistant infected indi-
vidual is at 100% drug resistance level. In other words,
the treatment does not work at all on drug-resistant
infected population.A schematic representation for this
type of HIV spread is presented in Fig. 1.

Taking into account the aforementioned assump-
tions, the population in each group is determined by
the following deterministic system of coupled nonlin-
ear ordinary differential equations:

S′ = λ − α IS S − β IR S − μS,

I ′
S = α IS S − ηIS − μS(1 − η)IS − μIS,

T ′ = ηIS − (1 − ε)T − μS(1 − ε)T − μT,

I ′
R = β IR S + (1 − ε)T − μR IR − μIR . (2.1)

where all the parameters are as defined in the preceding
description. For simplicity, we define,

a := η + μS(1 − η) + μ,

b := (1 − ε) + μS(1 − ε) + μ and

c := μ + μR .

3 Model analysis

Since the state variables of the model represents the
human population, the solution of system (2.1) needs
to be non-negative (for all non-negative initial condi-
tions) and bounded. We begin with the non-negativity
part. Let t1 denote the time at which the susceptible
population S becomes extinct. Then S(t1) = 0 and
S′(t1) = λ > 0. Therefore � any ε > 0 such that
S(t1) = 0 and S(t1+ε) < 0.Hence S(t1) ≥ 0, ∀t1 > 0
and S(0) ≥ 0. Now, from the second equation of (2.1),

we have, IS(t) = IS(0) exp

[∫ t

0
(αS(τ ) − a) dτ

]
≥ 0
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Fig. 2 Schematic representation of the model (3.1)

for IS(0) ≥ 0. In an analogous manner, from the third
and fourth equation of (2.1), we have, T (t) ≥ T (0) exp[∫ t

0
(−b)dτ

]
≥ 0 and IR(t) = IR(0) exp

[ ∫ t

0

(
βS(τ )

− c
)
dτ

]
≥ 0, respectively.

For the boundedness part, we define W = S + IS +
T + IR . Then,

W ′ = S′ + I ′
S + T ′ + I ′

R

= λ − μW − μS(1 − η)IS − μS(1 − ε)T − μR IR

≤ λ − μW,

which implies that W ≤ λ

μ
:= M1 (say). This shows

that W is bounded by M1. Therefore S, IS , T and IR
are also bounded by M1. From these results, we can
now state the following Theorem (Fig. 2).

Theorem 1 The biologically feasible regionR defined
by:

R =
{
(S, IS, T, IR) ∈ R4+ : 0 ≤ S + IS + T + IR ≤ λ

μ

}

where R4+ denotes the non-negative cone and its lower
dimensional faces, is positively invariant for the system
(2.1) with non-negative initial conditions.

3.1 Treatment-free model

We choose η = 0, ε = 0 and T = 0 in model (2.1)
to analyze the dynamics of HIV spread in the absence

of the treatment. Accordingly, the resultant model is
given by:

S′ = λ − α IS S − β IR S − μS,

I ′
S = α IS S − (μ + μS)IS,

I ′
R = β IR S − (μ + μR)IR . (3.1)

where all the parameters have same meaning as in sys-
tem (2.1). From Theorem 1, we can conclude that for
the treatment-free model (3.1), the feasible region R1

defined by:

R1 =
{
(S, IS, IR) ∈ R3+ : 0 ≤ S + IS + IR ≤ λ

μ

}

is positively invariant with non-negative initial condi-
tions. Therefore, it is sufficient to consider the dynam-
ics of model system (3.1) in the region R1.

3.1.1 Equilibrium points and local stability analysis

For the system given by equation (3.1), there exists
three equilibrium points, as enumerated below.

(A) Disease-free equilibrium point: E (1)
0

(
λ

μ
, 0, 0

)
.

(B) Drug-sensitive equilibrium point: E (1)
1 =

(
S1,

IS1 , 0
)

=
(μ + μS

α
,
λα − μ(μ + μS)

α(μ + μS)
, 0

)
,which

exists provided
λ

μ
>

μ + μS

α
.

(C) Drug-resistant equilibrium point: E (1)
2 =

(
S2, 0,

IR2

)
=

(μ + μR

β
, 0,

λβ − μ(μ + μR)

β(μ + μR)

)
, which

exists provided
λ

μ
>

μ + μR

β
.

Note that the interior equilibrium point E (1)∗ =
(S∗, IS∗, IR∗) does not exists, unless

μ + μR

β

= μ + μS

α
, in which case there are infinitely many

solutions for different initial conditions.
Now, in order to determine the “Basic Reproduc-

tion Number”, for system (3.1), we consider, the next
generation matrix as,

FV−1 =
(

αλ
μ(μ+μS)

0

0 βλ
μ(μ+μR)

)
.

Hence the “Basic Reproduction Number” for the drug-
sensitive strain and the drug-resistant strain are givenby
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Table 2 Existence and
stability conditions for
different equilibrium points

Equilibrium Point Existence Condition Stability Condition

(
λ

μ
, 0, 0

)
Always max

(
R(S)
0 , R(R)

0

)
< 1

(
μ + μS

α
,
λα − μ(μ + μS)

α(μ + μS)
, 0

)
R(S)
0 > 1 R(SR)

0 > 1
(

μ + μR

β
, 0,

λβ − μ(μ + μR)

β(μ + μR)

)
R(R)
0 > 1 R(SR)

0 < 1

R(S)
0 = αλ

μ(μ + μS)
and R(R)

0 = βλ

μ(μ + μR)
, respec-

tively. We denote the ratio of R(S)
0 and R(R)

0 , as

R(SR)
0 := α(μ + μR)

β(μ + μS)
.

Finally, we present the stability analysis for system
(3.1), for which we consider the following Jacobian,

J1 =
⎡
⎣−α IS − β IR − μ −αS −βS

α IS α IS − μ − μS 0
β IR 0 βS − μ − μR

⎤
⎦ .

(A) The eigenvalues of the Jacobin matrix, evaluated

at E (1)
0 are −μ,

αλ − μ2 − μμS

μ
and

βλ − μ2 − μμR

μ
. So the disease-free equilibrium

E (1)
0 is locally stable if, αλ − μ2 − μμS < 0

and βλ − μ2 − μμR < 0, i.e, R(S)
0 < 1 and

R(R)
0 < 1, respectively. This is equivalent to the

condition max
(
R(S)
0 , R(R)

0

)
< 1. Note that under

these conditions E (1)
1 and E (1)

2 do not exist.
(B) One of the eigenvalues of the Jacobinmatrix, eval-

uated at E (1)
1 is given by−μ − μR + β(μ + μS)

α
.

The remaining two eigenvalues are the solutions

of the characteristic equation x2 + αλ

μ + μS
x

−μ(μ+μS)+αλ = 0, which have negative real
parts provided αλ > μ(μ + μS) ⇐⇒ R(S)

0 > 1
(this condition is already satisfied from the exis-
tential condition of E (1)

1 ). Note that the first eigen-
value is negative, provided,
μ + μS

α
<

μ + μR

β
⇐⇒ R(SR)

0 > 1. Therefore

the equilibrium point E (1)
1 is locally stable if and

only if R(SR)
0 > 1.

(C) One of the eigenvalues of the Jacobinmatrix, eval-

uated at E (1)
2 is given by−μ − μS + α(μ + μR)

β
.

The remaining two eigenvalues are the solution

of the characteristic equation x2 + βλ

μ + μR
x

−μ(μ+μR)+βλ = 0, which have negative real
parts provided βλ > μ(μ+μR) ⇐⇒ R(R)

0 > 1
(this condition is already satisfied from the exis-
tential condition of E (1)

2 ). Note that the first eigen-
value is negative, provided,
μ + μR

β
<

μ + μS

α
⇐⇒ R(SR)

0 < 1. Therefore

the equilibrium point E (1)
2 is locally stable if and

only if R(SR)
0 < 1.

The summary of existence and stability conditions
for different equilibrium points are presented in Table
2 and Fig. 3.

Fig. 3 Two-parameter bifurcation diagram showing existence
and stability regions for different equilibrium points of model
(3.1). The dashed boxes contain total existing equilibrium point
while solid boxes contain only stable equilibrium points. The
dashed blue line represents R(S)

0 = R(R)
0
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Table 3 Existent equilibrium points and their stability in different cases

Case In terms of basic reproduction number Existence of equilibria Stable (S)/unstable (US)

P1 < P2 < P3 R(S)
0 > 1, R(R)

0 > 1 and R(SR)
0 > 1 E (1)

0 , E (1)
1 , E (1)

2 S = {E (1)
1 } and US = {E (1)

0 , E (2)
0 }

P1 < P3 < P2 R(S)
0 > 1, R(R)

0 < 1 and R(SR)
0 > 1 E (1)

0 , E (1)
1 S = {E (1)

1 } and US = {E (1)
0 }

P2 < P1 < P3 R(S)
0 > 1, R(R)

0 > 1 and R(SR)
0 < 1 E (1)

0 , E (1)
1 , E (1)

2 S = {E (1)
2 } and US = {E (1)

0 , E (2)
1 }

P2 < P3 < P1 R(S)
0 < 1, R(R)

0 > 1 and R(SR)
0 < 1 E (1)

0 , E (1)
2 S = {E (1)

2 } and US = {E (1)
0 }

P3 < P1 < P2 R(S)
0 < 1, R(R)

0 < 1 and R(SR)
0 > 1 E (1)

0 S = {E (1)
0 } and US = �

P3 < P2 < P1 R(S)
0 < 1, R(R)

0 < 1 and R(SR)
0 < 1 E (1)

0 S = {E (1)
0 } and US = �

Existent equilibrium points and their stability in dif-
ferent cases are presented in Table 3, for which we

define P1 := μ + μS

α
, P2 := μ + μR

β
and P3 := λ

μ

3.1.2 Global stability analysis

Theorem 2 The equilibrium point E (1)
0 is globally

asymptotically stable with R0 < 1.
(
where R0 = max{

R(S)
0 , R(R)

0

} )

Proof We define the Lyapunov function as:

L1(t) = L1(S(t), IS(t), IR(t))

=
(
1 − R(R)

0

)
IS +

(
1 − R(S)

0

)
IR

Then L1

(
E (1)
0

)
= 0 and L1(x) > 0, x 
= E (1)

0 . The

derivative of L1(t) along the solution of system (3.1)
gives

dL1

dt
=

(
1 − R(R)

0

)
I ′
S +

(
1 − R(S)

0

)
I ′
R

=
(
1 − R(R)

0

)
(α IS S − (μ + μS)IS)

+
(
1 − R(S)

0

)
(β IR S − (μ + μR)IR)

≤
(
1 − R(R)

0

)(
αλ

μ
IS − (μ + μS)IS

)

+
(
1 − R(S)

0

)(
βλ

μ
IR − (μ + μR) IR

)

= −(IS(μ + μS) + IR(μ + μR))(
R(S)
0 − 1

) (
R(R)
0 − 1

)
≤ 0, if R0 < 1.

Therefore, by LaSalle invariance principle, E (1)
0 is

globally asymptotically stable if R0 < 1. ��

Theorem 3 The equilibrium point E (1)
1 is globally

asymptotically stable whenever it exists if R(SR)
0 > 1.

Proof We consider the Lyapunov function as:

L2(t) = L2(S(t), IS(t), IR(t))

= S − S1 − S1 ln

(
S

S1

)
+ IS − IS1

−IS1 ln

(
IS
IS1

)
+ IR

The derivative of L2(t) along the solution of system
(3.1) gives

dL2

dt
=

(
1 − S1

S

)
S′ +

(
1 − IS1

IS

)
I ′
S + I ′

R

=
(
1 − S1

S

)
(λ − α IS S − β IR S − μS)

+IS

(
1 − IS1

IS

)
(αS − μ − μS)

+IR (βS − μ − μR)

= λ − μS − λS1
S

+ IR

(
β(μ + μS)(μ + μR)

α(μ + μR)

)

−IR(μ + μR) − α IS1 S + IS1(μ + μS)

+μ(μ + μS)

α

= −μS − λS1
S

+ λα + μ(μ + μS)

α

+IR(μ + μR)

(
RR
0

RS
0

− 1

)

−α IS1 S + IS1(μ + μS)

= − (λ − μSRS
0 )2

μSRS
0

+ IR(μ + μR)

(
RR
0

RS
0

− 1

)

≤ 0, if R(SR)
0 > 1.
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Therefore, by LaSalle invariance principle, E (1)
1 is

globally asymptotically stable if R(SR)
0 > 1. ��

Theorem 4 The equilibrium point E (1)
2 is globally

asymptotically stable whenever it exists if R(SR)
0 < 1.

Proof We define the Lyapunov function as

L3(t) = L3(S(t), IS(t), IR(t))

= S − S2 − S2 ln

(
S

S2

)
+ IS + IR − IR2

−IR2 ln

(
IR
IR2

)

The remaining proof is similar to the proof in The-
orem 3. ��

3.1.3 Bifurcation analysis

Theorem 5 The system (3.1) undergoes through tran-

scritical bifurcation at α = α(1)∗ = μ(μ + μS)

λ
if βλ

− μ2 − μμR < 0 (R(R)
0 < 1). Here, equilib-

rium points E (1)
0 and E (1)

1 exchange their stability at

α = α(1)∗ (or R(S)
0 = 1).

Proof Let α = α(1)∗ = μ(μ + μS)

λ
, then

J1(E
(1)
0 )

∣∣
α=α

(1)∗

=

⎡
⎢⎢⎢⎢⎣

−μ −(μ + μS) −βλ

μ
0 0 0

0 0
βλ − μ2 − μμR

μ

⎤
⎥⎥⎥⎥⎦ ,

and

J T1 (E (1)
0 )

∣∣
α=α

(1)∗
=

⎡
⎢⎢⎣

−μ 0 0
−(μ + μS) 0 0

−βλ

μ
0

βλ − μ2 − μμR

μ

⎤
⎥⎥⎦ .

Notice that one eigenvalueofmatrix J1(E
(1)
0 )

∣∣
α=α

(1)∗
become zero at α = α

(1)∗ and remaining two eigenval-
ues are negative only if βλ − μ2 − μμR < 0. Now,

we choose v =

⎡
⎢⎢⎣

−
(

μ + μS

μ

)

1
0

⎤
⎥⎥⎦ and w =

⎡
⎣0
1
0

⎤
⎦ as

the eigenvectors corresponding to the zero eigenvalues
of the matrices J1(E

(1)
0 )

∣∣
α=α

(1)∗
and J T1 (E (1)

0 )
∣∣
α=α

(1)∗
,

respectively. We rewrite the system (3.1) as
dX

dt
=⎡

⎣ f (S, IS, IR)

g(S, IS, IR)

h(S, IS, IR)

⎤
⎦ = F(E (1)(S, IS, IR)) and v =

⎡
⎣ v1

v2
v3

⎤
⎦. Then,

Fα(E (1)
0 , α(1)∗ ) =

⎡
⎣0
0
0

⎤
⎦ , (3.2)

and

DFα(E (1)
0 , α(1)∗ ) · v =

⎡
⎢⎣

− λ
μ

λ
μ

0

⎤
⎥⎦ . (3.3)

Also, D2F(E (1), α) · (v, v) =⎡
⎣ fSSv1v1 + fS ISv1v2 + fS IRv1v3 + f IS Sv2v1 + f IS ISv2v2 + f IS IRv2v3 + f IR Sv3v1 + f IR ISv3v2 + f IR IRv3v3

gSSv1v1 + gSISv1v2 + gSIRv1v3 + gIS Sv2v1 + gIS ISv2v2 + gIS IRv2v3 + gIR Sv3v1 + gIR ISv3v2 + gIR IRv3v3
hSSv1v1 + hSISv1v2 + hSIRv1v3 + hIS Sv2v1 + hIS ISv2v2 + hIS IRv2v3 + hIR Sv3v1 + hIR ISv3v2 + hIR IRv3v3

⎤
⎦

So,

D2F(E (1)
0 , α(1)∗ ) · (v, v) =

⎡
⎢⎢⎢⎣

2(μ + μS)
2

λ

−2(μ + μS)
2

λ
0

⎤
⎥⎥⎥⎦ . (3.4)

Now, from equations (3.2), (3.3) and (3.4), we can con-
clude that,

1. wT Fα(E (1)
0 , α

(1)∗ ) = 0,

2. wT [DFα(E (1)
0 , α

(1)∗ ) · v] = λ

μ

= 0,

3. wT [D2F(E (1)
0 , α

(1)∗ ) · (v, v)] = −2(μ + μS)
2

λ

=

0.

Therefore, F satisfies all the transversality conditions
(from Sotomayor’s theorem) for transcritical bifurca-

tion at α = α(1)∗ = μ(μ + μS)

λ
. ��
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Theorem 6 The system (3.1) undergoes through tran-

scritical bifurcation at β = β(1)∗ = μ(μ + μR)

λ
if αλ

− μ2 − μμS < 0 (R(S)
0 < 1). Here, equilib-

rium points E (1)
0 and E (1)

2 exchange their stability at

β = β(1)∗ (or R(R)
0 = 1).

Proof The proof of this theorem is similar to the proof
in Theorem 5. ��

In the absence of treatment, there is no develop-
ment of drug resistance. The only way of getting
drug resistance is transmission from already drug-
resistant infected population. There is a strong com-
petition between both strains as they share their com-
mon resource, namely, the susceptible population. The
strongest and the fittest one will win this battle and
survive for long time. The basic reproduction number
is a good indicator of the overall fitness of a strain.
Co-existence of both the mutants is not possible, due
to the competitive selection process. This model lacks
a range of biological scenarios due to its apparent
simplicity. By excluding the possibility of develop-
ment of drug resistance, only three scenarios of com-
petitive exclusion are possible: (a) both the types of
infected population die out, (b) only the drug-sensitive
infected population survives and, (c) only the drug-
resistant infected population survives, whichmakes co-
existence impossible. But, there are more possible out-
comes between the two strains, beyond the competi-
tive exclusion. Thus, it becomes extremely important
to study the model system (2.1) that considers the fact
that the drug-resistant infected population increases as
a result of development of drug resistance, due to sub-
optimal drug adherence, along with the transmission
from the already existent drug-resistant infected popu-
lation.

3.2 Treatment model

Recall that the model system (2.1) shows the dynamics
of HIV spread with treatment. We analyze this math-
ematical model by determining the equilibrium states,
and their stability, followed by the bifurcation analysis.

3.2.1 Equilibrium points and local stability analysis

For the system given by equation (2.1), there exist three
equilibrium points as enumerated below:

(A) Disease-free equilibriumpoint: E (2)
0

(
λ

μ
, 0, 0, 0

)
.

(B) Planar equilibrium point: E (2)
1

(
S̄1, 0, 0, ĪR1

) =(
c

β
, 0, 0,

βλ − μc

c

)

(C) Interior equilibriumpoint: E (2)∗ =(S∗, IS∗ , T∗, IR∗),

where, S∗=a

α
, IS∗=

b(cα−aβ)(λα−aμ)

aα(bcα−abβ+(1−ε)βη)
,

T∗ = η(cα − aβ)(αλ − aμ)

aα(bcα − abβ + (1 − ε)βη)
and IR∗ =

η(1 − ε)(αλ − aμ)

a(bcα − abβ + (1 − ε)βη)
,

where the parametersa, b and c are as defined inSect. 2.
Now, we determine the “Basic Reproduction Num-

ber”, for system (2.1), by considering the next genera-
tion matrix as,

FV−1 =
(

αλ
aμ

0

0 βλ
cμ

)
.

Hence the “Basic Reproduction Number” for the sen-
sitive strain and the drug-resistant strain are given by

R̄(S)
0 = αλ

aμ
and R̄(R)

0 = βλ

cμ
, respectively. In particu-

lar, the “Basic Reproduction Number” for the system
(2.1) is R̄0 = max{R̄(S)

0 , R̄(R)
0 }. We denote the ratio of

R̄(S)
0 and R̄(R)

0 , as R̄(SR)
0 := αc

βa
.

For the presentation of the stability analysis, we con-
sider the following Jacobian,

J2 =

⎡
⎢⎢⎣

−α IS − β IR − μ −αS 0 −βS
α IS αS − a 0 0
0 η −b 0

β IR 0 1 − ε βS − c

⎤
⎥⎥⎦ .

The stability analysis for each of the equilibria is enu-
merated below:

(A) The eigenvalues of the Jacobinmatrix, evaluated at

E (2)
0 are −b, −μ,

αλ − aμ

μ
and

βλ − cμ

μ
. There-

fore, the disease-free equilibrium E (2)
0 is locally

stable, provided, αλ − aμ < 0 and βλ − cμ < 0,
i.e, R̄(S)

0 < 1 and R̄(R)
0 < 1, respectively.

(B) The eigenvalues of the Jacobin matrix, evalu-
ated at E (2)

1 are given by −b, α S̄1 − a and

A1 ±
√
A2
1 − 4B1

2
, where A1 := c − β S̄1 + λ

S̄1

and B1 := β2 ĪR1 S̄1 + λc

S̄1
− βλ. All the eigenval-

ues are either negative or have negative real part
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provided S̄1 <
a

α
and A1 > 0, which are equiv-

alent to R̄(SR)
0 < 1, and the existential condition

for E (2)
1 , namely R̄(R)

0 > 1. Thus, the equilibrium

point E (2)
1 is stable, provided R̄(S)

0 < R̄(R)
0 .

(C) Finally, the eigenvalues of the interior equilibrium
point E (2)∗ are given by the roots of the follow-
ing characteristic equation of the Jacobian matrix,
evaluated at E (2)∗ :

x4 + A∗x3 + B∗x2 + C∗x + D∗ = 0, (3.5)

where

A∗ = b + c − βS∗ + λ

S∗ ,

B∗ = bc + α2 IS∗ S∗ − bβS∗ + β2 IR∗S∗

+bλ

S∗
+ cλ

S∗
− βλ,

C∗ = IS∗ S∗(bα2 + cα2 − S∗α2β)

+bβ2 IR∗ S∗ + bcλ

S∗
− bβλ,

D∗ = bcα2 IS∗ S∗ − bα2β IS∗ S
2∗

+(1 − ε)αβηIS∗ S∗.

By the Routh-Hurwitz criterion, all the eigenval-
ues will have negative real part if,

(A) A∗ > 0, B∗ > 0,C∗ > 0, D∗ > 0,
(B) A∗B∗ − C∗ > 0,
(C) A∗B∗C∗ − A2∗D∗ − C2∗ > 0.

The coefficients of the characteristic equation, in
terms of the Basic Reproduction Numbers are
given by,

A∗ :=
α(ab + αλ) + a2β

(
R̄(SR)
0 − 1

)
aα

,

B∗ :=
aβ(ab + αλ)

(
R̄(SR)
0 − 1

)
+ bα2λ

aα

+
a2bμ

(
R̄(S)
0 − 1

) (
R̄(SR)
0 − 1

)

ab
(
R̄(SR)
0 − 1

)
+ η(1 − ε)

+
a(1 − ε)

(
R̄(S)
0 − 1

)
βημ

α
(
ab

(
R̄(SR)
0 − 1

)
+ η(1 − ε)

) ,

C∗ := bλβ
(
R̄(SR)
0 − 1

)

+
a2b2μ

(
R̄(S)
0 − 1

) (
R̄(SR)
0 − 1

)

ab
(
R̄(SR)
0 − 1

)
+ η(1 − ε)

+
a3bβμ

(
R̄(S)
0 − 1

) (
R̄(SR)
0 − 1

)2
α

(
ab

(
R̄(SR)
0 − 1

)
+ η(1 − ε)

)

+
ab(1 − ε)

(
R̄(S)
0 − 1

)
βημ

α
(
ab

(
R̄(SR)
0 − 1

)
+ η(1 − ε)

) ,

D∗ :=
a2bβμ

(
R̄(S)
0 − 1

) (
R̄(SR)
0 − 1

)
α

The condition (A) has already been satisfied since
the interior equilibrium point E (2)∗ exists if and
only if R̄(S)

0 > 1 and R̄(SR)
0 > 1. For condition (B),

we have

A∗B∗ − C∗ = (bα + aβ(R̄(SR)
0 − 1))(ab(R̄(SR)

0 − 1) + η(1 − ε))(ab + αλ)(a2β(R̄(SR)
0 − 1) + α2λ)

α2a2(ab(R̄(SR)
0 − 1) + η(1 − ε))

+a2μ(R̄(S)
0 − 1)(a2β2η(1 − ε)(R̄(SR)

0 − 1) + α2(abα(R̄(SR)
0 − 1) + βη(1 − ε))λ)

α2a2(ab(R̄(SR)
0 − 1) + η(1 − ε))

> 0,

which shows that condition (B) also holds when-
ever E (2)∗ exists. So,we are left onlywith condition
(C) to obtain a locally stable interior equilibrium
point.

The summary of existence and stability conditions
for different equilibrium points of model (2.1) are pre-
sented in Table 4 and Fig. 4.

3.2.2 Global stability analysis

Theorem 7 The equilibrium point E (2)
0 is globally

asymptotically stable with R̄0 < 1, where R̄0 =
max

(
R̄(S)
0 , R̄(R)

0

)
.

Proof From the system (2.1), we have

I ′
S = (αS − a) IS
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Table 4 Existence and
stability conditions for
different equilibrium points
of model (2.1)

Equilibrium point Existence condition Stability condition

E (2)
0

(
λ

μ
, 0, 0, 0

)
Always max{R̄(S)

0 , R̄(R)
0 } < 1

E (2)
1 (S̄1, 0, 0, ĪR1 ) R̄(R)

0 > 1 R̄(SR)
0 < 1

E (2)∗ (S∗, IS∗ , T∗, IR∗ ) R̄(S)
0 > 1 and R̄(SR)

0 > 1 A∗B∗C∗ − A2∗D∗ − C2∗ > 0

Fig. 4 Two-parameter bifurcation diagram showing existence
and stability regions for different equilibrium points of model
(2.1). The dashed boxes contain total existing equilibrium point
while solid boxes contain only stable equilibrium points. The
dashed blue line represents R̄(S)

0 = R̄(R)
0 . The interior equilib-

rium point is not stable in the whole region showed in above
figure, instead it is stable only in a sub-region of above stability
region where condition (C) holds

which can be integrated to give

IS(t) = IS(0) exp

[∫ t

0
αS(τ )dτ − at

]
, ∀ t ≥ 0.

After using the upper bound of S(t), which is λ
μ
, we

obtain

IS(t) ≤ IS(0) exp

[(
αλ

μ
− a

)
t

]

= IS(0) exp
[
a

(
R̄(S)
0 − 1

)
t
]

It follows then that IS(t) → 0 as t → ∞, if
R̄(S)
0 < 1. Therefore, the hyperplane IS = 0 attracts all

solutions of the system (2.1) originating in domain R.
Since IS(t) → 0 as t → ∞ for R̄(S)

0 < 1, from the
system (2.1), we have

T ′ = −bT �⇒ T (t) = T (0) exp(−bt)

It follows then that T (t) → 0 as t → ∞, if R̄(S)
0 < 1

and the hyperplane T = 0 attracts all solution of the
system (2.1) originating in domain R. Similarly, if
R̄(R)
0 < 1, IR(t) → 0 as t → ∞, since IS(t) →

0 and T (t) → 0 as t → ∞ and the hyperplane
IR = 0 attracts all solution of the system (2.1) orig-
inating in domain R. Now, it is simple to show that
if IS → 0 and IR → 0, then S → λ

μ
. Therefore, the

equilibriumpoint E (2)
0 is globally asymptotically stable

when R̄0 < 1. ��
Theorem 8 The equilibrium point E (2)

1 is globally

asymptotically stable whenever it exists if R̄(SR)
0 < 1.

Proof From the second and last equations of the system
(2.1), we have:

I ′
S = (αS − a) IS (3.6)

I ′
R = (βS − c) IR + (1 − ε)T (3.7)

Now, we divide equations (3.6) and (3.7) by IS and IR ,
respectively, and obtain

d(logIS)

dt
= αS − a, (3.8)

d(logIR)

dt
= βS − c + (1 − ε)

T

IR
(3.9)

Here, equations (3.8) and (3.9) leads to the following
relation:

S = 1

α

d(logIS)

dt
+ a

α
= 1

β

d(logIR)

dt
+ c

β
− (1 − ε)T

β IR
,

and immediately obtain the following inequality:

1

α

d(logIS)

dt
+ a

α
≤ 1

β

d(logIR)

dt
+ c

β

Now, integrating both sides of the above inequality
yields

(
IS(t)

IS(0)

) 1
α

exp

(
at

α

)
≤

(
IR(t)

IR(0)

) 1
β

exp

(
ct

β

)
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which we rearrange in the following form
(
IS(t)

IS(0)

) 1
α ≤

(
IR(t)

IR(0)

) 1
β

exp

((
c

β
− a

α

)
t

)

=
(
IR(t)

IR(0)

) 1
β

exp

(
c

β

(
1 − 1

R̄(SR)
0

)
t

)

Finally, as we take the limit as t → ∞, since both IS(t)
and IR(t) are bounded, we get:

lim
t→∞

(
IS(t)

IS(0)

) 1
α ≤ lim

t→∞

(
IR(t)

IR(0)

) 1
β

exp

(
c

β

(
1 − 1

R̄(SR)
0

)
t

)
→ 0, if R̄(SR)

0 < 1.

Therefore, all solutions of the system (2.1) converge to
the hyperplane IS = 0 when R̄(SR)

0 < 1. Consequently,
all solutions of this system converge to the hyperplane
T = 0 also, as proved in Theorem 7.

Next, we construct the Lyapunov function to show
the globally asymptotically stable behaviour of the
equilibrium point E (2)

1 on the hyperplanes IS = 0 and
T = 0. We consider the Lyapunov function as

L4(t) = L4(S(t), IS(t), T (t), IR(t))

= S − S̄1 − S̄1 log

(
S

S̄1

)

+IR − ĪR1 − ĪR1ln

(
IR1

ĪR1

)

Then L4(E
(2)
1 ) = 0 and L4(x) > 0, x 
= E (2)

1 . The
derivative of L4(t) along the solution of system (2.1)
gives

dL4

dt
=

(
1 − S̄1

S

)
(λ − β IR S − μS)

+
(
1 − ĪR1

IR

)
(β IR S − cIR) (3.10)

Now, at the equilibrium point E (2)
1 , we have

λ = β ĪR1 S̄1 + μS̄1

Replacing this λ in equation (3.10), we obtain

dL4

dt
= μS̄1

(
2 − S̄1

S
− S

S̄1

)
+ cĪR1

(
2 − S̄1

S
− S

S̄1

)

=
(
2 − S̄1

S
− S

S̄1

)
(μS1 + cĪR1 )

Since the arithmetic mean is always greater than or

equal to the geometric mean, we obtain
dL4

dt
≤ 0.

Therefore, by LaSalle invariance principle, it follows
that the equilibrium point E (2)

1 is globally asymptoti-

cally stable whenever it exists if R̄(SR)
0 < 1. ��

Remark The global behaviour of the interior equilib-
rium point E (2)∗ is uncertain, since we are unable to
construct any suitable Lyapunov function for it. How-
ever, we have numerically shown that for a given set of
parametric values, this equilibrium point is an attrac-
tor for solutions starting from a wide range of initial
conditions (see Fig. 8).

3.2.3 Bifurcation analysis

Theorem 9 The system (2.1) undergoes through tran-

scritical bifurcation at β = β(2)∗ = μc

λ
(or R̄(R)

0 = 1)

if R̄(S)
0 < 1. Here, equilibrium points E (2)

0 and E (2)
1

exchange their stability at β = β(2)∗ .

Proof Since the equilibrium point E (2)
0 becomes non-

hyperbolic atβ = β(2)∗ , therefore linearization is incon-
clusive. We use the center manifold theory to study
the local behaviour of this non-hyperbolic equilib-
rium point at β = β(2)∗ . It also describes the exis-
tence of another equilibrium point E (2)

1 , which is
bifurcated from the non-hyperbolic equilibrium. The
Jacobian matrix of model system (2.1) around the
equilibrium E (2)

0 evaluated at β = β
(2)∗ , represented

by J2
(
E (2)
0

) ∣∣∣
β=β

(2)∗
, gives one simple zero eigen-

value and all the other eigenvalues have negative
real parts if R̄S

0 < 1. Therefore, we can apply cen-
ter manifold theory. We calculate the right eigen-
vector u and left eigenvector v corresponding to

the zero eigenvalue of the matrix J2
(
E (2)
0

) ∣∣∣
β=β

(2)∗
,

which are given by u =
[
− c

μ
, 0, 0, 1

]T
and v =[

0, (1−ε)ημ
b(aμ−αλ)

,
(1−ε)
b , 1

]T
. Now, we rewrite the system

(2.1) as
dX

dt
= F(X, β), F : R4 × R → R4

and F ∈ C2(R4 × R), where X = [x1, x2, x3, x4]
T

= [S, IS, T, IR]
T and F = [ f1, f2, f3, f4]

T . Let

f =
4∑

k,i, j=1

ukviv j
∂2 fk

∂xi∂x j

(
E (2)
0 , β(2)∗

)
,

g =
4∑

k,i=1

ukvi
∂2 fk
∂xi∂β

(
E (2)
0 , β(2)∗

)
.
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Further, by calculating the partial derivatives of the
functions associatedwithmodel system (2.1) at equilib-

rium point E (2)
0 and β = β(2)∗ , we get f = −2c2

λ
< 0

and g = λ

μ
> 0. Therefore, from Theorem 4.1(iv) of

[45], we conclude that the model system (2.1) under-
goes transcritical bifurcation at β = β

(2)∗ . ��
Theorem 10 The equilibrium point E (2)∗ changes its
stability through Hopf-bifurcation when the real part
of eigenvalues of J2(E

(2)∗ ) intersects the imaginary

axis at η = η
(2)
H , where η

(2)
H is a root of the equation

A∗B∗C∗ − A2∗D∗ − C2∗ = 0.

Proof The characteristic equation of the matrix
J2(E

(2)∗ ) has purely imaginary roots if:

(A) A∗ > 0, B∗ > 0,C∗ > 0, D∗ > 0,
(B) A∗B∗ − C∗ > 0,
(C) A∗B∗C∗ − A2∗D∗ − C2∗ = 0

and the system becomes structurally unstable in the
neighborhood of the equilibrium point E (2)∗ , at η =
η

(2)
H where η

(2)
H ∈ [0, 1] is a root of equation

A∗B∗C∗ − A2∗D∗ − C2∗ = 0. Further, this equi-
librium point will change its stability at η = η

(2)
H

through Hopf-bifurcation if conditions (A), (B) and
(C) are satisfied along with the transversality condition

R
{ d

dη
[x(η)]

∣∣∣
η=η

(2)
H

}

= 0 [46], where x is the root of

characteristic equation (3.5). Now differentiating equa-
tion (3.5) with respect to η, we have:

4x3
dx

dη
+ x3

d A∗
dη

+ 3A∗x2
dx

dη
+x2

dB∗
dη

+2B∗x
dx

dη

+x
dC∗
dη

+ C∗
dx

dη
+ dD∗

dη
= 0

Therefore,

dx

dη
= −

x3
d A∗
dη

+ x2
dB∗
dη

+ x
dC∗
dη

+ dD∗
dη

4x3 + 3A∗x2 + 2B∗x + C∗

Since x is purely imaginary at η = η
(2)
H (say x = ±iω),

we get:

R
{ d

dη
[x(η)]

∣∣∣{x=±iω,η=η
(2)
H }

}

=

(
dD∗
dη

− ω2 dB∗
dη

) (
C∗ − 3ω2A∗

) +
(

ω
dC∗
dη

− ω3 d A∗
dη

) (
2ωB∗ − 4ω3

)
(C∗ − 3ω2A∗)2 + (2ωB∗ − 4ω3)2

(3.11)

where A∗, B∗,C∗ and D∗ are as defined in previous
section. In order to satisfy the transversality condition,
the numerator (say N (η)) must be non-zero at η =
η

(2)
H . It is extremely difficult to simplify this expression

furthermore, therefore we choose a set of parametric
values and then investigate the existence of the Hopf-
bifurcation numerically. This analysis has been done in
the next section. ��

4 Parameter estimation and numerical simulation

In this Section, we shall estimate the parametric values
for the models (3.1) and (2.1) based on the real data
from the Indian population. Further, we will also ver-
ify the analytic results on existence and stability of the
equilibrium points and different bifurcations, through
several numerical illustrations, in case of both themod-
els.

The recruitment rate (λ) can be estimated as the sum
of new individuals, who enter in the sexually active
class and number of net migrated individuals, during
the whole year, at the initial time. In India, we assume
that most of the adults become sexually active during
the age interval of 18–30 years. We set the base year to
be 2019, for the purpose of our simulation. The number
of individuals recruited in the susceptible class during
base year is equal to the average net births during the
period 1989–2001, in addition to the net migration in
the base year. The net births are total number of births
adjusted with the infant deaths in a year. According
to United Nations- World Population Prospectus [47],
the average birth rate and average infant mortality rate
in India during time period 1989–2001 was 29.38 per
thousand population per year and 78.87 per thousand
live births per year, respectively. Further, the average
total population of India during this time period was
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955.29 million. Also, the net migration into India in
2019 was −0.54 million.
Therefore, the constant recruitment rate (λ) can be esti-
mated as follows:

λ = (avg. population) × (avg. birth rate)

×(1 - avg. infant mortality rate)

+(net migration rate)

= (955.29 × 0.02938 × (1 − 0.07887)) − 0.54

= 25.31 million per year

According to United Nations- World Population
Prospectus [47], in India, around 7.2 persons died for
every 1000 individuals during 2019. Therefore, the nat-
ural death rate (μ) is 0.007 per year in 2019. The dis-
ease induced death rates can be estimated by using the
life expectancy of an HIV-infected person. In [48], the
authors have concluded that the life expectancy of an
HIV-infected patient reduces about 38 years from the
general population at the exact age of 20. In India, the
life expectancy frombirthwas 69.50 years in 2019 [47].
From this we can conclude that the life expectancy of
an HIV infected person without any treatment would
be around 11 years. Therefore, 1 in every 11 HIV-
infected person will die every year. Thus, we estimate

that, μS = 1

11
= 0.0909 per year.

The transmission rateα represents the rate of change
of drug-sensitive infectedpopulation in presence of unit
susceptible and unit drug-sensitive infected population.
According to India HIV Estimate 2019 Report, NACO
[49], there were 69200 new HIV cases reported with
total 2.35 million cases. The population in age group
20–50 can be considered as total susceptible popula-
tion since it includesmost of the sexually active people.
According to [47], in 2019, India had 625.19 million
people in the age group of 20–50. Therefore, the trans-
mission rate is given by,

α = 0.06922

625.19 × 2.35
= 0.000047134 million−1year−1.

We have seen that due to the enhanced accessibility
to medical facilities, around 73% of individuals liv-
ing with HIV had started ART by the end of 2020 [8].
Therefore, we assume η = 0.7 for most of the numer-
ical simulations carried out. Further, we assume that
75% of the population in the treatment class follows the
prescribed treatment properly. The remaining parame-
ters related to the drug-resistant infected class would
be varied within a suitable range, considering the cor-

responding parametric values associated with the drug-
sensitive infected class. For each of the parameters, the
unit, estimated value and range of variation has been
included in Table 5.

For numerical representation of all previous dis-
cussed analytic results, we fix λ = 25.31, μ =
0.007, μS = 0.0909, μR = 0.06 for model (3.1)
and λ = 25.31, μS = 0.0909, ε = 0.75, η = 0.7
for model (2.1) and vary other parameters to illustrate
all the possible existence and stability scenarios for
both models. We choose the initial population as 625
million for susceptible, 2.2 million for drug-sensitive
infected, 1.5 million for under treatment and 1 mil-
lion (assumption) for drug-resistant infected individ-
uals, ic1 = (625, 2.2, 1.5, 1), which is based on the
number of individuals in different classes in the base
year.We also choose two other initial conditions to val-
idate the global stability results: ic2 = (300, 30, 20)
and ic3 = (1000, 80, 100) for the model (3.1) and
ic2 = (300, 30, 20, 20) and ic3 = (1000, 80, 50, 100)
for the model (2.1).

For model (3.1), first we consider α = 0.000025
and β = 0.000015 for which R(S)

0 = 0.92 and R(R)
0 =

0.81. The solutions are represented in Fig. 5a which
points out the local asymptotic stable behaviour of the
disease-free equilibrium point E (1)

0 (3615.7, 0, 0), as

expected, since R(S)
0 < 1 and R(R)

0 < 1. The popu-
lation level of susceptible individuals for different ini-

tial values converges to
λ

μ
(= 3615.7) while the drug-

sensitive and drug-resistant population decrease con-
tinuously and eventually get extinct (see Fig. 6a). This
ensures the global asymptotic stability of equilibrium
point E (1)

0 and supports the theoretical result in The-

orem 2. In order to illustrate the case R(S)
0 > 1 and

R(SR)
0 > 1,we chooseα = 0.000047 andβ = 0.00002

which results in R(S)
0 = 1.74 and R(R)

0 = 1.08. The
dynamics for these parametric values is represented
in Fig. 5b which indicates the persistence of suscepti-
ble and drug-sensitive infected population and extinc-
tion of drug-resistant infected population after a certain
time. It is seen from Fig. 6b, that the population lev-
els of susceptible and drug-sensitive infected individ-
uals for different initial conditions exhibit oscillatory
behaviour before stabilizing at the level 2082.98 and
109.59, respectively, while the drug-resistant infected
population becomes extinct in a very short period of
time. This also suggests the global asymptotic sta-
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Table 5 Units and values (estimate and range) of various parameters

Parameter Unit Estimated value Range of variation

λ million year−1 25.31 Fixed

α million−1 year−1 47.134 × 10−6 0.000025–0.0003

β million−1 year−1 Assumed 0.00001–0.00007

μ year−1 0.007 0.004–0.007

μS year−1 0.0909 Fixed

μR year−1 Assumed 0.06–0.2

η Unitless 0.7 0–1

ε Unitless 0.75 0–1

(a) (b)

(c)

Fig. 5 Time series plot for each population of the model system (3.1) with other parametric values as λ = 25.31, μ = 0.007,
μS = 0.0909, μR = 0.06 and initial condition [625, 2.2, 1]
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Fig. 6 Phase portrait for model (3.1) with various initial conditions assuring the global stability of each existing equilibrium point.
Other parametric values as λ = 25.31, μ = 0.007, μS = 0.0909, μR = 0.06

bility of drug-sensitive mutant dominant equilibrium
point E (1)

1 and is in agreement with the theoretical
result of Theorem 3. Note that the basic reproduc-
tion number of drug-resistant infected population is
greater than 1 but still this population gets wiped
out from the system. This is because of a higher
basic reproduction number of drug-sensitive mutant
which makes it dominant in comparison to the drug-
resistant mutant. Further, in order to illustrate the case
R(R)
0 > 1 and R(SR)

0 < 1, we choose α = 0.000047

and β = 0.00006 which leads to R(S)
0 = 1.74 and

R(R)
0 = 3.24. The solution trajectories are drawn in

Fig. 5c which shows that the susceptible and drug-
resistant infected population saturate to a positive level
and the drug-sensitive infected population dies out after

some time. The global stability of drug-resistantmutant
dominant equilibrium point E (1)

2 (1116.67, 0, 261.09),
as already obtained theoretically in Theorem 4, can be
confirmed from Fig. 6c which also depicts an oscil-
latory behaviour of the susceptible and drug-resistant
infected population before progressing to a steady state.
The drug-resistant infected population dominates the
drug-sensitive infected population due to its higher
basic reproduction number. However, the basic repro-
duction number for both infected populations is greater
than one. This analysis indicates that both the infected
populations can be controlled by their transmission rate
and disease induced death rate. A higher transmission
rate of an infected population is in favor of its persis-
tence at a higher level, while a higher disease induced
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death rate can cause its extinction from the system.
We also observed that the coexistence of both infected
populations is not possible because they share the only
resource available to them, that is, the susceptible pop-
ulation.

On the other hand, we vary the parameters α, β, μ

and μR to investigate the dynamics of model (2.1). We
consider α = 0.000047, β = 0.000015, μ = 0.007
and μR = 0.06 and get the corresponding basic repro-

duction numbers as R̄(S)
0 = 0.23 (< 1) and R̄(R)

0 =
0.81 (< 1). The dynamics for these parametric values
is represented in Fig. 7a. Clearly, the compartment of
infected andunder treatment individuals becomeempty
at a very early stage, while the susceptible population
increase continuously and eventually reach to its high-

est level
λ

μ
(= 3615.7). The phase portraits in Fig. 8a

and b confirms the global stability of disease-free equi-
librium point E (2)

0 . Next, we choose α = 0.0003, β =
0.00003, μ = 0.007 and μR = 0.06 to illustrate the
case when R(R)

0 (= 1.62) > 1 and R(SR)
0 (= 0.91) < 1.

In this case, the drug-resistant mutant dominant equi-
librium point behaves like a sink and only the sus-
ceptible and drug-resistant infected populations are
able to survive for long run. The dynamics for this
case is illustrated in Fig. 7b and the global stabil-
ity of E (2)

1 (2233.33, 0, 0, 144.43) is shown in Fig. 8c,
d. Note that the drug-sensitive infected population is
wiped out from the system after some time, although it
has basic reproduction number greater than one. This
happens since the drug-resistant infected population
has a higher basic reproduction number than drug-
sensitive infected population. In other words we can
say that the transmission rate of drug-sensitive infected
population is not enough for its survival. Finally, we
choose α = 0.00015, β = 0.00001, μ = 0.004 and
μR = 0.18. This set of parametric values results
in R̄(S)

0 (= 1.29) > 1, R̄(SR)
0 (= 3.77) > 1 and

A∗B∗C∗ − A2∗D∗ − C2∗(= 2.02 × 10−6) > 0. Figure
7c represents the long time dynamics of the model
(2.1) and suggests that each population converges to the
interior equilibrium point E (2)∗ (4875.13, 6.06, 15.32,
28.32) after some initial oscillations. Further, the phase
portraits in Fig. 8e, f show that the phase point con-
verges to the interior equilibrium point for various ini-
tial conditions. It also indicates that the equilibrium
point E (2)∗ is an attractor for a large region around it.

Now we choose the parameters as λ = 25.31, μ =
0.007andμS = μR = 0.0909 to illustrate the transcrit-

ical bifurcationwhen equilibriumpoint E (1)
0 exchanges

its stability with equilibrium point E (1)
1

(
or E (1)

2

)
.

Also, we vary the parameter μS (or μR) to show the
exchange of stability between equilibrium point E (1)

0

and E (1)
1

(
or E (1)

2

)
, we vary the parameterμS (or μR).

In Fig. 9a, we observe that the equilibrium point E (1)
0

bifurcates and losses its stability at α = α(1)∗ (or β =
β(1)∗ ) = 2.71 × 10−5 and a new stable equilibrium

point E (1)
1

(
or E (1)

2

)
comes into the picture. We also

demonstrated this bifurcation behaviour between these
equilibrium points with respect to basic reproduction

number R(S)
0

(
or R(R)

0

)
. For this, we fix α = β =

0.000047 and vary the basic reproduction number R(S)
0

and R(S)
0 by changing common parameters λ and μ.

Figure 9b depicts that if R(S)
0

(
or R(R)

0

)
< 1, only

one equilibrium point exists, that is E (1)
0 , which is

locally asymptotically stable. On R(S)
0

(
or R(R)

0

)
= 1,

a new equilibrium point E (1)
1

(
or E (1)

2

)
emerges and

E (1)
0 exchanges its stability with this new equilib-

rium point provided that R(R)
0

(
or R(S)

0

)
< 1. We

find similar figures of the transcritical bifurcation for
model system (2.1) with same parametric values as dis-
cussed above,when disease-free equilibriumpoint E (2)

0

changes its stability with axial equilibrium point E (2)
1 .

These numerical results support Theorems 5, 6 and 9.
For the set of parametric values: λ = 25.31, α =

0.00025, β = 0.000025, μ = 0.005, μS = 0.0909,
μR = 0.08, η = 0.37 and ε = 0.75, we observe that
condition A∗B∗C∗ − A2∗D∗ − C2∗ > 0 is not satis-
fied. Therefore, the interior equilibrium point E (2)∗ of
model system (2.1) is not locally asymptotically sta-
ble for this set of parametric values. Our numerical
simulation shows that the solution curves of this sys-
tem admits periodic behaviour and converge to a stable
limit cycle. The time series plot of each population for
the above set of parametric values is shown in Fig. 10a,
which assures the existence of the periodic nature of
the solutions and predicts that the interior equilibrium
point E (2)∗ is unstable. In Fig. 10b, solutions starting
from different initial values are converging to a stable
limit cycle.

Considering η as a bifurcation parameter, we note
that the solutions of equation A∗B∗C∗ − A2∗D∗
− C2∗ = 0 for η are η

(2)
H1 = 0.3422 and η

(2)
H2 = 0.8191,
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(a) (b)

(c)

Fig. 7 Time series plot for each population of the model system (2.1) with other parametric values as λ = 25.31, μS = 0.0909,
ε = 0.75, η = 0.7 and initial condition [625, 2.2, 1.5, 1].

which lies in the interval [0, 1]. The set of eigenval-
ues for these parametric values corresponding to Jaco-
bian matrices J2(E

(2)∗ )
∣∣
η=η

(2)
H1

and J2(E
(2)∗ )

∣∣
η=η

(2)
H2

are (−0.2765,−0.0611, 2.2551 × 10−17 ± 0.0559i)
and (−0.2777,−0.0085,−2.7322×10−17 ±0.0154),
respectively. These sets consist only either nega-
tive real or almost pure imaginary eigenvalues. Fur-

ther, we have N
(
η

(2)
H1

)
= −2.18682 × 10−7 
= 0 and

N
(
η

(2)
H2

)
= 5.4698 × 10−9 
= 0, which is in agree-

ment with the transversality condition (3.11). Here
N (η) is as discussed in Theorem 10. So, the equilib-
rium point E (2)∗ changes its stability through Hopf-

bifurcation at bifurcation points η
(2)
H1 = 0.3422 and

η
(2)
H2 = 0.8191. Geometrically, Figs. 11 and 12 confirm

the occurrence of Hopf-bifurcation at points η
(2)
H1 and

η
(2)
H2. In Fig. 11, the curves before the bifurcation point

η
(2)
H1 and after the bifurcation point η(2)

H2 show the pop-
ulation levels for different values of the parameter η.
The limit cycles occur between these two bifurcation
points and the red coloured dots represent the lowest
population level, while the blue coloured dots represent
the highest population level, at a specific value of the
parameter η. In addition, Fig. 12 shows the periodic
nature of solutions of system (2.1) for different values
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Fig. 8 Phase portrait for model (2.1) with various initial conditions assuring the global stability of existing equilibrium points (except
E (2)∗ ). Other parametric values are λ = 25.31, μS = 0.0909, ε = 0.75, η = 0.7
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(a) (b)

Fig. 9 Transcritical bifurcation diagrams with respect to parameters a α(or β) and b R(S)
0

(
or R(R)

0

)

(a) (b)

Fig. 10 a Time series plot for each population of the model
system (2.1) showing periodic nature of solutions. b Phase por-
trait for the model system (2.1) with two different initial condi-

tions assuring the existence of a stable limit cycle for the para-
metric values: λ = 25.31, α = 0.00025, β = 0.000025, μ =
0.005, μS = 0.0909, μR = 0.08, η = 0.37 and ε = 0.75

of parameter η. We can conclude from Fig. 10b, 12
and stability of coexistence equilibrium point E (2)∗ that
solutions of model system (2.1) achieve steady state at
E (2)∗ for η < η

(2)
H1 and η > η

(2)
H2 while converge to a

stable limit cycle for η ∈ [η(2)
H1, η

(2)
H2]. This confirms

that Hopf-bifurcation is supercritical in nature.
Further, we have plotted density plots for each pop-

ulation on the εη−plane to know the best possible sce-
nario to minimize the infected populations and maxi-

mize the under treatment population.We used paramet-
ric values: λ = 25.31, α = 0.0003, β = 0.00007, μ =
0.007, μS = 0.0909, μR = 0.2 for these density plots.
Figure 13a suggests that lower treatment rate will mini-
mize the susceptible population. This happens because
lower treatment levels lead to a major increase in total
infected populationwhichwe can observe in Fig. 13b. It
is observed fromFig. 13c, d that perfect adherencewith
medium treatment rate is an optimal scenario for max-
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(c) (d)

(a) (b)

Fig. 11 The bifurcation diagram of each population of the model system (2.1) with respect to the Hopf-bifurcation parameter η. The
other parameters are λ = 25.31, α = 0.00025, β = 0.000025, μ = 0.005, μS = 0.0909, μR = 0.08, ε = 0.75

imizing the population under treatment. On the other
hand, Fig. 13e depicts that a medium treatment rate
with imperfect adherence lead to a greater risk of emer-
gence of drug resistance, while extremely low or high
treatment rate minimizes this risk. In addition, a per-
fect drug adherence can also hold the drug-resistant
infected population at lower levels.

5 Conclusion

In this study, we formulated a mathematical model to
understand the dynamics of HIV spread under treat-

ment in presence of drug-sensitive and drug-resistant
infected population. We considered that the drug resis-
tance transmits from drug-resistant infected population
to susceptible via direct contact. Also, drug resistance
can develop through improper drug adherence. There-
fore, transmission is the only source for the newly drug-
resistant infected population, in the absence of treat-
ment. For the treatment-free model, we obtained the
basic reproduction number for drug-sensitive (R(S)

0 )

and drug-resistant (R(R)
0 ) strains with the help of the

next generation matrix. The existence of equilibrium
points and their stability is totally controlled by these
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Fig. 12 The existence of limit cycle for the model system (2.1) corresponding to variation in Hopf-bifurcation parameter η. The other
parameters are λ = 25.31, α = 0.00025, β = 0.000025, μ = 0.005, μS = 0.0909, μR = 0.08, ε = 0.75

basic reproduction numbers. The stability analysis of
equilibrium points provides us with three possible sce-
narios:

(a) Both type of infected population dies out when
R(S)
0 < 1 and R(R)

0 < 1.
(b) Only drug-sensitive infected population survives

when R(S)
0 > 1 and R(SR)

0 > 1.
(c) Only drug-resistant infected population survives

when R(R)
0 > 1 and R(SR)

0 < 1.

In all of the above cases, we observe that the co-
existence of all populations is impossible. This happens
because both infected populations with drug-sensitive
and drug-resistant strains share their common source
(susceptible population) of growth. The bifurcation
analysis shows that the transmission rate and disease
induced death rate of both strains are the determin-
ing factors for the elimination of the disease from the
system. The lower transmission rate or higher disease
induced death rate from certain threshold values makes
the system disease free after some time. On the other
hand, a greater transmission rate or a lower disease
induced death rate of a strain from these threshold val-
ues is directly related to the increased fitness of that
strain.

In presence of treatment to the infected population,
however, we expect some more potential outcomes
between two strains, beyond the competitive exclu-
sion. We calculated the basic reproduction number for
drug-sensitive R̄(S)

0 and drug-resistant R̄(R)
0 strains for

treatment model to analyze it. We analyzed all exist-
ing equilibrium points and their stability. The treatment

model also shows three different possible scenarios for
infected population:

(a) Both type of infected population dies out when
R̄(S)
0 < 1 and R̄(R)

0 < 1.
(b) Only drug-resistant infected population survives

when R̄(R)
0 > 1 and R̄(SR)

0 < 1.
(c) drug-sensitive and drug-resistant infected popula-

tion co-exist in the system when R̄(S)
0 > 1 and

R̄(SR)
0 > 1.

From this, we can conclude that the system becomes
disease free at lower reproductive capacities of both
the strains. At the same time, a higher basic repro-
duction number is not enough for the survival of
the drug-sensitive infected population, since the drug-
resistant infected population out-competes the former,
if R̄(SR)

0 < 1.This could be a result of high transmission
rate or low disease induced death rate of drug-resistant
infected class and a higher number of infected individ-
uals in treatment class. These results are consistentwith
observations in a prior two-strain disease model [43].
We also found that the population in the drug-resistant
infected class faces survival risk only at their lower
reproductive capacity, in the absence of drug-sensitive
infected population. We observed that the drug resis-
tance infected population remains in the system, even
at its lower reproductive capacity, if the number of indi-
viduals in drug-sensitive infected and treatment class
are at a positive level. This shows that a better treatment
availability is responsible for the emergence of drug
resistance. Therefore, one could question the sustain-
ability of the treatment of the drug-sensitive infected
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Fig. 13 Density Plot for a S, b IS , c T , d T and e IR on εη−plane. The other parameters are λ = 25.31, α = 0.0003, β = 0.00007,
μ = 0.007, μS = 0.0909, μR = 0.2
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population at the expense of an increment in the drug-
resistant individuals in the community [50]. However,
during the initial phase, such resistant strains have low
fitness levels and are less transmissible than their drug-
susceptible counterparts [51]. So an early awareness
campaign in non-adherent patients may reduce the risk
of emergenceof the drug-resistant strain. From the exis-
tence condition of the interior equilibrium point, we
conclude that the co-existence of both the infected pop-
ulations, under better treatment availability, demands a
high transmission rate in drug-sensitive infected popu-
lation compare to the other one.

Finally, we have performed an extensive analysis of
possible bifurcations for treatment model. We found
that the system undergoes a transcritical bifurcation at
a critical transmission rate of drug-resistant infected
population. The system remains at disease-free state
if the transmission rate remains below this threshold
value, without which the system goes to the only drug-
resistant strain endemic equilibrium point. A lower
disease induced death rate of drug-resistant infected
population also contributes in this transformation from
disease-free to endemic state of the system. We also
found that the co-existence endemic equilibrium point
changes its stability through Hopf-bifurcation at a crit-
ical value of parameter η and the system shows peri-
odic behaviour. Numerical simulation suggests that all
solutions converge to a stable limit cycle for a range
of parametric values of η. Extremely low or high treat-
ment availabilitymakes the co-existence endemic equi-
librium point stable. On the other hand, a large range
of medium treatment availability forces the system to
show a periodic behaviour, eventually approaching to a
limit cycle. In this case, it is extremely difficult for pol-
icy makers to reach any concluding strategy to control
the spread of the disease if the ratio of number of indi-
viduals in each class changes continuously. Therefore,
a medium range of treatment availability is not an effi-
cient way to control the disease. We also observed that
both basic reproduction numbers are independent of
the proportion of population which properly adheres to
the treatment, but the stability condition of co-existence
endemic equilibrium point depends on it. Sharomi et al.
[36] concluded that the widespread use of ART could
significantly reduce the disease burden, despite the risk
of the development and transmission of drug-resistant
strain. But, our study suggests that the drug-adherence
to the treatment also plays a vital role in determining the
dynamics and is responsible for periodic behavior. The

density plot for treatment model shows that a medium
level of treatment availability with sub-optimal drug
adherence is suitable template for emergence of the
drug resistance. This result can be a stepping stone
for public health debates [50] regarding the potential
benefits and dangers of providing ART to the infected
population at risk for the emergence of drug-resistance
in patients.

In summary, the present study shows that with-
out treatment, there is no emergence of drug resis-
tance which results in competitive exclusion of one
of the infected population. Co-existence of both type
of infected population is impossible. On the contrary,
when treatment is provided to the infected popula-
tion, the drug-sensitive infected population either face
competitive exclusion or co-exist with drug-resistant
infected population. The number of infected patients
under treatment and patients who follow the treatment
properly are themaindetermining factors of the dynam-
ics of disease spread.Also, a higher transmission rate of
drug-sensitive strain with enough treatment availabil-
ity and its improper adherence ultimately supports the
growth of the drug-resistant infected population. Our
analysis shows that policy makers should focus on pro-
viding better conditions to the patients to adhere their
treatment properly.Otherwise, a higher treatment avail-
ability with sub-optimal drug adherence could lead
us to a danger of increased number of drug-resistant
infected population, or an endemic of drug-resistant
infection in the worst of conditions.
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