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Abstract This paper studies reverse space and/or
time nonlocal Fokas—Lenells (FL) equation, which
describes the propagation of nonlinear light pulses in
monomode optical fibers when certain higher-order
nonlinear effects are considered, by Hirota bilinear
method. Firstly, we construct variable transformations
from reverse space nonlocal FL equation to reverse
time and reverse space-time nonlocal FL equations.
Secondly, the multisoliton and quasi-periodic solutions
of the reverse space nonlocal FL equation are derived
through Hirota bilinear method, and the soliton solu-
tions of reverse time and reverse space-time nonlocal
FL equations are given through variable transforma-
tions. Also, dynamical behaviors of the multisoliton
solutions are discussed in detail by analyzing their wave
structures. Thirdly, asymptotic analysis of two- and
three-soliton solutions of reverse space nonlocal FL
equation is used to investigate the elastic interaction
and inelastic interaction. Finally, the infinite conserva-
tion laws of three types of nonlocal FL equations are
found by using their lax pairs. The results obtained in
this paper possess new properties that different from
the ones for FL equation, which are useful in explor-
ing novel physical phenomena of nonlocal systems in
nonlinear media.
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1 Introduction

The Fokas—Lenells (FL) equation was derived as an
integrable generalization of the nonlinear Schrodinger
(NLS) equation using bi-Hamiltonian methods [1],
which is a completely integrable nonlinear partial dif-
ferential equation (here means it admits a Lax pair).
The FL equation describes the propagation of non-
linear light pulses in monomode optical fibers when
certain higher-order nonlinear effects are taken into
account [2,3], and it contains a lot of physical fea-
tures in the solitary waves theory and optical fibers
phenomena [4-6]. For constructing the soliton solu-
tions, the bright/dark solitons and rouge waves of the
FL equation, there are a large number of research
researches. The inverse scattering transformation was
established by Fokas and Lenells in their original paper
[2]. The theta function representations of algebro-
geometric solutions were constructed in [7]. In [8],
multi-Hamiltonian structure and infinitely many con-
servation laws were established for the vector Kaup—
Newell hierarchy of the positive and negative orders.
Some other methods, such as Darboux transforma-
tion method[5,8-13], Hirota bilinear method [14-16],
Riemann—Hilbert problem [17-19], Bécklund transfor-
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mation [20] and trial equation method [21], variable
separation technique [22] could be found in references.

Recently, the nonlocal systems have attracted much
attention since Ablowitz and Musslimani proposed
the reverse space nonlocal Schrodinger equation with
parity-time (PT) symmetry [23]. Since the nonlocal
NLS equation was found, a large number of nonlocal
integrable systems have been studied, such as nonlo-
cal modified Korteweg—de Vries (KdV) equation [24],
reverse space-time nonlocal Fokas—Lenells equation
[25] and so on. In nonlocal nonlinear partial differ-
ential equations, in addition to the terms at the space-
time point (x, 7), there are terms at the points (—x, 1),
(x, —t) or (—x, —t). The solution envelope is evalu-
ated at two different spatial and/or temporal locations
simultaneously, which means the solution depends not
only on the local solution at (x, ¢), but also on the non-
local solution at the distant position (—x, t), (x, —t)
and (—x, —t) [26]. It should be mentioned that the
nonlocality refers to the overall property of a non-
trivial system with some super spatiotemporal disper-
sion, the nonlinearities are nonlocal in case of optical
beams in nonlinear dielectric waveguides or waveguide
arrays with random variation of refractive index, size,
or waveguide spacing [27]. The nonlocality is respon-
sible for even more exquisite and additional solution
characteristics for nonlocal systems in comparison with
their local counterparts. Like the local case, the non-
local systems also have integral properties, and some
methods in local system are still applicable in the non-
local systems. For instance, Giirses and Pekcan inves-
tigated the nonlocal Schrodinger equation and modi-
fied KdV equation and found their soliton solutions by
Hirota bilinear method [28-31]. Yang et al. proposed
the localized wave solutions of the reverse space non-
local Lakshmanan—Porsezian—Daniel equation by the
Darboux transformations [32]. Li et al. derived rational
soliton solutions [33], a chain of nonsingular localized-
wave solutions [34] and rogue wave solutions [35] of
parity-time symmetric nonlocal nonlinear Schrédinger
(NLS) equation via the Darboux transformation, and
Xu et al. [36] obtained asymptotic solitons of the
rational solutions via an improved asymptotic analy-
sis method. He, Fan and Xu studied the Cauchy prob-
lem with decaying initial data for the reverse space-
time nonlocal modified KdV equation by Riemann—
Hilbert method [37]. Yang and Chen [38] investigated
the dynamics of high-order solitons in nonlocal non-
linear Schrodinger equation by using Riemann—Hilbert
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method. Feng et al. [39] considered a nonlocal nonlin-
ear Schrodinger equation with PT-symmetry for both
zero and nonzero boundary conditions via the combina-
tion of Hirota’s bilinear method and the Kadomtsev—
Petviashvili hierarchy reduction method. Peng et al.
[40] investigated the fully PT-symmetric inverse space
nonlocal (2+1)-dimensional nonlinear NLS equation
by using Hirota’s bilinear method. Liu et al. [41]
studied the nonlocal Gross—Pitaevskii equation with a
parabolic potential employing the reduction approach
on double Wronskians. The main purpose of this paper
is to focus on nonlocal FL equations and their mul-
tisolitons by the Hirota bilinear method. The general
idea of the method is to transform the nonlinear equa-
tion under variable transformations into bilinear equa-
tions, and then use the perturbation expansion in terms
of a small parameter ¢ to solve them. It’s distinctly dif-
ferent from local FL equation that these nonlocal FL
equations have their novel spatial and/or temporal cou-
pling, which could give new physical effects and novel

physical applications.
Here we consider the reverse space nonlocal Fokas—
Lenells equation

(X, 1) —iu(x, t) + 2iu(x, Hu*(—x, Huyx (x, 1) =0, (1)

where u(x,t) is a complex-valued function for the
independent spatial variable x and temporal variable
t, and u*(—x, t) denotes complex conjugate of u(x, t).
The subscript x (or #) denotes partial derivative with
respect to x (or ¢). The solution states at distant loca-
tions are coupled, reminiscent of quantum entangle-
ment between pairs of particles. Through the method
in [26], the variable transformations from reverse space
nonlocal FL equation to reverse time and reverse space-
time nonlocal FL equation can be derived as follows

a)x —> —ix,t — it, 2)

b) x — —x,t — it. (3)

Through these variable transformations, reverse time
and reverse space-time nonlocal FL equations are pre-
sented subsequently

Upr(x, 1) —iu(x, 1) — 2u(x, Hu*(x, —)uy(x, 1) =0,
(€]
Uy (x, 1) —u(x,t) = 2u(x, Hu*(—x, —H)u,(x, 1) =0,
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where u = u(x, t) is a complex-valued function of x
and 7, and the * denotes complex conjugation. In this
paper, we use the Hirota bilinear method to get one-,
two- and three-soliton solutions of the reverse space
nonlocal FL Eq. (1), then study multisoliton solutions
of the reverse time and inverse space-time nonlocal
FL equations through variable transforms. Asymptotic
analysis is used to investigate the elastic interactions
and inelastic interactions of the two solitons and the
three solitons solutions, and dynamical behaviors of
the multisoliton solutions are investigated by analyzing
their wave structures. Finally, the Lax pairs and con-
servation laws of three types of nonlocal FL equations
are obtained.

The outline of this paper is presented as follows. In
Sect. 2, the one-, two- and three-soliton solutions of
three types of nonlocal FL equations are obtained by
using Hirota bilinear method and the variable trans-
formations (2) and (3). And some figures are given
to describe the dynamic characteristics of these soli-
ton solutions. In Sect. 3, the asymptotic analysis on
two- and three-soliton solutions of the reverse space
nonlocal FL equation is given. In Sect. 4, we exhibit
the Lax pairs of three types of nonlocal FL equations.
Meanwhile, based on the Lax pairs, the infinitely many
conservation laws of these equations (1), (4) and (5)
are derived. Finally, the conclusions of this paper are
stated in Sect. 5.

2 Multisoliton solutions of three types of nonlocal
FL equations

2.1 One-soliton solutions of three types of nonlocal
FL equations

Via the Hirota bilinear method [42—46] and symbolic
computation, the one-soliton solution of reverse space
nonlocal FL equation could be received. By introducing
the dependent variable transformations

G(x,1)
F(x,1)

_ G*(=x,1)

*
) - 7t - )
R0 E

u(x,t) =

(6)

where G(x,t), G*(—x,t), F(x,t) and F*(—x, t) are
complex functions, the nonlocal FL equation (1) con-
verts into the following bilinear equation

2533
1 , G
= (D:DiG - F —iGF) +
.G*D,G - F

This equation can be decoupled into the following sys-
tem of bilinear equations for the functions F and G,

D.D,G-F =iGF, ®)
.G*D,G-F

DiDiF - F =2i————, ©

where the D, and D; are bilinear operators. These oper-

ators defined as

m n
A B A )
* ax  0x at o
Gx, )F(x1, 1) (e=x1.1=11)> (10)

where m and n are non-negative integers.

Solving the above series of bilinear equations (8)-
(9) and combining (6), some soliton solutions can be
obtained. We expand the unknown functions G(x, t),
G*(—x,1t), F(x,t) and F*(—x, t) as polynomials of a
small parameter € as follows

G(x,t) =€G1 4+ €G3+ € Gs+ -+,

G*(—x,1) = €G} + G5+ 2G5 + -+,
Fx,t)=14+e’F +e*Fy+ePFg+ -+,
F*(—x,0) =1 +€2F;+64Ff+e6Fg+... , (1)

where the G, F3, etc. are functions with spatial vari-
able x and temporal variable ¢, the functions G7, FJ,
etc. with variables —x and ¢. Substituting the above
expansions into Egs. (8)—(9), and comparing the coeffi-
cients of €, the unknown functions G (x, t), G*(—x, 1),
F(x,t) and F*(—x, ) can be obtained by selecting
appropriate functions G1, G}, F», F5.

In this section, the unknown functions G(x, t),
G*(—x,t), F(x,t) and F*(—x,t) are expanded in
terms of a small parameter €, which can be written
as

G(x,1) = €Gy,
G*(—x,1) = €G*,
F(x,t)=1+¢e’F,
F*(—x,1) =1+ €*Fj.

12)
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Substituting (12) into bilinear Eqs. (8)—(9), we obtain a
set of equations by comparing the coefficients of same
powers of € to zero

G =1Gq, (13)
F =iG{G1y, (14)

where G1, G, F> and F are given as follows
G =¢e",
Gl =el,
.
F = Alen‘+"1,

.
Fy = AfeM ™,

5)

We suppose that 11 = kjx — w1t + 10, n] = —kjx —
('t 4 1}y, and ky, kT are arbitrary complex constants.
From Egs. (13)—(14), the relations about wy, A1 and k|
can be given as

_ ik;
(ki — k) (—o — o))

A7)

Since the ] is the complex conjugate of w; and the
A7 is the complex conjugate of A1, the expressions for
o] and A7 are presented as follows

Wt = il (18)

o —ik}
D7k =k (—of — o)’

19)

Then, the general one-soliton solution of the reverse
space nonlocal FL Eq. (1) is

el

u(x,t) = ————.
(. 1) 1+ Aem*mn

(20)

According to the bilinear form of parity transformed
complex conjugate equation, the parity transformed
complex conjugate field is derived in the form of

e

*
- 7t = T -
u ( X ) 1+A>]s<em+nl

21
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The one-soliton solutions (20)—(21) of the reverse
space nonlocal FL equations are equivalent to

1 _1 1 1 1
u(x,t) = ze_flnA""?”'_?”Tsechi

x (In Ay 4+ +np), (22)
u*(—x,1) = 1e_%ln"‘Slk_%”ﬁ'%'ﬁsechl
2 2

x (In AT + 01 + nY). (23)

In order to facilitate the analysis, we introduce that
ki =a+ib, ki =a—ib,w; =c+id, 0] =c—id,
no =m+in,nj, =m—in,(a,b,c,d, m,n are real
numbers). Thus, the above expressions are given that

M(X, t) — %e—%lnA]-‘rux—idl-i-inseCh
1 .
ElnA1+tbx—ct+m , 24)
w*(—x,1) = %ef%lnAffaeridtfinsech
1
(5(111 A% +ibx —ct +m) (25)

However, the solutions of the local FL equation can be
expressed as

—LIn A +ibx—dit+ni

1
u(x,t) = Ee sech

1
(§IHA1+ax—ct+m>, (26)

1 1 . L
u*(x,t): Ee 5 In AT—ibx+dit i gach

1
(E(ln Al +ax —ct +m) 27

According to these expressions of one-soliton solutions
of the reverse space nonlocal FL equation, we could
find that there are imaginary numbers in the coeffi-
cient of x in the hyperbolic functions, so the figures of
reverse space nonlocal FL equation are quasi-periodic
solutions. However, the coefficients of x and ¢ are real
numbers in the hyperbolic functions of the local FL
equation’s solutions. Thus, the plotted figures of soli-
ton solutions of local FL equation are different from
the nonlocal FL equations’, which are line soliton solu-
tions. The preceding part of the hyperbolic function in
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Fig. 1 One-soliton solutions of reverse space and/or time non-
local FL equations (with parameters: k; = —0.15 + 1.3i,
ki = —0.15 — 1.3i, n1o = nj, = 0). a and d describe the

this expression determines the peak amplitude of func-
tion |u| and |u*|. We could find that the peak amplitude
of one-soliton solutions of the reverse space nonlocal
FL equation is related to x. So the peaks of the soliton
solution are different as x changes, and its realizations
are periodic.

Substituting the variable transformations Eqgs. (2)—
(3) into one-soliton solutions Egs. (20)—(21) of the
reverse space nonlocal FL equation, then one-soliton
solutions of the reverse time and the reverse space-time
nonlocal FL equations are given

e51
a) u(x,t) = m, (28)
*(x, 1) esl* (29)

) —t) = T e e
s 1+ Atesitéi

e{l

b) u(x, t) = m, (30)
&

u*(—x, —t) = (31)

1+ ATeZH-Cl* ’

reverse space FL equation; (b) and (e) describe the reverse time
FL equation; ¢ and f describe the reverse space-time FL equation

where & = —ikix —iwit +n10, & = ik{x —iwjt +
N> $1 = —kix —iwit +n10, & = kix —iwjt +nj,.

In order to intuitively observe one-soliton solutions’
difference between the reverse space/time nonlocal FL.
equation and the reverse space-time nonlocal FL equa-
tion, Fig. 1 is provided by Maple software to describe
the exact one-soliton solutions Eqgs. (20)—(31) of three
types of nonlocal FL equations. In Figure 1a, b and ¢
are the profiles of |u|, and (d), (e) and (f) are the pro-
files of |u™*| with the same parameters k1, k7, 710, n7-
We could see that the color darkens as the amplitude
of solitons increasing in the density figures, and dif-
ferent colors are used to distinguish different values
of |u| in the solution behaviors’ figures. The results
show that the solutions of three types of FL equations
are periodic waves, and the periodic oscillations have
exponential growth trend. It is obvious that |u| and |u*|
of the reverse space/time nonlocal FL equation have the
same shapes as spatial/time evolution, but their enhanc-
ing shapes are antipodal.
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2.2 Two-soliton solutions of three types of nonlocal
FL equations

The two-soliton solution of the reverse space nonlo-
cal FL Eq. (1) can also be obtained with Hirota bilin-
ear method. We consider the truncating of the follow-
ing expansions G(x, 1) = €G| + €G3, G*(—x,1) =
€GI+€3G5, F(x,1) = 1 +€>Fy+€*Fy, F*(—x,1) =
1+ €2F5 + *F}.

Substituting these expansions into the bilinear Egs.
(8)—(9), and equating the coefficients of same powers
of € to zero, a set of equations can be derived

Gix =iGy, (32)
GiabFor+ Gayy — G Foy — Gy For + G

P = i(G1F2+ G3), (33)
Fy =iG1,GT, (34)

Fixi + F2Foyy — Fox Foy + F5

Frrt =iGY{(G1xFo + G3y — G1Fay) +1G1,G3,
(35)

where G, G7, F> and F; are given as follows

Gl = el + e772’
* * *
G1 =ell +e2,
* * * *
F, = Ale’71+'71 +Age’7‘+”2 + A3e’72+'71 + A4e’72+'72,

Fj = A’fe”'Jr”T—i—A;e"H’“ +A§e"‘+’73+A2e’72+’73.
(36)

In the above expressions, 1 = k1x — w1t + 110, 171‘ =
—kix — oft + njp, 12 = kox — wat + M0, M5 =
—k3x — w3t + 15, and ky, kT, ko and k3 are arbitrary
complex constants. From Eqgs. (32)-(34), we know

i,
w] _H, a)l = Ea
0= 5 = (37)
ko k;
and
iky
Al = * k7
(k1 _kl)(_wl _a)l)
* _lkik

A = ,
V7 — k) (—of — o)
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A ikq
2= ,
(k1 — k3)(—w1 — 03)
Tk — k) (—of — )]
Ay — iky ’
(—kT + ko) (—w} — w2)
T (ki + k) (—wr — w3)
|k
Ay = - 2 =
(k2 — kz)(_C')Z - wz)
* _lk;

Al = . 38
YT — k) (—wh — w) G%)

Thus, a set of equations for unknown functions are
obtained such as Gi(x,1), Gi(—x,1), Fp(x,t) and
Fz* (—x, t). Substituting the expressions for G| and F>
into Eq. (33), the function G3 and its parity transformed
complex conjugate G} are given in the form of

* *

G3 — Blen|+7)2+771 + Bzem+772+”2, (39)
* * * *

G; — Bikeﬂ1+772+m + B;eﬂ1+ﬂ2+ﬂz, (40)

where

(ki — k2)?k;?
(ky — k)2(ky — k)2’
(k1 — k2)?k33
(ka — k$)2(ky — Kk5)2°
P U et Vi
! (k5 — k)2 — k)2’
K =Rk
(k3 — k2)2(k} — k)2

B =

B, =

B} =

Then substituting the expressions of Gy, G’l*, Gs,
G}‘, F, and F; into Eq. (35), the functions Fy and Fj
are derived as

. % * *
F4 _ Clem+n2+nl+772’ Ff — C]“e”1+'72+”1+’72, (41)

where

_ K2k3 (k1 — ko) 2Kk (kT — k35)?
(ki = kD)2 (ki — k)2 (ko — kD)2 (ko — k3)2
cr likak — k)RR — k)
Pk — K2k — k)2 (ks — kD)2 (ko — K3)?

Cy
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The general nonlocal two-soliton solution of the
reverse space nonlocal FL equation (1) can be con-
structed by

G+ G3

)= —.
we ) = TR R,

(42)

According to the bilinear form of parity transformed
complex conjugate equation, the parity transformed
complex conjugate field is derived in the form of

GT + G}
w(—x,t) = — 3 43)
1+ Fj + F}
Through the transformations x = —i%,¢ = if and
X = —X,t = if, the two-soliton solutions (42)-(43)

of reverse space nonlocal FL equation transform into
two-soliton solutions of the reverse time nonlocal FL.
equation (4) and the reverse space-time nonlocal FL
equation (5). The solutions then are provided by the
following rational expressions:

the reverse space-time nonlocal FL equation are peri-
odic wave, and the periodic oscillations have exponen-
tial growth trend. It is obvious that |u| and |u*| of the
reverse space/time FL equation have the same shapes
as spatial/time evolution, but their enhancing shapes
are antipodal. Figure 2 shows the comparison of the
reverse space FL equation and the reverse space-time
FL equation, and Fig. 3 shows the difference between
the reverse time FL equation and the reverse space-time
FL equation. These figures have the same parameters
ki, kY, k2, k5, m10, 07> 120, 05 for different equations.
Through these pictures, we could observe two-soliton
solutions’ differences intuitively. The shapes of two-
soliton solutions of the reverse space/time FL equation
are parallel with the x or 7 axis; however, two-soliton
solution of the reverse space-time FL equation is not
parallel with neither x axis nor ¢ axis, which can be
viewed as a parallel superposition of time and space
local solitons.

€51 +652 4 B 51 T8 18] 4 By efitiatey

a)u(x,t) = : : = v ol 44

) ulx, 1) 1+ Aleél-ﬁ-%‘l +Aze§1+§2 +A3e‘§2+51 +A4eé‘z+%‘2 +Cle$1+§z+%‘1 +&; (44)

§1 105 1 B* b1 6 tE * 61 +E) +62
eSt +e52 + BFes1 52 + BieS1T%2
u*(x,—t) = * * ! * 2 * * * 9 (45)
1+A>i<e€1 +§; +A§e§1 +& +A§e§2 +é1 +Aje§2+g2 _|_C>1keél +o+E7+E
o8l 482 4 Bieb1 0+ 4 Byl it
byu(x, 1) - — —, (46)
14+ A1 DT80 4+ Apef118 4 Azt 4 Ayef2th 4 Creb1 Tt +4
¢ ¢ * o010+ * o0+ +0
el +e%2 4 Bie®1 %2 + ByeS17%2
M*(—X, _t) - * * L * 2 * * PR (47)
1+A’1ke§'+{l + A;efl +& +A§‘e§2+§] + Aje{2+§2 + CTe{1+§2+§| +4
where
& = —ikix —ioit + 10, & = ik{x — it + njp. _ .
& = —ikox —iwnt + 1m0, & = ikyx —iwyt + 13, 23 Elliree—scglton solutions of three types of nonlocal
. ; equations
&1 = —kix — iyt + 10, & = kjx —iwft +njy, au
_ . * g% sk *

§2 = —kax —iwpt + 120, {5 = kyx — i@yt + 139, Through Hirota bilinear method, the three-soliton solu-

(48)

Then some figures are given to describe the exact
two-soliton solutions (42)—(47) of three types of non-
local FL equations (see Figs. 2 and 3). In these figures,
(a) and (b) are the profiles of |u|, (c) and (d) are the
profiles of |u*|. Profiles of the reverse space nonlocal
FL equation and the reverse time nonlocal FL equa-
tion present two breather-like solitons, while that of

tion of the reverse space nonlocal FL. Eq. (1) can
be obtained. The truncating expansions of G(x,?),
G*(—x,t), F(x,t) and F*(—x, t) are given as follows
G(x,1) = €G| + €G3 + €Gs,
G*(—x,1) = €Gt 4+ €3G} + € G¥,
F(x,1) =14 €>F> + €*Fy + €°Fg,
F*(=x,1) = 1 + 2 Ff + *F} + 8 F;.

(49)
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Fig. 2 Two-soliton
solutions of reverse space
and reverse space-time
nonlocal FL equations (with
parameters: k| = 1.74i,
ki = —1.74i, ko = —0.5i,
k3 = 0.5,

no = njy = —1.5,

n20 =13y = 0).aand ¢
describe the reverse space
FL equation; b and d
describe the reverse
space-time FL equation

Fig. 3 Two-soliton
solutions of reverse time
and reverse space-time
nonlocal FL equations (with
parameters: k; = 1.5i,

ki = —=1.5i, ko = —1.8i,
ky =1.8i,n10 = njy =1,
mo =1y = —0.5).aand ¢
describe the reverse time FL
equation; b and d describe
the reverse space-time FL
equation

@ Springer
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Substituting these expansions into the bilinear Egs. (8)— and
(9) and equating the coefficients of same powers of €
to zero, a set of equations can be derived Al — ik
' =K (—or — o)
D.D;G1-1=1iGq, (50) A _iki"
D,Di(G-F,+G3-1)=i(G 1 F, + G3), (51) Y7k — k) (—of —wp)’
DyDi(Gy-F4+G3z-F,+Gs-1) Ay = iky
=i(G1Fs+ G3F> + Gs), (52) (k1 —k3) (w1 — w3)’
D,D/1-F, =iGiD,G - 1, CON —iky ’
1 . (k] — ko) (—w} — w2)
Dthl'F4+§DthF2'F2+F2Dth1 lk2
Az = ,
-F, =iGiDy(G,-F,+G3-1) (ky — k) (—w2 — )
+iG3D,G - 1, 59 4o —ik; 7
- (k3 — kn)(—w3 — o1)
Dth(l-F6+F2~F4)+zeDth(Fz-Fz) ik
Ay = ,
+ FSDyD1 - F4+ F;D, D1 - F) (ky — k3)(—w2 — w3)
=iG{Dx(G1 - Fy+G3- Fy+Gs - 1) A% = —iky
* * ’
+iGiD(Gy - Fa+ G3-1)+iGEiD, (G - 1), (k3 — k2)(—w; — @2)
55 iky
69 pg M
(k1 3)( W] — w3
where G1, G, F> and F} are given as follows A —ik}
Pk — k) (—of —w3)’
Gl:enl+enz +eﬂ3’ lk2
* * * A - 5
Gt =e"l + e 4 e, °T a— kD (—ar — w3
= AleernT + Aze”‘J”’; + A3e'72+7ﬁ + A4e'72+77; A = _ik;
6 — El
+ Asen1+n§ + A6en2+7l§ + A7e'73+’7>lk (k; _k3)(_w; —w3)
s +n A ik
n3+1 N3+ = )
+ Age ™ 4 AT, T s =k (—ws — )
Ff = A’fe’““’f +A§eﬂ7+ﬂz +A§e"§+’7‘ +Aje’72+”3 - ik
+ A§e’7j'k+'73 + Aze";"'773 + A}ke”§+"‘, T (k% — k1)) (—wf — 1)’
+AGETR 4 AGe T, G0 As= k*;(kS B}
3= w3 — Wy
In these equations, | = k1 x —w1t+n10, 0} = —kfx— AF — —ikj
ot + 07, 12 = kox —wat + 120, 15 = —k3x —wit + 87k — k) (—wf — @)
N30> M3 = k3x — w3t + 30, N3 = —kjx — w3t + 05, Ao — ik3
and k1, ko and k3 are arbitrary complex constants. From 0= (k3 — k) (—w3 — %)’
Egs. (50)—(53), we know —ik*

i,
W = —7,0] = 7,
kit K
i i
3k
Wy =——,0; =,
k't K
03 =~ 0§ = (57)
k3 &

Ay = .
0T (K — k) (—wh — w3)

Thus, we have obtained a set of equations for the
unknown functions G1(x, t), G} (—x, 1), F>(x,t) and
F}(—x, t). In order to get the function G3 and its par-
ity transformed complex conjugate G, substituting the
expressions for G| and F; into Eq. (51), G3 and G}
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are given in the form of

G3 = BjeM Tt 4 pyem+mtny 4 piom+ntng
+ ByeM i 4 poemtustis
+ B6ei71+173+17§ + B7enz+173+7ff
* *
+ Bge™ Tt 4 BoeM st (59)
G;‘ — Bi“e’ﬁ*”;*"l + B;eni‘+n§+nz
* * * * * *
+ B;ke’?|+'72+7/3 + Bz‘en1+’73+711 + Bg“e’?1+’73+712
+ Bgen]‘+n§+n3 + B;en§+n§+m

+ ByeM Tt 4 premtni s, (60)
where

(k1 — ko)K7

B = — ,

' T k= kD2 — kD)2
O k3)%k]

: (k% — kn)2(kF —k)?’
5 = k)’

T = K2k — k)2
P k3)%k3

2T (k- k)2(kf — k)2’
g =)’k

T T k= kD2 — kD2
O k3)*k3

! (k% — k3)2 (kT — k3)?’
. (ki — k3)*k}>

YT s — k)2 — k)2
P Gt k3§

YT — kD2 — k)2
P k3)*k3>

T = )2k — k)2
[ k3%

> (K — k)2 (k} — k)2’
5 =k’

O Tl — kD)2 — kD2
g K- k523

Ok — k3)2(kF — k)Y
B — (ko — k3)?k;?

ks — kD22 — kD’
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B
(k3 — k)2 (ky — k1)*’

(ko — k3)?k3?
(k3 — k3)?(ka — k3)?”

O ot 3
8 = * 20k — Ja)2

(k3 — k2)= (k5 — k2)

R CER O
(k3 — k3)? (ko — k3)?’

R R e

By = — . 61
O TE Rk k) ©b

Bj =

Bg =

By =

Then substituting the expressions of G, G’f, Gs,
G;‘, F, and F; into Eq. (54), the functions Fy and Fj
are derived as

Fy = Clem+nz+n}‘+n§“ + C26n1+n2+n7+n§

+ C3eﬂ1+n2+n§+ﬂ§ + C4e771+713+77’f+?1§

+ CseMPmBHn+ng 4 cp pnitnstnytis

+ C7eﬂ2+773+n’f+71§ + Cse']z+n3+nf+’7§

* *

+ Coem AT (62)
Fj‘ — Ciken7+n§‘+m+nz + C;eni‘+n§‘+m+n3

+ C§en7+n§‘+n2+n3 + CleMitmtmtn

+ C§enf+n§‘+m+n3 + Cgeni‘+n§+nz+n3

+ C;«en§‘+n§‘+m+nz + Céken§+n§‘+m+n3

+ C;e";+’7§+”2+"3, (63)

where

(kF — k)2 (k) — ko) k3 kFkaks

C = ,
N k= k)2 — K5)2(ky — kD)2 (k1 — k)2

- (kK — k52 (ki — ko)?k3kkaks

(ka — k)2 (ky — k)2 (ko — kD)2 (ki — k)
Cr— (k3 — k)2 (ki — ko) k3RS K3KS

(ky — k32 (ky — k§)% (ko — k3)* (k1 — k%)%’
o (kf — k)2 (k1 — k3)? K3k} k3K

(ks — k3)2 (ki — k3)2 (ks — k)* (ki — k)’
Cs = (ky — k)% (k1 — k3)*kikk3ks

(ks — k)2 (ky — k3)2 (ks — k)* (ki — k)
Ce (ks — k3)* (k1 — k3) ki k3ks

T (ks — K2kt — K2 (ks — k)2 (ky — k3)2
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(kF — k) (ko — k3)*k3k k3 ks

Cr = i

T s — )2 (ke — K502 (ks — kP (ka — k)2
Co— (ki — k3)* (ko — k3)*k3k h3ks

87 Ui — k)2(ka — K2 (ks — k)2 (ks — K1)2
Co— (k3 — k)% (ko — k3)?k3k3 k3 K3

(k3 — kD)2 (ko — k§)2(ks — k3)2 (ko — k5)2
(64)

and
CF — (ki — k)2 (k} — k3)2k;2k1k3 ks

DT (k= K2 — k2)2(ks — k)2 (k) — k)2
C* = (k1 — k3)2(kik - k;)zkikzklk;zkg

27 (k5 — ka)2(k — k3)2 (k5 — kD2(k} — k)2
Cr — (ky — k3)?(k§ — k3)2 k2 kak32k3

3T — k)2 (K — k3)2 (k5 — k)2 (k) — k)2
CF — (k1 — k)2 (kF — k52K 21 k32 ko

TS — k)2 — k)2 (K — k)2 (kT — k)2
o — = k) (k] — K2k ik ks

Sk — k3)2(kf — ka)2(k§ — k)2 (K — k)2
Cr — (ky — k3)? (K — k52K kak’$%ks3

6 = U — k)2 (kF — ka)2(kE — k)2 (kT — k)2
o= R k205 — k)5 khs

Tk — k)25 — k)2 (K — k)2 (ks — k)2
CF — (k1 — k3)? (k5 — k3)2 k32 k1 k32 ks

87 — k3)2(Kk5 — ka)2(k§ — k2K — k)2
ci (ky — k3)* (k3 — k)32 kak32ks

T K — k)25 — k3)2 (kS — k)2 (k5 — ko)
(65)

So as to derive the expression of Gs, we substitute
the expressions for G, G7, G3, G}, F2, F}, Fyand F
into Eq. (52), and then the functions G5 and G could
be given as
Gs = Dlem+nz+n3+r/1‘+n§ + Dzem+nz+n3+r/1‘+n§‘

+ D3em+n2+n3+n§+n§’ (66)
G; — DTen’{+n§‘+r/§+m+nz + Diken’l‘+n§+n§‘+m+n3

% %k
+ D;enl+772+773+’)2+713’ (67)

where

B (k} —k3)? (ka —k3)* (k1 —k3)* (k1 —k2)*k5 &}
(ky—K5)2 (ko — k%) (k3 —k3)2 (k1 —k )2 (ks —k)? (k1 —k3)?

D

(k= k) (ko —k3)? (k1 —k3)? (k1 —k2) 2k k73

Dy = s
1T U=k (=K (ka=k3)2 (ki =k (ko =k} (k1 =K3)?
D (k3 —k3)? (ka —k3)* (k1 —k3)* (k1 —ka) *k5°A5°
T (ks —k3)2 (ks —k3)2 (ko — k)2 (k1 —k5)2 (ko —k5)2 (ke — k)2
(68)
and

(ki1 —k2)? (k3 — k)2 (k7 —k3)? (K —k3)2k3 k3
(k3 —k1)? (k5 —k2)? (k5 —k2)? (ki — k1) (K} —k1)? (k} —k2)?’
2 2 3 1 3 1
D* — (ky —k3)? (k5 — k)2 (k5 — k)2 (K —k$)2k3k3
2T (kg — kD)2 — k)2 (k5 —k3)2 (kT — k)2 (k5 —kD)2(kf —k3)?
Dt (ko —k3)? (k5 — k) (k5 — k)2 (K — k)2 k3 k3
3 (K — k)2 (K —k3) (k5 —k3)2 (k —ka)2 (k3 —k2) (K} —k3)?
(69)

*

1=

Then, substituting the expressions for G, GT, Gs,
G3. Gs, G5, I, F5, Fy and F into Eq. (55), we can
get the functions Fg and F" as

* * *

Fo = Ele"1+”2+"3+”1+"2+"3, (70)
Ff = Eikem+n2+n3+n7+n§‘+n§" (71)
where

M
El=——,

N

M*
Ef =——,

N*

M = IG5k (ks — k)2 (ko — k) (kT — k§)?
(k1 — k3)2k3 (k1 — ko) (k§ — k3)%k3,
N = (k} — ko) (k1 — k)2 (ks — k3)? (ki — k})?
(ky — Kk3) (ks — k)2 (ki — k3)?
(kK — k3)* (ko — k3% (72)

The general nonlocal three-soliton solution of the
reverse space nonlocal FL equation (1) can be con-
structed by

G1+ Gz + Gs

, 1) = .
O = T T Fa t F

(73)

According to the bilinear form of parity transformed
complex conjugate equation, the parity transformed
complex conjugate field is derived in the form of

Gt + G+ G

u(—x,t) = .
( ) 1+F;+FI+F5

(74)
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In order to derive three-soliton solutions of the
reverse time and reverse space-time nonlocal FL equa-
tions, we substitute transformations x — —ix, t —
it into three-soliton solutions Egs. (73)—(74) of the
reverse space nonlocal FL equation. These solutions
are given as the following rational forms:

GV + 6" + G

a)u(x,t) = , (75)
1+ AV + FED + R
G0 4 GV 4 gD
W =) = (76)
1+ 7Y+ O 4 R
(2 (2) ()
G7+Gy+G
by ux, 1) = — S, (77)
1+ F,7+ F,7 + F
wi(—x, —1) = 1 e *(2) *(2) (78)
1+ F,+ F, 7 + F
where

G(l) =5 4 e 4 €5,

G(l) By eHITatEl 4 Byé®! +thte 4 Bze§‘+52+€3
4 B4e$1+§3+$1 + Bse§1+53+§z
+ Beeb1 5T 4 Befrtéstel
+ Bgeb2T8H6 | poefatiatss

G(l) D16E1+§2+$3+51 3 4 DyefitiatE s A
4 D3esl +&+E3+E5 +§3

FO = 4,846 4 g8 4 A3efHE 4 agebo e
F AsefHE 4 AgeftE | A pfHE
+ AgeBE  Agets e
FO = Croftetii+8 | oppfitartéi+8
4 C3e§1+$2+§2 +&5 + C4e$1+§3+$1 +&5
+ C56E1+Es+§f‘+8§ + C68§1+Ez+§§‘+8§
+ C7e§2+§3+~§1*+§2* + Cge$2+é3+§1*+€3*
+ C9(3$2+$3+§;+E3*,
F(l) — Eef1HeatE s 55+

& = —ikix —ioit+n0, & =ikix —ioft+n],
& = —ikox —iwat 420, &5 =ik3x — iw3t+1n5,
& = —ik3x — iw3t+n30, &3 =ik3x — (w3403,
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and

G(z) =81 4 62 4 %,
G<2> By b1t o g pbitates o gttty
+ B4e§1+§3+§1 + Bse§1+§3+§2
+ B6e€1+§3+§3* + B7e§2+4“3+4“1*
+ Bge§2+§3+§2* + 39€§2+§3+§§"
G(Z) Dy S1TRTGHIHG 4 p, el it i+
+ D3eé“1+§2+£3+§2 +¢5 ,
F2(2> = A1 L Apel1TE 1 AgelitE 4 Ayt
_I_Ase{z-i-;“z* +A6e§“2+4“3* +A7e§3+41*

T AgeltE 4 Ageti T
F(Z) C 81T | 0, o1t ete+e3

+ C3e§1+£2+§2 +3 + C4e§1+§3+£1 +43
4 CsebIHOHHE | ettt
4 C7e§2+£3+;“1*+£2* + Cse§2+£3+4“1*+£3*
+ Coel2 ot +e]
F6(2) = E b1t
{1 = —kix —iwit +n10, ¢f = kix
0 = —kox —iwot + 10, &3 = k3 x — iwst + 3,

. * *
— ot + Np»

{3 = —k3ax — iwst + 130, §3* = k;‘x — ia);t + n;o.
Then some figures are presented to describe the
three-soliton solutions (73)—(78) of three types of non-
local FL equations explicitly (see Figs. 4 and 5). In
these figures, (a) and (b) are the profiles of |u|, (c) and
(d) are the profiles of |u*|. Figure 4 shows the com-
parison between the reverse space FL equation and the
reverse space-time FL equation. And Fig. 5 shows the
difference between the reverse time FL equation and
the reverse space-time FL equation. These figures have
the same parameters ki, k2, k3, 110, 120 and n3g for
different equations. Through these pictures, the differ-
ence between three-soliton solutions of two different
nonlocal FL equations can be observed intuitively. It is
obvious that |u| and |u*| of the reverse space/time FL
equation have the same shapes as spatial/time evolu-
tion, but their enhancing shapes are antipodal, and pro-
files of the reverse space FL equation and the reverse
time FL equation present three breather-like solitons.
The solutions of the reverse space-time FL equation are
periodic, and the periodic oscillations with exponen-
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Fig. 4 Three-soliton
solutions of reverse space
and reverse space-time
nonlocal FL equations (with
parameters: k; = 0.7i,

ki = —0.7i,
ky = 0.1 —0.8i,
K5 =0.1+0.8i,

k3 = —0.35i, k5 = 0.35i,
no = Ny = 2.5,

mo =15y = 1,

mo =N = —3).aand ¢
describe the reverse space
FL equation; b and d
describe the reverse
space-time FL equation

Fig. 5 Three solitons
solutions of reverse time
and reverse space-time
nonlocal FL equations (with
parameters: k; = 0.5i,

ki = —0.5i,

ko = 0.25 - 1.51,

k3 =0.25 4+ 1.54,

ky = —1.22i, kj = 1.22i,
no = Ny = 2.5,

Mo = njy = 1,

n30 =n3 = 1).aand ¢
describe the reverse time FL
equation; b and d describe (©)
the reverse space-time FL
equation

[2e*] |ea*]
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tial growth trend, and |u(x, #)| and |u*(—x, —t)| have
the opposite enhancing directions as time evolution.
Through these figures, the shapes of three-soliton solu-
tions of the reverse space/time FL equation are parallel
with the x or  axis; however, three-soliton solution of
the reverse space-time FL equation can be viewed the
parallel superposition of time and space local breather-
like solitons.

3 Asymptotic analysis

3.1 Asymptotic analysis on two-soliton solution of
the reverse space FL equation

Through asymptotic analysis in [47], it shows that when
solitons undergo multiple collisions, there exists possi-
bility of soliton’s shape restoration. Asymptotic analy-
sis is used to investigate the elastic and inelastic inter-
actions between the bound solitons and the regular one
soliton [48].

Considering the above two-soliton solution Eq. (42),
without loss of generality, we assume that 19 = 129 =
0 and ki /ka > 0. For fixed 7y, note that ny + nj =
2Re(%m)+2Re(%w1 —wy)t, and suppose Re(%wl —
wy) > 0.

i) Taking limit t — —oo: 1 +nf ~ 0, n2 + 13 ~
—oo, the asymptotic expressions for the two soli-
tons before interaction can be given by

1 m-nt-a *
ul= ~ Zem 3 lsech mAn e ,
2 2

ik

— . 79
" — D) (o1 — o 7

el = Ay

ii) Taking limit t — 4o0: 9 +nf ~ 0, n2 + 13 ~
~+00, the asymptotic expressions for the two soli-
tons after interaction can be given by

v B Wsech(n1+nf+a2)’

u ~ —e
2A4 2
o _ O (k= k) — kPRI
Ay (ki — k)2 (ky — k3)?(ky — k7)?
(80)

For fixed 72, note that 71 + 0} = 2Re(ln2) +
2Re(%w2 — w)t, and it is obvious that Re(%a)2 _
wy) < 0.
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(i) Takinglimitt — —oo: 01 +n] ~ 400, N2 +1n5 ~
0, the asymptotic expressions for the two solitons
before interaction can be given by

By m-m-es +ni+a
ur ~ —L e+sech <—772 P 3) ,

2A1 2
v _C__ a- ka)2 (k¥ — Kk3)2kaks
Ay (k1 — k)2 (ky — K1) (ka — k3)2
(81)

(ii) Takinglimitt — +o00: 01 +n7 ~ —o0, N2 +1n5 ~
0, the asymptotic expressions for the two solitons
after interaction can be given by

1 m-ni-oy +nita
ot zsech<n2 n 4>’

u ~ —e 2
2
_ iky
(k= k) (—wp — w3)’

oy

= Ay (82)

Comparing the asymptotic expressions of two-
soliton solution between before interaction and after
interaction, we find that ki, k7, k> and k3 accord with
the conditions

k3 lko — kF1Ik} — k3|
k2 |ky — kao|lky — k3|
k2\ky — KXk — kX

32| 1 2|| 1 2*| =1, (83)
kz |k1 —k2||k2_k1|

=1 and

the relations of amplitudes can be obtained

Am'” = Am't and Am’” = Am’t, (84)
where Am!~ and Am>~ denote the amplitudes for the
two solitons before the interaction, while Am'* and
Am?”* denote the amplitudes for the two solitons after
the interaction. When kj, k}, k2 and k3 do not accord
with conditions (83), it can yield

Am'~ # Am'T and Am®>™ # Am’t. (85)

Through expressions (84) and (85), itis obvious that
the elastic interaction for two-soliton solution of the
reverse space nonlocal FL equation appears under con-
ditions (83), inelastic interaction for two-soliton solu-
tion of the reverse space nonlocal FL equation arises
beyond conditions (83).
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3.2 Asymptotic analysis on three-soliton solution of
the reverse space FL equation

Considering the above three-soliton solution Eq. (73),
without loss of generality, we assume that 19 = 129 =
mo =0, k1/kr > 0, ky/k3 > 0 and k1 /k3 > 0. For
fixed 1, note that o +n3 = 2Re(%m) +2Re(’,§—fa)1 -
w))tand n3+n3 = 2Re(i—im) +2Re(%w1 —w3)t,and
suppose Re(%a)l —wy) > 0and Re(%a)l —w3) > 0.

(i) Taking limit  — —o0: 1 + i ~ 0, n2 + 03 ~
—00, 13 + n;3 ~ —oo, the asymptotic expres-
sions for the three solitons before interaction can
be given by

1 m-nj—« ¥
ul= ~ —ei71 7+ sech mrhTe e ,
2 2

_ ik
(ki — k) (—o1 — o))

o]

el = Ay (86)

(ii) Taking limit t — 4o00: 1 +nf ~ 0, n2 + 15 ~
+00, n3 + 13 ~ +00, the asymptotic expressions
for the three solitons after interaction can be given
by

n—nj—as *
u]+,\_,&e 21 sech 7’714‘771 +as s
2Cy 2
Ey
Co
(ki —k2)? (k1 — k3)* (K} — k) (kf —k5)*kik}
T —kD2(ky — k)2 —k)2 (ko — kD)2 (k3 —k )2
(87)

e%s

For fixed 77, note that n; + 5} = 2Re(%n2) +
2Re(%w2 — o)t and n3 + 1} = 2Re(§—;n2) +
2Re(ll§—;a)2 — w3)t. Supposing Re(lli—;a)z —w3) > 0,
it is obvious that Re(%a)z —wy) < 0.

(i) Takinglimits — —o0: 01 +n} ~ 400, N2 +n5 ~
0, n3 + n3 ~ —oo, the asymptotic expressions for

the three solitons before interaction can be given
by

ur ~ ie%sech <—772 ot aé) ,
24, 2
Ci (k1 — ko) (K} — K3)%k3ks
T AL (= k)2 — kD2 — K32
(88)

o6

(ii) Takinglimitt — +o00: 01 +n ~ —o00, N2 +1n5 ~
0, n3 + n3 ~ 400, the asymptotic expressions for
the three solitons after interaction can be given by

2Aq 2
Coy (ko — k3)? (k3 — K§)2k3k3
T Ay (- k)2 — kD2 — K32
(89)

By m-nm-a h+ni 4«
u2+ ~ _96 2 Sech <w N

o7

For fixed 73, note that n; + nf = 2Re(%n3) +
2Re(£—;w3 — ot and . + ;5 = 2Re(%n3) +
2Re(l,:—§a)3—a)2)t.ltis obvious thatRe(%wg—wl) <0
and Re(%wg —wy) < 0.

(i) Taking limits — —o0: 01 +n} ~ 400, N2 +n5 ~
+00, 13 + n3 ~ 0, the asymptotic expressions for
the three solitons before interaction can be given
by

Dy "-13-% it a
W~ 2L een (BB T8
204 2
_E&
o
(ki — k3) (k§ — k)% (kp —k3)? (k5 — k)23 k%
T (ki =k (ko — k)2 (k3 — k)2 (k3 —k3) (k3 —k$)2
(90)

8

(ii) Taking limitz — +00: 1y +n] ~ —00, m+n5 ~
—00, 13 + 13 ~ 0, the asymptotic expressions for
the three solitons after interaction can be given by

1 m-ni-a *
u3+ ~ —e 3 23 gsech w s
2 2

ik3

T (k3 — kD (—w3 — o)’

o9

e = Ag oD

Comparing the asymptotic expressions of three-
soliton solution between before interaction and after
interaction, we find that k1, k7, k2, k3, k3 and k3 accord
with the conditions

k3k3ky — k3|lky — K31IkT — k31 IkF — k%]
k3232 |ky — kallky — k3llko — K [1ks — k|

(92)
k332 ko — kallks — k311ka — K I1KT — k3|
ki2k3 ki — kol lky — K3 |1k — K3 [1ks — K3

=1, 93)
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kika |k — k3[1k5 — k3 |lks — ki llks — k3|
K2k ki — kallki — k5 [1k — ks|[ka — K3

94
the relations of amplitudes can be obtained
Am'™ = AmH', Am?~ = Am2*
and Am’™ = Am3+, 95)

where Am'~, Am?~ and Am®~ denote the ampli-
tudes for the three solitons before the interaction, while
Am!T, Am>* and Am>* denote the amplitudes for the
three solitons after the interaction. When k1, k7, k2, k3,
k3 and k;k do not accord with conditions (92)-(94), we
have

Am'” # Am'", Am®” # Am>"
and Am’~ #* Am*t. 96)

Through expressions (95) and (96), it is obvious that
the elastic interaction for three-soliton of the reverse
space nonlocal FL equation appears under conditions
(92)—(94), inelastic interaction for three-soliton of the
reverse space nonlocal FL equation arises beyond con-
ditions (92)—(94).

4 Lax pair and conservation laws for three types of
nonlocal FL equations

4.1 Lax pair and integrability

In this subsection, the integrability of nonlocal FL
equations will be shown by finding their Lax pairs
which constructed from matrix generalization. The Lax
pair for the reverse space nonlocal FL equation (1) takes
the form

Ve, =UVs, Vg, =V Vg, 7)
with
L2 ux,n
— 2 X )
Ur= ()Lu:f(—x,t) —%)Lz >’

% —iu(x, Hu*(—x, 1)
Vi=| 2 i
Tut(=x, 1)

%u(x,t) )
—57 tiule, Hu*(—x, 1)
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where Vg = (Y51, ws,z)T is a column vector func-

tion, and W7 and Vg7 below are also column vector
functions. The compatibility condition of the Lax pair,
which s zero curvature equation Uy, — Vi +[Uy, Vi] =
0, leads to Eq. (1). These variable transformations (2)
and (3) allow us to derive the Lax pair of the reverse
time and reverse space-time nonlocal FL equations
from that of the reverse space one. The Lax pair for
the reverse time nonlocal FL Eq. (4) is derived as fol-
lows

Yy, =WVr, VYr;= WYy, (98)
with
—ix2 —luy(x,t)
_ 2 5
U2 = (Aui(x, -1 522 ) ’

Vy — -7z Fute ot =0 —Lu,n .
—5u*(x, —1) L —u(x, Hut(x, —1)

21

The Lax pair for the reverse space-time nonlocal FL
equation (5) is

Werx = UsWsr, Wt = V3Wsr, (99)

with

1,2
—5A —Auy(x, 1)

Uz = 2 R

? (Auﬁ(—x, —t) %AZ )

v <_2>12 +ulx, Hu*(—x, —1)
3 =

—%u(x,t)
—Lu*(—x, —1) 30— ulx, Out(—x, 1) |’

The transformation relationship between these equa-
tions provides an effective method for us to derive the
Lax pairs of different equations. In fact, given the solu-
tions of the reverse space nonlocal FL equation, the
solutions of reverse time and reverse space-time coun-
terparts can be derived from the principle. However,
if not, then the solutions of reverse time and reverses
pace-time nonlocal FL equation may derive desired
solutions by other methods.

4.2 Conservation laws

Based on the Lax pair, the infinitely many conserva-
tion laws are constructed in both positive and negative
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orders. We consider the associated spectral problem of which can be written as
the reverse space nonlocal FL equation

(uxP)r = —(uP;i—x, (0 =1,2,..),

Py = —u*. (109)

Wl) (%Kz —)»ux) (Wl)

= , 100
(l/fz R LA 2 (oo
and associate time evolution equation

(%) _ #ﬁi””* lx“ (l/fl)
V2 ), qut =g tiunt ) \y2 )7

(101)

They satisfy the following expression

2
Uy <ﬂ> = Auyul — kzuxﬂ +)»u)2€ <ﬂ> ,
lﬁl X WI 1#1

(102)
u <%>; = %uu* + (—% + 2iuu*>
u% - )%uz (%)2 (103)
The expression of % is given as follows
v e .
w—? =3 Pl (104)

i=1

Substituting (104) into Eq. (102), and comparing the
coefficients of A, we obtain

1
Py =—Pio+ Y uPiPy (i=1.2,.).

j=1
(106)
It can be easily shown that ¥ satisfies
(ny)x; = (N (107)

Hence, the conservation laws are derived as follows

v _ (.o 1Y
(—Mtx%)—(—mu _H)hulﬂl)x’ (108)

Among these conservation laws, the first two are listed
below

(uxuy); = (fuu™)y, (110)

2 (—1eh, + weuwD]e = (—iun),. (111)

On the other hand, substituting the expansion

0]

v2_ > Q! (112)

i=1

into Eq. (103) and comparing the coefficients of A, one
obtains

Q) =u", (113)
Qiv1 =iQi; +2uu*Q;

1
—Zupjpm_j (i=12,.). (114)
j=I

Then other conservation laws are given as follows
(uxQi)r = —i(Pip)x (i =1,2,..). (115)

Among these conservation laws, the first two are listed
below

(ueu®), = —ifu(iul + uu*?)],, (116)

[y G + uu*)), = —ilu(—ul, + i @u*?))]y.
(117)

The transformations Egs.(2)-(3) allows us to derive
the conversation laws of the reverse time and reverse
space-time nonlocal FL equation from those of the
reverse space ones. The first two conversation laws for
the reverse time nonlocal FL equation (4) are derived
as

(—iuyuy), = (uu®)y, (118)

[ty Uy — iuxt®)]y = (iuu’),y, (119)

@ Springer
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and
(uxu®); = [u( 4 uu*)],, (120)
[ (uf + uu™)], = [uf, + @u*))],. (121)

The first two conversation laws for the reverse space-
time nonlocal FL equation (5) are derived as follows

(uxuy)y = (uu™)y, (122)
[y, + uc’®)], = ut)y, (123)
and

(uxu®) = [u() 4+ uu*)];, (124)
[y (uf + ut™)], = [u(ul, + @u*),)];. (125)

So, through the transformation relationship between
these equations, it is effective to provide the conversa-
tion laws of different equations. However, the prereq-
uisite for doing these things is knowing the Lax pairs
of these equations.

5 Conclusions

In this paper, three types of nonlocal Fokas—Lenells
equations are considered by means of the Hirota bilin-
ear method. The one-, two- and three-soliton solutions
of the reverse time and reverse space-time nonlocal FL.
equation are converted from those of the reverse space
ones. Furthermore, the graphical representations are
presented showing the shape of solution more visually,
and the physical interpretation of the obtained figures
is discussed for different choices of the parameters that
occur in the solutions. Then, asymptotic analysis of
two- and three-soliton solutions of reverse space non-
local FL equation are given to understand the long-time
asymptotic behavior. The Lax integrability of three
types of nonlocal FL equations is investigated using
variable transformations, and infinitely many conser-
vation laws are constructed based on the Lax pairs
of different equations. These results might be useful
to comprehend some physical phenomena and inspire
some novel physical applications on other nonlinear
system.
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