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Abstract As the key component of a mechanical

system, rolling bearings will cause paralysis of the

entire mechanical system once they fail. In recent

years, considering the high generalization ability and

nonlinear modeling ability of deep learning, rolling

bearing fault diagnosis methods based on deep learn-

ing have been developed, and good results have been

achieved. However, because this kind of method is

still in the initial development stage, its main problems

are as follows. First, it is difficult to extract the

composite fault signal feature of rolling bearings.

Second, the existing deep learning rolling bearing fault

diagnosis methods cannot address the problem of

multi-scale information of rolling bearing signals well.

Therefore, this paper first proposes the overlapping

group sparse model. It constructs weight coefficients

by analyzing the salient features of a signal. It uses

convex optimization techniques to solve the sparse

optimization model and applies the method to extract

features of rolling bearing composite faults. For the

problem of extracting multi-scale feature information

from rolling bearing composite fault signals, this paper

proposes a new deep complex convolutional neural

network model. This model fully considers the multi-

scale information of rolling bearing signals. The

complex information in this model not only has a rich

representation ability but can also be used to extract

more scale information. Finally, the classifier of this

model is used to identify rolling bearing faults. This

paper proposes a new rolling bearing fault diagnosis

algorithm based on overlapping group sparse model-

deep complex convolutional neural network. The

experimental results show that the method proposed

in this paper can not only effectively identify rolling

bearing faults under constant operating conditions, but

also accurately identify rolling bearing fault signals

under changing operating conditions. Additionally,

the classification accuracy of the method proposed in

this paper is superior to that of traditional machine

learning methods. The proposed method also has

certain advantages over other deep learning methods.
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1 Introduction

The timely identification of faults in the equipment

operation process is of great significance to the safe

operation of mechanical systems and can reduce or

prevent major economic losses and catastrophic

accidents [1, 2]. Rolling bearings are a key transmis-

sion component in the structure of an entire mechan-

ical system; if they fail, they can cause an increase in

the overall failure rate of the system, cause significant

economic losses, and even cause serious safety

accidents. Therefore, research on rolling bearing fault

diagnosis methods has always been a key issue in the

field of fault diagnosis. Rolling bearing fault diagnosis

methods are generally divided into rolling bearing

fault diagnosis methods based on feature analysis and

rolling bearing fault diagnosis methods based on

artificial intelligence [3–5].

Studies on rolling bearing fault diagnosis methods

based on feature analysis mainly include the follow-

ing. Bafroui et al. [6] used a discrete wavelet transform

to study rotor fault feature extraction. Although it has

good reconstruction characteristics and other advan-

tages, this method has problems such as the loss of

high-frequency fault characteristic information. Geor-

goulas et al. [7] used the empirical mode decompo-

sition (EMD) method to obtain the original

characteristics of vibration signals from a normal

bearing and a faulty bearing, thereby realizing the

abnormal recognition of a rolling bearing. Yu et al. [8]

used ensemble EMD (EEMD) and singular value

decomposition (SVD) to obtain useful fault features of

rolling bearings and used the fault features for

identification. Although the above methods have been

widely used and promoted in the field of rolling

bearing fault diagnosis, these methods have problems

such as the artificial setting of feature information,

weak adaptive ability, and poor robustness. Therefore,

better rolling bearing fault diagnosis methods have

been studied in the industry.

Fault diagnosis methods for rolling bearings based

on artificial intelligence are divided into fault diagno-

sis methods for rolling bearings based on machine

learning and deep learning. Fault diagnosis methods

based on machine learning mainly include the method

by Muruganatham et al. [9], who used SVD and feed

forward back propagation neural networks (BPNNs)

to diagnose different faults of rolling bearings. Ali

et al. [10] used a BPNN as a classifier to diagnose the

running state of the rolling elements and inner and

outer rings of a bearing. Li et al. [11] proposed a

method for the fault diagnosis of rolling bearings

based on a binary tree SVM model. Uddin et al. [12]

proposed an enhanced k-nearest neighbors (KNN)

classification algorithm using enhanced KNN to

realize bearing fault diagnoses. The fault diagnosis

methods based on machine learning have an improved

diagnosis effect and adaptive ability compared with

the fault diagnosis method based on feature analysis.

Excellent machine learning methods have outstanding

interpolation ability and rule processing between

features, etc. Feature point methods mainly focus on

accurate identification near feature points. However,

this type of method has problems such as weak self-

learning ability and weak robustness in the modeling

process. In this context, deep learning [13, 14] has

strong generalization and feature extraction abilities.

Deep learning has been widely used in machine vision,

image classification and natural language processing.

Therefore, researchers have introduced deep learning

to the field of fault diagnosis and have introduced fault

diagnosis methods based on deep learning. Shao et al.

[15] used a deep belief network (DBN) for the

intelligent state monitoring of induction motors and

used a DBN to automatically extract relevant features

of vibration signals for state recognition. Shao et al.

[16] used a DBN optimized by particle swarm

optimization for rolling bearing fault diagnosis and

introduced stochastic gradient descent to fine-tune the

weights of the restricted Boltzmann machine (RBM)

training process. Finally, the optimized DBNwas used

for fault diagnosis. Jiang et al. [17] proposed a

multilayer deep learning convolutional neural network

(CNN) for the fault diagnosis of rolling bearings.

Wang et al. [18] proposed an adaptive CNN method

and applied it to the fault diagnosis of rolling bearings.

Islam et al. [19] used a deep learning model to monitor

rolling bearing faults, used wavelet analysis to extract

signal characteristics, and then used a deep learning

model to classify faults. Zhou et al. [20] used a deep

learning model to directly process vibration signals,

and, combined with a regional adaptive method to

diagnose faulty bearings, it can improve the model’s

diagnostic effect. Cabrera et al. [21] combined a deep

CNN with a long- and short-term memory (LSTM)

network model and used the combined model to

estimate the bearing state. This approach achieved a

better fault diagnosis effect.
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In summary, deep learning models have been

applied to the field of fault diagnoses of rolling

bearing equipment. However, adaptive feature extrac-

tion and fault diagnoses based on deep learning have

the following problems. First, it is difficult to extract

the composite fault signal features of rolling bearings.

Second, the existing methods cannot address the

problem of multi-scale information of rolling bearing

signals well. Therefore, this paper proposes applying

the sparse characteristics of a structural group based

on the overlapping group sparse model to represent a

signal and then constructs the weight coefficients by

analyzing the salient features of the signal. The

existing convex optimization technology is used to

solve the sparse optimization model. This method is

applied to extract the features of weak composite

faults of rolling bearings, and it can solve the problem

of difficult feature extraction of composite fault

signals of rolling bearings. In addition, to address the

difficulty in extracting multi-scale information of

rolling bearing signals with deep learning methods,

this paper proposes a deep complex CNN. The model

fully considers the multi-scale information character-

istics of rolling bearing signals. The difference in scale

characteristic information is used to distinguish fault

category information. Plural information not only has

a rich representation ability but also has the ability to

promote memory and the retrieval of fault informa-

tion. Experiments verify that the model has a good

ability to identify rolling bearing faults and strong

robustness.

The main contributions of this paper are as

follows: (1) This paper proposes an overlapping

group sparse model, which can solve the problem of

difficult extraction of composite fault signal features

of rolling bearings. (2) This paper proposes a deep

complex convolutional neural network, and gives the

model design and process description. It can make

full use of the multi-scale information of the fault

signal and help to improve the fault classification

effect. (3) Based on the steps (1)–(2), this paper

proposes a rolling bearing fault diagnosis algorithm

based on the overlapping group sparse model-deep

complex convolutional neural network. The exper-

imental part gives the specific experimental envi-

ronment and parameter settings.

Section II describes the overlapping group sparse

model. Section III introduces the deep complex CNN.

Section IV establishes a rolling bearing fault diagnosis

algorithm based on overlapping group sparse model-

deep complex CNN. Section V conducts an experi-

mental analysis of the method proposed in this paper

and compares it with other mainstream methods.

Finally, summarize and analyze the content of the

paper.

2 Overlapping group sparse model

2.1 Group of sparse models

To solve the inverse regularization problem, z is

recovered from the rolling bearing signal y(y = z ?

w). Assuming that z is nonsparse, a certain sparseness

will appear in the transform base U ¼ ½U1; . . .;UM�. z
can be expressed as the following formula:

z ¼ Uh ð1Þ

In the formula, h is the sparse representation

coefficient. The process of solving h is a sparse

approximation process. The sparse model can be

expressed as:

min
h2RM

1

2
y� Uhk k2þIðhÞ ð2Þ

In the formula, I(h) is the regularization penalty

function that induces the sparse solution h. The choice
of I(h) depends on the knowledge of the sparse

structure of the solution h. If h is sparse, then the

regularization function I(h) can choose the l1 norm. It

can be expressed as:

IðhÞ ¼ k hk k1 ð3Þ

In the formula, k[ 0 is the penalty parameter. It is a

parameter to adjust the degree of compression. When k
is greater, the degree of compression is greater. It will

make more coefficients approach zero. Conversely, the

smaller the k, the smaller the degree of compression. It

will cause more coefficients to be retained.

The above defines the l1 norm form as the Lasso

model on the basis of minimizing the residual sum of

squares. Because it can obtain sparse solutions of high-

dimensional data, the Lasso model is widely used for

feature selection of high-dimensional data. It adds the

same penalty function to each variable. In other words,

it compresses the coefficients of each variable to the

same degree.
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In some cases, there is a relationship among the

coefficients. These related coefficients can be regarded

as a whole. At this time, the Lasso model is not

suitable for handling this relationship. It can be

replaced by the group Lasso model. The group Lasso

model is an expansion of the Lasso model and adds

constraints to a set of coefficient vectors. It imple-

ments coefficient compression from the perspective of

the group. If h is sparse, then I(h) is the group Lasso

penalty function. It can be expressed as:

IðhÞ ¼ k
XI

i¼1

hik k ð4Þ

In the formula, i = 1,2, …, I, all coefficients are

divided into group I. With the change in k, the sub-

model vectors are either all 0 or not 0. The group Lasso

model regards each group of coefficients as a ‘‘single’’

vector for selection under the condition that the

coefficient vectors are divided into groups. If the

coefficients in this group are not zero, then all

coefficients in this group are selected. Conversely, if

the set of coefficients are all zero, then the set of

coefficients are all discarded. In the above formula,

k[ 0. It is used to control the amount of contraction.

The larger k is, the more severe the compression, and

its corresponding hi is closer to zero. The complete

group that has not contributed to the model is

removed. Conversely, if hi i = 0, then all the

coefficients in i are not zero. All the coefficients of

this group are selected for the model to realize the

selection from the perspective of the variable group.

The selection effect of the group Lasso method is

shown in Fig. 1. In Fig. 1, u1, u2, …, u12 represent

components in the sparse group.

2.2 Overlapping group sparse model

The group sparse model does not consider that

different sub-model vectors may contain the same

certain variables. The combination of these variables

is excluded by the group sparse model, which has

limitations in practical applications. That is, in reality,

there is overlap between groups and the variables

contained in the groups. The aforementioned no

overlapping group sparse model is no longer applica-

ble in this situation. Therefore, this paper proposes an

overlapping group sparse model, which allows vari-

ables between different groups to overlap, and then

introduces the prior information of the ‘‘overlapping’’

structure into the model. The prior information here

refers to the sparseness of the rolling bearing fault

signal itself. Then, it constructs the weight coefficients

by analyzing the salient features of the signal, and then

uses the existing convex optimization technology to

solve the sparse optimization model. This method is

applied to the feature extraction of weak composite

faults of rolling bearings. In other words, the prior

information mainly refers to the sparseness and other

characteristics contained in the rolling bearing signal.

It can be integrated into subsequent fault diagnosis,

and it can improve fault diagnosis modeling

capabilities.

If h is a sparse group, the group overlaps with the

group. Its regularization function I(h) can choose the

overlapping group Lasso penalty function. It can be

expressed as the following formula [22]:

IðhÞ ¼ k
Xm

j¼1

hj;K
�� ��

2
ð5Þ

In the formula, hj;K ¼ ½hðjÞ; � � � ; hðjþ K � 1Þ� 2
RK , and it optimizes the experimental results by

adjusting the values of parameters K and k. Reference
[23] noted that when groups have overlapping struc-

tures, the group lasso without overlapping structure in

formula (5) is used to select variables within the group.

Because group {u1,u2,u3,u4,u5} is not selected, vari-

ables u4 and u5 are discarded when group {u1,u2,u3,-

u4,u5} is discarded. Group {u4,u5,u6, u7,u8,u9} is

selected, but the variables u4 and u5 are discarded.

Therefore, its final selection effect will not contain

variables u4 and u5. The specific results are shown in

Fig. 2. The reason for this situation is that the

overlapping variables u4 and u5 between group {u1,

u2, u3, u4, u5} and group {u4,u5,u6, u7,u8,u9} are not

considered. The variable selection effect of the

overlapping group lasso is shown in Fig. 3. The group

{u4, u5, u6, u7, u8, u9} is completely selected. Table 1

Fig. 1 The sparse results of the group of Lasso (each rectangle

in the figure is a group)
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shows the structural sparsity characteristics and algo-

rithm complexity of each structural sparsity model.

N is the number of samples. P is the sample dimension.

max{d1, …, d|G|} is the maximum dimension of the

model vector in the group. G is the potential of the

group assembly.

3 Deep complex convolutional neural network

model

3.1 Basic principles of deep complex

convolutional neural network model

The operation and characterization of common deep

neural networks are all based on the real number

domain, but complex number signals appear

increasingly frequently in practical applications. The-

oretical analysis shows that complex numbers not only

have richer representation abilities but also help to

retrieve signal feature memories. However, there are

relatively few studies on building deep CNN modules

based on complex numbers. A deep complex CNN

[24] used complex batch normalization, a complex

weight initialization strategy and an end-to-end train-

ing scheme. It has been applied to music transcription

tasks. Therefore, this section proposes a deep complex

CNN for rolling bearing signals, which can fully

consider the multi-scale information of rolling bearing

signals. Different scale information can distinguish the

fault category. Deep complex CNNs include complex

convolution operations, complex pooling operations,

complex activation functions, and complex classifier

optimization. Different scale information can distin-

guish the fault category. Its specific content is as

follows:

3.1.1 Reconvolution operation

Let us first describe the complex number representa-

tion, specifically: a complex number v = a ? ib has a

real component a and an imaginary component b. For

example, consider a typical real-valued convolution

layer that has N feature maps; to represent these as

complex numbers; we allocate the first N/2 feature

maps to represent the real components and the

remaining N/2 to represent the imaginary ones. The

feature map here is evenly distributed to the real and

imaginary parts of the complex number representa-

tion, and can be adjusted and optimized according to

the actual situation of the data during actual operation.

In the complex convolution layer, the data of the

input complex signal are v, the complex weight is w,

and the offset information is c. Then the input

convolution operation of the nth channel can be

expressed by the following formula:

C ¼ vh � wn þ cn

¼ ðxh þ iyhÞ � ðvþ iuÞ þ ðaþ ibÞ
¼ ðxhv� yhuþ aÞ þ iðxhuþ yhvþ bÞ

ð6Þ

ReðCÞ ¼ xhv� yhuþ a ð7Þ

ImðCÞ ¼ xhuþ yhvþ b ð8Þ

Fig. 3 The result of sparseness of the overlapping group Lasso

when the signal has an overlapping group structure

Table 1 Comparison of calculation efficiency of various

structural sparse models

Model type Structure

sparsity

Algorithm complexity

Lasso Unstructured

sparsity

O(NPmin{N, P})

Group Lasso Group sparsity O(P ? max{d1,…,d|G|}In|G|)

Overlapping

Group

Lasso

Overlapping

group

sparsity

O(P|G|)

Fig. 2 The result of sparseness of group Lasso when the signal

has overlapping group structure
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In the formula, i ¼
ffiffiffiffiffiffiffi
�1

p
is the imaginary unit.

wn = v ? iu represents the complex connection

weight of the CNN. It is the convolution kernel of

the deep complex convolution network. cn = ? i rep-

resents the offset of all channels, u and v are real

number matrices, and x and y are real number vectors.

and are real numbers. Re(C) and Im(C) represent the
real and imaginary parts of the complex number C,
respectively. Figure 4 shows that complex convolu-

tion with a convolution kernel of v ? iu is equivalent

to a real network with two convolution kernels [v, u]

and [- u, v].

3.1.2 Repool operation

By performing convolution operation on a neighbor-

hood in the image, it will get the neighborhood

features of the image. After the characteristics of

different locations are summarized, it is called pool-

ing. Its main purpose is to reduce the amount of

calculation by reducing the dimensionality of the input

data. It has translation invariance. In the pooling layer,

the input is broken down into blocks, and each block is

replaced with a value. The complex pooling process

with a core size of 2 9 2 and a step size of 2 is shown

in Fig. 5.

This paper fully preserves the integrity of the input

data. The complex number pooling proposed in this

paper is a one-to-one correspondence between the real

part and the imaginary part of the complex number. A

complex number contains real and imaginary parts,

and it cannot be compared. The complex random

pooling method has the same rules as the random

pooling method of the real number domain. Both

methods calculate the probability of feature points in

the neighborhood. The greater the probability is, the

greater the probability of the feature point being

selected. The maximum pooling of complex numbers

can be achieved by calculating the modulus of the

complex numbers. This outputs the complex number

corresponding to the largest modulus. This approach

can reduce the mean shift caused by the convolutional

layer parameter error. More texture information will

be retained. The formula for calculating the maximum

pooling of the complex number z = x ? yi is as

follows:

h ¼ argmax
z2patch

zj j ð9Þ

Complex average pooling averages the real and

imaginary parts of feature points in the neighborhood.

It can retain more background information. Nm is the

nuclear size. The formula for calculating complex

average pooling is:

h ¼ 1

Nmj j
X

j2Nm

xj þ
1

Nmj j
X

j2Nm

yji: ð10Þ

3.1.3 Complex activation function

In the real number domain, most activation functions

or transfer functions satisfy the characteristics of

differentiability and boundedness. When the sigmoid

(a)

(b)

Fig. 4 Equivalent complex and real convolution layer (a com-

plex convolution, b real convolution)

Fig. 5 Schematic diagram of non-overlapping complex pooling
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function of the real number domain is extended to the

complex number domain f(z) = u(x,y) ? iv(x,y), the

transfer characteristic of the complex number still

satisfies the characteristics of boundedness and dif-

ferentiability. Its complex activation function can be

expressed as argmax, which is

f ðzÞ ¼ z

d þ 1
r zj j

¼ x

d þ 1
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p þ y

d þ 1
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p i

ð11Þ

That is,

uðx; yÞ ¼ x

d þ 1
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ð12Þ

vðx; yÞ ¼ y

d þ 1
r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ð13Þ

In the formula, c and r are positive real numbers.

This nonlinear function is suitable for training a

feedforward neural network and can be used for

classification problems. The function is bounded, and

the function is also bounded in the derivation. Its

corresponding partial derivative is:

ux ¼

rðdr zj j þ y2Þ
zj jðdr þ zj jÞ2

1

d
; else

8
>><

>>:
; if zj j 6¼ 0 ð14Þ

uy ¼
�rxy

zj jðdr þ zj jÞ2

0; else

8
<

: ; if zj j 6¼ 0 ð15Þ

vx ¼
�rxy

zj jðdr þ zj jÞ2

0; else

8
<

: ; if zj j 6¼ 0 ð16Þ

vy ¼

rðx2 þ dr zj jÞ
zj jðdr þ zj jÞ2

1

d
; else

8
>><

>>:
; if zj j 6¼ 0 ð17Þ

3.1.4 Complex batch normalization

As the number of layers of the deep learning model

increases, the output values of the last few layers are

close to zero. Because the output value is the

multiplication factor of the gradient, its back

propagation gradient is very small. In this case, it is

difficult to update the parameters of the deep learning

model. In order to avoid the network falling into the

problem of local optimization, this section proposes to

use complex batch normalization strategy to weaken

the influence of model initialization [25]. The formula

for complex batch normalization is as follows:

BNðh; c; bÞ ¼ bþ c h
�

ð18Þ

h ¼ Re hð Þ þ Im hð Þ ð19Þ

ĥi ¼
hi � uB hð Þffiffiffiffi

V
p ð20Þ

V ¼
V11

V21

V12

V22

 !

¼
cov Re hð Þ; Re hð Þð Þð Þ

cov Im hð Þ;Re hð Þð Þ

cov Re hð Þ; Im hð Þð Þ

cov Im hð Þ; Im hð Þð Þ

 !

ð21Þ

In the formula, h represents the activation vector. h

is the normalization of the mean value uB = 0, the

covariance K = 1, and the pseudocovariance matrix

C = 0. V is the covariance matrix. and c represent the
displacement parameter and scaling parameter to be

learned, respectively. c is a positive semidefinite

matrix, which can be expressed as:

c ¼
c11
c21

c12
c22

 !
ð22Þ

3.1.5 Fully connected layer

In the entire deep complex convolutional network, the

function of the complex fully connected layer is to

map the distributed feature representation learned by

the complex convolution layer, the complexmaximum

pooling layer and the complex activation function

layer to the sample label space. Its purpose is to reduce

the original rolling bearing signal input, and then use

all the characteristic information to the maximum

extent through the fully connected layer. The fully

connected layer can be regarded as a convolutional

layer with a 1 9 1 convolution kernel, that is, it

transforms the input data into a one-dimensional

vector. It then points to the vector, and the specific

formula is as follows:
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oi ¼
Xm

j¼1

uj � wij þ ci

¼
Xm

j¼1

xi þ jyið Þ � uij þ jvij
� �

þ ai þ jbið Þ

¼
Xm

j¼1

xiuij � yivij
� �

þ yiuij þ xivij
� �

j
� �

þ ai þ jbið Þ

ð23Þ

In the formula, U = {u1,…,um} is the input.

O = {o1,…,om} is the output.

3.1.6 Complex output layer

The output layer in the complex form is designed with

reference to the superposition state in quantum

mechanics. Because quits in quantum computing can

express two possible states, n quits represent 2n states.

Therefore, we can apply this idea to the model

presented in this section. The rolling bearing signal

enters the output layer after the convolution and

pooling layer, and the probability corresponding to the

amplitude of each rolling bearing signal is initialized

to be equal and the cumulative sum is 1. The model

performs a quantum observation, and each signal

amplitude is mapped to a corresponding position that

satisfies the probability distribution, and finally clas-

sified by probability. In addition, the function express-

ing the quantum state of the particle satisfies the

normalization condition. The sum of the distribution

probabilities of the particles is equal to 1. For the

multi-classification problem of rolling bearing fault

signals, the output value of the complex node corre-

sponds to the probability of a category after being

normalized by the softmax nonlinear function. It

satisfies the constraint of probability distribution, that

is,

XK

k¼1

pðkÞ ¼ 1

. The l2 norm of the complex number domain input

z = x ? yi (x,y [ R) can be defined as A. For softmax

regression, the probability of each class of the K class

classifier corresponding to its input feature z is

P(y = k|z,). That is

hh xð Þ ¼

P Y ¼ 1jz; h1ð Þ

..

.

P Y ¼ kjz; hkð Þ

2
664

3
775 ¼ 1

Pk

h¼1

eh
T
h Z

�� ��

eh
T
1 Z

���
���

..

.

eh
T
k Z

���
���

2
66664

3
77775

ð24Þ

In the formula, h1,…,hk [ Qn are the parameters of

the reconvolutional neural network model and eh
T
h Z ¼

eh
T
h x þ eh

T
h yi is in the Softmax regression. For input data

Z = {z(1),…z(m)}, its cost function is defined as

follows:

I hð Þ ¼ � 1

m

Xm

g¼1

Xk

h¼1

J Y ðgÞ ¼ h
n o

log
eh

T
1 Z

g
���

���
2

eh
T
h Z

g
�� ��2

2

64

3

75

ð25Þ

In the formula, when Y(g) is h, the index function

J{Yg = h} = 1, otherwise it is 0.

The h of I(h) can be updated by the gradient descent
method. The gradient expression formula is as

follows:

rhhqðtÞ IðhÞ ¼
1

m
J Y ðgÞ ¼ h
n o

2 log
eh

T
hðtÞZðtÞ

� 	2
Z2
qðtÞ

eh
T
h Z

�� ��2

2

64

3

75

� 2 log
eh

T
hðtÞZðtÞ

� 	2
Zg
qðtÞ

Pk

l¼1

eh
T
l Z

�� ��2

ð26Þ

In the formula, t = 1 means calculating the real

part. t = 2 means that the imaginary part is calculated.

The h vector update is defined as:

hnew ¼ hold � arhhqðtÞ I hð Þ ð27Þ

From the above analysis, it can be seen that the deep

complex convolutional neural network model extends

the real number domain model to the complex number

domain model. Therefore, the overall framework of

the model consists of several repeated reconvolution

layers, complex pooling layers and complex activation

functions.
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3.2 Process description of deep complex

convolutional neural network model

Weight optimization is a key part of the deep complex

convolutional neural network model. In the weight

update process, the gradient descent algorithm based

on deep complex CNN is introduced in this sec-

tion. The training process is shown in Algorithm 1 of

Table 2.

3.2.1 Batch normalization to initialize complex

weights

This paper uses the random initialization method to

initialize the weights of the deep complex CNN. Its

expression is as follows:

W ¼ Wj jeih ¼ uþ jv ð28Þ

In the formula, |W| and h represent the size and scale
characteristics of the weight W, respectively.

The complex batch normalization operation decor-

relates the real and imaginary parts of a unit. It can

reduce the risk of overfitting. The specific normaliza-

tion process is shown in Algorithm 2 of Table 3.

3.2.2 Complex number back propagation operation

The purpose of complex back propagation training is

to find suitable weights and biases through optimiza-

tion. It enables the loss function L(W) to get the

minimum value. Since the magnitude of the gradient

value is very small, it is a gradient accumulation

effect. After multiple accumulations, the gradient

noise will be consumed by the gradient. For large data

sets, the cost of evaluating the gradient of the entire

data set is very expensive. The general method of its

processing is the stochastic gradient descent method

[26]. To deal with this problem, for deep complex

convolutional neural networks, the real part and

imaginary part of the weights are updated according

to formula (7) and formula (8), respectively.

To improve the convergence speed of stochastic

gradient descent, this paper adopts the batch norm

conversion method. The average value of the weight

parameters is calculated as shown in the following

formula:

Table 2 Algorithm 1 process

K represents the number of training layers, L represents the

cost function, a0 is the minimum block input, clip() is a

split weight operation, and batchnorm() normalizes

complex batches;

Input: weight Wt, bias bt,, batch normalization parameter ht
and learning rate ct;

Forward propagation

For k = 1 to K do

sk / ak-1Wk

ak / batchnorm(sk, hk)

Back propagation

Initialize activation gradient qL/qak
For k = K to 2 do

Calculation qL/qak-1

Parameter accumulation

a / updateparameter(ak,qL/qak,ck) // Update rules:

Stochastic Gradient Descent(SGD)

ck?1 / updatelearningrate(ck,k)

Output: update parameters Wt?1 and bt?1;

Table 3 Algorithm 2

(complex batch

normalization) process

Input: activation vector h, small batch B = {h1…m} and model parameters: and c;

Output: {yi = BNb,c(hi)}

uB ¼ E ~h
� �

// Average operation

K ¼ E ~h� uB
� �

~h� uB
� ��h i

¼ V11 þ V12 þ i V21 � V12ð Þ// Variance operation

C ¼ E ~h� uB
� �

~h� uB
� �� �

¼ V11 � V12 þ i V21 þ V12ð Þ// Pseudocovariance operation

ĥi ¼ hi � uB hð Þð Þ
 ffiffiffiffi
V

p
// Standardization

hi ¼ bþ cĥi ¼ BNðhi; b; cÞ// Scale and scale information
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Wt ¼
1

t

Xt

j¼1

wj ð29Þ

Then calculate the loss function based on the

average weight Wt. At the same time, standardized

methods are used to standardize rolling bearing data.

Its purpose is to reduce the difference in the order of

magnitude of the weight parameters.

3.3 Rolling bearing fault diagnosis algorithm

based on overlapping group sparse model-

deep complex convolutional neural network

In this section, on the basis of Section II and

Section III, this paper proposes a rolling bearing fault

diagnosis algorithm based on overlapping group

sparse model-deep complex CNN. The basic steps of

the proposed fault diagnosis algorithm are as follows:

1. Data collection. The relevant rolling bearing data

under different health conditions are obtained

through public rolling bearing data sets.

2. Data preprocessing. The data obtained in step (1)

are standardized.

3. Data feature extraction. The model proposed in

Section II of this paper is used to extract features

from rolling bearing data. The model can obtain

richer and more complete feature information. It

can better address the problem of the difficulty in

extracting features of composite fault signals of

rolling bearings.

4. Multi-scale information extraction and fault clas-

sification. The model proposed in Section III of

this paper is used to extract multi-scale informa-

tion from rolling bearing data. It can obtain

different scale information of rolling bearing fault

signals. Finally, the classifier of the model is used

to classify and identify rolling bearing faults.

5. Actual test. The test samples are input into the

rolling bearing fault diagnosis model trained in

steps (1) to (4), and the model can give the rolling

bearing fault category or result.

The basic framework diagram of the rolling bearing

fault diagnosis algorithm proposed in this paper is

shown in Fig. 6.

4 Experimental verification

4.1 Data set description

This experiment uses bearing data published by Case

Western Reserve University in the US for verification.

The bearing failure test bench mainly includes induc-

tion motors, torque sensors, and dynamometers. This

section takes SKF6205 deep groove ball bearings as

the research object. It collects vibration signals under

four different working conditions: normal state, inner

ring failure, outer ring failure, and rolling element

failure. The specific bearing parameters are shown in

Table 4. The rolling elements and outer ring collect

vibration signals of four failure levels. The outer ring

collects vibration signals of three failure levels. All

vibration signals are collected under 0, 1, 2, and 3 hp

motor loads. The sampling frequency is 12 kHz. Norm

means no fault. G1, G2, G3, and G4 indicate rolling

element failures of 0.007, 0.014, 0.021, and 0.028

inches, respectively. IR1, IR2, IR3, and IR4 indicate

Fault signal

Overlapping group 
sparse model Deep complex CNN

Fusion 
processing

Feature extraction
Scale information 

extraction

Test model (fault 
Diagnosis)

Signal 
preprocessing

Fig. 6 The basic framework of the fault algorithm proposed in

this paper

Table 4 Rolling bearing parameter information table

Bearing

type

Bearing

pitch

diameter

(mm)

Rolling

body

diameter

(mm)

Number of

rolling

elements

Contact

angle

(�)

SKF6205 39.04 7.94 11 0
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0.007, 0.014, 0.021, and 0.028 inch inner ring failure,

respectively. OR1, OR2, and OR3 indicate 0.007,

0.014, and 0.021 inch outer ring failure, respectively.

The experiment separately studies the recognition

performance of the method proposed in this paper for

fault data under constant working conditions and

changing working conditions. (Data Sources: http://

csegroups.case.edu/bearingdatacenter/pages/

download-data-file).

For constant conditions, this experiment divides the

data into two groups to verify the method proposed in

this article. It contains normal bearing, inner ring

failure data, outer ring failure data, and rolling element

failure data. The specific grouping information is

shown in Table 5. The first 204,800 points of each type

of experimental signal under constant working condi-

tions are divided into 200 sets of data samples. The

length of each data sample is 1024 points. Then 150

sets of sample data are randomly selected as training

samples, and the remaining 50 sets are used as test

samples for state recognition. A total of 4*150 = 600

training samples and 4*50 = 200 test samples are

formed in each group of experiments. Each set of

experiments is equivalent to a four-category problem.

Under changing conditions, the data are divided

into two groups, and the experimental verification is

conducted. Both experiments use Norm, IR1, OR1,

and B1 as training samples under zero loads. Then,

Norm, IR1, OR1, and B7 under 1, 2, and 3 loads are

taken as test samples for state recognition. The two

sets of experimental information are shown in Table 6.

The first 204,800 points of each type of experimental

signal under the four loads are divided into 200 sets of

data samples. The length of each data sample is 1,024

points. A total of 600 data samples under zero loads

are used as training samples. Two hundred data

samples under 1, 2, and 3 loads are used as test

samples for state recognition. Each set of experiments

is a four-category problem.

The time-domain waveform of a certain data

sample in the above four working states is shown in

Fig. 7. Figure 7 shows that the time-domain wave-

form of the bearing vibration signal has nonlinear and

nonstationary characteristics. For this signal, this

article first uses the model proposed in the second

part to characterize the fault. Then, the model

proposed in the second part of the deep model is used

to extract the dimension information of rolling bear-

ings. Finally, the classifier of the deep complex

convolutional neural network model is used to identify

the type and degree of bearing fault.

4.2 Experimental environment and parameter

settings

This experiment deploys the proposed fault diagnosis

algorithm on the Pytorch framework. This experiment

is based on 2 GeForce RTX 3090GPU (24G memory)

for accelerated training.

In deep learning, the optimization algorithmmainly

affects the strategy of parameter update when the

network is back propagated. Practice has proved that

the adaptive algorithm has strong applicability and

better convergence in network training. In this

method, Adam [27] is selected to optimize the network

parameters. Adam method can calculate the adaptive

learning rate of each parameter. Adam method

Table 5 Grouping information table under constant working

conditions

Group

category

Drehzahl

(r/min)

Normal Innerer

ring

Outer

ring

Rolling

element

Group 1 1750 Norm IR1 OR1 G1

Group 2 1750 Norm IR2 OR2 G2

Table 6 Grouping information table under changing conditions

Experiment group Sample type Drehzahl (r/min) Normal Innerer ring Outer ring Rolling element

Group 1 Training samples 1750 Norm IR1 OR1 G1

Test samples 1772 Norm IR1 OR1 G1

Group 2 Training samples 1797 Norm IR1 OR1 G1

Test samples 1772 Norm IR1 OR1 G1
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converges faster than other adaptive learning rate

algorithms. In addition, it can solve problems such as

large fluctuations in the loss function.

The optimized initial learning rate is set to 0.01, and

the number of optimization iterations is set to 200. The

learning rate is adjusted using the Step method. The

specific setting is to adjust the learning rate to one-

tenth of the original when the number of training times

is 130 and 230. In the training process, the weight

attenuation strategy is used to regularize the model

parameters to prevent over fitting, and the attenuation

factor is set to 5 9 10–5.

4.3 Diagnosis results and comparative analysis

under stable conditions

First, the data of group 1 are used under constant

working conditions for verification. First, the model

proposed in the second part of this article is used to

extract the characteristic information of the fault

signal on the same timescale. Then, the model

proposed in the third part of this article is used to

extract different timescale feature information and

fault classification information of the signal. Then,

600 data samples are randomly selected as the training

set and the remaining 200 are used as the test set.

Furthermore, to verify the effectiveness and advan-

tages of the method proposed in this paper, the

traditional SVM [28], the CNN [29], and the deep

CNN [30] are used to perform fault analysis on the

group 1 data. To avoid the contingency of the fault

diagnosis results, the above four methods are all run 10

times. The specific results are shown in Table 7 and

Fig. 8. Similarly, using the method in this paper, the

traditional SVM [28], the CNN [29], and the deep

CNN [30], experiments are performed on the group 2

data. The experimental results are shown in Table 8

and Figs. 9, 10.

From Tables 7, 8 and Figs. 8, 9, we can see that for

group 1 and group 2, the classification accuracy of the

SVM method is approximately 93%. However, the

CNN method achieves 98% classification accuracy.

Furthermore, the classification accuracy of the deep

CNN is 1% higher than that of the CNN because this

method is an optimized deep learning model. This

shows that the optimized deep learning method has a

certain effect on improving the accuracy of rolling

bearing fault diagnosis. The method in this paper has

the highest classification accuracy among all methods,

and its accuracy is is 100%. This shows that the

method proposed in this paper not only greatly

improves the classification accuracy of the traditional

(a) Normal data

(b) Data of the position of the outer race relative to the load zone

(c) Inner ring a certain fault data

Fig. 7 Sample diagram of test data set

Table 7 Fault diagnosis

results obtained after

running different methods

10 times (Group 1)

Method type Diagnostic accuracy obtained by different methods (%)

Max Min Average

SVM 93.5 91.8 92.7

CNN 98.6 96.8 97.8

Deep CNN 100 98.2 99.0

Ours 100 100 100
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SVM. It also improves the classification accuracy of

deep learning methods, such as the CNN and deep

CNN methods. This shows that the method proposed

in this paper is highly adaptable to rolling bearing

signals. It can better extract the fault feature informa-

tion and multi-scale information of rolling bearing

signals. This verifies that the rolling bearing fault

diagnosis algorithm proposed in this paper has good

stability and robustness. This is mainly because the

method proposed in this paper is based on the

characteristics of rolling bearing signals. It not only

solves the problem of difficult extraction of rolling

bearing signal features but also better extracts the

multi-scale information of rolling bearing signals.

4.4 Diagnosis results and comparative analysis

under changing working conditions

To further verify the effectiveness of the fault

diagnosis method proposed in this paper, the exper-

imental process is similar to (2) experiment. This

section uses the method of this paper, the traditional

SVM [28], the CNN [29], and the deep CNN [30] to

conduct experiments on the data samples of group 1

and group 2 under changing conditions. To avoid the

contingency of the fault diagnosis results, the above

four methods are all run 10 times. The specific results

are shown in Table 9 and Figs. 9, 10.

It can be seen in Table 8 and Figs. 10, 11 that for the

group 1 and group 2 data, the classification accuracy of

the SVMmethod is only 87%, which is approximately

6% lower than the classification accuracy under

Fig. 8 The fault classification results obtained after running

different methods 10 times (Group 1)

Table 8 Fault diagnosis

results obtained after

running different methods

10 times (Group 2)

Method type Diagnostic accuracy obtained by different methods (%)

Max Min Max

SVM 93.9 91.8 93.0

CNN 99.2 96.8 98.1

Deep CNN 100 98.3 99.1

Ours 100 100 100

Fig. 9 The fault classification results obtained after running

different methods 10 times (Group 2)

Fig. 10 The fault classification results obtained after running

different methods 10 times (Group 1)
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constant working conditions. This shows that the

machine learning method that is similar to SVM has a

poor fault classification effect under changing working

conditions. The classification accuracy of the CNN

method is only reduced by approximately 0.9%

compared with the classification accuracy under

constant working conditions. The classification accu-

racy of the deep CNN method is only reduced by

approximately 0.8% compared with the classification

accuracy under constant working conditions. Its

reduction is smaller than that of the CNN method.

For both the CNN and deep CNNmodels, the accuracy

of fault classification under changing conditions is still

very high. Their accuracies can reach more than 97%.

This shows that deep learning methods can adapt to

data changes very well. This is due to the great

generalization ability of deep learning. The method in

this paper still has the highest classification accuracy

of all methods, and its accuracy is 99.9%. This shows

that the classification accuracy of the method proposed

in this paper is lower than the classification accuracy

of deep learning methods, such as the CNN and deep

CNN methods, under changing conditions. This

objectively verifies that the method proposed in this

paper is more adaptable to the signal characteristics of

rolling bearings than other deep learning methods.

This proves that the proposed method not only has

good classification accuracy but also has better

adaptability and robustness. The main reasons why

the method in this paper has such a good classification

effect are as follows. First, the method in this paper is

proposed to identify the signal characteristics of

rolling bearings. Second, this paper solves the problem

of single fault signal feature extraction and the

problem of multi-scale information extraction of

compound fault signals.

5 Conclusion

Aiming at the difficulty of extracting features and

scale information of composite fault signals of exist-

ing rolling bearings, this paper proposes a new

overlapping group sparse model, which can effec-

tively extract the single feature extraction problem of

the composite fault signal of rolling bearings. Addi-

tionally, to better extract the scale information of the

composite fault signals of rolling bearings, this paper

proposes a new deep complex convolutional neural

model. The plural form in the model not only has

richer characterization ability but also helps to extract

different time scale information of rolling bearing

composite fault signals. It also helps to remember the

fault information. This paper proposes a method for

Table 9 Fault diagnosis

results obtained after

running 10 times of

different methods

Group type Method type Diagnostic accuracy obtained by different methods (%)

Max Min Average

Group 1 SVM 89.6 86.9 88.5

CNN 98.5 95.5 97.2

Deep CNN 100 96.7 98.3

Ours 100 99.3 99.9

Group 2 SVM 88.7 86.0 87.6

CNN 98.5 95.5 97.2

Deep CNN 100 96.6 98.3

Ours 100 99.6 99.9

Fig. 11 The fault classification results obtained after running

different methods 10 times (Group 2)

123

2366 F. An, J. Wang



composite fault diagnosis of rolling bearings, that is, a

fault diagnosis algorithm for rolling bearings based on

an overlapping group sparse model-deep complex

CNN.

The related bearing data experiments show that the

method proposed in this paper can accurately identify

all faults under constant working conditions. It not

only greatly improves the recognition accuracy com-

pared with the SVM method but also improves the

recognition accuracy to a certain extent compared with

other deep learning methods. This directly verifies the

effectiveness of the fault diagnosis method proposed

in this article. Under changing conditions, the fault

classification accuracy obtained by the method pro-

posed in this paper is the highest. The classification

accuracies of the method proposed in this paper, SVM,

and other deep learning methods under changing

working conditions, which are 0.8%, 6%, and 2%,

respectively, are lower than the classification accura-

cies under constant working conditions. It can be seen

that the accuracy of the method proposed in this article

decreases the least. This further verifies that the

method proposed in this paper can adapt to different

working conditions for the diagnosis and identification

of rolling bearing fault signals.
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