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Abstract The main purpose of the paper is to reveal
the mechanism of certain special phenomena in burst-
ing oscillations such as the sudden increase of the spik-
ing amplitude.Whenmultiple equilibrium points coex-
ist in a dynamical system, several types of stable attrac-
tors via different bifurcations from these points may be
observed with the variation of parameters, which may
interact with each other to form other types of bifurca-
tions. Here we take the modified van der Pol–Duffing
system as an example, in which periodic parametric
excitation is introduced. When the exciting frequency
is far less than the natural frequency, bursting oscilla-
tions may appear. By regarding the exciting term as a
slow-varying parameter, the number of the equilibrium
branches in the fast generalized autonomous subsys-
tem varies from one to five with the variation of the
slow-varyingparameter. The equilibriumbranchesmay
undergo different types of bifurcations, such as Hopf
and pitchfork bifurcations. The limit cycles, including
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the cycles via Hopf bifurcations and the cycles near
the homo-clinic orbit, may interact with each other to
form the fold limit cycle bifurcations.With the increase
of the exciting amplitude, different stable attractors and
bifurcations of the generalized autonomous fast subsys-
tem involve the full system, leading to different types
of bursting oscillations. Fold limit cycle bifurcations
may cause the sudden change of the spiking ampli-
tude, since at the bifurcation points, the trajectory may
oscillate according to different stable limit cycles with
obviously different amplitudes. At the pitchfork bifur-
cation point, two possible jumping ways may result
in two coexisted asymmetric bursting attractors, which
may expand in the phase space to interact with each
other to form an enlarged symmetric bursting attrac-
tor with doubled period. The inertia of the movement
along the stable equilibriummay cause the trajectory to
pass across the related bifurcations, leading to the delay
effect of the bifurcations. Not only the large exciting
amplitude, but also the large value of the exciting fre-
quency may increase inertia of the movement, since
in both the two cases, the change rate of the slow-
varying parameter may increase. Therefore, a relative
small exciting frequency may be taken in order to show
the possible influence of all the equilibrium branches
and their bifurcations on the dynamics of the full sys-
tem.
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1 Introduction

The coupling of different scales can be observedwidely
in science and engineering problems, which may result
in special dynamical behaviors in the combinations
of small and large amplitude oscillations, such as the
mixed-mode oscillations in the catalytic reactions [1]
and the relaxation oscillations in tether satellites [2]. To
investigate themechanismof the oscillations, a geomet-
rical singular perturbation theory was proposed [3], in
which the geometric view was introduced to account
for the transitions between the slow and fast subsys-
tems [4]. Based on the method, a so-called slow-fast
analysis method was developed to cope with the bifur-
cations at the connection between the quiescent states
and spiking states [5,6]. For a typical slow-fast system
with one-dimensional slow subsystem in the form

ẋ = f (x, y), (fast subsystem),

ẏ = εg(x, y), (slow subsystem),
(1)

where x ∈ RM , y ∈ R, and 0 < ε � 1 measures
the ratio between the two scales, regarding the slow-
varying state variable y as the slow-varying parameter,
one may obtain the equilibrium branches and the bifur-
cation sets of the fast subsystem expressed in the forms
E(X0, y) = 0 and B(X0,YB) = 0, respectively [7,8].
Overlapping the phase portrait Γ (x, y) of the full sys-
tem and E(X0, y) = 0 as well as B(X0,YB) = 0
on the (x, y) plane, one may obtain the influence of
the equilibrium branches and their bifurcations on the
structures of the bursting attractors of the full system,
which reveals the mechanism of the bursting oscilla-
tions [9,10].

The slow-fast analysis method is valid to investigate
the bifurcation mechanism of the bursting oscillations
in the autonomous system, in which there exist obvious
slow and fast subsystems [11,12]. However, the tradi-
tional approach cannot be used for mechanism analysis
of the bursting oscillations in the non-autonomous sys-
tem. Note that for a typical periodically excited system
in the form

ẋ = f [x, A sin(Ωt)], (2)

when the exciting frequency is far less than the nat-
ural frequency, implying the coupling of two scales
in frequency domain exists, bursting oscillations can
often be observed. In order to investigate the mecha-
nism, referring to the traditional method, we extended
a modified slow-fast analysis method [13], in which
the whole exciting term w = A sin(Ωt) is regarded as
a slow-varying parameter, just like slow state variable
y in (1). Here we call w a generalized state variable,
which forms the slow subsystem. Therefore, we can
define the fast subsystem

ẋ = f (x, w), (3)

as a generalized autonomous system. Similarly, the
equilibrium branches and the bifurcation sets can be
derived in the forms EG(X0, w) = 0 and BG(X0,WB)

= 0, respectively. By introducing the transformed
phase portrait ΓG(x, w) ≡ ΓG[x, A sin(Ωt)], one
may obtain the effect of the equilibrium branches and
the bifurcations on the full system by overlapping
ΓG(x, w), EG(X0, w) = 0 and BG(X0,WB) = 0
[14].

Most of the research for the bursting oscillations
in the dynamical systems with periodic excitation
focused on the casewith nomore than three equilibrium
branches [15,16]. Furthermore, only two relatively
simple types of bifurcations, i.e., the fold and Hopf
bifurcations, are considered for the transitions between
the quiescent states and spiking states [17].Whenmore
equilibrium branches coexist, the limit cycles, includ-
ing the cycles with relatively large amplitude near the
homo-clinic orbits and the cycles bifurcated via Hopf
bifurcations may interact with each other to form fold
limit cycle bifurcations [18,19], which may lead more
complicated bursting behaviors.

Here we consider a three-dimensional dynamical
system with fifth-order nonlinear terms, in which the
number of the equilibrium points may vary between
one to five. The fold limit cycle bifurcations can be
observed not only for the interactions between the sta-
ble and unstable limit cycles via Hopf bifurcations,
but also for the interactions between the limit cycles
near the homo-clinic orbit and the cycles via Hopf
bifurcations. When a slow-varying periodic paramet-
ric excitation is introduced, with the variation of the
exciting amplitude, several forms of bursting oscil-
lations with qualitatively different topological struc-
tures are obtained. A few interesting phenomena, such
as the sudden change of the amplitude of the spiking
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oscillations, the disappearance of the influence of some
stable attractors and the bifurcations of the fast subsys-
tems on the full system, are presented, the mechanism
of which is investigated by employing the bifurcation
analysis on the transitions between the quiescent states
and spiking states.

2 Mathematical model

For the modified van der Pol–Duffing circuit system, in
which a quintic nonlinear resistor in parallel with the
inductor of the original circuit is introduced [20,21],
when the characteristics of the nonlinear resistor is of
iN = F(v1) = av1+bv31+dv51(a < 0, b < 0, d > 0),
by applying Kirchhoff’s laws to the circuit, the non-
dimensional mathematical model can be expressed as

ẋ = −μ(−wx + αx3 + κx5 − y),

ẏ = x − γ y − z,

ż = βy,

(4)

where the parameters satisfy the conditionsα < 0, β >

0, γ > 0, κ > 0 and μ > 0. Here we choose the
parameter w as the controlling parameter in the form
w = A sin(Ωt) for the parametric exciting case, where
A and Ω correspond to the exciting amplitude and the
frequency, respectively. To investigate the influence of
the coupling of two scales on the dynamics, we assume
the exciting frequency Ω is far less than the natural
frequency of the system, denoted by ω, i.e., Ω � ω.

Many results have been obtained for the case when
the parameterw is a constant [22]. Cascading of period-
doubling bifurcations as well as homo-clinic bifurca-
tions may be observed [23,24], which may result in
chaos for certain parameter values [25]. Furthermore,
since there may exist different types of equilibrium
points, the locations as well as the properties may
change with the variation of parameter. The interaction
between the attractors via the bifurcations of the equi-
libriumpointsmay lead tomore complicated behaviors,
such as 2-D torus [26]. However, when w is replaced
by a slow-varying exciting term, some special move-
ments, such as bursting oscillations, which behave in
the combinations between large-amplitude oscillations
and small-amplitude oscillations, may appear.With the
variation of the exciting amplitude and the frequency,
the forms of the bursting oscillations may change. In
the following, we focus on the evolution of the bursting
oscillations to explore the mechanism of the behaviors.

3 Bifurcation analysis of the generalized
autonomous system

For the periodically excited system, one may generally
eliminate the exciting term to compute the natural fre-
quency via the corresponding autonomous system. The
computation of natural frequency of a nonlinear sys-
tem is a bit complicated, since the natural frequency
is closely related to the behaviors of the system. For
example, when the trajectory tends to a stable focus
point, the natural frequency can be approximated by
the imaginary parts of the pair of conjugate complex
eigenvalues, while when the system behaves in peri-
odic oscillations, the natural frequency can be deter-
mined by the oscillating frequency.

When the exciting frequency Ω is far less than the
natural frequency, one may regard the whole excit-
ing term w = A sin(Ωt) as the slow-varying parame-
ter, called the slow subsystem, which leads to the fast
subsystem in generalized autonomous form, expressed
in (4).

To explore the properties of the fast subsystem in
generalized autonomous form, here we take w as a
bifurcation parameter to investigate the dynamical evo-
lution of the fast subsystem with the variation of w.

The equilibrium points of system (4) can be
expressed in the form EQ(x, y, z) = (X0, 0, X0),
where X0 satisfies

− wX0 + αX3
0 + κX5

0 = 0, (5)

from which one may find the number as well as
the locations of the equilibrium points depend on

Fig. 1 Distribution of equilibrium points on the (w,α) plane

123



2100 X. Zhang et al.

(a) (b)

Fig. 2 Equilibrium branches as well as their bifurcations with the variation of w in (a), with locally part in (b)

the slow-varying parameter w [27]. Since κ > 0,
−α2/(4κ) < 0. For w ∈ (−∞,−α2/(4κ)), only
one equilibrium point with X0 = 0 exists, for w ∈
(−α2/(4κ), 0), five equilibria coexist with X0 = 0,

and X0 = ±
√

−2κ(α±√
α2+4κw)

2κ , respectively, while for
w ∈ (0,+∞), three equilibria coexist with X0=0, and

X0 = ± (
√
2
√

κ(−α+√
α2+4κw)

2κ ,respectively.
The stability of equilibrium points can be deter-

mined by the associated characteristic equation,written
as

λ3 + m1λ
2 + m2λ + m3 = 0, (6)

where
m1 = γ − μw + 3αμX2

0 + 5κμX4
0,

m2 = β − μ − γμw + 3αγμX2
0 + 5γ κμX4

0,

m3 = −βμw + 3αβμX2
0 + 5βκμX4

0 .

(7)

The equilibrium point is stable if the conditions
⎧
⎪⎨

⎪⎩

m1 > 0,

m3 > 0,

m1m2 − m3 > 0,

(8)

are satisfied. When the parameters satisfy

FB :
{
m3 = 0,

− wX0 + αX3
0 + κX5

0 = 0,
(9)

a zero eigenvalue can be obtained, which means fold
bifurcation may occur, leading to the jumping between
different stable equilibrium points. Similarly, on the set

HB :
{
m1m2 − m3 = 0,

− wX0 + αX3
0 + κX5

0 = 0,
(10)

a pair of pure imaginary eigenvalues can be observed,
which impliesHopf bifurcationmaybe possible, result-
ing in periodic oscillations with the frequency approx-
imately at ΩH = √

m2 [28].
Because of the complicated expressions of the equi-

librium points as well as the associated characteristic
equations, the theoretical analysis related to the sta-
bilities of the solutions is a bit difficult. Here we turn
to the numerical simulations. A typical distribution of
equilibria on the (w,α) plane for the parameters fixed
at β = 3.0, γ = 0.6, μ = 2.0, κ = 1.5 is shown in
Fig. 1, from which one may find the parameter plane is
divided into three regions, corresponding to different
number of the equilibrium points, respectively.

Different types of bifurcations of the equilibrium
points can be observed with the variation of parame-
ters. For example, when α = −1.5, the evolution of the
dynamics of the generalized autonomous system is pre-
sented in Fig. 2. It can be found thatwith the variation of
w, the equilibrium points form equilibrium branches,
denoted by E0, E±1 and E±2, on which different types
of bifurcations can be observed.

The bifurcation points divide the w-axis into serval
intervals corresponding to different behaviors in the
generalized autonomous fast subsystem, the details of
which are presented in Table 1.

For w ∈ (−∞,−1.4799), only a stable focus at the
origin with X0 = 0 exists. At P1 for w = −1.4799,
fold limit cycle bifurcation occurs, at which the stable
limit cycle with relatively large amplitude LC2 meets
the unstable limit cycle LC1 bifurcated from the point
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Table 1 Evolution of the
dynamics with the variation
of w

Range Variation of w The dynamical behavior

(−∞, P1) w ∈ (−∞,−1.4799) Stable focus E0

P1 w = −1.4799 Fold limit cycle bifurcation(FC1)

(P1, P2) w ∈ (−1.4799,−1.1572) Stable focus E0,

Stable limit cycle LC2,

Unstable limit cycle LC1

P2 w = −1.1572 Sub-critical Hopf bifurcation

(P2, P3) w ∈ (−1.1572,−0.5611) Unstable E0,

Stable limit cycle LC2

P3 w = −0.5611 Fold limit cycle bifurcation(FC2)

(P3, P4) w ∈ (−0.5611,−0.3891) Unstable E0,

Stable limit cycle LC2, LC3,

Unstable limit cycle LC4

P4 w = −0.3891 Fold limit cycle bifurcation(FC3)

(P4, P5) w ∈ (−0.3891,−0.3750) Unstable E0,

Stable limit cycle LC3

P5 w = −0.3750 Saddle-focus bifurcation

(P5, P6) w ∈ (−0.3750,−0.3683) Stable focus E±2,

Unstable E0, E±1,

Stable limit cycle LC3

P6 w = −0.3683 Super-critical Hopf bifurcation

(P6, P7) w ∈ (−0.3683,−0.2802) Unstable E0, E±1, E±2,

Stable limit cycle LC3,LC±5

P7 w = −0.2802 Sub-critical Hopf bifurcation

(P7, P8) w ∈ (−0.2802,−0.2582) Stable focus E±2,

Unstable E0, E±1,

Stable limit cycle LC3, LC±5,

Unstable limit cycle LC±6

P8 w = −0.2582 Fold limit cycle bifurcation(FC4)

(P8, P9) w ∈ (−0.2582,−0.2172) Stable focus E±2,

Unstable E0, E±1,

Stable limit cycle LC3

P9 w = −0.2172 Super-critical Hopf bifurcation

(P9, P10) w ∈ (−0.2172, 0.0) Unstable E±1,

Stable focus E0, E±2

P10 w = 0.0 Pitch-fork bifurcation

(P10,+∞) w ∈ (0.0,+∞) Unstable E0,

Stable focus E±2

P2 with w = −1.1572 via sub-Hopf bifurcation. For
w ∈ (−1.4799,−1.1572), the stable focus E0 coexists
with the two limit cycles LC1,2. Sub-Hopf bifurcation
at P2 results in the disappearance of the unstable limit
cycle LC1, which causes the stable focus to change to

an unstable saddle. Therefore, only stable limit cycle
LC2 for w ∈ (−1.1572,−0.5611) occurs.

The stable limit cycle LC3 bifurcated from the point
P9 with w = −0.2172 via super-critical Hopf bifur-
cation meets the unstable limit cycle LC4 at P3 with
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w = −0.5611 to form another fold limit cycle bifurca-
tion.With the increase ofw, the amplitude of the unsta-
ble LC4 increases and finally interacts with the large-
amplitude limit cycle LC2 at P4 with w = −0.3891,
yielding fold limit cycle bifurcation. Therefore, for
w ∈ (−0.5611,−0.3891), two stable limit cycles
LC2,3 coexist. While for w ∈ (−0.3891,−0.2172),
because of possible appearance of the other four equi-
librium points, the attractors may behave in a bit com-
plexity.

We now turn to the locally enlarged part, shown
in Fig. 2b. It can be found that for w ∈ (−0.3891,
−0.3750), only stable LC3 exists. For w = −0.3750
at the point P5, the unstable equilibrium branches E±1

meet the stable equilibriumbranches E±2, respectively,
yielding two saddle-focus bifurcations at the points
D±1. When w ∈ (−0.3750,−0.3683), the stable limit
cycle LC3 coexists with the two stable foci, located on
E±2, respectively.

Two super-critical Hopf bifurcations occur at the
point D±2 on the stable equilibrium branches E±2,
respectively, resulting in two stable limit cycles LC±5.
Forw ∈ (−0.3683,−0.2802), three stable limit cycles
coexist, denoted by LC3 and LC±5. Two unstable
limit cycles LC±6 via sub-critical Hopf bifurcations
at D±3 meet the two stable cycle LC±5 at P8 with
w = −0.2582, respectively, to form fold limit cycle
bifurcations, resulting in the disappearance of these
limit cycles. For w ∈ (−0.2802,−0.2582), the three
stable limit cycles LC3 and LC±5 coexist with the two
stable foci located on E±2, respectively.

When w ∈ (−0.2582,−0.2172), because of the
fold limit cycle bifurcations at P8 as well as the Hopf
bifurcation at P9, only stable LC3 and two stable
foci on E±2 can be observed. Further increase of w

causes the disappearance of LC3, implying for w ∈
(−0.2172, 0.0), one stable focus on E0 and two stable
foci on E±2 coexist. When w ∈ (0.0,+∞), the two
stable foci on E±2 coexist, since the pitch-fork bifur-
cation at P10 with w = 0.0 results in the transition of
the stability of the equilibrium point on E0.

From the analysis of the equilibrium branches, it
can be found that with the variation of the slow-
varying parameter w, different types of bifurcations
may appear, leading to different types of stable attrac-
tors. Since the slow varying parameter w changes
between −A and +A periodically, therefore, for dif-
ferent exciting amplitude A, different types of bifurca-
tions and the attractors may involve the behaviors of

the system with the coupling of two scales, yielding
different forms of bursting oscillations as well as the
related mechanism.

In the following, we will investigate the dynamical
evolution with the increase of the exciting amplitude to
show how the related bifurcations and the stable attrac-
tors affect the structures of the bursting oscillations.

4 Dynamical evolution of the system with the
variation of exciting amplitude

Since some of the stable attractors exist for very short
intervals of w, and a few bifurcation points are very
close to each other, in order to show the influence
of these stable attractors and the bifurcations on the
dynamics of the full system more thoroughly, we need
to choose the exciting frequency as small as possible
to ensure enough slowness of the exciting term. Here
we set Ω = 0.0001 to explore the behaviors with the
variation of the exciting amplitude A.

It can be checked that symmetric dynamics exists,
since the system keeps the same under the transforma-
tions (x, y, z, t) → [−x,−y,−z, (π/Ω − t)].

Furthermore, all the equilibrium branches and their
bifurcations of the fast subsystem are derived with the
variation of w in above section. To show their influ-
ence on the structure of the attractors of the full sys-
tem, we first introduce the conception of transformed
phase portrait to reveal themechanismof the dynamical
behaviors.

4.1 Transformed phase portrait

For the generalized autonomous system, the equilib-
riumbranches can be derived in the form EG(X0, w) =
0, while locations of the bifurcations can be expressed
as BG(X0,WB) = 0, which implies that not only the
equilibrium branches but also the bifurcation points
are determined by the special relationship between
the state variable x and the slow-varying parame-
ter w. The traditional phase portrait of the attractor,
expressed by Γ :≡ {[x(t), y(t), z(t)]|t ∈ R}, can only
be used to describe the relationship between different
state variables with the evolution of time. In order to
explore the influence of the behaviors of the general-
ized autonomous system on the full system, one need
to know the relationship between the state variables
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and the slow-varying parameter w. For the purpose,
we define ΓG :≡ {[x(t), y(t), z(t), w(t)]|t ∈ R} =
{[x(t), y(t), z(t), A sin(Ωt)]|t ∈ R}, or the projec-
tions on the sub-plane such as the (x, w) plane, as the
transformed phase portraits of the attractors, in which
the slow-varying parameter w is regarded as a general-
ized state variable.

Overlapping the equilibrium branches EG(X0, w)

= 0 and bifurcation sets BG(X0,WB) = 0 of the
fast subsystem in generalized autonomous form with
the transformed phase portrait ΓG(x, w) on the (w, x)
plane, the influence of the equilibrium branches and
their bifurcations on the structures of the attractors of
the full system can be obtained, which can be used to
account for the mechanism of the oscillations.

4.2 Point-cycle bursting oscillations

For A < 0.2582, implying w ∈ (−0.2582,+0.2582),
from the bifurcation analysis described above, there
always exist stable E±2 in the generalized autonomous
fast subsystem. Numerical simulations reveal that two
coexisted stable limit cycles oscillating around the sta-
ble E±2, respectively, with the same frequency as that
of the parametric excitation, can be observed.

Fold limit cycle bifurcations at w = −0.2582
cause the two limit cycles evolve to two coexisted
point-cycle bursting attractors, respectively, oscillat-
ing between the LC±5 and E±2, respectively, for A ∈
(0.2582, 0.3750).

To illustrate the bursting oscillations, Fig. 3 presents
oneof the twocoexisted attractorswith the initial condi-
tion (x0, y0, z0, t0) = (0.1, 0.1, 0.1, 0) for A = 0.37,
where the transient process is skipped, while the other
attractor can be obtained by setting the initial condition
at (x0, y0, z0, t0) = (−0.1,−0.1,−0.1, π/Ω), which
keeps O2 symmetry with the attractor in Fig. 3, omitted
here for simplicity.

It can be found that the trajectory of the stable attrac-
tor oscillates according to LC+5 and E+2 in turn,which
can be observed clearly from the overlap of the equi-
librium branches and the transformed phase portrait in
Fig. 3e, f.

An interesting phenomenon occurs that for A <

0.3750 corresponding to w ∈ (−0.3750,+0.3750),
the trajectory does not oscillate around the stable limit
cycle LC3 and the stable segment of E0 between the

two points P9 and P10 in Fig. 2. The reason can be
explained as follows.

For A < 0.2582, implyingw ∈ (−0.2582,+0.2582),
besides the existence of the stable equilibriumbranches
E±2, there exists stable limit cycle LC3 for w ∈
(−0.2582,−0.2172) and stable equilibrium branch E0

for w ∈ (−0.2172, 0). When the slow-varying param-
eter w ∈ (−0.2582,−0.2172), the trajectory tends
to oscillate according to the stable limit cycle LC3.
With the increase of w, the amplitude of the oscillation
decreases gradually, untilw increases tow = −0.2172
at P9, at which the trajectory settles down to stable E0.
The trajectory moves almost strictly along E0 to P10
with w = 0.0, at which pitch-fork bifurcation occurs.
The trajectory jumps to one of the two stable equi-
librium branches E±2, and moves along E±2 until w

reaches its maximum value w = +A. The trajectory
then turns to the left sincew decreaseswith the increase
of time. No bifurcation occurs on the stable equilib-
rium branches E±2, implying the trajectory may move
strictly along E±2 back and forth with the variation of
w.

Skipping the transient process, the trajectory may
always remain on one of the two E±2, which results
in the coexistence of two limit cycles around E±2 with
the same period of the excitation.

Now we focus on the bursting structure in Fig. 3.
For 0.2582 < A < 0.3750, two stable limit cycles
LC±5 bifurcated from D±2 on E±2 at w = −0.3683,
respectively, can be observed, whichmeans LC±5 exist
for w ∈ (−0.3683,−0.2582).

Assuming the trajectory starts in the neighborhood
of the point P9, it moves along the stable equilibrium
branch E0, passing across the pitch-fork bifurcation
point P10 because of the delay effect of the bifurcation.
When the effect of pitch-fork bifurcation appears, the
trajectory may jump to one of two stable equilibrium
branches E±2. Therefore, two possible routes exist,
depending on the conditions of the trajectory at the
jumping point.

For the attractor presented in Fig. 3e, the trajectory
jumps to E+2 and turns to move along E+2. When w

reaches its maximum value, the trajectory then turns
to the left. Fold limit cycle bifurcation may cause the
trajectory to begin spikingoscillations, the amplitude of
which may change almost strictly according to LC+5.
Obvious delay effect of fold limit cycle bifurcation can
be observed, shown in Fig. 3f, from which one may
find the trajectory moves along unstable segment of
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(a) (b) (c)

(d) (e) (f)

Fig. 3 Bursting oscillations for A = 0.37 with the initial condi-
tion (x0, y0, z0, t0) = (0.1, 0.1, 0.1, 0). a Phase portrait on the
(x, y, z) space by skipping the transient process; b Phase portrait
on the (x, z) plane; c Phase portrait on the (x, y) plane; d Time
history of x ; e Overlap of the transformed phase portrait and the

equilibrium branches on the (w, x) plane with locally enlarged
part of in (f). The trajectory in pink corresponds to the transient
process, which finally settles down to the stable attractor in black.
To show the delay effect of the bifurcation, the trajectory in cyan
in (f) represents the return route from E+2 to D+2

E+2 and passes across the sub-Hopf bifurcation point
D+3.

When the trajectory settles down to the stable seg-
ment of E+2 via Hopf bifurcation at D+2, it moves
along E+2 until w reaches its minimum value. With
the evolution of time, the trajectory oscillates accord-
ing to E+2 and LC+5 in turn, seeing the time history
plotted in Fig. 3d, behaving in a periodic Hopf/Hopf
bursting attractor.

On the contrary, when proper initial condition is
taken, the trajectory from the neighborhood of the point
P9 may jump to E−2, which may finally evolve to
another periodic Hopf/Hopf bursting attractor oscillat-
ing according to E−2 and LC−5 in turn.

Therefore, two periodic point-cycle bursting attrac-
tors coexist, corresponding todifferent attractingbasins.
Here we would like to point out that, not only the two
coexisted attractors, but also the attracting basins, keep
the O2 symmetry, defined by the full system.

Furthermore, for A < 0.3750, though the stable
limit cycle LC3 and the stable segment of E0 may affect
the transient process of the trajectory, the influence of

them on the dynamics of the full system finally disap-
pears, seeing Fig. 3c.
Note: The numerical results of the differential equa-
tions in the manuscript are obtained via fixed-step
fourth-order Runge–Kutta method with different fixed-
steps varying from H = 0.001 to H = 0.0001, which
have also beendemonstrated by the variable step-length
fourth-order Runge–Kutta method to ensure the cor-
rectness. Furthermore, all the stable attractors are plot-
ted by skipping the transient process.

4.3 Symmetric Hopf/fold-cycle/Hopf/pitchfork
bursting

When w = −0.3750, saddle-focus bifurcation causes
the trajectory to jump to the stable limit cycle LC3,
which, therefore, leads to the interaction between
the two coexisted point-cycle bursting attractors. An
enlarged symmetric bursting attractor appears because
of the influence of LC3 and E0 on the dynamics. Fur-
ther decrease of w may cause the trajectory to oscil-
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(a)
(b)

(c) (d)

Fig. 4 Bursting oscillations for A = 0.55 with the initial condition (x0, y0, z0, t0) = (0.1, 0.1, 0.1, 0). a Phase portrait on the (x , y)
plane; Time history of x in (b) with locally enlarged parts in (c) and (d)

late around LC3, LC±5, E0 and E±2 in turn, until w

decreases to w = −0.5611, at which fold limit cycle
bifurcation at P3 corresponding to FC2 occurs.

Therefore, for 0.3750 < A < 0.5611, a symmet-
ric bursting oscillations can be observed, seeing the
attractor in Fig. 4 for A = 0.55, in which the phase
portrait on the (x ,y) plane is presented in Fig. 4a, while
the related time history of x is plotted in Fig. 4b with
locally enlarged parts in Fig. 4c,d. The attractor is the
sole movement of the system since no change of the
attractor can be observed with the variation of the ini-
tial conditions except the transient process.

From the time history of x in Fig. 4, one may find
that the trajectory can be divided into twelve segments,
described by QSi (i = 1, 2, . . . , 6) for six quiescent

states and SPi (i = 1, 2, . . . , 6) for six spiking states,
respectively.

To investigate the mechanism of the bursting oscil-
lations, we turn to the overlap of the transformed phase
portrait and the equilibrium branches of the general-
ized autonomous system, shown in Fig. 5a with locally
enlarged parts in Fig. 5b, c.Herewe focus on one period
of the periodic bursting oscillations.

For the trajectory starting from the point S0 in Fig.
5 with maximum w = +A = +0.55, it turns to the
left since slow-varying parameterw decreases with the
increase of time. The trajectory moves almost strictly
along the stable E−2, passing across the sub-Hopf
bifurcation point D−3, appearing in quiescent state
QS1. Further decrease of w causes the trajectory to
jump to the stable limit cycle LC−5 to begin the repeti-
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(a)

(b) (c)

Fig. 5 Bursting oscillations for A = 0.55. Overlap of the transformed phase portrait and the equilibrium branches on the (w, x) plane
in (a) with locally enlarged parts in (b) and (c)

tive spiking oscillation SP1. The amplitude of the oscil-
lations decreases gradually and finally the trajectory
settles down to the stable segment on E−2, behaving in
quiescent state QS2.

When w decreases to w = −0.3750, fold bifurca-
tion causes the trajectory to jump to the stable limit
LC3, leading to spiking oscillations SP2. The ampli-
tude of the oscillations increases gradually almost
strictly according to the limit cycle LC3 untilw reaches
its minimum value w = −A = −0.55.

The trajectory then turns to the right because of the
increase of w. Similarly, the amplitude of the spik-
ing oscillations decreases almost strictly according to
LC3 until Hopf bifurcation occurs at P9, which causes
the trajectory to move almost strictly along the stable
segment on E0, passing across the pitchfork bifurca-

tion point P10 and then moves along the unstable E0,
appearing in quiescent state QS3.

The influence of the pitchfork bifurcation at P10
causes the trajectory to jump to stable E+2. The tran-
sient process with oscillations forms the spiking state
SP3, which may disappear very quickly. When the
trajectory settles down to E+2, it moves almost strictly
along E+2 in quiescent state QS4 until the slow-varying
parameter w reaches its maximum value w = +A =
+0.55.

When the trajectory arrives at the point S1, half
period of the bursting oscillations is finished, while the
other half period of the movement is omitted here for
simplicity because of the symmetry.
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From the bifurcations connecting the QSs and SPs,
the type of oscillations can be called periodic Symmet-
ric Hopf/fold-cycle/Hopf/pitchfork bursting.
Remark: The period of the bursting oscillations is two
times of exciting period for the same reason described
above.When the trajectorymoves almost along the sta-
ble segment of E0, it may just pass across the bifurca-
tionpoint P10, and turn tomove almost strictly along the
unstable segment of E0, since the inertia of the move-
ment along the stable equilibrium branch, which leads
to delay influence of the related pitchfork bifurcation.
Though the trajectory oscillating according to LC±5

may settle down to the stable segments of the equi-
librium branches E±2 via Hopf bifurcations, respec-
tively, while fold bifurcations at D±1 occur with fur-
ther decrease ofw, the trajectory may jump to the limit
cycle LC3 immediately, because of the short intervals
between the points related to the two types of bifurca-
tions.

Here we would like to point out that, the repetitive
spiking oscillations SP1,4 and SP2,5 are caused by the
bifurcations to the limit cycles LC±5 and LC3, respec-
tively, which implies that the frequencies of the spik-
ing oscillations can be approximated by the frequen-
cies of the associated limit cycles. For example, for
SP1, the frequency can be computed approximately
at Ω1 = 2π/T1 = 1.6804 via the time history of
x in Fig. 4c, which agrees well with the frequency,
ΩH = 1.6961, related to the super-critical Hopf bifur-
cation at D+2.

The spiking oscillations SP3,6 correspond to the
transient processes from the point on E0 to the stable
equilibrium branches E±2. Therefore the frequencies
can be approximated by the imaginary parts of the pair
of conjugate eigenvalues of the corresponding points
on E±2, computed at Ωs = 1.1707, which agrees well
with the numerical result at Ω2 = 2π/T2 = 1.1832,
via time history in Fig. 4d.

4.4 Asymmetric and symmetric Hopf/fold/fold
cycle/Hopf/pitchfork bursting

Further increase of the exciting amplitude may cause
the influence of the stable limit cycle LC2 on the
bursting attractor for A > 0.5611, implying w may
arrive at the bifurcation point P3 for w = −0.5611,
at which fold limit cycle bifurcation corresponding
to FC2 appears. Stable limit cycle LC2 with large-

amplitude appears until w decreases to point P1 with
w = −1.4799, at which another fold limit cycle bifur-
cation takes place. Therefore, for 0.5611 < A <

1.4799, qualitatively different bursting oscillations can
be observed. Numerical simulations reveal that the
dynamics may alternate between two coexisted asym-
metric attractors and one symmetric attractor in turn.
Figure 6 gives one of the two coexisted asymmetric
bursting attractors for A = 0.65, while the other one is
presented in Fig. 7.

From the time history of x in Fig. 6b, the trajectory
of asymmetric attractor can be divided into six seg-
ments, corresponding to three quiescent states QSi (i =
1, 2, 3) and three spiking states SPi (i = 1, 2, 3).

We still turn to the overlap of the transformed phase
portrait and the equilibriumbranches of the generalized
autonomous system to investigate themechanismof the
oscillations, shown in Fig. 6c with locally enlarged part
in Fig. 6d.

The trajectory starting at the point S0 with w =
+A = +0.65 moves along E+2 in quiescent state QS1
until the influence of limit cycle LC+5 via Hopf bifur-
cation at D+2 takes place. Repetitive spiking oscilla-
tions SP1 occur, the amplitude ofwhich changes almost
strictly according to LC+5. The trajectoryfinally settles
down to the stable segment of the equilibrium branch
E+2 because of the disappearance of LC+5, resulting
in the quiescent state QS2.

When the trajectory moving along the stable seg-
ment on E+2 arrives at the point D+1, fold bifurcation
occurs, at which the trajectory tries to jump to the sta-
ble limit cycle LC3 via Hopf bifurcation at P9 to begin
spiking oscillations SP2. The amplitude of the spiking
oscillations increases gradually according to LC3 until
fold limit cycle bifurcation FC2 at P3 occurs, seeing
Fig. 2.

The trajectory turns to oscillate according to the limit
cycle LC2, which causes the sudden increase of the
oscillating amplitude. When the slow-varying param-
eter w decreases to w = −A = −0.65, the trajectory
oscillating according to LC2 turns to the right, still
oscillating according to LC2. Fold limit cycle bifur-
cation FC3 at P4 causes the trajectory to turn to move
according to LC3, at which the sudden change of oscil-
lating amplitude appears again.

The amplitude of the oscillations decreases gradu-
ally and finally settles down to E0 when Hopf bifur-
cation at P9 takes place. Quiescent state QS3 can be
observed in which the trajectory moves almost strictly
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(a)
(b)

(c) (d)

Fig. 6 Bursting oscillations for A = 0.65 with the initial condi-
tion (x0, y0, z0, t0) = (0.1, 0.1, 0.1, 0). a Phase portrait on the
(x ,y) plane; b Time history of x ; Overlap of the transformed

phase portrait and the equilibrium branches on the (w,x) plane
in (c) with locally enlarged part in (d)

along E0. Pitchfork bifurcation at P10 mayfinally cause
the trajectory to jump to stable E+2, leading to SP3. The
trajectory finally settles down to E+2.

When the trajectory moving along E+2 reaches the
point S0, one period of the bursting oscillations is fin-
ished, the period of which is the same as that of exci-
tation. According to the bifurcation mechanism, the
type of attractor can be called periodic asymmetric
Hopf/fold/fold cycle/Hopf/Pitchfork bursting oscilla-
tions.

With the variation of the exciting amplitude, the two
coexisted bursting attractors may expand in the phase
space and finally interact with each other to form an

enlarged symmetric periodic bursting attractor, seeing
the example in Fig. 8 for A = 0.68.

It is worthy to point out here that, for the two coex-
isted asymmetric bursting attractor, the period of the
bursting oscillations is the same as that of the exci-
tation, while for the symmetric bursting attractor, the
period is doubled, which implies that the trajectory of
the symmetric attractor spends the same time to visit
the two coexisted asymmetric attractors in turn.

Detailednumerical simulations reveal that the occur-
rence of the symmetric attractor and the two coexisted
asymmetric attractors may appear alternatively. For the
trajectorymoving along the stable segment of E0, if the
influence of the pitch-fork bifurcation causes the trajec-
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(a) (b)

(c)

Fig. 7 Bursting oscillations for A = 0.65 with the initial condition (x0, y0, z0, t0) = (-0.1,−0.1,−0.1, 0). a Phase portrait on the
(x ,y) plane; b Time history of x ; c Overlap of the transformed phase portrait and the equilibrium branches on the (w,x) plane

tory to jump to the two stable equilibriumbranches E±2

in turn, symmetric bursting attractor can be observed,
while if the trajectory always jumps to one of E±2, two
coexisted asymmetric attractors occur. Therefore, the
occurrence of the two types of solutions depend on the
relationship between the trajectory and the two attract-
ing basins of E±2.

4.5 Asymmetric and symmetric periodic fold/fold
cycle/fold cycle/pitchfork bursting attractor

For A > 1.4799, the fold limit cycle bifurcation at
P1 with w = −1.4799 may occur, yielding the stable
segment of E0, which may affect the structure of the
bursting oscillations. Similarly, since the influence of
the pitch-fork bifurcation at P10 may cause two forms

of jumpingphenomenon, the bursting behaviors change
between two coexisted asymmetric attractors and one
symmetric attractor. Figure 9 gives one of two coex-
isted asymmetric bursting attractors for A = 1.80 by
skipping the transient process, while the other is omit-
ted here for simplicity.

The trajectory can be divided into four stages corre-
sponding to two quiescent states and two spiking states,
respectively. From the overlap of the transformed phase
portrait and the equilibriumbranches of the generalized
autonomous system in Fig. 9c,d, one may find that the
trajectory from S0 with w = +A = +1.80 moves
almost strictly along the stable and unstable segments
of E+2, passing across the two Hopf bifurcation points
D+3 and D+2, until the fold bifurcation at D+1 occurs,
at which the trajectory tries to jump to the stable limit
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(a) (b)

(c)

(d)

Fig. 8 Bursting oscillations for A = 0.68 with the initial condi-
tion (x0, y0, z0, t0) = (-0.1,-0.1,-0.1, 0). a Phase portrait on the
(x ,y) plane; b Time history of x ; c Overlap of the transformed

phase portrait and the equilibrium branches on the (w,x) plane;
(d)Phase portrait on the (x ,y,z) space

cycle LC3 via Hopf bifurcation at P9 to begin spiking
oscillations. The amplitude of the spiking oscillations
increases gradually according to LC3 until fold limit
cycle bifurcation FC2 at P3 occurs, seeing Fig. 9c.

The trajectory turns to oscillate according to the limit
cycle LC2, which causes the sudden increase of the
oscillating amplitude. Fold limit cycle bifurcation FC1

at P1 causes the trajectory to jump to the stable segment
of E0 to begin the quiescent state until w decrease to
w = −A = −1.80.

The trajectory turns to the right along E0 with further
increase of time, passing across the bifurcation points
on E0. When the trajectory along E0 passes across
P10 to an extent, the influence of pitchfork bifurca-
tion occurs, causing the trajectory to jump to the stable
segment of E+2.

When the trajectory along E+2 reaches the start-
ing point S0, one period of the bursting oscillations
is finished. Similarly, the type of bursting oscillations
can be called asymmetric periodic fold/fold cycle/fold
cycle/pitchfork bursting attractor.

The two coexisted asymmetric attractors may inter-
act with each other to form an enlarged symmetric
bursting attractor in which the trajectory visits the two
asymmetric attractors in turn, the details of which are
omitted here for simplicity.

From the structure of the bursting oscillations in
Fig. 9, one may find that the influence of LC±5 on
the dynamics disappears. Now we focus on the rea-
son for the phenomenon. The inertia of the movement
along the stable segment of E±2 causes the trajectory
to pass across the sub-Hopf bifurcation point D+3, and
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(a) (b)

(c) (d)

Fig. 9 Bursting oscillations for A = 1.8 with the initial condi-
tion (x0, y0, z0, t0) = (0.1, 0.1, 0.1, 0). a Phase portrait on the
(x, y) plane. b Time history of x ; c Overlap of the transformed

phase portrait and the equilibrium branches on the (w,x) plane
with locally enlarged part of in (d)

the trajectory turns to move along the unstable seg-
ment of E±2 until the influence of LC±5 appears. Since
the inertia of the movement increases with the increase
of the exciting amplitude, the trajectory moves longer
along the unstable segment for larger A, which leads
to shorter stage of spiking oscillations caused by the
limit cycles LC±5, called the delay effect of the related
bifurcation.

The phenomenon can be demonstrated by the time
history of the spiking oscillations, shown in Fig. 10
for different exciting amplitudes. For A = 0.55, the
time length of the spiking stage can be approximated
at L1 = 1002.3, while L2 = 642.5 for A = 0.65 and
L3 = 560.8 for A = 0.68.

When the exciting amplitude increases to an extent,
the inertia of the movement along E±2 begins large
enough to pass across the whole interval of w corre-
sponding to the occurrence of L±5, the influence of
the two stable limit cycles LC±5 disappears, yielding
the topological change of the bursting structure, seeing
bursting attractor in Fig. 9, in which the spiking stage
related to the stable L±5 disappears.

5 The influence of exciting frequency on the
dynamic behaviors

Though the equilibrium branches and their bifurcations
may be the same for different slow exciting frequency if
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Fig. 10 Time histories of x for the related spiking oscillations
with different exciting amplitudes

thewhole exciting term is regarded as a slowparameter,
the ratio between slow and fast scales still influences
the dynamical behaviors. For relatively small ratio, the
inertia of the movement may lead to the disappearance
of effect of some of the stable attractors and the bifurca-
tions of the generalized autonomous system on the full
system, especially for stable attractors bifurcated from
the equilibrium branches. As an example, Fig. 11 gives
the behaviors of the full system in the neighborhood of
LC+5 for A = 0.55 with different ratios.

For Ω = 0.005, with the decrease of w, the trajec-
torymoves almost strictly along the stable and unstable
segment of E+2, passing across the two Hopf bifurca-
tion points D+2,3 directly, until fold bifurcation at D+1

occurs, followed by the jumping phenomenon, which
implies that the effect of the limit cycle LC+5 on the
dynamics disappears, shown in Fig. 11b.

When Ω decreases to an extent, the influence of
LC+5 occurs, seeing Fig. 11c,d for Ω = 0.0001 and
Ω = 0.00001, respectively. Furthermore, the ratio also
affects the length of the movement along the unstable
segment of E+2, resulting in different delay effect of the
bifurcation on the structure. From the figure, one may
find that the repetitive spiking oscillations according
to LC+5 occur when w ∈ (−0.3714,−0.3323) for
Ω = 0.0001, while for Ω = 0.00001, the spiking
oscillations exist when w ∈ (−0.3694,−0.2966).

From the example, wemay conclude here that, when
the exciting frequency is far less enough, correspond-
ing relative large ratio, the effect of the stable attractors
on the dynamics may be observed. With the decrease

of the ratio, the delay effect of the bifurcation on
the dynamical structure becomes more obvious, which
may finally cause the disappearance of influence of the
stable attractors and the related bifurcation of the gen-
eralized autonomous system.

6 Conclusion

For the nonlinear oscillators, there often coexist differ-
ent equilibrium points and limit cycles, while the fold
of these equilibria and the limit cycles may cause dif-
ferent types of bifurcations. When the coupling of dif-
ferent scales involves the vector field, these attractors
may influence the dynamical behaviors. For the typi-
cal case with the introduction of parametric excitation,
when the exciting frequency is far less than the natu-
ral frequency, implying the coupling of two scales in
frequency domain exists, by regarded the whole excit-
ing term as a slow-varying parameter, the equilibrium
branches and their bifurcations can be derived. With
the variation of the slow-varying parameter, the equi-
librium points form different equilibrium branches, on
which different types of bifurcations for certain special
values of the slow-varying parameter may take place.
For different exciting amplitudes, not only the equi-
librium branches but also the bifurcations involved in
the full system are different, which may yield different
types of bursting attractors.

It is found that the ratio between the two scales
may influence the structures of the bursting oscilla-
tions. When smaller the exciting frequency is taken,
the effect of all the stable equilibrium branches as well
as the bifurcations of the generalized autonomous sys-
tem on the dynamics of the full system may appear,
possibly resulting in more spiking states and quies-
cent states. The fold limit cycle bifurcation may lead
to the sudden increase of the amplitude of the spiking
oscillations, since the trajectory may jump to oscillate
according to different stable limit cycles. The pitchfork
bifurcation may cause the trajectory to jump to two
symmetric stable equilibrium branches with different
attracting basins, respectively, which may lead to two
coexisted asymmetric bursting attractors.When the two
coexisted asymmetric bursting attractors expand in the
phase space with the variation of parameters, they may
interact with each other to form an enlarged symmet-
ric bursting attractor. Here we should point out that the
period of the two coexisted asymmetric bursting attrac-
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(a) (b)

(c) (d)

Fig. 11 Bursting properties in the neighborhood of LC+5 with
different exciting frequencies for A = 0.55. a Equilibrium
branches and their bifurcations in the neighborhood of LC+5;

Overlap of the transformed phase portrait and the equilibrium
branches with Ω = 0.005 in (b), Ω = 0.0001 in (c) and
Ω = 0.00001 in (d)

tors is the same as that of the excitation,while the period
is doubled for the enlarged symmetric attractor.

An interesting phenomenon can be observed that,
the inertia of themovement along the stable equilibrium
branches may cause the trajectory to pass across the
bifurcation point, resulting in the movement of the tra-
jectory along an unstable equilibrium branches before
the effect of the bifurcation on the behavior of the full
system appears. The phenomenon can often be called
the delay effect of the bifurcation. When the exciting
amplitude or the exciting frequency increases to an
extent, the delay induced by the inertia of the move-
ment becomes large, which may cause the trajectory to
pass across the parameter regions of the stable attrac-
tors via the bifurcation. The influence of the bifurcation

as well as the stable attractor induced by the bifurca-
tion on the dynamics may disappear, which may lead
to relatively simple bursting structures.
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