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Abstract Aiming at the difficult identification of

fractional order Hammerstein nonlinear systems,

including many identification parameters and cou-

pling variables, unmeasurable intermediate variables,

difficulty in estimating the fractional order, and low

accuracy of identification algorithms, a multiple

innovation Levenberg–Marquardt algorithm (MILM)

hybrid identification method based on the fractional

order neuro-fuzzy Hammerstein model is proposed.

First, a fractional order discrete neuro-fuzzy Ham-

merstein system model is constructed; secondly, the

neuro-fuzzy network structure and network parame-

ters are determined based on fuzzy clustering, and the

self-learning clustering algorithm is used to determine

the antecedent parameters of the neuro-fuzzy network

model; then the multiple innovation principle is

combined with the Levenberg–Marquardt algorithm,

and the MILM hybrid algorithm is used to estimate the

linear module parameters and fractional order. Finally,

the academic example of the fractional order Ham-

merstein nonlinear system and the example of a

flexible manipulator are identified to prove the effec-

tiveness of the proposed algorithm.

Keywords Fractional order Hammerstein model �
Neuro-fuzzy network � Levenberg–Marquardt

algorithm � Principle of multiple innovation

1 Introduction

In recent years, many viscoelastic materials (including

viscoelastic solid and fluid substances) [1], ‘‘anoma-

lous’’ diffusion (plasma motion at high temperature

and high pressure) [2], thermal conduction of soft

substances(also known as complex fluid, a complex

state between ideal solids and liquids) [3] have

emerged in complex physics, mechanics, chemistry,

biology and engineering, which cannot be well

described physically by integer order models, and

the introduction of fractional order models can better

describe the dynamics of the actual above-mentioned

systems characteristic. These phenomena involve the

memory and inheritance of physical and mechanical

processes, paths and dependencies, and global corre-

lations. The use of fractional calculus in the modeling

process has different geometric interpretations or

physical meanings.
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Both the fractional order model and the integer

order model can describe actual work such as physics,

chemistry, and mechanics. However, the physical

meanings of fractional differential equations and

integer differential equation models are fundamentally

different. In terms of time, the integer order differen-

tial equation is characterized by a change or a certain

property at a certain moment in a physical, chemical or

mechanical process, while the property represented by

the fractional order differential equation is related to

the entire dynamic development and change process of

the system; in terms of space, integer order spatial

differential equations describe the local properties of a

physical process at a certain position in space, while

the physical process described by fractional order

spatial differential equations is related to the changes

in the entire space [4]. In terms of model generaliza-

tion ability, the fractional order differential equation

model overcomes the shortcomings of the traditional

integer order differential equation model that the

theoretical model does not match the experimental

results when describing some complex physical and

mechanical processes, and can better simulate the

dynamic characteristics of the actual system, and can

achieve better consistency between experimental

effects and research models [5].

Based on actual field sampled data, the establish-

ment of a system process model is generally called a

system identification method. Practice has proved that

some systems in actual engineering, such as viscoelas-

tic systems, electrochemical diffusion, and fractal

systems, are often difficult to accurately describe with

traditional integer order models. This requires the use

of system identification methods to accurately

describe the actual systems with fractional order

models. In the field of control research, the use of

system identification methods to obtain system frac-

tional order model descriptions is a common and

effective modeling method.

According to the different forms of fractional order

models used, the identification models can be divided

into fractional order transfer function models and

fractional order state-space models. In terms of

fractional order system identification based on transfer

function model, Victor S et al. used a fractional

Poisson filter to provide a time domain identification

method based on equation error and output error [6];

Based on the auxiliary variable model, Fahim SM

extended this method to fractional order systems, and

gave the optimal algorithm of the improved auxiliary

variable method [7]; Karima Hammar et al. studied the

modeling problem of Hammerstein–Wiener nonlinear

fractional order system on the basis of discrete transfer

function. Using the Levenberg–Marquardt identifica-

tion algorithm, the parameter identification and frac-

tional parameter estimation in the model are given [8].

This paper adopts a gradient descent identification

algorithm similar to single innovation, which has the

problem of low identification accuracy; In addition,

Shalaby R and Malti R proposed identification meth-

ods for fractional order continuous systems based on

orthogonal basis functions and block impulse func-

tions, respectively [9, 10].

Based on the identification of fractional state-space

equations, Jonscher and Westerlund established a

fractional order state-space model containing induc-

tance and capacitance based on fractional calculus

[11, 12]; Based on the fractional order state space

model of the inductor-capacitor and the improved

Oustaloup method, Tan Cheng et al. used the

fractional order Lyapunov stability theory to design

a nonlinear controller to control the boost circuit in

pseudo-continuous mode [13]. In addition, there are

also references that give short-term memory and

frequency domain identification methods for frac-

tional order continuous system state-space models

[14–17].

The Hammerstein model is a model that combines a

dynamic linear model with a static nonlinear model. It

can describe a large class of industrial nonlinear

processes. Therefore, its identification research has

attracted widespread attention from researchers. Clas-

sic two-stage identification methods such as over-

parameterization and iterative methods, randommeth-

ods, frequency domain methods, and blind identifica-

tion methods are often used [18–24], which separate

the static nonlinear module from the dynamic linear

module, but it has the shortcoming that if the system

has process noise, the product term of the identified

parameter has a large deviation; and it can separate the

original system parameters more accurately only when

the rank of the parameter product matrix is 1.

2 Related work and innovations

The fractional order Hammerstein nonlinear model

can better describe the dynamic characteristics of the
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original actual system, but its identification has the

following difficulties: (1) There are many identifica-

tion parameters and coupling variables; (2) the inter-

mediate variables cannot be measured; (3) the

fractional order is difficult to estimate; (4) the

accuracy of the identification algorithm is low. The

methods proposed in the references are all based on

polynomial fractional order Hammerstein nonlinear

systems. For multivariable functions, this type of

system requires a large number of parameters and

high-order numbers, and the nonlinearity is difficult to

parameterize. However, for the mathematical model

description of the nonlinear module of the nonlinear

Hammerstein system, data-based neural networks,

fuzzy systems, and neuro-fuzzy systems can also be

used; these models are very suitable for processing

complex nonlinear systems. Since these models have

been proven to have the universal ability to approx-

imate nonlinear systems, they are often used to build

nonlinear system models. Therefore, this paper pro-

poses a multi-innovation Levenberg–Marquardt

(MILM) hybrid identification method based on the

fractional order neuro-fuzzy Hammerstein model. The

main innovations are as follows:

(1) Use the neuro-fuzzy network to fit the static

nonlinear module of the fractional order Ham-

merstein nonlinear model;

(2) A self-learning neuro-fuzzy network method

based on fuzzy clustering is proposed to deter-

mine the structure and parameters of the neuro-

fuzzy network;

(3) The MILM hybrid identification algorithm is

proposed. The L-M identification algorithm is

used to estimate the dynamic linear module

parameters, and the scalar innovation is

expanded into a vector of multiple innovations,

and the information vector is expanded to an

information matrix, which improves the accu-

racy of the single innovation L-M identification

algorithm.

The algorithm proposed in this paper with these

innovative points can improve the convergence and

accuracy of the identification algorithm, and it has

reference significance for the author and other scholars

for the modeling and identification of fractional order

Hammerstein models.

The overall structure of this paper is arranged as

follows: Sect. 2 expounds the related work and

innovations of this paper; Sect. 3 describes the

fractional calculus operator and the fractional order

linear model, and constructs a fractional order discrete

neuro-fuzzy Hammerstein system model; Sect. 4

proposes the self-learning neuro-fuzzy network

method and MILM hybrid identification algorithm;

Sect. 5 uses the fractional order Hammerstein nonlin-

ear academic example of the discontinuous function

and the example of a flexible manipulator for verifi-

cation, and compares the accuracy of the identification

result of the example of the flexible manipulator with

the single innovation L-M algorithm in [8].

3 Description of the problem

This section introduces the basic concepts related to

fractional calculation and describes the fractional

order linear model and the fractional order neuro-

fuzzy Hammerstein model. First, the basic principles

of fractional calculus used in this paper are given.

Secondly, the linear model of the fractional order

transfer function is described and defined in detail.

Finally, the fractional order neuro-fuzzy Hammerstein

model is defined, and the nonlinearity of the fractional

order Hammerstein model is fitted with a neuro-fuzzy

network.

3.1 Fractional Calculus

The calculation and application of fractional order

systems have attracted the attention of many research-

ers, and they have been applied in the fields of

identification, control, filtering, and fault diagnosis.

Fractional integral and differential calculations have

been mentioned in many references [25–27]. Frac-

tional calculus operators have different definitions in

different references, mainly including GL fractional

calculus operators, RL fractional calculus operators

and Caputo fractional calculus operators. The GL

calculus operator is defined as follows:

DaxðkhÞ ¼ 1

ha

Xk

j¼0

ð�1Þ j a
j

� �
xððk � jÞhÞ: ð1Þ

In Eq. (1), Da represents a fractional difference

operator with ordera, the initial value is 0, xðkhÞ
represents a function of t ¼ kh, k is the number of
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samplings, the system sampling time is h, and
a
j

� �
is

defined by the following equation:

a
j

� �
¼

1 for j ¼ 0
aða� 1Þ � � � ða� jþ 1Þ

j!
for j[ 0

8
<

: ð2Þ

According to Eq. (2), the following recurrence

relation can be obtained,

bð0Þ ¼ 1

bðjÞ ¼ bðj� 1Þ ðj� a� 1Þ
j

for j ¼ 1; . . .; k

8
<

: ð3Þ

Among them, bðjÞ ¼ ð�1Þ j a
j

� �
, combining

Eqs. (2) and (3), Eq. (1) can be written as:

DaxðkhÞ ¼ 1

ha

Xk

j¼0

bðjÞxððk � jÞhÞ ð4Þ

Assuming that the system sampling time h ¼ 1,

Eq. (4) can be sorted into the following equation:

DaxðkÞ ¼
Xk

j¼0

bðjÞxðk � jÞ ð5Þ

In the following chapters, Eq. (5) is used as a

fractional order operator to study the modeling of

fractional order nonlinear systems.

3.2 Description of the fractional order linear

model

In this paper, consider the form of the following

discrete linear transfer function:

yðkÞ ¼ GðzÞuðkÞ ¼ BðzÞ
AðzÞ uðkÞ ð6Þ

where uðkÞ and yðkÞ are the system input and output,

respectively. AðzÞ and BðzÞ are the denominator and

numerator polynomial of the transfer function,

AðzÞ ¼ 1þ a1z
�a1 þ a2z

�a2 þ � � � þ anaz
�ana ,

BðzÞ ¼ b1z
�c1 þ b2z

�c2 þ � � � þ bnbz
�cnb ; ai and

cj(i ¼ 1; 2; :::; na, j ¼ 1; 2; :::; nb) are the fractional

orders of the corresponding polynomial, ai 2 Rþ,

cj 2 Rþ, and z�1 is the backshift operator, that is,

z�1yðkÞ ¼ yðk � 1Þ.
For Eq. (6), when the fractional order is completely

different, the fractional order model of Eq. (6) is

defined as a general non-identical (disproportionate)

fractional order system; otherwise, each fractional

order is an integer multiple of the base order a (a is the
order factor), that is,

ai ¼ ia; ci ¼ jaði ¼ 1; 2:::; na; j ¼ 1; 2:::; nbÞ, at this

time the model is defined as a homogeneous (propor-

tionate) order system. In this paper, considering the

proportional fractional order system, Eq. (6) can be

written as:

yðkÞ ¼ BðzÞ
AðzÞ uðkÞ

¼ b1z
�a þ b2z

�2a þ � � � þ bnbz
�nba

1þ a1z�a þ a2z�2a þ � � � þ anaz
�naa

uðkÞ

ð7Þ

Using the discrete fractional operator D of Eqs. (5),

(7) can be written as the following equation:

yðkÞ ¼½1� AðzÞ�yðkÞ þ BðzÞuðkÞ
¼ � a1D

ayðk � 1Þ � a2D
ayðk � 2Þ�

� � � � anaD
ayðk � naÞ

þ b1D
auðk � 1Þ þ b2D

auðk � 2Þ þ � � �
þ bnbD

auðk � nbÞ

¼ �
Xna

i¼1

aiD
ayðk � iÞþ

Xnb

i¼1

biD
auðk � iÞ

ð8Þ

Equation 8 is used as the model of the fractional

order linear module part.

3.3 Description of the fractional order Neural-

Fuzzy Hammerstein Model

Consider a Hammerstein model with external noise,

which is described as follows:

Sc :
uðkÞ¼ f ðuðkÞÞ Static nonlinearmodule part

AðzÞyðkÞ¼BðzÞuðkÞþvðkÞDynamic linearmodule part

�

ð9Þ

where uðkÞ and yðkÞ, respectively, represent the input
and output of the system at the k-th time; uðkÞ
represents the output of the static nonlinear module at

the k-th time; vðkÞ is a white noise sequence with a

mean value of 0 and a variance of r2; f ð�Þ represents a
nonlinear function, AðzÞ and BðzÞ are fractional

polynomials of the same element, and their expres-

sions are given as follows:
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AðzÞ ¼ 1þ a1z
�a þ a2z

�2a þ � � � þ anaz
�naa

BðzÞ ¼ b1z
�a þ b2z

�2a þ � � � þ bnbz
�nba

ð10Þ

For model (9), its structure can be represented by

Fig. 1.

In Fig. 1, the static nonlinear module is fitted with a

neural-fuzzy network model, which is specifically the

following T-S fuzzy model:

Rl : If uðkTÞ is Fl; then uðkTÞ ¼ wl ; l ¼ 1; 2; . . .c

ð11Þ

Among them, Rl represents the l-th rule; uðkÞ is the
input of the model; wl is the subsequent parameter of

the l-th rule; c is the total number of rules; Fl is the

fuzzy set, which is described by the Gaussian mem-

bership function lFl .

The abovementioned T-S fuzzy model can be

described by a neuro-fuzzy network model. Figure 2

shows the specific structure of the network, which has

four levels. The specific conditions are as follows:

Level 1 (The input level). This level is directly

transferred to the next level by the input

signal uðkÞ;
Level 2 (Membership function level). Receive the

signal from the input level and calculate

the membership function of the input

signal. The degree of membership in this

level is taken as a following Gaussian

function form:

lFlðuðk)) = exp � uðkÞ � clð Þ2

d2l

 !
;

l ¼ 1; 2; . . .; c:

ð12Þ

Among them, cl and d2l are the center
and width of the Gaussian membership

function, respectively, and they and the

rule number c are the antecedent

parameters of the neural-fuzzy network.

Level 3 (Fuzzy rules level). The number of nodes

in this level is equal to the number of rules.

Level 4 (The output level). This level performs de-

obfuscation operation, and its output is

given as follows:

u kð Þ ¼
Xc

l¼1

wl/l u kð Þð Þ ð13Þ

Among them, /l u kð Þð Þ ¼ lFl u kð Þð Þ
Pc
l¼1

lFl u kð Þð Þ
and wl is the

subsequent parameter of the neuro-fuzzy network.

Specifically, the input–output relationship of the

neuro-fuzzy Hammerstein system can be expressed by

the following equation,

yðkÞ ¼ ½1� AðzÞ�yðkÞ þ BðzÞf ðuðkÞÞ þ vðkÞ ð14Þ

The static nonlinear function f ð�Þ is a nonlinear

function composed of several fuzzy basis functions.

They are given as follows:

uðkÞ ¼f ðuðkÞÞ
¼w1/1ðuðkÞÞ þ w2/2ðuðkÞÞ þ � � � þ wc/cðuðkÞÞ

¼
Xc

l¼1

wl/lðuðkÞÞ

ð15Þ

Among them, /1ðuðkÞÞ; :::;/cðuðkÞÞ is c fuzzy

basis functions, /l u kð Þð Þ ¼ lFl u kð Þð Þ
Pc
l¼1

lFl u kð Þð Þ
, and lFl is the

Gaussian membership function of the l-th rule.

Substituting Eq. (15) into Eq. (14), we have

Fig. 1 The structure diagram of the fractional order neuro-

fuzzy Hammerstein model

Level 1 Level 2 Level 3 Level 4

Fuzzification Fuzzy reasoning 
process

De-obfuscation

Fig. 2 The structure of the neuro-fuzzy network
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yðkÞ ¼ �
Xna

i¼1

aiz
�iayðkÞ þ

Xnb

j¼1

bjz
�jaf ðuðkÞÞ þ vðkÞ

¼ �
Xna

i¼1

aiz
�iayðkÞ þ

Xnb

j¼1

bjz
�ja

Xc

l¼1

wl/lðuðkÞÞ þ vðkÞ

Using the discrete fractional operator D of Eqs. (5),

(15) can be written as:

yðkÞ ¼ �
Xna

i¼1

aiD
ayðk � iÞ

þ
Xnb

j¼1

bj
Xl

l¼1

wlD
a/lðuðk � jÞÞ þ vðkÞ

¼ �
Xna

i¼1

aiD
ayðk � iÞ þ w1

Xnb

j¼1

bjD
a/1ðuðk � jÞÞ þ � � �

þwc

Xnb

j¼1

bjD
a/cðuðk � jÞÞ þ vðkÞ

ð16Þ

Define the parameter vector as:

a ¼ ½a1a2 � � � ana �
T 2 Rna ; b ¼ ½b1b2 � � � bnb �

T

2 Rnb ; w ¼ ½w1w2 � � �wc�T 2 Rc ð17Þ

In order to obtain the unique parameters of the

model, the model parameters are standardized. For this

reason, set the first element in the parameter w to be 1,

w1 ¼ 1. On this basis, Eq. (16) can be rewritten as:

yðkÞ ¼ �
Xna

i¼1

aiD
ayðk � iÞþ

Xnb

j¼1

bjD
a/1ðuðk � jÞÞ þ :::

þw2

Xnb

j¼1

bjD
a/2ðuðk � jÞÞþ � � �

þ wc

Xnb

j¼1

biD
a/cðuðk � jÞÞ þ vðkÞ

ð18Þ

According to the definition of each parameter

vector of Eq. (17), Eq. (18) can be written in the form

of linear regression,

yðkÞ ¼ uTðk; aÞhþ vðkÞ ð19Þ

where uTðk; aÞ is the information vector, which is

uTðk; aÞ ¼ wðk; aÞ
fðk; aÞ

� �
2 Rn; n ¼ na þ c� nb ð20Þ

Among them, wðk; aÞ ¼ ½Dayðk � 1Þ; � � � ;Dayðk�
naÞ�T 2 Rna ;

fðk; aÞ ¼ ½fT1 ðk; aÞ; f
T
2 ðk; aÞ; . . .; f

T
c ðk; aÞ�

T 2 Rc�nb ;

fjðk; aÞ ¼ ½Da/jðuðk � 1ÞÞ; � � � ;Da/jðuðk � nbÞÞ�T;
j ¼ 1; 2; . . .; c

h is an unknown parameter vector, which is

h¼ ½a;b;w2b; . . .;wcb�T ¼ ½a;w� b�T 2 Rn. In the

Eq, � is the Kronecker product or direct product, if

A ¼ ½aij� 2 Rm�n; B ¼ ½bij� 2 Rp�q; A� B ¼ ½aijB�
2 RðmpÞ�ðnqÞ:

For the fractional order neural-fuzzy Hammerstein

model described in Fig. 1, the purpose of identifica-

tion is to use sampled data uðkÞ; yðkÞf g; k ¼ 1; 2; . . .;
to determine the neural-fuzzy network parameters

cl; dl; wl and the number of rules c of the nonlinear

module, and the dynamic fractional order linear

module parameters, including ai; bi and the fractional

order a. To this end, this paper divides the identifica-

tion process into two processes: one process first

determines the antecedent parameters of the nonlinear

module neuro-fuzzy network; the other process is to

identify the parameters of the linear module, the

fractional order and the conclusion parameters of the

neuro-fuzzy network. In Sect. 4, the two identification

processes will be described in detail.

4 Model parameter identification

This section describes the identification method of

model parameters in the previous section. First, the

antecedent parameters of the neuro-fuzzy network are

determined. Secondly, the multi-innovation L-M

identification algorithm adopted by the parameters of

the dynamic linear module is described. Finally, the

process of the entire identification algorithm is

summarized.

4.1 Determining the antecedent parameters

of the neural-fuzzy network

For the neuro-fuzzy network model, it is necessary to

determine cl; dl and the number of rules c, which is

actually a nonlinear optimization process. In this

paper, a self-learning clustering algorithm is used to
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determine the antecedent parameters cl; dl of the

neuro-fuzzy network model and the number of rules c.

The specific learning process is as follows:

(1) Collect the input data uðkÞ; k ¼ 1; 2; . . .; take

the input data uð1Þ as the first cluster, and set the
cluster center c1¼uð1Þ. At this time, the number

of clusters N ¼ 1, and the number of data pairs

belonging to the first category is N1¼ 1.

(2) For the k-th input data uðkÞ, calculate the

similarity between the k-th training data and

each cluster center clðl ¼ 1; 2; . . .; cÞ according
to the similarity criterion, and find the cluster L

with the greatest similarity, that is, find the class

to which uðkÞ belongs (fuzzy rules). Define the

similarity criterion as follows:

SL ¼ max
1� l� c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e� uðkÞ�clk k22

p
ð21Þ

(3) Determine whether to add new clusters accord-

ing to the following criteria.

If SL\S0 (S0 represents a preset threshold), it

indicates that the k-th input data does not belong to an

existing cluster, and a new cluster must be established.

Let cNþ1 ¼ uðkÞ, and let N ¼ N þ 1, NN ¼ 1, (NN

represents the number of data pairs belonging to theN-

th cluster).

If SL 	 S0, it indicates that the k-th input data

belongs to the existing L-th cluster. Let NL ¼ NL þ 1

and adjust the center of the L-th cluster as follows:

cL ¼ cL þ
k

NL þ 1
ðuðkÞ � cLÞ ð22Þ

In Eq. (22), k 2 ½0; 1�½0; 1�. It can be seen from

Eq. (15) that as more and more data points belong to

this cluster, the adjustment rate k
NLþ1

of the cluster

center decreases. In general, the larger the parameter

k, the larger the update range of the cluster centers.

The parameter k cannot be too large, otherwise it will

destroy the existing classification.

(4) Let k ¼ k þ 1, repeat the above steps (2) and (3)

until all the input data are assigned to the correspond-

ing clusters. Thus, the number of clusters (fuzzy rules)

is N, and the number of rules is finally determined to

be c ¼ N. The width of the membership function is

given as follows:

dl ¼ min
j¼1;2;:::;c

j 6¼l

cl � cj
�� ��

2

q
ð23Þ

In Eq. (23), q is the overlap coefficient, generally

1� q� 2.

Through the abovementioned self-learning cluster-

ing process, the input data can be clustered to obtain

the parameters cl; dl and the rule number c of the

neuro-fuzzy antecedent structure. Through self-learn-

ing clustering to determine the centers and widths of

various types, the fuzzy basis function

/1ðuðkÞÞ; . . .;/cðuðkÞÞ in Eq. (15) can be determined,

the parameters ai; bj of the fractional order linear

module, the fractional order a, and the conclusion

parameter wl of the neural-fuzzy network are com-

pleted by the multi-innovation L-M identification

algorithm.

4.2 Estimation of dynamic linear module

parameters

The estimation of the linear dynamic module param-

eters mainly determines the linear model parameters

and the fractional order. This paper uses the L-M

gradient descent algorithm to achieve. The L-M

gradient descent algorithm is essentially a nonlinear

optimization method, which includes Gauss–Newton

optimization and gradient descent methods. However,

the disadvantage of this method is that the accuracy is

not high. For this reason, this paper applies the

principle of multiple innovations to the L-M algorithm

and proposes a multiple innovation L-M algorithm to

solve the parameter identification problem of the

dynamic linear module. The principle of multi-inno-

vation identification has been applied in many refer-

ences. The principle is to expand the scalar innovation

into the multi-innovation of the vector and the

information vector into the information matrix; there-

fore, both the previous sampling information and the

current information are used in the identification

algorithm, thereby improving the identification

accuracy.

To this end, consider the following identification

objective function,
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J ¼ 1

N

XN

k¼1

e2ðkÞ ð24Þ

where N is the total number of samples; eðkÞ is the

prediction error or innovation, which is

eðkÞ ¼ yðkÞ � ŷðkÞ ¼ yðkÞ � uTðk; âÞĥ ð25Þ

Among them, ŷðkÞ, ĥ and â are the output of the

estimation model, the estimation of the parameter

vector h and the estimation of the fractional order a,
respectively. If the objective function (24) has a

minimum value, then there is the following iterative L-

M algorithm:

hðiþ1Þ ¼ hðiÞ þ J
00 þ kI

h i�1

J
0

� 	

ĥ¼hðiÞ
ð26Þ

aðiþ1Þ ¼ aðiÞ þ J
00 þ kI

h i�1

J
0

� 	

â¼aðiÞ
ð27Þ

Among them, k is the adjustment operator that

guarantees the convergence of the algorithm. Based

on the prediction error of Eq. (25), the first derivative

J
0

ĥ
and the second derivative J

00

ĥ
of the objective

function with respect to the parameter ĥ are given as

follows:

J0
ĥ
¼ � 2

N
uðk; âÞ yðkÞ � uTðk; âÞĥ

h i
ð28Þ

J00
ĥ
¼ 2

N
uðk; âÞuTðk; âÞ ð29Þ

Based on the prediction error of Eq. (25), the first

derivative J
0

â of the objective function with respect to

the fractional order â is given as follows:

J
0

â ¼� 2

N

ouTðk; âÞĥ
oâ

" #T
yðkÞ � uTðk; âÞĥ
h i

¼� 2

N

oŷðkÞ
oâ

� �T
yðkÞ � uTðk; âÞĥ
h i

¼� 2

N
rŷðkÞ=â½ �T yðkÞ � uTðk; âÞĥ

h i

where rŷðkÞ=â¼ oŷðkÞ
oâ is the sensitivity function with

respect to the fractional order. The sensitivity function

is calculated as follows:

rŷðkÞ=â 
 ŷðk; âþ dâÞ � ŷðk; âÞ
dâ

ð30Þ

where dâ is the small change of the fractional order â.
Based on the prediction error of Eq. (25), the

second derivative J
00

â of the objective function with

respect to the fractional order â is given as follows:

J00â ¼ 2

N

oŷðkÞ
oâ

� �T
oŷðkÞ
oâ

� �

¼ 2

N
rŷðkÞ=âð ÞT rŷðkÞ=âð Þ:

ð31Þ

Therefore, J0
ĥ
; J00

ĥ
; J0â and J00â are organized as:

J0
ĥ
J0â

� �
¼ � 2

N

uðk; âÞ yðkÞ � uTðk; âÞĥ
h i

rŷðkÞ=â½ �T yðkÞ � uTðk; âÞĥ
h i

2
4

3
5

ð32Þ

J00
ĥ
J00â

� �
¼ 2

N

uðk; âÞuTðk; âÞ
rŷðkÞ=â½ �T rŷðkÞ=â½ �

� �
: ð33Þ

In the algorithms (26) and (27), the single innova-

tion yðkÞ � uTðk; âÞĥ is mainly used. For the L-M

algorithm, its identification accuracy is not high. To

this end, this paper proposes a multi-innovation L-M

identification algorithm (MILM).

First, define the L-dimensional multi-innovation

vector EðL; k; âÞ, the input and output information

matrix ÛðL; k; ~̂aÞ, and the stacked output vector

YðL; kÞ as follows:

EðL; k; âÞ ¼½yðkÞ � uTðk; âÞĥ; yðk � 1Þ � uTðk � 1; âÞĥ; . . .;
yðk � Lþ 1Þ � uTðk � Lþ 1; âÞĥ�T 2 RL

ð34Þ

UðL; k; âÞ ¼½uðk; âÞ;uðk � 1; âÞ; :::;
uðk � Lþ 1; âÞ� 2 Rn�L

ð35Þ

YðL; kÞ ¼ yðkÞ; yðk � 1Þ; . . .; yðk � Lþ 1Þ½ �T2 RL; n
¼ na þ cnb:

ð36Þ

The L-dimensional multi-innovation vector

EðL; k; âÞ can be expressed as

EðL; k; âÞ ¼ YðL; kÞ �UTðL; k; âÞĥ: ð37Þ

Define the stacking sensitivity function vector

NðL; k; âÞ as
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NðL; k; âÞ ¼½rŷðkÞ=â; rŷðk � 1Þ=â; . . .;
rŷðk � Lþ 1Þ=â�T 2 RL:

ð38Þ

In this way, Eqs. (32) and (33) can be written as

gradients with multiple innovations,

J0
ĥ
J00â

� �
¼ � 2

N

UðL; k; âÞ YðkÞ �UTðL; k; âÞĥ
h i

NðL; k; âÞ½ �T YðkÞ �UTðL; k; âÞĥ
h i

2
4

3
5

ð39Þ

J00
ĥ
J00â

� �
¼ 2

N
UðL; k; âÞUTðL; k; âÞ
NðL; k; âÞ½ �T NðL; k; âÞ½ �

� �
: ð40Þ

After obtaining the estimated parameter vector ĥ,

the first na element in ĥ is the estimate of the vector â,

and the element naþ1 to the element naþnb in ĥ is the

estimate of the vector b̂. By observing the parameter

vector ĥ, there are nb valuations of ŵj. For this reason,

they are calculated by the average method,

ŵj ¼
1

nb

Xnb

i¼1

hnaþðj�1Þnbþi

b̂i
; j ¼ 2; 3; . . .; c: ð41Þ

In this paper, a hybrid method based on fuzzy

clustering to determine the structure and network

parameters of the neuro-fuzzy network and using

multiple innovations to estimate the parameters of the

linear module is proposed. The former clustering

method is the premise and foundation of the hybrid

algorithm, and the latter multi-innovation method is

the key to the hybrid identification algorithm. The

following summarizes the hybrid algorithm as

follows:

Step 1 Set m = 1, k = 1, c = 1, set the initial

parameter values ĥ0, â0, p and dâ;
Step 2 Collect input data uðkÞf g; k ¼ 1; 2; . . .;N,

and determine the neuro-fuzzy antecedent

parameters ĉl, d̂l and the number of rules ĉ

according to self-learning clustering;

Step 3 According to the sampled data

uðkÞ; yðkÞf g; k ¼ 1; 2; . . .;N, perform the

identification of the linear module parameter

ĥ and the identification of the neural-fuzzy

network follow-up parameter ŵl;

Step 4 After obtaining the parameters of the neural-

fuzzy network and the linear module,

perform the identification of the fractional

order â;
Step 5 Let k = k ? 1, if s�P, go to step 3,

otherwise go to step 6;

Step 6
If

Jðĥðmþ1ÞÞ�JðĥðmÞÞ


 



JðĥðmÞÞ


 

 � n, then set ĥ ¼ ĥ

ðmÞ
, â ¼

aðmÞ and JðĥÞ ¼ JðĥðmÞÞ, algorithm end.

Otherwise m ¼ mþ 1, s ¼ 1; go to step 3.
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5 Simulation examples

This section uses two examples to verify the effec-

tiveness of the proposed method. The first example is

an academic example of a discontinuous fractional

order Hammerstein nonlinear system, which proves

the theoretical feasibility of the method in this paper.

Secondly, the method in this paper is applied to an

actual system example of a flexible manipulator

experiment, and the effect is compared with the

results of reference [8], which proves that the method

in this paper is more closely fitting with the actual

system.

5.1 Academic example

In order to verify the effectiveness of the proposed

algorithm, consider the Hammerstein fractional order

nonlinear system with discontinuous functions:

uðkÞ ¼
2� cosð3uðkÞÞ � expð�uðkÞÞ; uðkÞ� 3:15

3; uðkÞ[ 3:15

�

yðkÞ ¼ð1� AðzÞÞyðkÞ þ BðzÞuðkÞ þ vðkÞ

where uðkÞ and yðkÞ are the system input and the

system output, respectively. AðzÞ and BðzÞ are the

denominator polynomial and the numerator polyno-

mial, respectively,

AðzÞ ¼ a1z
�a þ a2z

�2a;

BðzÞ ¼ b1z
�a þ b2z

�2a;

uðkÞ ¼
Xc

j¼1

wj/jðuðkÞÞ:

The entire output of the system is given as follows:
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Fig. 6 Objective function J under different innovation lengths

ðL ¼ 1; 3; 5Þ

Table 1 Estimated value of system parameters and fractional order (L = 5)

a1 a2 b1 b2 w2b1 w2b2 w3b1 w3b2 w4b1

- 0.03089 - 0.23291 - 0.43352 - 0.13023 - 0.61408 - 0.30428 0.272017 - 0.01413 - 0.99972

Table 2 Partial estimated value of system parameters and fractional order (L = 5)

w4b2 w5b1 w5b2 w6b1 w6b2 w7b1 w7b2 w8b1 w8b2

- 0.31443 - 0.03659 0.005282 - 1.55709 - 0.60673 - 0.32837 - 0.1862 - 2.30642 - 0.80718
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Fig. 5 The actual output signal of the system
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yðkÞ ¼
X2

i¼1

aiD
ayðk

� iÞþ
Xc

j¼1

wj

X2

i¼1

biD
a/jðuðk � iÞÞ þ vðkÞ

Taking the fractional order a¼ 0.6, the entire output

of the system is given as follows:

yðkÞ ¼a1D
0:6yðk � 1Þ þ a2D

0:6yðk � 2Þ þ b1D
0:6/ðuðk � 1ÞÞ þ � � �

þb2D
0:6/ðuðk � 2ÞÞ þ w2b1D

0:6/ðuðk � 1ÞÞ þ � � �
þw2b2D

0:6/ðuðk � 2ÞÞ þ � � � þ wcb1D
0:6/ðuðk � 1ÞÞ þ � � �

þ wcb2D
0:6/ðuðk � 2ÞÞ þ vðkÞ

The parameter vector is given as follows:
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Fig. 7 The actual output and estimated output of the system

ðL ¼ 5Þ
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Fig. 9 System output estimation error
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a ¼ ½a1 a2�T ¼ ½0.1 0:2�T; b ¼ ½b1 b2�T

¼ ½�0:4 � 0.2�T:

In the simulation, the input signal is a random signal

with zero mean and unit variance, and the number of

sampling is 1000, as shown in Fig. 3. The noise signal

is an independent random signal with zero mean value

and variance r2¼ 0.01. Figure 4 shows the noise

signal with 1000 sampling times. In the research, the

length of multi-innovation L ¼ 1; 3; 5 is selected. The

neural-fuzzy network is used to approximate the static

nonlinear system, and the self-learning fuzzy cluster-

ing is used to learn the antecedent structure. The initial

value of the rule number is c ¼ 2 and each rule adopts

an exponential clustering function. In order to verify

the effectiveness of the proposed method, the objec-

tive function J in Eq. (24) is used to verify.

Figure 5 shows the actual output signal of the

system; Fig. 6 is the objective functions J of different

multiple innovations. Through comparison and anal-

ysis, it can be seen that multiple innovations are more

advantageous than single innovations. As the infor-

mation length increases, the objective function J

gradually decreases, and the identification accuracy is

significantly improved. Using self-organizing learning

fuzzy clustering method, the number of system rules is

8, so the parameter vector to be estimated of the

system is h¼ ½a;b;w2b; � � � ;w8b�T 2 Rn, and the esti-

mated values of system parameters are shown in

Tables 1, 2. (Note: The specific value is calculated by

Eq. (41), for example:ŵ2 ¼ w2b1
b1

þ w2b2
b2

� �
=2). Fig-

ure 7 is the comparison result between the output of

the identification model and the actual output of the

system when the multi-innovation length L ¼ 5, and

the figure is partially. Fig. 8 is the system fractional

order estimation curve, and finally converges to

a¼ 0.551825; Fig. 9 is the system output estimation

error curve. Through analysis and comparison, the

output of the system identification model and the

actual output of the system have a good fitting effect

and basically coincide.
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Fig. 11 The actual output signal of the system
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Fig. 13 Objective function J under different innovation lengths
ðL ¼ 1; 3; 5Þ
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5.2 Example of a flexible manipulator

In order to further show the effectiveness of the

proposed method, this paper also applies the proposed

method to a flexible robotic arm system. The system

consists of a flexible arm mounted on a motor. The

input is the reaction torque of the structure on the ground, and the output is the acceleration of the

flexible arm. The benchmark data set of the flexible

Table 3 Estimated value of system parameters and fractional order ðL ¼ 5Þ

a1 a2 b1 b2 w2b1 w2b2

0.985457 0.326518 - 0.06353 - 0.19711 0.0956 0.016165

Table 4 Partial estimated value of system parameters and fractional order ðL ¼ 5Þ

w3b1 w3b2 w4b1 w4b2 w5b1 w5b2

- 0.08677 - 0.22514 0.127764 0.016702 0.200552 0.112353
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Fig. 14 The actual output and estimated output of the system

ðL ¼ 5Þ
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Fig. 15 Estimated value of system fractional order
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Fig. 16 System output estimation error
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manipulator obtained by DAISY database [28] (sys-

tem identification database) is further verified. The

measured data set contains 1024 input and output

samples as shown in Figs. 10, 11. The noise signal is

an independent random signal with zero mean and

variance r2¼ 0.01, and Fig. 12 shows the noise signal

with 1024 sampling times.

In the research, select the multi-innovation length

L ¼ 1; 3; 5. Figure 13 is the objective functions of

different multiple innovations. Through comparison

and analysis, it can be seen that multiple innovations

have more advantages than single innovations. Obvi-

ously, as the length of multiple innovations increases,

the objective function J gradually decreases. The

recognition accuracy is significantly improved. Using

self-organizing learning fuzzy clustering method, the

number of system rules is 5, so the system parameter

vector to be estimated is h¼ ½a;b;w2b; � � � ;
w5b�T 2 Rn, and the system parameter estimated

value is shown in Tables 3, 4. (Note: The specific

value is calculated by Eq. (41), for example:

ŵ2 ¼ ðw2b1
b1

þ w2b2
b2

Þ=2). Figure 14 shows the compar-

ison result between the output of the identification

model and the actual output of the system when the

multi-innovation length L ¼ 5, and it is partially

enlarged; Fig. 15 is the system fractional order

estimation curve, which finally converges to

a¼ 0.742542; Fig. 16 is the system output estimation

error curve. Through analysis and comparison, the

output of the system identification model and the

actual output of the system have a good fitting effect

and basically coincide.

In order to show the effectiveness of the proposed

method, the method in this paper is also compared

with the single innovation L-M algorithm proposed in

the reference [8]. Figure 17 shows the objective

function J curve between the method in this paper

(L = 5) and the reference method. Through compar-

ative analysis and comparison, it is obvious that the

method in this paper has small errors and high

identification accuracy.

6 Conclusion

Aiming at the difficulty in identifying fractional order

Hammerstein nonlinear systems, a MILM hybrid

identification method based on neuro-fuzzy principle

is proposed. The static nonlinear module of the

Hammerstein model is fitted by neuro-fuzzy, the

self-learning clustering algorithm determines the

antecedent parameters and the number of rules of the

neuro-fuzzy network model, and the multi-innovation

Levenberg–Marquardt algorithm is designed to esti-

mate the system parameters and the fractional order of

the system. Through simulation verification, proper

use of multiple innovations in the algorithm can

improve the identification accuracy. But for the self-

learning method, the selection of similarity is empir-

ical, and this will also become our research focus in the

future. The modeling research of multi-input multi-

output fractional order nonlinear systems is still a
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Fig. 17 Objective function J under different methods
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challenging topic, which is also the research direction

of researchers in the future.
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