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Abstract Rogue waves are giant nonlinear waves that
suddenly appear and disappear in oceans and optics. We
discuss the facts and fictions related to their strange
nature, dynamic generation, ingrained instability, and
potential applications. We present rogue wave solu-
tions to the standard cubic nonlinear Schrédinger equa-
tion that models many propagation phenomena in non-
linear optics. We propose the method of mode prun-
ing for suppressing the modulation instability of rogue
waves. We demonstrate how to produce stable Talbot
carpets—recurrent images of light and plasma waves—
by rogue waves, for possible use in nanolithography.
We point to instances when rogue waves appear as
numerical artefacts, due to an inadequate numerical
treatment of modulation instability and homoclinic
chaos of rogue waves. Finally, we display how statis-
tical analysis based on different numerical procedures

M. R. Beli¢ - S. N. Nikoli¢ (X)- N. B. Aleksi¢
Science Program, Texas A&M University at Qatar, P.O.
Box 23874, Doha, Qatar

e-mail: stankon @ipb.ac.rs

S. N. Nikolié

Institute of Physics Belgrade, University of Belgrade,
Pregrevica 118, Belgrade 11080, Serbia

O. A. Ashour
Department of Physics, University of California, Berkeley,
CA 94720, USA

N. B. Aleksi¢
Moscow State Technological University “STANKIN”, Moscow,
Russia

can lead to misleading conclusions on the nature of
rogue waves.
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1 Introduction

Analytical and numerical solutions of the nonlinear
Schrodinger equation (NLSE) of different orders have
been widely analyzed for their importance in a number
of mathematical and physical systems [1-11]. In this
work, we focus on the simple cubic one-dimensional
NLSE arising in many fields of nonlinear and fiber
optics. Our main concern are the NLSE solutions that
are unstable due to the influence of modulation insta-
bility (MI). Although MI is usually recognized as the
Benjamin—Feir instability, it already appeared in 1947,
in the work of Bogoliubov on the uniform Bose gas
[12], which introduced and discussed the MI of the
cubic NLSE. In general, the modulation instability can
be regarded as a nonlinear optical process where the
power of the fundamental pump wave is attenuated and
redistributed to a finite number of spectral sidebands.
These higher-order modes are very weak at the onset of
nonlinear evolution but their power increases exponen-
tially during propagation [3,4,13]. The notion of MI is
widely spread over several fields of physics. The NLSE-
based study of nonlinear modulated waves and modula-
tion instability in real electrical lattices was presented in

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-022-07284-y&domain=pdf
http://orcid.org/0000-0002-2082-9954

1656

M. R. Beli¢ et al.

[14]. The properties of breathers and modulation insta-
bility in a discrete nonlinear lattice are investigated ana-
lytically in [15]. The issue of MI was also investigated
in electronic wave packets in nonlinear chains modeled
by the discrete NLSE [16].

Since MI is frequently indicated as the main cause
of the rogue wave (RW) appearance in nonlinear
optics [17], we are further motivated to investigate
how this fundamental property of nonlinear systems
affects various high-intensity NLSE solutions that can
be regarded as rogue waves. This research is becoming
more exciting since a new scheme for the excitation
of rogue waves, via the electromagnetically induced
transparency (EIT) [18-21], has been analyzed in [22].

In order to properly investigate the impact of MI on
RWs, one needs to dynamically generate high-intensity
peaks with narrow spatial profiles. We start from the
well-known exact solution of the cubic NLSE, known
as the higher-order Akhmediev breather (AB) [23-27].
A complication arises along the way, as these higher-
order solutions also arise as the homoclinic orbits of
unstable Stokes waves during the evolution of the sys-
tem under NLSE [28-31]. Consequently, the long-time
dynamics will become chaotic for ABs with two or
more unstable modes. It is then questionable whether
the chaotic behavior is intrinsic to the model equation or
is induced by the numerical algorithm applied [28,29].

To address this question, we revisit our previous
results [32] on the analytical and numerical NLSE solu-
tions that are periodic both along the temporal and spa-
tial axes, known as the Talbot self-images or carpets
[25,33,34]. In optics, the Talbot effect is known as
a near-field diffraction phenomenon, occurring when
light beams undergo diffraction at some periodic struc-
ture and produce recurrent self-images at equidistant
planes. The Talbot carpets refer to fractional and even
fractal light patterns observed in-between the planes.
Although Talbot effect is known for more than hundred
years, it still finds applications in many fields, such as
plasmonic nanolithography [35-37].

In reference [32], we presented a mode pruning
procedure to mitigate the unavoidable impact of MI
and obtain double-periodic solutions from Akhmediev
breathers. Here, we briefly recap this effort: We cal-
culate ABs of different orders using Darboux transfor-
mation (DT) technique and extract initial conditions
in a wide box that is a multiple of the main breather
period [38]. We next apply the mode pruning method
combined with a chosen numerical NLSE integration
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scheme to preserve the self-imaging recurrences for as
long as possible. In this paper, we extend this analy-
sis by taking into account different values of the main
breather parameter a (Sect. 2.1) and initially having
more breathers in the box. But, the central theme of
this paper is concerned with the conflicting opinions
formed about the nature of RWs: Are they linear or
nonlinear; random or deterministic; numerical or phys-
ical? A short and in our opinion correct answer to these
nagging questions is as follows.

Rogue waves are essentially nonlinear, because their
cause is the modulation or Benjamin—Feir instability,
which is one of the basic nonlinear optical processes.
They are deterministic, because modulation instability
leads to homoclinic chaos, which by its nature is deter-
ministic; random phenomena are probabilistic and may
look chaotic but are not deterministic. RWs are phys-
ical, because they are observed in many experiments
and media, with similar statistics [39-41].

Now, there exist reservations to these facts, depend-
ing on how one generates and analyzes RWs. This espe-
cially holds if the work is numerical and statistical in
nature. Nevertheless, even in this case, we will display
how widely used beam propagation method can pro-
duce spurious RWs when inappropriately employed.
We will also demonstrate how statistical analyses of
exactly the same dynamical systems, but produced
using different numerical algorithms, may lead to dif-
ferent statistics of RWs. We will address these reserva-
tions later in the paper.

2 Rogue wave solutions to the NLSE

To recap, we discuss the nature of optical rogue waves
in the cubic NLSE, in view of conflicting opinions
expressed in the literature. In particular, as already men-
tioned, we address three pairs of opposing supposi-
tions on their nature: Linear versus nonlinear [3,5];
random versus deterministic [42,43]; and numerical
versus physical [28,29]. A short answer to these sup-
positions is that rogue waves in optics are nonlinear,
deterministic, and physical. To stress again, they are
nonlinear because the major cause of rogue waves is
the modulation or Benjamin—Feir instability. They are
deterministic because modulation instability leads to
deterministic chaos. They are physical because they
appear in many experiments and media. Our opinion is
supported by extensive numerical simulations of the
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nonlinear Schrédinger equation in different regimes
that touch upon the aspects of all three conflicting sup-
positions.

Disturbingly, in numerical simulations optical rogue
waves may appear fictitiously, as numerical artefacts.
One such published instance will be displayed below.
Different numerical algorithms for exactly the same
input may provide different evolution pictures and dif-
ferent statistics when modulation instability sets in
and when numerical grid parameters are not set pre-
cisely. An example of different statistics of the prob-
ability density distributions, obtained by two differ-
ent numerical algorithms applied to the same input,
is also provided below. There, the standard beam prop-
agation method (the split-step fast Fourier transform
method), predominantly used in the literature, predicts
the appearance of thousands of rogue waves, whereas
the more precise symplectic algorithm of higher order
predicts significantly fewer. Hence, owing to the vague
definition of rogue waves, the way they are produced,
and an exponential amplification of numerical errors,
there are situations in which optical rogue waves may
appear as linear, random, and numerical.

2.1 The influence and suppression of modulation
instability

Before proceeding to these more subtle points, let us
start by discussing the more standard behavior of RWs
in the standard NLSE. We study double-periodic solu-
tions of the simplest cubic nonlinear Schrédinger equa-
tion

ix/fx+%wt,+|x/f|2w=o. (2.1)

The wave function ¥ = v (x, ) corresponds to the
slowly varying envelope that could be optical, plas-
monic or other in nature. In a fiber optics notation, the
transverse variable ¢ is the retarded time in the frame
that moves with a pulse group velocity. The evaluation
variable x is considered as the distance along the fiber.

Let us consider the first-order AB solution, which is
single-periodic along ¢-axis [24,25]:

S x) = |:1+ 2(1—2a) cosh Ax+iA sinh kxi|eix.

~/2a cos wt — cosh Ax
(2.2)

The period L, angular frequency w, and growth rate A
of an AB (first- or higher-order) are solely determined
by parameter a, with 0 < a < 0.5 [13]:

b4

L= = 2.3)

o =21 - 2a, (2.4
A =+/8a(l—2a). 2.5)

Whena = 0.5, AB turns into the Peregrine RW, and for
a > 0.5, it becomes the Kuznetsov—Ma (KM) soliton.

The procedure for dynamic generation of the first
or higher-order Akhmediev breathers is explained in
detail in Section 2 of [32]. Here, we briefly state that
the initial condition for numerics is derived from an
exact AB solution at a certain value xq of the evolu-
tion variable, using Darboux transformation [44]. To
obtain double-periodic breathers resembling the Tal-
bot carpets solutions, we need to adjust the size of the
transverse interval to an integer multiple of the funda-
mental breather’s period L, apply periodic boundary
conditions and use the mode pruning method. Namely,
when the box size is equal to the breather’s fundamen-
tal period, the Fourier harmonics will form the set S of
N stable fundamental breather modes (N denotes the
number of grid points along the transversal ¢-axis). If
we extend the box to an integer multiple of the main
period, the mode spacing will get smaller and a new
set S» will be obtained. The way to generate nonlin-
ear Talbot carpets is to suppress modulation instability
caused by the exponential growth of unstable Fourier
modes belonging to S, and not to Sj.

In Fig. 1a, we present the numerical evolution of the
first-order Akhmediev breather (¢ = 0.33) when the
box size is equal to five breather’s periods. The inten-
sity peaks at x = 0 are repeated along x-axis at the Tal-
bot periods. This array is shifted for half-a-period along
the 7-axis during evolution, forming the secondary Tal-
bot image at half the Talbot period. The corresponding
Fourier spectrum is shown in Fig. 1b. This result is
obtained when unstable subharmonics are eliminated
after each iteration, leaving only those that form the
fundamental AB, with indices 0, +5, +£10, £15, etc.
This is in agreement with our previous work [32] show-
ing the same behavior for a = 0.36. Our motivation to
study this problem for NLSE also originates from the
similarity of our results shown in Fig. 1 to those pre-
sented in [35] (their Fig. 2) and [36] (their Figs. 2, 3, and
4) which are related to the Talbot effect in lithography.
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Fig. 1 Double-periodic numerical solutions, made of the first- the pruning. b Its spectrum. ¢ Seven breathers in the box, with
order NLSE breathers, using the pruning procedure in FFT. The the pruning. d The corresponding spectrum. e Seven breathers in
breather parameter is « = 0.33. a Five breathers in the box, with the box, no pruning. f The corresponding spectrum
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Next, we want to verify these results for even larger
period, having seven breathers in the box. We apply
the simple pruning algorithm to Fourier modes, set-
ting all unstable mode amplitudes to zero except the
modes indexed 0, +£7, 14, 21, and so on. The result
is an extended Talbot carpet with alternate shifting of
intensity maxima along the x- and ¢-axes, as shown
in Fig. lc. The Fourier spectrum of the mode ampli-
tudes is shown in Fig. 1d. If the pruning algorithm is
not applied, the chaotic behavior ruins the carpet after
three Talbot cycles, as shown in Fig. le. The unstable
modes having the index not divisible by 7 grow expo-
nentially due to MI, and prevent the homoclinic orbit
from returning to itself after more than three cycles.
The other view on the Talbot carpet disintegration is
the irregular buildup of the Fourier modes spectrum,
shown in Fig. 1f. As a result of the interaction or beat-
ing of different AB modes in the chaotic region, four
second-order ABs are formed around x = 41, x = 61,
and x = 67. We may consider these maxima as chan-
nels for the RW production through MI.

Another procedure to curb M1 is the Gaussian prun-
ing algorithm [32], in which the unstable modes are
not eliminated completely but suppressed by a Gaus-
sian factor. Thus, the unstable modes are multiplied by
a number that depends on their strength: if the modes
grow more, then the level of suppression is higher. In
turn, the modes can grow only up to a certain value,
determined by the Gaussian distribution, and cannot
exceed the predefined value in the range of 107!! to
1072 (not shown).

To finalize, in Fig. 2, we present the nonlinear Talbot
carpet consisting of the second-order breathers with
higher intensities and narrower profiles. The box size
is seven times the fundamental breather period, having
a = 0.41. This is an additional analysis of our previous
example in [32], but here with more breathers in the box
and decreased spatial resolution. Figure 2a represents
an unstable situation without pruning, while Fig. 2b
is the stabilized carpet. The simple pruning algorithm
was used, which left only each seventh Fourier mode
intact.

In the end, one may wonder what such pruning pro-
cedures are worth for and how they can be utilized in
the real world? After all, suppressing unstable Fourier
modes numerically is a relatively simple task, but what
its relevance might be in actual experiments is another
matter. However, it is not difficult to envision situations
in which it might be useful: for example, in experiments

where signal transmission is interrupted periodically
(and electronically) for data analysis. This typically
happens when you have an experiment in an optical
loop, where the beam circulates around. It also hap-
pens in long fiber experiments, when periodically you
have to interrupt the propagation and ensure that it is
still stable. The question for experimenters is then, how
viable or advisable is to prune the data at the interrup-
tion, and inject back into the experiment, to force the
beam and control the instability?

2.2 The influence of numerics on the dynamics and
statistics of rogue waves

In this subsection, we address the questions pertain-
ing to the numerics and statistics of RWs. But, before
going to the details of numerics and statistics, let us
briefly recap how we got to this point. To recall, the
generating mechanism of optical rogue waves is the
Benjamin—Feir or modulation instability. It is the basic
nonlinear optical process in which a weak perturbation
of the background pump wave produces an exponential
growth of spectral sidebands that constructively inter-
fere to build RWs. We have produced RWs in numerical
simulations of the cubic nonlinear Schrédinger equa-
tion with inputs on the flat background determined
by the DT. Optical RWs represent homoclinic orbits
of unstable sideband modes that, due to MI, generate
homoclinic chaos. The question is then whether the
chaos seen belongs to the model itself or is induced by
the numerical procedure applied. After all, even though
the model is the same, different numerical algorithms
for its solution represent different dynamical systems
and may approach chaos differently.

As it will be discussed below, different numerical
algorithms lead to similar values of the wave function
once the evolution step in numerics dx for each algo-
rithm is carefully chosen, but only up to a certain value
Xcr. If the evolution is continued beyond x.,, differ-
ent dynamics will be generated using different numer-
ical schemes, due to combined effects of finite numer-
ical precision and modulation instability. It is common
occurrence that in the region of instability and chaos
different numerical methods offer different solutions to
the same partial differential equation, under the same
initial and boundary conditions. Sensitivity to small
differences in initial conditions is one of the hallmarks
of deterministic chaos.
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Fig. 2 Double-periodic
numerical solution of
NLSE, made of the
second-order breathers,
having a = 0.41. The box
contains seven breather
periods. a The solution
without pruning. b The
solution with pruning
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We present such an occurrence by simulating the
same NLSE, with exactly the same parameters, inputs
and boundary conditions, but using different numeri-
cal algorithms. We compare the standard second-order
beam propagation method (BPM) with various higher-
order symplectic algorithms. In our work, we pre-
fer symplectic integrators for their utility in treating
chaotic Hamiltonian systems that require long-time
integration of noisy inputs. We demonstrate that dis-
tressingly, different algorithms may provide different
evolutions and different statistics of the RW peaks,
owing to homoclinic chaos and imprecise choice of the
evolution step dx for each numerical procedure. Even
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the same algorithms may provide different evolutions
when the numerical step size is changed.

An appropriate example is the appearance of the
third-order RW solution as a result of the collision
of three ABs [45] for an initial condition given by
¥ (t,x =0) = e™/10[1 40.002cos (r£/10)]. It is
known that the collision of three localized pulses at
the same point is unlikely to happen and difficult to
observe, so we were intrigued by this finding in an
otherwise excellent paper. Hence, we reproduced the
same results by taking dx = 10~* (Fig. 3a). How-
ever, we discovered that just by taking half of the orig-
inal numerical step size in the same numerical method,
the third-order RW disappears (Fig. 3b). To check the
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result, we recreated the solution using a fourth-order
symplectic algorithm, which confirmed the disappear-
ance of the RW (dx = 10~%, Fig. 3c). It appears that
the third-order RW in this example is just a numerical
artefact.

When one solves the same equation by two numer-
ical methods and finds different answers, an obvious
question arises: Which of the two (if any) is correct?
The question is especially relevant when one deals with
the RWs in homoclinic chaos, because in chaos sooner
or later all algorithms give different answers. Hence, the
appropriate question to ask is not which solution is cor-
rect (because in chaos there exist no correct—meaning
precise—solutions) but which algorithm is “more” cor-
rect. Then, the answer is obvious—the one that keeps to
the presumed correct solution for longer (or conversely,
the one shadowed by the correct solution for longer).
Let us clarify this by presenting an example.

In Fig. 4, we analytically generate the fifth-order
Akhmediev breather, represented by a very sharp and
narrow peak at x = 13, using Darboux transforma-
tion. The main breather’s frequency w; is determined
by parameter a = 0.4850173 (Eq. (2.4)). The remain-
ing four higher-order modes (i = 2, 3,4, 5) have har-
monics with higher frequencies w; = iw;. We take
the initial condition from DT at x = 0 (well before
the peak) and numerically evolve the wave function, in
order to see whether RW will appear at x = 13 and
what happens after the peak. In the figure, we compare
four different algorithms, by solving the cubic NLSE
for the same initial condition around a highly unstable
homoclinic orbit—the fifth-order RW. Such a RW, tow-
ering 81-times over the background intensity, is never
seen in experiments and rarely even in numerical sim-
ulations.

One can see that all numerical algorithms correctly
resolve the appearance of the RW, but afterward they
all sooner or later give different answers. This happens
because of the developing MI, which entails different
evolutions in different algorithms. However, one can
notice that the fourth-order and the sixth-order sym-
plectic algorithms provide visually consistent solutions
over the whole integration interval of 100 propagation
units (105 integration steps!), while others do not. One
may infer that these two numerical pseudo-orbits are
shadowed by the true orbit over a longer distance. For
this reason, in simulations that require long-distance
integrations of noisy inputs that are necessary for the

formation of statistics of RWs, we employ the fourth-
order symplectic algorithm.

Here, it is worth mentioning that almost identical
wave functions are observed up to some evolution point
when running three different algorithms starting from
the same initial condition, but with different integra-
tion steps: BPM for dx = 0.00001, sixth-order sym-
plectic for dx = 0.0002, and eighth-order symplectic
for dx = 0.0005. Quite expectedly, the lower-order
algorithms require smaller steps for similar accuracy,
whereas higher-order allow for larger steps. Neverthe-
less, as the evolution x-coordinate advances, the dif-
ferences emerge due to both finite numerical precision
and the intrinsic MI (not shown).

The fact that individual RWs may appear in differ-
ent algorithms at different places and thus may repre-
sent fictitious structures or numerical artefacts is not the
worst feature of dealing with RWs in homoclinic chaos.
The more troublesome is the fact that the statistics of
RWs obtained by different numerical methods may also
be different, because by fiat, these statistics come from
performing long-distance evolutions of a solution (or a
class of solutions) to the NLSE, which are different for
different numerical methods. It is desirable that they
all provide the same statistics for the same underlying
model, but this is not written in stone. As already men-
tioned, different numerical schemes represent different
dynamical models. Worst of all, the long tail statistics
of high intensity waves, i.e., the RWs, seems to be most
affected by different numerical methods. Again, this is
best explained by an example.

An example of two different evolution scenarios,
starting from white noise with amplitude A = 5%
around the background intensity B = 1, is shown in
Fig. 5. We use two different methods: The second-order
BPM (top) and the fourth-order symplectic (bottom).
We intentionally use the same evolution step of dx =
10~3 and the same transverse box (—69.42, +69.42)
(divided into N = 2048 intervals of the same width)
for both figures, in order to spot the differences in
the intensity graphs for identical initial conditions and
numerical grids; the only difference is different algo-
rithms. The evolution of intensity by the two algorithms
appears consistent to about 100 longitudinal units (each
unit is covered by 1000 numerical iterations), but after
that the distributions become different. The wave func-
tion evolution is observed up to x = 6500, but for clar-
ity the intensity is shown only from x = 0 to x = 250
in both figures. If certain regions of intensity maps are
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-10-8-6-4-20t246810

Fig. 3 Three solutions of the same equation, but obtained by
two different algorithms and evolution steps dx. a second-order
BPM, dx = 10~*. b second-order BPM, dx = 5 x 1075. ¢

enlarged, one can observe Akhmediev breathers of the
first- and second order and long traces representing
Kuznetsov—Ma solitons, as discussed in [3].

To settle a fine but important point that will become
apparent later, we examine numerical evolution of the
wave function ¥ (x, t), using the fourth-order symplec-
tic algorithm, when the initial condition is chosen so
that v is normalized at x = 0. The module of the wave
function is

L)2

Iy () = [y (x, 1)|%dt. (2.6)

)

The last integral is approximated by numerical formula

N L N

V=0 =) Iv(x=0mPa =23 il
i=1 i=1

(2.7)
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fourth-order symplectic, dx = 10~*. The prominent third-order
RW in the left panel is a numerical artefact. It is absent in the
other, more precise algorithm

where L indicates the integration interval (box size),
N is the number of points along the transverse ¢-axis,
Yi=v (x=0,1),and At; = At = L/N. The initial
wave function ¥p—1, a=5% in Fig. 5 is not normalized
and we can chose two different ways to set its module
to one.

In the first case, one can divide all N initial complex
numbers with +/C, where C = |1//B=1, A=5% (x = 0) 2,
so that Ynorm1 = ¥B=1, A=5%/\/a In the second case,
one can hold these numbers unchanged and modify the
grid size L so that the module is set to one according to
Eq. (2.7): Ynorm2 = ¥B=1, A=5% and L' = L/C.Inthe
first case of lower intensity initial condition, the numer-
ical evolution is very slow and the first structures that
resemble Akhmediev breathers appear at x & 800 (Fig.
6a). The most similar structure appears at t ~ —47
and x & 2450, but evidently it is hugely extended
along the evolution x-axis, with an approximate width
of Ax &~ 300. This is far more stretched compared with
the similar features obtained for non-normalized initial
conditions, shown in Fig. 5b. In the second case, when
the numerical 7—box is significantly decreased (from
L ~ 140 to L’ ~ 1) the evolution gave us no char-
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Fig. 4 Comparison of
different numerical
algorithms in resolving a
fifth-order RW: a The
standard BPM, b
fourth-order symplectic, ¢
sixth-order symplectic, and
d eighth-order symplectic.
Each panel extends
transversely from —10 to 10
units and encompasses 100
longitudinal evolution units.
For each figure, evolution
step is the same:

dx = 0.0002

20

8 4 0 4 8

acteristic NLSE structures (Fig. 6b). One can easily
spot the uniform intensity over the entire x¢-grid with
no vertical traces (Kuznetsov—Ma solitons) or localized
maximums (Akhmediev breathers of the first or second
order). Numerically, this is ill-advised.

What one can learn from these figures is that the ¢
evolution is determined by the box size and the intensity
of random wave function at the beginning of numerical
iterations. Namely, the intrinsic modulation instability
is the phenomenon that forms the characteristic NLSE
structures during evolution. The amplitudes of higher
Fourier modes that are very weak at x = 0 grow expo-
nentially and produce KM solitons and ABs. If there are
more unstable modes at beginning, then MI and NLSE
features will appear sooner. The number of unstable
modes Ny, is related to the background noise level B
and box size L via the following expression:

Num = (2.8)

8 4 0 4 8 8 4 0 4 8 -8 -4 0 4 8

t

In case of low B and large L (see Fig. 6a, B = 0.072
and L ~ 140) we get Ny, = 3.2. This means we have
only a few unstable modes and MI is weak. That is the
reason for obtaining very slow evolution and stretched
NLSE features. In the second case, we have B = 1 and
the small box L’ ~ 1 and compute Ny, = 0.16. This
means that all Fourier modes are stable and the evolu-
tion is uniform without solitons and breathers forma-
tion, in agreement with Fig. 6b. We conclude that the
normalization requirement imposes unacceptable con-
ditions for noise background level and box size that
adversely affect the dynamics of white noise under the
NLSE model. Finally, we run the second-order BPM
algorithm on the same initial condition and got the same
results (not shown). The overall conclusion is that the
integration with normalized  should be avoided, as
it leads to different model behavior that is difficult to
efficiently integrate.

We now go back to the case of non-normalized ini-
tial conditions (B = 1 and different values of A). We
analyze the statistics of intensity maxima for evolu-
tions obtained using the second-order BPM and the
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Fig. 5 Evolution of the
NLSE wave intensity
seeded by white noise (5%
amplitude) around the
background intensity of 1.
The wave evolution
proceeds from 0 to 6500
propagation units, but only
the first 250 are shown; the
transverse box is
approximately from — 70 to
70 units. There are

6.5 x 10° x 2048 grid
points in overall. Top: Beam
propagation method.
Bottom: the fourth-order
symplectic algorithm. For
both algorithms the
evolution step is dx = 1073

Fig. 6 Evolution from the
white noise using
fourth-order symplectic
algorithm with wave
function normalized at

x = 0: a initial condition
lowered (B = 0.072 and
A = 0.36%) within the
large box (L ~ 70) and b
initial condition remained
the same (B = 1 and

A = 5%), but with box
reduced (L' ~ 1)
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fourth-order symplectic algorithms. During numeri-
cal integration, our software records intensity maxima
Ii; = |gﬁ,~,j|2 at (x;, t;) point of the numerical grid,
if this intensity is the highest value in the 8-connected
neighborhood region. All maxima are being recorded in
afile and then plotted in the histogram form, where each
bin height corresponds to the number of maxima within
the bin’s intensity interval, divided by the total number
of peaks. The additional requirement after each com-
putational iteration is to eliminate the high-frequency
Fourier modes forming the fast zig-zag glitches in the
wave function v that are considered as false maxima.
We should note that although our computational proce-
dure appears to be rather stringent, it affects the chosen
algorithms equally, so that the resulting differences are
not caused by this feature.

First, we discuss the probability density of peaks’
intensities from Fig. 5, where the white noise ampli-
tude is A = 5%. The results for BPM are presented in
Fig. 7a, and for the fourth-order symplectic algorithm
in Fig. 7b. It turns out that the results in general are
different. Both distributions follow the familiar expo-
nential decay of MI-driven systems, which may not be
the case for the density of high-intensity peaks, form-
ing RWs. At this point, we pose the question of what
is the criterion for announcing an intensity peak as a
rogue wave? Here we simultaneously adopt two criteria
and make comparative analysis. The first is relatively
simple: the peak with the intensity greater than that of
the Peregrine soliton (/ > Ips = 9) is considered as
arogue wave. The second is statistical in nature and is
widely adopted in the literature [46-50]: the intensity
threshold Irw above which one obtains a RW is a mean
value of the largest third of intensity peaks multiplied
by two (the same definition applies to the rogue wave
amplitude in oceanography). Therefore, in Figs. 7 and
8, we indicate two vertical lines, dividing the intensity
scale on RW and non-RW regions.

In Figs. 7a and 7b, there are millions of peaks and
thousands of RWs (according to both definitions). The
statistics are still similar, but the number of peaks,
the maximum of intensity, and the slope of distribu-
tions, among other things, are different. Hence, in the
chaos produced by MI, optical RWs and their statis-
tics may appear as numerical artefacts and cannot be a
priori counted as definite defining features of the RW
phenomena. The exponential decay fit y = ce//0
of the distributions in Figs. 7a and 7b is shown in
Figs. 7c (with ¢ = 0.3339, Iy = 1.2691), and 7d

(withe = 0.34151, Ip = 1.25399), respectively. Thus,
while the distributions are well-described by exponen-
tially decaying curves, in detail they differ most in the
heavy-tailed region of higher intensities, where RWs
reside.

The next relevant question is what is the influence
of the white noise amplitude A (at x = 0) on the statis-
tics of NLSE evolution? We therefore run six simu-
lations using two algorithms (BPM and fourth-order
symplectic) for three values of A. The corresponding
histograms of intensity maxima are shown in Fig. 8a
(BPM alg. and A = 1%), 8b (4S alg. and A = 1%), 8c
(BPM alg. and A = 2%), 8d (4S alg. and A = 2%),
8e (BPM alg. and A = 3.5%), and 8f (4S alg. and
A = 3.5%). Here, as in Fig. 5, we removed fast glitches
from the wave function that present false maxima, by
eliminating high-frequency Fourier modes. The statis-
tics are similar to those obtained with 5% amplitudes,
but the differences in the results between the two algo-
rithms for the same value of A still persist.

All data for two algorithms and different amplitudes
are summarized in Table 1. The first observation is
that for the background level of B = 1, the statistical
RW threshold Irw is lower than Ips = 9. Namely, the
majority of intensity peaks are located at lower inten-
sities for all eight histograms. Thus, the largest third of
the peaks begins well below the Peregrine soliton inten-
sity. Another conclusion is that the larger the amplitude
A, the higher the statistical threshold Irw. As for the
overall intensity maximum /¢ during numerical evo-
lution, we observe that it depends on the algorithm and
grid parameters.

We have also increased the value of the background
level (B = 1.5) and realized that both Irw and Ijax
increase significantly, so that Irw > 9. However,
once we magnify the breather structures in such an
evolution, we realize that very high intensities at the
breather’s center do not correspond to the n’ h_order AB,
as expected (n > 3), but retain the intensity distribu-
tion pattern characteristic of the second-order AB. Such
dynamics can deceive the observer since it produces
Akhmediev breathers of intrinsically larger intensity
that could be generated through Darboux transforma-
tion using the seed function with modulus greater than
one (which usually is not the case in literature). There-
fore, one should stick to the B = 1 case.

The third conclusion is that the higher the noise
amplitude A is, the larger is the total number of max-
ima Ntp. In Fig. 8, we also observe millions of peaks
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Fig. 7 Statistics of the intensity maxima, obtained from Fig.
5. The peak intensity histograms are derived from evolutions
obtained by the execution of two different numerical algorithms:
a The second-order beam propagation, and b the fourth-order

and thousands of RWs (Nrw and Npg, according to the
adopted RW definition). The fractions of peaks that can
be considered as rogue waves (Frw and Fpg) is con-
siderably lower than 1% and relatively weekly depend
on the algorithm and noise amplitude A.

Our final conclusion is that the most prominent
difference between statistical results obtained by two
algorithms for the same A value is observed at higher
intensities. The second-order breathers that approach
the limiting intensity value of 25 at its center arise in
the collision of highly unstable modes during evolution.
By switching from BPM to 4S algorithm one changes
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symplectic method. Two vertical dashed lines indicate the Pere-
grine soliton intensity /ps=9 and the statistical RW threshold
Irw. The exponential decay fits for Figs. a and b are presented
in Figs. ¢ and d, respectively

the way and the number of mathematical operations
needed for the calculation of i/ values. This difference
affects more the collision processes of highly unstable
modes that then lead to high intensity maxima. Over-
all, these conclusions strengthen the claim that different
numerical algorithms produce different statistics, espe-
cially in the long tail region of high intensities, where
RWs exist.

We got similar results and confirmed our conclu-
sions by using two times smaller evolution step (dx =
0.0005) or the transversal box size (L/2 =~ 35, instead
of 70) (results not shown).
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Fig. 8 Statistics of high intensity peaks obtained from evolu-
tion of the NLSE wave function, seeded by noises of different
amplitude A around the background intensity of B = 1. The
wave evolution proceeds from 0 to 6500 propagation units with
evolution step dx = 1073; the transverse box is approximately
from —70 to 70 units. There are 6.5 x10°x 2048 grid points.
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The algorithm used for numerical integration of wave function
and amplitude A are: a BPM, A = 1%, b the fourth-order sym-
plectic method (4S), A = 1%, ¢ BPM, A = 2%, d 4S, A = 2%,
e BPM, A = 3.5%, and f 4S, A = 3.5%. Two vertical dashed
lines indicate the Peregrine soliton intensity and the statistical
RW threshold
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Table 1 Statistics of the wave function intensity maxima calculated during evolution with the white noise of amplitude A around the

background value of B = 1

Alg. A% Tmax Ntp IrRw Nrw Frw % Nps Fps%
2 1.0 21.05 2,585,329 6.86 16,865 0.652 2,616 0.102
4S 1.0 19.27 2,631,233 6.73 19,148 0.728 2,499 0.095
2 2.0 17.92 4,653,505 6.96 24,804 0.533 3.645 0.078
4S 2.0 18.21 4,662,564 6.93 25,380 0.544 3,610 0.078
2 35 17.35 6,777,188 7.12 32,104 0.474 5,261 0.078
4S 35 18.37 6,766,308 7.11 32,322 0.478 5,220 0.077
2 5.0 20.86 8,493,287 7.14 41,406 0.488 6,833 0.080
4S 5.0 18.03 8,494,281 7.15 40,996 0.483 6,992 0.082

Algorithms used for computations are the second-order beam propagation method (Alg. 2) and the fourth-order symplectic (Alg. 4S).
The meaning of marks in the table top row are: Inax - the maximum achieved intensity over the entire x7-grid, Ntp - the total number
of peaks, Irw - the RW intensity threshold, Nrw - the number of maxima having the intensity / > Irw, Frw = Nrw/Nt1p, Nps - the
number of maxima exceeding the Peregrine soliton intensity (Ips = 9), and Fps = Nps/Ntp

3 Conclusion

In conclusion, we have discussed the facts and fic-
tions related to the strange nature, dynamic generation,
ingrained instability, and potential applications of RWs.

We have proposed the method of mode pruning
for suppressing the modulation instability of rogue
waves. Using this procedure, we have computed and
demonstrated the stable numerical Talbot carpets—the
recurrent images of light and plasma waves—by rogue
waves, for possible use in nanolithography. The prun-
ing procedure was found indispensable in the produc-
tion of stable recurring periodic images over wide but
still finite windows.

We have also discussed the nature of optical rogue
waves, in view of conflicting opinions expressed in
the literature. In particular, we have addressed the
three pairs of opposing suppositions on their nature:
Linear versus nonlinear; random versus deterministic;
and numerical versus physical. In summary, a correct
answer to the three suppositions is that the rogue waves
in optics are essentially nonlinear, deterministic, and
physical. They are nonlinear because the major cause
of rogue waves is the modulation or Benjamin—Feir
instability, which by its nature is the basic nonlinear
optical process. Rogue waves are deterministic because
modulation instability leads to deterministic chaos; ran-
dom phenomena are probabilistic and may look chaotic
but are not deterministic. Rogue waves are physical
because they appear in many experiments and media,
with similar statistics.

@ Springer

Nevertheless, in numerical simulations optical rogue
waves may appear fictitiously, as numerical artefacts.
Different numerical algorithms for exactly the same
inputs may provide different evolution pictures and—
distressingly—different statistics of RWs, caused by
imprecisely chosen integration steps and intrinsic mod-
ulation instability. An overall conclusion is that the
numerical and statistical treatments of NLSE by differ-
ent algorithms represent different dynamical systems
that may introduce different long-time behaviors when
they are unstable and under the influence of MI. There-
fore, owing to a vague definition of rogue waves, dif-
ferent ways in which they are generated, and an expo-
nential amplification of numerical errors in chaos, there
are situations in which optical rogue waves may appear
as linear, random, and numerical.
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