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Abstract Both electric and chemical synapses play

an important role in receiving and propagating signals,

and thus an isolated neuron and neurons in networks

can be activated to trigger appropriate firing modes.

The synaptic plasticity enables adaptive regulation in

the channel current along the synapse connection, and

the intrinsic field energy in the media is pumped to

keep possible balance between neurons. The Hamilton

energy function in biophysical neurons addressed its

dependence of energy on firing modes, and the same

energy in neurons seldom indicates complete syn-

chronization because the energy function is often

composed of more than two variables in the neuron

models. In this paper, we claim that the creation and

waking up of synapses connection result from the

diversity in field energy of neurons. From physical

viewpoint, each neuron can be considered as a

complex charged body and any external stimulus will

change the distribution of field energy. For two and

more neurons, the external stimulus-induced fluctua-

tion in field energy will activate the synapses of

neurons, and more synaptic connections will be

enhanced for keeping energy balance. That is, the

coupling intensity via synapse connection to neurons

will be regulated in a possible way. In this work, two

simple neural circuits are mapped into feasible neuron

models for investigating the energy pumping and

propagation by adjusting the intensity along the

coupling channel until energy balance is approached.

Furthermore, a similar case is explored in a chain

network, and it is found that continuous energy

pumping to the adjacent neurons will build up a

network connected by synapses. These results clarify

that synapses connection is activated between neurons

because of gradient diversity in field energy in neurons

and networks, and then synapse connections are

waken up effectively when field energy is propagated

to and received by adjacent neurons. That is, synapse

connections are formed and waken when gradient field

energy is shared by more neurons. The main contri-

bution of this work is that a reliable criterion is

suggested to explain how energy diversity controls the

creation of synapse and the enhancement of synapse

connection to neurons. That is, the biophysical mech-

anism of synaptic connection is controlled by the

energy diversity between neurons, and the synapse

coupling will terminate its increase in the coupling

intensity until reaching energy balance between neu-

rons even in neural network.
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1 Introduction

An isolated neuron can be stimulated to present a

variety of firing modes [1–5]; in particular, the

involvement of periodic stimulus and taming in noisy

disturbance can induce stochastic resonance [6–8] and

distinct regularity in firing patterns can be developed.

In generic neuron models, most of the previous works

considered that all external stimuli on the neuron can

be approached by using equivalent transmembrane

current and the excitability can be changed effectively.

In fact, neurons have been developed and tamed to

show specific sensing functions and thus different

functional regions are formed in the brain. Auditory

neurons [9–12] are sensitive to capture acoustic wave

within specific frequency band. Visual neurons

[13–16] are capable of discerning optical signal and

illumination emitted from objects. Some neurons are

able to percept the temperature effect on mode

transition in neural activities, e.g., temperature has

important impact on the conductance of ion channels

[17–20] and enzyme activity. These deterministic

neuron models can reproduce and predict the main

dynamical properties of biological neurons, while the

external applied external stimuli are described by

simple functions, for example, periodic, chaotic and

even accompanied by noise. In fact, the external

optical signal across eyes and acoustic wave across

ears are often composite of signals with certain

frequency band [21, 22], and the nonlinear response

and mode selection in electric activities are dependent

on all the stimuli synchronously.

On the other hand, specific electric components are

incorporated into some nonlinear circuits and they can

be controlled to percept external physical signals. For

example, a phototube [23–26] can be connected to

neural circuits and an artificial eye can be imple-

mented to detect the external illumination, and special

films can be coated on the phototube to realize wave

filtering. A piezoelectric ceramics [21, 27–31] con-

nection to the neural circuit can enhance its sensitivity

to external mechanical vibration and acoustic wave;

similarly, special films can also be coated for possible

selection in frequency band and noise reduction.When

thermistor [32–35] is incorporated into one branch

circuit of the neural circuits, a slight change in

temperature can be perceived because the channel

current across the thermistor can change the firing

modes in electrical activities greatly. The involvement

of memristor [36–40] connecting to neural circuit can

enrich its dynamics dependence on initial values, and

physical field effect can be estimated effectively.

In the nervous system, 80% neurons are excitatory,

while the rest 20% neurons are inhibitory [41, 42].

That is, each neuron is surrounded by others when the

same neurons are assembled in certain functional

regions. From physical viewpoint [43], the intracellu-

lar ions and also the extracellular ions contributed to

the field energy for each cell, and any external stimuli

on neuron will break the balance and field energy

distribution is changed by releasing/pumping ions

(calcium, potassium and sodium) rapidly. Therefore,

action potential is triggered to affect adjacent neurons,

and firing modes can be induced continuously. In fact,

the release of field energy is effective to affect the

most adjacent neurons and a partial of energy can be

captured and encoded by the adjacent neurons. As a

result, the connection bridge is built, and synapse

function is activated. In this paper, two identical

generic neural circuits and neurons are waken up, and

the energy pumping and propagation are activated to

keep a possible balance in field energy between

neurons. During the energy release and capture, the

coupling channels are tamed and waken up, and

synapse connections are formed. These results indi-

cate that the formation and creation of synapse

coupling result from the energy propagation and

pumping between neurons than for reaching

synchronization.

2 Scheme and results

Most of the nonlinear circuits can be tamed and

controlled to reproduce similar firing modes observed

from electrical activities in biological neurons, and

further incorporation of some special electric compo-

nents can enhance their additive perception functions

and abilities. These electric components can estimate

the effect of external magnetic field, temperature

changes, acoustic wave and illumination by generating

equivalent channel currents, and then the neural

activities can be regulated synchronously and effec-

tively. In Ref.[44], a two-variable neuron model is

developed from a simple neural circuit composed of

one capacitor, induction coil, nonlinear resistor,

constant voltage source and two linear resistors, and

this neural circuit can simulate all the firing modes by
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applying a time-varying voltage source. In fact, the

forcing source can be derived from the photocurrent

across the phototube, piezoelectric voltage across the

piezoelectric ceramics, silicon photocell and even the

additive branch circuit composed of capacitor, mem-

ristor, Josephson junction [45–48] and induction coil

for capturing external electromagnetic radiation

energy effectively. In Fig. 1, a simple neural circuit

composed of RLC (resistors, capacitor and induction

coil) is presented, and the time-varying voltage source

can be replaced by a phototube or piezoelectric

ceramics, which can produce continuous stimulus to

excite this neural circuit.

According to the physical Kirchhoff’s law, circuit

equations can be obtained to bridge a connection

between these physical variables, and the output

voltage across the capacitor and channel current

across the induction coil can be, respectively, esti-

mated by

C
dVC

dt
¼ VS � VC

RS
� iL � iNR;

L
diL
dt

¼ VC þ E � RiL;

8
>><

>>:

ð1Þ

where Vc, iL and iNR represent the output voltage from

capacitor, channel current across induction coil and

channel current across nonlinear resistor, respectively.

For the nonlinear resistor NR, the channel current is

often approached by [44]

iNR ¼ � 1

q
V � 1

3

V3

V2
0

� �

; ð2Þ

where q, V0 and V denote the resistance in the linear

region, cutoff voltage and output voltage across the

nonlinear resistor, respectively. For further nonlinear

analysis, standard scale transformation [49] is applied

for the variables and parameters defined in Eq. (2) and

Eq. (3) as follows:

x ¼ VC

V0

; y ¼ qiL
V0

; s ¼ t

qC
; a ¼ E

V0

; b ¼ R

q
;

c ¼ q2C
L

; n¼ q
RS

; uS ¼
VS

V0

;

8
>><

>>:

ð3Þ

As a consequence, a generic neuron model driven

by external stimulus can be obtained by

_x ¼ dx

ds
¼ xð1� nÞ � 1

3
x3 � yþ nuS;

_y ¼ dy

ds
¼ cðx� byþ aÞ;

8
><

>:
ð4Þ

where the variables x and y describe the membrane

potential and recovery variable for slow current,

respectively. The excitability of the neuron will be

changed by external stimulus us; as a result, the

generic neuron can be induced to present a variety of

firing modes. As is well known, the capacitor and

induction coil will be injected and pumped field

energy when this neural circuit is awaken by adjusting

the external forcing current continuously. The phys-

ical field energy is mainly kept in the two electric

components, and it is estimated by

WE ¼ 1

2
CV2

c þ
1

2
Li2L: ð5Þ

By the same way, the physical energy is mapped

into dimensionless Hamilton energy [50] as follows:

H ¼ WE

CV2
0

¼ 1

2
x2 þ 1

2c
y2; ð6Þ

Indeed, the Hamilton energy for each neuron is

dependent on the firing mode, intrinsic parameters and

variables completely. Therefore, neurons will contain

different energy values when neurons are applied with

different stimuli and/or controlled in some intrinsic

parameters. That is, any slight parameter mismatch

and diversity in excitability in neurons will induce

distinct gradient distribution of field energy. As a

result, field energy will be pumped from neurons with

Fig. 1 Schematic diagram for a neural circuit driven by variant

voltage source. NR is a nonlinear resistor, C is the capacitor,

L represents the induction coil, R and RS are the linear resistors,

E is a constant voltage source, and VS is the external voltage

source
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high energy to those neurons in lower energy; in this

way, the coupling channel is awaked and built via

synapse connections. During the energy pumping, the

coupling intensity is regulated carefully until energy

balance is activated well. For two neurons, the

processing of coupling channel is controlled by

_x ¼ xð1� nÞ � 1

3
x3 � yþ nuS þ kðx0 � xÞ;

_y ¼ cðx� byþ aÞ;

_x0 ¼ x0ð1� nÞ � 1

3
x03 � y0 þ nu0S þ kðx� x0Þ;

_y0 ¼ cðx0 � by0 þ aÞ; _k ¼ dk=ds ¼ rHðDH � eÞ;

8
>>>>>>><

>>>>>>>:

ð7Þ

where the parameter e is a tiny number, and the

coupling intensity k for the synapse connection is

controlled by the Heaviside function H(DH) as

follows:

DH ¼ Hðx; yÞ � Hðx0; y0Þj j

¼ 1

2
x2 þ 1

2c
y2 � 1

2
x02 � 1

2c
y02

�
�
�
�

�
�
�
�; ð8Þ

The gain r is considered as a constant, and the

coupling intensity k is increased linearly with time as

k * rt before reaching energy balance between two

neurons. In fact, the coupling intensity can also be

approached by k * exp(rt) when the gain r is very

small. In fact, a fast increase in the coupling intensity

continuously can enhance the energy pumping and

synchronization approach. For two identical neurons,

energy balance is critical for reaching complete

synchronization; otherwise, energy pumping and

propagation will be continued along the coupling

channels.

For more neurons with energy diversity, for sim-

plicity, chain network is discussed and the dynamics

evolution can be regulated as follows:

_xi ¼ xið1� nÞ � 1

3
x3i � yi þ nuiS þ kiðxiþ1 þ xi�1 � 2xiÞ;

_yi ¼ cðxi � byi þ aÞ; _ki ¼ rHðDHi � eÞ:

8
><

>:

ð9Þ

In case of the adjacent neighbor coupling and

propagation, the energy difference and exchange are

mainly considered between the two nearest neighbor

neurons; it is estimated by

DHi ¼ Hiðxi; yiÞ � Hi�1ðxi�1; yi�1Þj j þ Hiðxi; yiÞj
�Hiþ1ðxiþ1; yiþ1Þj

¼ 1

2
x2i þ

1

2c
y2i �

1

2
x2i�1 �

1

2c
y2i�1

�
�
�
�

�
�
�
�

þ 1

2
x2i þ

1

2c
y2i �

1

2
x2iþ1 �

1

2c
y2iþ1

�
�
�
�

�
�
�
�:

ð10Þ

For the coupling intensity k in Eq. (7) and ki in

Eq. (9), the threshold constant e can also be selected

with zero, which means that the error for energy

function should be close to zero completely before

terminating a further increase in the coupling inten-

sity. In fact, the constant e can be selected with tiny

value as 0.01 and 0.1 because the synchronization

approaches often need transient period when the

coupling intensity is beyond the threshold. In the

network, more coupling channels are built when

energy is continuously pumped to adjacent neurons

forwardly, and more synapse connections are created

to propagate the energy to distant neurons with lower

energy. That is, synapse connections result from the

energy propagation among neurons and thus the neural

network is completely awaken. To discern the syn-

chronization stability between two neurons, the error

function is often defined by

Dh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� x0Þ2 þ ðy� y0Þ2
q

: ð11Þ

Complete synchronization can be stabilized within

certain transient period for two identical neurons

controlled in Eq. (7) because the coupling intensity is

further increased; as a result, the error function will be

decreased to zero soon. For more neurons in the

network, the statistical synchronization factor [51] is

defined by using mean field theory, and it is estimated

by

F ¼ 1

N

XN

i¼1

xi ; R ¼ \F2 [ �\F[ 2

1
N

PN
i¼1 ð\x2i [ �\xi [ 2Þ

;

ð12Þ

where the symbol\ *[ indicates average calcula-

tion over time and N is the node number in the

network. It indicates that perfect synchronization is

realized when the synchronization factor R is much

close to 1 and the network tends to become homoge-

neous, while lower value for synchronization factor

R accounts for non-perfect synchronization and
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distinct spatial patterns can be developed in the

network. According to Eq. (6), any diversity in the

initial values and parameter c will induce different

Hamilton energy. In fact, slight diversity in the

parameter c will generate parameter mismatch, and

these non-identical neurons can be controlled to reach

phase synchronization than complete synchronization.

To discern the difference diversity in Hamilton energy

for neurons, the initial values for the variables are

selected with large difference. On the other hand,

diversity in excitability occurs when neurons are

applied with different stimuli synchronously. In bio-

logical neural network and functional regions in the

nervous system, each neuron is kept energy balance

and it is affected by the electromagnetic field emitted

by other neurons. Therefore, it is not necessary to

activate all the synapse connections until distinct

gradient distribution in energy is induced by applying

external stimuli on some neurons in this region or

community network.

When the parameters a, b, c, n for neurons and gain
r for coupling channel are fixed, the evolution of field

energy (and Hamilton energy) of neurons and syn-

chronization stability can be investigated. For identi-

cal neurons, the same parameters a, b, c, n and external
stimuli can be selected; the coupling intensity k (and

ki) is increased from zero and controlled by the gain

r completely. Within certain transient period, com-

plete synchronization can be stabilized between iden-

tical neurons. On the other hand, neurons with the

same parameters (a = 0.7, b = 0.8, c = 0.1, n = 0.15)

and different external stimuli show some diversities.

Therefore, these neurons become non-identical and

phase lock/synchronization can be induced when the

coupling channels are built and adjusted for activating

the synapses connection. The energy pumping is

terminated when neurons are stabilized in complete

synchronization. In fact, it is also interesting to

investigate whether energy balance can be realized

under phase synchronization and phase lock when the

coupling intensity is regulated for two neurons driven

by external stimuli with diversity. For each isolated

neuron, the firing mode can be controlled by the

angular frequency in the external stimulus; for exam-

ple, the neuron will present bursting, spiking, chaotic

and periodic firing patterns at x = 0.002, 0.012, 0.16,

0.5 when the parameters are fixed at a = 0.7,

b = 0.8,c = 0.1, n = 0.15, A = 6.66 in the absence of

noise. For simplicity, we consider the case for two

identical neurons, and then it takes different transient

periods for energy balance and pumping to activate the

synapse connection completely. The increase in

coupling intensity is dependent on the firing modes

of the neurons until reaching complete energy balance

between neurons. In Fig. 2, the self-regulation of

synaptic coupling is estimated for neurons within

different firing modes.

In case of bursting, spiking and periodic firing in

neuron, the energy balance between neurons can be

realized due to continuous diffusion in the electro-

magnetic field energy, and the coupling intensity for

synapse connection can reach a certain saturation

value, which is relative to the firing mode in the

neurons. And it indicates that these neurons can be

stabilized in complete synchronization in finite tran-

sient period. The coupling intensity is further

increased, and synchronization becomes difficult

when two neurons are excited in chaotic states, and

the energy pumping is continued all the time. In Fig. 3,

the error evolution of Hamilton energy for the coupled

neurons is calculated during the creation of synapse

connections.

It is confirmed that a slight higher step in the

coupling intensity can realize energy balance between

two neurons quickly when both of them are excited in

bursting, spiking and even distinct periodic firing

modes. However, the energy pumping is continued

between two chaotic neurons and energy balance

becomes difficult when the coupling intensity is

further increased in the synaptic connection. For

further illumination, the error function for two coupled

neurons in different firing modes is calculated in

Fig. 4, respectively.

The results in Fig. 4 confirmed that two neurons

(bursting, spiking or periodic firing) can reach com-

plete synchronization when the coupling intensity is

increased slightly during the energy propagation, and

synapse connections are waken effectively. However,

complete synchronization becomes unstable, while

phase lock and phase synchronization become avail-

able between two chaotic neurons under single

channel coupling (Fig. 5).

It is interesting to discuss the similar case in the

network, as described in Eq. (9), the collective

behaviors in chain network are investigated by creat-

ing more coupling channels when energy diversity

between neurons is controlled. In our study, no-flux

boundary condition is applied for the network and the
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transient period is about 2000 time units for estimating

the synchronization factors. The collective behaviors

are dependent on the local kinetics and the properties

of coupling channels, and the energy propagation

along the synapses is critical for realizing synchro-

nization and energy balance. Firstly, the neuron in the

network is activated with bursting state, and then

synchronization approach is investigated by calculat-

ing the distribution for synchronization factors when

the coupling channels are activated to reach different

saturation values in the coupling intensity.

With a further increase in the coupling intensity, the

synchronization factor is also increased for stabilizing

the collective behaviors of neural network, and these

bursting neurons reach complete synchronization

within finite transient period. Furthermore, the evolu-

tion of energy error between adjacent neurons defined

in Eq. (10) and evolution of membrane potential of

neurons are calculated in Fig. 6 by activating the

synapses intensity with different steps.

Within finite transient period, these bursting neu-

rons tend to reach complete synchronization and

adjacent neurons are coupled to keep energy balance

when the synapses are waken completely due to

continuous energy pumping and propagation along the

network. It is interesting to discuss the case when

neurons in the network are excited in presenting

spiking modes, and the synchronization factors are

calculated in Fig. 7.

When comparing the curve in Fig. 7 with the case

for bursting neurons shown in Fig. 5, the network

begins to obtain a higher synchronization factor with

increasing the coupling intensity when synapse con-

nections are activated because of continuous energy

propagation between spiking neurons in the network.

By the same way, the evolution of spatial patterns with

the membrane potentials and energy diversity between

adjacent neurons is, respectively, presented in Fig. 8.

Indeed, the transient period for synchronization

approach is shorten greatly when the coupling inten-

sity is increased with higher step, and adjacent neurons

reach energy balance well because continuous energy

propagation tames the synapse channels well. As

mentioned above, two chaotic neurons encounter

some difficulty by applying bidirectional coupling

with one variable (single coupling channel). It is

important to discuss the similar case in the network

composed of chaotic neurons, and synchronization

factors in the network composed of chaotic neurons

are presented in Fig. 9.

When comparing the results in Fig. 9 with the two

previous cases in the network composed of bursting

neurons and spiking neurons, the curve for synchro-

nization factors shows more irregular fluctuation than

Fig. 2 Creation of synaptic

connection with the increase

in coupling intensity in

synapse. For a x = 0.002,

bursting neurons;

b x = 0.012, spiking

neurons; c x = 0.16, chaotic

neurons; dx = 0.5, periodic

firing neurons. The

parameters are fixed at

a = 0.7, b = 0.8, c = 0.1,

n = 0.15, A = 6.66,

e = 0.00001, and initial

values are selected as (0.2,

0.1, 0.1, 0.1, 0.0)
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monotonous changes with the increase in coupling

intensity when synapse connections are enhanced.

However, the values for synchronization factors tend

to increase by applying higher gains in the coupling

intensity for synaptic connections to neurons in the

network. In Fig. 10, the evolution of membrane

potentials and diversity in energy between adjacent

neurons in chaotic firing modes are estimated as well.

For chaotic neurons, a further increase in the

coupling intensity is helpful to enhance the spatial

regularity, and energy balance between adjacent

neurons in the network is controlled effectively when

the synapse connections are waken by propagating the

energy between neurons in the network when com-

plete synchronization is not reached. Finally, the

synchronization stability in the neural network is

discussed when each neuron is excited to present

distinct periodic firing modes, and the synchronization

factors are estimated by increasing the coupling

intensity carefully.

Similar to the case for bursting neurons and spiking

neurons, the synchronization factors show regular but

monotonous increase, and then it reaches a saturation

value when the coupling intensity between neurons is

further increased. It indicates that these neurons can

reach complete synchronization and the neural net-

work tends to become homogeneous and uniform

greatly. Furthermore, the evolution of the network is

presented by showing the spatial patterns for mem-

brane potential and energy diversity between adjacent

neurons in Fig. 12.

The network develops its collective behaviors

under the creation of synapse connections when

energy is propagated between adjacent neurons, and

synchronization stability is controlled with a further

increase in the coupling intensity for these periodic

neurons. Due to fast and effective energy propagation,

Fig. 3 Energy balance between neurons when synapse con-

nection is created. For a r = 0.001; b r = 0.002; c r = 0.003;

d r = 0.004; e r = 0.0055; f r = 0.006; g r = 0.0005;

h r = 0.0008; i r = 0.001; j r = 0.001; k r = 0.0035;

l r = 0.004. The parameters are fixed at a = 0.7, b = 0.8,

c = 0.1, n = 0.15, A = 6.66, e = 0.00001
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the coupling channels are built and synapse connec-

tions are created for reaching energy balance between

neurons; as a result, these neurons in periodic firing

modes also reach complete synchronization

effectively.

From physical viewpoint, neurons in each cluster

network and community used to keep energy balance

and synapse connections are created to decrease

energy diversity, and any external stimuli on a few

neurons will break the energy balance because of

external energy injection. As a result, the absorbed

energy will be shared and propagated to other neurons

by creating more synapse connections and some

coupling channels are tamed with higher coupling

intensity as well. As claimed in Ref. [52], the

Fig. 4 Evolution of error functions for two coupled neurons

with different gains in the coupling intensity. For a r= 0.001;

br = 0.002; c r = 0.003; d r = 0.004; e r = 0.0055; f r = 0.006;

g r = 0.0005; h r = 0.0008; i r = 0.001; j r = 0.001;

k r = 0.0035; l r = 0.004. The parameters are fixed at a = 0.7,

b = 0.8, c = 0.1, n = 0.15, A = 6.66, e = 0.00001

Fig. 5 Synchronization factors in the network composed of

bursting neurons. The parameters are fixed at a = 0.7, b = 0.8,

c = 0.4, n = 0.15, A = 6.66, x = 0.002, e = 0.00001, and all the

neurons are selected with the same initial value (0.2, 0.1)
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formation and creation of autapse result from the

injury of axon in the neuron, and then auxiliary loop

via synapse is guided to propagate and correct the

blocked signal propagation in some interneurons. For

an isolated neuron driven by autapse, adaptive

selection and regulation of synaptic intensity and time

delay will induce energy release or pumping effec-

tively by adjusting the firing modes because the

intrinsic Hamilton energy is much dependent on the

firing modes of neuron. When more autapses are

created in neurons in the network, local distribution of

autapses [53–60] will regulate the collective behaviors

of neural networks by developing continuous pulses or

wave fronts. As a result, energy distribution is

controlled completely. That is, the creation of autapse

and electric synapses confirms the self-adaption of

biological neurons, and thus they can behave the most

suitable firing modes in electric activities. Each

neuron holds certain field energy, and it is affected

by other neurons via field coupling uniformly. When

energy is pumped and propagated directly to any

neurons, the connection channel is open and synapse

connections are enhanced during continuous pumping

in energy between neurons in the network. Where the

Fig. 6 Evolution of membrane potential and energy diversity

between adjacent neurons of the chain network. For a,
e r = 0.0001; b, f r = 0.004; c, gr = 0.01; d, hr = 0.014, and

the parameters are fixed at a = 0.7, b = 0.8, c = 0.4, n = 0.15,

A = 6.66, x = 0.002, e = 0.00001, initial values (0.2, 0.1, 0.0)

for each neuron

Fig. 7 Synchronization factors in the network composed of

spiking neurons. The parameters are fixed at a = 0.7, b = 0.8,

c = 0.4, n = 0.15, A = 6.66, x = 0.012, e = 0.00001, and all the

neurons are selected with the same initial value (0.2, 0.1)

123

How to wake up the electric synapse coupling between neurons? 1689



sun shines, there is life. The world has no roads, but

only man walk more and the roads appear. It is the

energy sharing that we cooperate and compete with

each other; therefore, we all bridge to the world with

different ways. For neurons, these synaptic

connections play as roads when signals and energy

are propagated. As a result, continuous exchanges of

energy between neurons are effective to tame and

develop synaptic connections for signal propagation

and these connections or links behave like roads.

Synapses are activated for keeping energy balance

among neurons when any of them are stimulated by

external stimuli, which induces instability and balance

in the field energy of the neural network.

3 Open problems

In realistic nervous systems, long-range connections

with certain probability can also be awaken and

created between neurons besides the nearest neighbor

connection, and some neurons in the same functional

region can be connected in cluster network as well.

Fig. 8 Evolution of membrane potential and energy diversity

between adjacent neurons of the chain network. For a,
e r = 0.0001; b, f r = 0.01; c, g r = 0.02; d, h r = 0.03, and

the parameters are fixed at a = 0.7, b = 0.8, c = 0.4, n = 0.15,

A = 6.66, x = 0.012, e = 0.00001, initial values (0.2, 0.1, 0.0)

for each neuron

Fig. 9 Synchronization factors in the network composed of

chaotic neurons. The parameters are fixed at a = 0.7, b = 0.8,

c = 0.4, n = 0.15, A = 6.66, x = 0.16, e = 0.00001, and all the

neurons are selected with the same initial value (0.2, 0.1)
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That is, small-world connection is more effective to

propagate and share the energy among neurons in the

network, and some synapses are activated to connect

other distant neurons when energy is propagated along

links in long range. Similar to the above discussion,

small-world network can also be tamed and developed

by creating synapse connections in long range under

certain probability along the links for energy pumping

and propagation, and the coupling intensity along each

link (bridge) can be controlled and increased with

certain step. When energy is dispersed between

neurons, all the neurons tend to keep energy balance

and then reach possible synchronization stability by

keeping chemical or electric synapses connection with

appropriate intensity and channel current. On the

contrary, when energy is assembled and gathered to

certain neurons, the energy is pumped to certain

communities in the network and more synapse con-

nections will be inhibited, and desynchronization

occurs in the network accompanied with distinct

spatial patterns. For example, local poisoning in some

ion channels will block the energy propagation and

balance between neurons, and synchronization

Fig. 10 Evolution of membrane potential and energy diversity

between adjacent neurons of the chain network. For a,
e r = 0.003; b, f r = 0.055; c, g r = 0.075; d, h r = 0.095, and

the parameters are fixed at a = 0.7, b = 0.8, c = 0.4, n = 0.15,

A = 6.66,x = 0.16, e = 0.00001, initial values (0.2, 0.1, 0.0) for

each neuron

Fig. 11 Synchronization factors in the network composed of

neurons within periodic firing. The parameters are fixed at

a = 0.7, b = 0.8, c = 0.4, n = 0.15, A = 6.66, x = 0.5,

e = 0.00001, and all the neurons are selected with the same

initial value (0.2, 0.1)
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realization becomes difficult in the neural network.

From dynamical viewpoint, the coupling intensity

along the synapse connections/links will be decreased

adaptively until synchronization stability is corrupted

completely. The neural networks disable their synapse

connections, and energy is collected and piled to

certain neurons as follows:

_xi ¼ xið1� nÞ � 1

3
x3i � yi þ nuiS þ kiðxiþ1 þ xi�1 � 2xiÞ;

_yi ¼ cðxi � byi þ aÞ; _ki ¼ �rHðe� DHiÞ:

8
><

>:

ð13Þ

That is, the coupling intensity is continuously

decreased and complete synchronization is corrupted;

as a result, some synapse connections are suppressed.

The similar discussion can also be used for the

instability in small-world network by pumping energy

to certain neurons, and more links in the network are

cut off to suppress the synapse connections as follows:

_xi ¼ xið1� nÞ � 1

3
x3i � yi þ nuiS þ ki

XN

j¼1;j6¼i

rijðxj � xiÞ;

_yi ¼ cðxi � byi þ aÞ; _ki ¼ �rHðe� DHiÞ;

8
>><

>>:

ð14Þ

where the connection matrix rij can be carefully

adjusted to describe the scale for long-range connec-

tion probability, the subscript ij denotes the node

position in the network, rij = 1 when the node

i connects to the node j, otherwise, rij = 0. The gain

ki in the coupling intensity for the ith link can be

selected certain vales beyond the threshold for reach-

ing synchronization; as a result, continuous energy

pumping means the breaking off along this link and

thus synapse connection is suppressed. That is, when

the energy for all the neurons is pumped to a few of

neurons in the network, the synapse connections will

be terminated and bidirectional coupling along the

synapses is switched off. In a noisy condition and in

Fig. 12 Evolution of membrane potential and energy diversity

between adjacent neurons of the chain network. For a,
e r = 0.0001; b, f r = 0.001; c, g r = 0.01; d, h r = 0.03, and

the parameters are fixed at a = 0.7, b = 0.8, c = 0.4, n = 0.15,

A = 6.66, x = 0.5, e = 0.00001, initial values (0.2, 0.1, 0.0) for

each neuron
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the presence of electromagnetic radiation, the forma-

tion and creation of synapses can also be confirmed

when energy is pumped from neurons stimulated by

external current or field to other neurons in the

network. Another thing is that we just discussed the

case for creating electric synapses connection, and

neurons are coupled with gap junction. In fact, similar

study can be applied for creating chemical synapses

connection between neurons, and neurons in networks

with different topological structure, boundary condi-

tions and noisy disturbance can also be considered.

The increase in coupling intensity can also be selected

with other different functions, e.g., exponential

increase or intermittent increase as well.

4 Conclusions

From dynamical viewpoint, neurons and nonlinear

oscillators in the network can be connected via

biophysical (electric and chemical) synapses and

artificial synapse, and adaptive adjustment in the

coupling intensity along these links will stabilize

synchronization, and also energy balance between

neurons/oscillators can be realized effectively. It is

ever believed that coupling channels and bridge

connections should be built before energy exchange

and pumping between chaotic oscillators. The

synapses and dendrites of neurons are flexible, and

continuous energy propagation and exchange can

drive them to build possible links and thus the synapse

connections are activated. Furthermore, channel cur-

rent is induced and it becomes more effective to

realize synchronization and energy balance between

neurons. That is, when ions and charges are propa-

gated from presynaptic terminal of neuron to postsy-

naptic terminal of another neuron, the distribution of

electromagnetic field for the neurons is changed, and

then field energy is exchanged; as a result, synapse

connection is formed and switched on. In this paper, a

simple generic neural circuit is used to discuss the

release of synapse function when field energy is

pumped between neural circuits. The coupling inten-

sity is increased with time during the energy propa-

gation and the coupling channel is switched on. When

neurons keep energy balance, the coupling intensity

stops its increase and the synapse connection is

activated completely. Complete synchronization

become available for two identical neurons, and

neural network composed of identical neurons with

bursting, bursting and even periodic firing modes can

also be controlled to become synchronous and homo-

geneous when synapse connection is further enhanced

by increasing the coupling intensity. However, com-

plete synchronization becomes difficult for chaotic

neurons when the synapse connections and coupling

are further enhanced via a single channel between

neurons. These results inform that the creation of

synapse coupling results from the diversity in field

energy in neurons, and continuous energy pumping

will activate the synapse function by building appro-

priate connections, which is more effective to regulate

the energy pumping and propagation. When all

neurons are coupled with higher intensity, they will

be controlled to reach balance in energy and complete

synchronization, and the same firing modes are

controlled effectively. That is, the energy flow

controls the creation and connection of synapses

between neurons. In addition, similar criterion can be

considered for exploring the creation and enhance-

ment of chemical synapses connected to neurons and

networks as well.
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