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Abstract This paper mainly investigates the dynam-
ics of the non-resonant and near-resonant Hopf–Hopf
bifurcations caused by the interaction of the lateral and
yaw motion in a simplified railway wheelset model,
which involves local and global dynamical scenarios,
respectively. This study aims to clarify the resonances
due to the wheelset instability. Firstly, the ratio of lon-
gitudinal suspension stiffness and the square of natural
frequency in yawing direction denoted as the param-
eter k22 has an important impact on the transitions of
distinct Hopf–Hopf bifurcations, and the ratio of the
oscillation frequencies ω1/ω2 at the Hopf–Hopf singu-
larity point will reduce with the decrease in k22 within
a certain range. Secondly, the absence of strong reso-
nance under the non-resonant condition indicates that
the operation wheelset will not produce the maximum
oscillation amplitude triggered by the resonance point,
and several torus solutions arisen from the wheelset
are obtained by numerical simulation. Thirdly, five
near-resonant Hopf–Hopf bifurcations reveal that the
global dynamical scenario becomes much more com-
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plex than other cases as k22 decreases. In particular,
near the 1:4 resonant Hopf–Hopf interaction occurs
when ω1/ω2 is close to 1:4, which has the most marked
effect on wheelset hunting motions and resonances.
Finally, the cyclic bifurcation behaviors under the near-
resonant conditions indicate the coexistence of multi-
ple limit cycles, and the loop of equilibria and limit
cycles detected between two Hopf bifurcation points
reveals that the wheelset will perform a cyclical motion
in lateral and yaw direction. These results show that the
change in frequency ratio induced by the intersection of
the lateral and yaw motion of the unbalanced wheelset
will greatly affect the hunting motions and resonances
of railway vehicles. Therefore, appropriately increas-
ing the value of k22 is helpful to maintain the vehicle
stability.

Keywords Hopf–Hopf bifurcation · Codimension-
two bifurcation · Hunting motion · Resonance ·
Wheelset

1 Introduction

The single wheelset is an indispensable component in
the process of railway vehicle regular operation. Due
to nonconservative contact force, the interaction of the
wheelset and track tread is accompanied by the reso-
nance of a flutter-type self-excited oscillation when the
vehicle experiences a hunting motion [9]. As a result of
the complex vibration surrounding of a railway vehicle,
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in addition to vertical line vibration, there are longitu-
dinal, lateral, pitch, roll, and yaw angular vibrations,
which are all factors that affect the passenger amenity as
well as the safety and stability of operation. Resonance
is a common phenomenon in railway vehicles, which
is characterized by the lowest natural frequency of the
carbody in the frequency range of hunting motions [5].
There are some interactions between the wheelset and
the primary suspension, the primary suspension and
bogie frame, as well as the bogie frame and motor,
which enable vibration to be transmitted among them.
When the operating speed exceeds some critical value,
or the vehicle changes track or departures and arrivals,
the oscillations following a disturbance grow and even-
tually result in a limit cycle oscillation, which increase
the risk of the hunting motions and resonances of rail-
way vehicles.

It is found that two pairs of pure imaginary eigen-
values at ±iω1 and ±iω2 will emerge in a four-
dimensional wheelset system under the certain param-
eters, the frequencies of lateral and yaw motion of
the wheelset intersect to form a specific ratio ω1/ω2,
which will produce rich dynamics accompanied by the
superposition of multiple resonances. The strong reso-
nance arises on theNeimark–Sacker bifurcation born at
the Hopf–Hopf singularity point, hence the resonances
induced by the interaction between the self-excited
oscillation modes can be interpreted in the framework
of the Hopf–Hopf bifurcation [1,2].

Supercritical and subcritical Hopf bifurcation phe-
nomena were found to exist in two types of China high-
speed vehicle systems [3]. These factors affecting the
optimal fixed frequency of the bogie motor suspension
system were investigated in [4], such as the primary
and secondary suspension aswell as thewheel-rail con-
tact conditions, it was shown that proper design with
the natural frequency of the traction motor far away
from the frequency of the kinematic bogie oscillation
is attractive to refrain motor resonance. In [5], since the
unstable frequency of the bogie frame hunting motion
can be controlled far lower than the frequency of the
flexible carbody, the method of suspending a dynamic
vibration absorber on the bogie frame to change its
unstable frequency can prevent the bogie from riding
at the resonant frequency of the flexible carbody and
ensure that the carbody elastic vibration can be effec-
tively controlled.

Owing to some common properties among oscil-
lation simulators, the clear ideas and effective meth-

ods provided by a simple four-dimensional circuit
modelmotivate us to investigate the simplifiedwheelset
dynamic system. Revel et al. [6] explored a simple
electric oscillation simulator, the main structure of the
Hopf–Hopf bifurcation near 1:2 resonance is that the
1:1 and 1:2 strong resonance points emerging on two
Neimark–Sacker bifurcation branches are connected
by several lower-codimension singularity points. In
[7], the local and global dynamics near the 2:3 reso-
nant Hopf–Hopf bifurcation triggered by the interac-
tion between the electric oscillation models were dis-
cussed. Several truncated normal forms including “sim-
ple” and “difficult” cases of the non-resonant Hopf–
Hopf bifurcation were investigated in a coupled circuit
[8], the presence of different frequency components
for the quasi-periodic solutions of the two-dimensional
(2D) torus and the three-dimensional (3D) torus was
confirmed.

When a four-dimensional original system is con-
verted to a truncated amplitude system, the correspond-
ing relation between the equilibriawas discussed in [1].
Among them, a trivial equilibrium e0 with r1 = r2 = 0
of the truncated amplitude system corresponds to the
equilibrium at the origin of the original system. Pos-
sible equilibria in the changeless coordinate axes of
the truncated amplitude system with r1 = 0 or r2 = 0,
called e1 and e2, respectively, correspond to limit cycles
of the original system. Moreover, a nontrivial equilib-
rium e3 with r1,2 > 0 of the truncated amplitude system
yields a 2D torus of the original system. Finally, if a
limit cycle is present in the truncated amplitude system,
then the original system has a 3D torus.

The 1/10 scale vehicle model proposed in Yabuno et
al. [9] is for theoretical and experimental research, the
details of the wheelset model for the contact conditions
and of the experimental derivation for the correlative
parameters were shown in [9]. The nonlinear charac-
teristics of the bifurcation based on critical velocity
and the influence of the lateral linear stiffness on the
nonlinear stability against disturbance were clarified in
[10]. Themodifiedwheelset model based on equivalent
conicity date was investigated in [11], which showed
that the feasible coexistence of stable and unstable
limit cycles induced by the cyclic fold bifurcation was
accompanied by the hunting motions. Two-parameter
bifurcation based on two distinct nonlinear coefficients
in a simplified wheelset model was explored in [12],
which indicated that the variety of nonlinear coefficient
can lead to a global bifurcation phenomenon. In addi-
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tion, the number of turns of the periodic orbit near the
strong resonance point corresponds to the resonance
ratio. However, there are still several unsolved issues,
for example, the global dynamics scenarios related to
the resonances have not been taken into account in the
wheelset model.

There are two ways for us to study the Hopf–Hopf
bifurcation in a three-parameter space, one is to deter-
mine a pair of continuity parameter values d11 and k11
of the near-resonance Hopf–Hopf bifurcation based on
the relationship between two frequency ratio and the
third parameter k22, and the other is to constantly vary
the third parameter value to hunt for a pair of continuity
parameter values when the near-resonance Hopf–Hopf
bifurcation emerges.

In this paper, the focus is centered on Hopf–Hopf
bifurcation scenarios of the simplified wheelset model
to provide distinct numerical insights resulted from
changes in oscillation frequency ratio. Firstly, the
parameter k22 is of great significance to the transi-
tions of distinct Hopf–Hopf interactions, and the result
shows that the ratio of the oscillation frequenciesω1/ω2

at the Hopf–Hopf singularity point will reduce with
the decrease in k22 within a certain range. Secondly,
under the non-resonant condition, the absence of strong
resonance on the two Neimark–Sacker branches indi-
cates that the running wheelset will not produce the
maximum oscillation amplitude induced by the reso-
nance point. The torus solutions including unstable 2D
torus, stable 3D torus and stable 2D torus emanated
from the wheelset are obtained by numerical simula-
tion.Thirdly, fiveglobal bifurcationphenomena such as
near the 1:1, 2:3, 1:2, 1:3 and 1:4 resonant Hopf–Hopf

bifurcations show that the dynamical scenario becomes
more complex as k22 decreases. In particular, the case
near 1:4 resonance has the most prominent influence
on wheelset hunting motions and resonances. At last,
under the near-resonant conditions, the cyclic bifurca-
tion structures reveal the coexistence of multiple limit
cycles arisen from the wheelset. It is worth noting that
the loop of equilibria and limit cycles detected between
two Hopf bifurcation points indicates that the wheelset
will develop a cyclical motion in lateral and yaw direc-
tion.

The paper is organized as follows. In Sect. 2, a sim-
plified wheelset model is described. A local bifurcation
analysis is performed on a non-resonant Hopf–Hopf
bifurcation in Sect. 3. In Sect. 4, five near-resonant
Hopf–Hopf bifurcations and the corresponding cyclic
bifurcation structures are presented. Finally, Sect. 5
summarizes some conclusions.

2 The simplified railway wheelset model

In our study of Hopf–Hopf bifurcation, we shall review
a two-dimensional system of the simplified railway
wheelset model discussed by Yabuno et al. [9], as fol-
lows:
⎧
⎨

⎩

d2 y
dt2

= − 2κy
mv

dy
dt − kx

m

(
1 − l0

l

)
y + 2κy

m ψ,

d2ψ
dt2

= − 2d20κx
Iv

dψ
dt − 2d0κxγe

Ir0
y − kx d21

I ψ.
(1)

The lateral displacement and yaw motion variable are
presented by y and ψ , respectively. The mechanical
model as well as symbols of the wheelset and track
are shown in Fig. 1. An illustration is supplied and

Fig. 1 a The schematic of
wheelset with elastic joints.
b Configuration of the
wheelset and rails. The
description and values of
the symbols are listed in
Table 1. These graphics are
from [10]
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Table 1 Values of the parameters in Eq. (1)

Notations Description Value

m Mass of the wheelset 2.13 kg

I Moment of inertia 0.00347 kg·m2

υ Train speed −m/s(km/h)

l Length of the spring in the equilibrium state 0.056 m

l0 Natural length of the spring 0.035 m

kx (ky) Longitudinal (lateral) suspension stiffness 180 N/m (variable)

d0 Half of track gauge 0.049 m

r0 Centered wheel rolling radius 0.036 m

γe Wheel tread angle (slope of conical wheel) 0.025

ωy(ωψ) Natural frequency in lateral (yawing) direction 19.0 rad/s (35.0 rad/s)

κx (κy) Longitudinal (lateral) creep coefficient 180 N (144 N)

d1 Half of spring spacing (lateral) 0.075 m

several physical notations as well as the corresponding
parameter values are labeled in Table 1.

According to the center manifold theory and bifur-
cation theory of limit cycles [1,2], the cubic and
odd nonlinear terms decide the occurrence of hunting
motion induced by Hopf bifurcation. In order to ana-
lyze the Hopf bifurcation type and bifurcation struc-
ture of cycles, the third-order terms in the wheelset
model must be considered. The dimensionless trans-
formations y = d0y∗, t = t∗/ωψ and υ = d0ωψυ∗
are used to derive a nonlinear wheelset motion model
described in [9]

⎧
⎪⎪⎨

⎪⎪⎩

ÿ∗ + d11
υ∗ ẏ∗ + (k11 + ka11)y∗ + k12ψ + αyyy y∗3

+αyyψ y∗2ψ + αyψψ y∗ψ2 + αψψψψ3 = 0,
ψ̈ + d22

υ∗ ψ̇ + k21y∗ + k22ψ + βyyy y∗3
+βyyψ y∗2ψ + βyψψ y∗ψ2 + βψψψψ3 = 0.

(2)

These eight nonlinear coefficients, αyyy, . . . , αψψψ ,
are given in some References [9,10,13–15]. These
cubic nonlinear terms include factors such as the
nonlinear effects owing to kinematics of the con-
tact points,mechanical suspension, and creepage-creep
forces determined by Kalker’s theory. In addition, the

elements of Eq. (2) are represented as follows:

d11 = 2κy
md0ω2

ψ

, d22 = 2κxd0
Iω2

ψ

, k21 = 2d20κxγe
I r0ω2

ψ

,

v∗ = υ

d0ωψ

,

k12 = −2κy
md0ω2

ψ

, k22 = kxd21
Iω2

ψ

, ka11 = ky
mω2

ψ

,

k11 = kx (1 − l0/ l)

mω2
ψ

.

where v∗ is the dimensionless running speed of vehicle,
d11 is the ratio of the creep coefficient in lateral and
the primary spring stiffness of longitudinal, k11 is the
ratio of the primary spring stiffness of lateral and the
primary spring stiffness of longitudinal, and k22 is the
ratio of the longitudinal suspension stiffness and the
square of natural frequency in yawing direction. These
dimensionless coefficients are shown in Table 2.

With the change of variables (y1, y2, y3, y4)T =
(y∗, ẏ∗, ψ, ψ̇)T , then (2) turns into

ẏ1 = y2,

Table 2 Values of the parameters in Eq. (2)

k12 k21 ka11 d22 υ∗ αyyy αyyψ αyψψ αψψψ βyyy βyyψ βyψψ βψψψ

−2.26 −0.375 0.7 −2.26 4.4328 0.4 0.4 0.5 0.7 0.6 0.4 0.9 0.6
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ẏ2 = −d11
υ∗ y2 − (k11 + ka11)y1 − k12y3 − αyyy y

3
1

− αyyψ y21 y3 − αyψψ y1y
2
3 − αψψψ y33 ,

ẏ3 = y4,

ẏ4 = −d22
υ∗ y4 − k21y1 − k22y3 − βyyy y

3
1

− βyyψ y21 y3 − βyψψ y1y
2
3 − βψψψ y33 . (3)

The Jacobian matrix of (3) evaluated at the equilib-
rium (y∗

1 , y
∗
2 , y

∗
3 , y

∗
4 )

T=(0, 0, 0, 0)T is given by

R =

⎛

⎜
⎜
⎝

0 1 0 0
−k11 − ka11 − d11

υ∗ −k12 0
0 0 0 1

−k21 0 −k22 − d22
υ∗

⎞

⎟
⎟
⎠

and the characteristic polynomial P(λ) is

P(λ) = q0λ
4 + q1λ

3 + q2λ
2 + q3λ + q4.

where

q0 = 1
q1 = 1

υ∗ (d11 + d22)
q2 = 1

υ∗2 d11d22 + k11 + k22 + ka11
q3 = 1

υ∗ (d11k22 + d22(k11 + ka11))
q4 = k22(k11 + ka11) − k12k21

(4)

A novel Hopf–Hopf bifurcation criterion was proposed
in [16]. According to the generalization of Orlando’s
formula [17]

Δn−1 = (−1)n(n−1)/2qn−1
0

1,...,n∏

1≤i< j≤n

(λi + λ j )

where

Δn−1 =
∣
∣
∣
∣
∣
∣

q1 1 0
q3 q2 q1
0 q4 q3

∣
∣
∣
∣
∣
∣
= q1q2q3 − q21q4 − q23 ,

for n = 4.

the λi and λ j are the roots of the polynomial P(λ).
The non-resonant Hopf–Hopf bifurcation or reso-

nant Hopf–Hopf bifurcation of system (2) occurs at
(d∗

11, k
∗
11) if and only if the following conditions (H1),

(H2) and (H3) or (H1), (H2) and (H4) hold, respec-
tively:

(H1) Eigenvalue assignment: q1 = 0, q3 = 0, q2 >

0, q4 > 0, q22 − 4q4 > 0.
(H2) Transversality condition:

∂2(q1q2q3 − q21q4 − q23 )

∂d211

∣
∣
∣
∣
(d11,k11)=(d∗

11,k
∗
11)

�= 0,

∂2(q1q2q3 − q21q4 − q23 )

∂k211

∣
∣
∣
∣
(d11,k11)=(d∗

11,k
∗
11)

�= 0.

(H3) Non-resonance condition:√
√
√
√q2 −

√

q22 − 4q4

2

/

√
√
√
√q2 +

√

q22 − 4q4

2
�= m

n
,

wherem and n are relatively prime, such thatm+
n ≤ 5.

(H4) Resonance condition:√
√
√
√q2 −

√

q22 − 4q4

2

/

√
√
√
√q2 +

√

q22 − 4q4

2
= m

n
,

wherem and n are relatively prime, such thatm+
n ≤ 5.

3 Local dynamical analysis

In the principal bifurcation parameter space (d11, k11,
k22), the mathematical model related to the simplified
railway wheelset model (3) undergoes a Hopf–Hopf
bifurcation along the curve defined by

HH =
{

(d11, k11, k22) : d11 = −d22, k11

= k22 − ka11, k22 ≤ k12k21υ∗2

d222
+ d222

4υ∗2

}

.

(5)

The ratio of two frequencies ω1 and ω2 at the Hopf–
Hopf singularity points is revealed in Fig. 2a, and the
Hopf–Hopf singularity points regarding six distinct k22
are shown in Fig. 2b. For simplicity, these singularity
points are denoted from top to bottom as HH1:1, HH2:3,
HH1:2,HHnon, HH1:3,HH1:4 throughout the paper. Two
“independent” Hopf bifurcation curves H1 andH2 exist
on every curve in Fig. 2b caused by two distinct pairs of
conjugated purely imaginary eigenvalues pass transver-
sally through the imaginary axis, the corresponding fre-
quencies are ω1 and ω2, respectively.

The four-dimensional normal form of the wheelset
model can be reduced to a two-dimensional amplitude
system given by [1,18]
{

ξ̇1 = ξ1(μ1 + ξ1 − θξ2 + Θξ22 )

ξ̇2 = ξ2(μ2 + δξ1 − ξ2 + Δξ21 )
(6)

where the state variables ξ1,2 represent the amplitude
of the emerging limit cycles, ξ1 = p11ρ1, ξ2 = p22ρ2,
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(a)

(b)

Fig. 2 a The ratio of frequencies ω1 and ω2 on the Hopf–Hopf
curve as a function of k22. b Hopf curves with five distinctive
values of k22 (k22 = 3.322, 1.78, 1.332, 1.084 and 1.01) in the
parameter plane (d11, k11)

p11 and p22 are real coefficients, μ1,2 are the bifurca-
tion parameters.

All the continuations were implemented with MAT-
CONT [19]. Computing the coefficients of the trun-
cated normal form of the Hopf–Hopf bifurcation with
MATCONT results in p11 · p22 = −1, θ = −2, δ =
−2,Θ = 603.568,Δ = −406.0986. Note that the
truncated normal form excludes resonance conditions
of m/n. The parametric portrait belongs to the “diffi-
cult” case VI and the dynamics presented by the phase
portraits can be translated to the wheelset model, as
depicted in Fig. 3.

The point e0 of the amplitude system Eq.(6) is the
equilibrium point at the origin of system Eq.(3), the
equilibria e1 and e2 are the limit cycles born at the
Hopf curves H1 and H2 in Fig. 3a, respectively, which
are formally the same as in the “simple” case and coin-
cide with the coordinate axes. The nontrivial equilib-

(a)

(b)

Fig. 3 a Parametric portraits associated with the truncated nor-
mal form of the Hopf–Hopf bifurcation for p11 · p22 < 0
(k22 = 1.2). b Phase diagram of region ①−⑧ in a

rium e3 collides with e1 and e2 at the Neimark–Sacker
curves TR1 and TR2, respectively, but e3 undergoes
a Hopf bifurcation, the emerging limit cycle vanishes
at a heteroclinic bifurcation, which are not shown in
Fig. 3a since the implemented algorithms on the numer-
ical continuation package do not calculate bifurcation
of torus [20].

The associated phase diagrams [1] near the non-
resonant Hopf–Hopf singularity point HHnon at d∗

11 =
2.26 and k∗

11 = 0.50 (detected at k22 = 1.2) are pre-
sented in Fig. 3b. In region ②, the equilibrium e0 is
unstable and it is the only local limit set. In region ③,
the unstable limit cycle produced by the Hopf bifur-
cation H2 coexists with equilibrium e0. Within region
④, another unstable limit cycle is created by means of
H1. An unstable 2D torus is created by the Neimark–
Sacker bifurcation TR1 in region ⑤. In region ⑥, the
unstable 2D torus of region ⑤ undergoes a heteroclinic
bifurcation, resulting in a stable 3D torus. Increasing
the value of d11 will make the 3D torus collapse and the
2D torus stabilize in region ⑦. Subsequently, the stable
2D torus collapses on the Neimark–Sacker bifurcation
TR2 and two stable limit cycles coexist (region ⑧).
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Fig. 4 (I) Unstable 2D
torus present in region ⑤.
(II) Stable 3D torus located
in region ⑥. (III) Stable 2D
torus related to regions ⑦

(Ia) (IIa)

(IIIa) (Ib)

(IIb) (IIIb)

Within region ①, one of the stable limit cycles van-
ishes at the Hopf curve H2 and the equilibrium e0 at
the origin turns stable. Crossing the Hopf curve H1, the
scheme returns to the initial place in the region ②.

The phase diagrams corresponding to the three sit-
uations of region ⑤−⑦ are presented in Fig. 4(Ia)–
(IIIa), (Ib)–(IIIb) show the waveform diagrams of the
three distinct torus corresponding to Fig. 4(Ia)–(IIIa),

respectively. The location of the projection of the
unstable 2D torus on the plane y1–y2 is (d11, k11) =
(2.25970, 0.49995), the position of the stable 3D torus
is (d11, k11) = (2.25990, 0.49995) and the site of sta-
ble 2D torus is (d11, k11) = (2.26010, 0.49995).
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Table 3 Labels and colors of bifurcation curves used in the figures

Bifurcation curve Hopf Cyclic fold Neutral Saddle Neimark–Sacker

Label H LPC NS TR

Color Black Red Yellow Blue

4 “Nonlocal” dynamical analysis near the resonant
Hopf–Hopf bifurcation

In this section, several near-resonant Hopf–Hopf bifur-
cations are performed by means of numerical continu-
ation methods. Bifurcation diagrams in the parameter
plane (d11, k11) are shown for five distinct values of k22,
namely k22 = 3.322, 1.78, 1.332, 1.084 and 1.01, cor-
responding to the Hopf–Hopf bifurcation near 1:1, 2:3,
1:2, 1:3 and 1:4 resonance, respectively. The labels and
colors of several bifurcation curves used in the figures
are presented in Table 3.

The first Lyapunov coefficient (FLC) and the second
Lyapunov coefficient (SLC) are applied to judge the
type of Hopf bifurcation. The index c(0) denotes nor-
mal form coefficients of cyclic fold bifurcation, cyclic
cusp bifurcation and cyclic Neimark–Sacker bifurca-
tion. Furthermore, when Chenciner bifurcation is non-
degenerate [1], the coefficient of the resonant cubic
term Re(e) is nonzero, two positive fixed points with
opposite stability exist in the vicinity of the origin. If
Re(e) < 0, the outer one of the two fixed points is
stable. If Re(e) > 0, the inner one is stable.

4.1 Parameter values close to the 1:1 resonant
Hopf–Hopf bifurcation condition

The focus in this section is to explore the dynam-
ics near the 1:1 resonant Hopf–Hopf bifurcation when
k22 = 3.322. The Hopf–Hopf singularity point HH1:1
is located at d∗

11 = 2.260007 and k∗
11 = 2.622000. The

frequencies of the Hopf bifurcation curves H1,2 can
be detected in Matcont, where ω1 = 1.77824, ω2 =
1.79497 and thus the frequency ratio ω1 : ω2 ≈
0.9907, which is quite close to 1:1 resonant condition.
Two generalized Hopf bifurcation points GH1,2 (see
Fig. 5a) such that the index FLC vanishes emerge on
the Hopf curves H1,2, respectively, as shown below:

GH1, d11 = 2.197291, k11 = 2.613999,

Period1 = 3.033659, SLC = −0.5111842,

(a)

(b)

Fig. 5 a Bifurcation diagram for k22 = 3.322 near the 1:1 reso-
nant Hopf–Hopf bifurcation. b Expanded view close to the sin-
gularity point HH1:1 for (d∗

11, k
∗
11) = (2.260007, 2.622000)

GH2, d11 = 2.262327, k11 = 2.622129,

Period2 = 3.196912, SLC = 29575.65.

As presented in Fig. 5b, the point GH1 where the
cyclic fold curve LPC appears is a generalized Hopf
bifurcation point such that the index FLC is zero,
the curve LPC runs very close to the Hopf curve H1

and is connected to GH2, in particular, GH2 can be
detected in the vicinity of HH1:1. The cyclic cusp point
C emerging on LPC is near to GH1, which is located at
d11 = 2.197297 and k11 = 2.614000.
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(a) (b) (c)

Fig. 6 a–c Bifurcation structures for d11 = 2.12, 2.197291
(GH1), 2.20, respectively. The black solid curves denote stable
equilibria and stable limit cycles, the black dotted curves indi-

cate unstable equilibria and unstable limit cycles, the yellow and
red curves signify cyclic neutral saddles and cyclic limit points,
respectively. (Color figure online)

In this case, both the Hopf curves H1,2 intersect at
HH1:1 and do not form a closed loop. In addition, a
neutral saddle curve NS born at HH1:1 forms a closed
curve and returns to the initial place. In addition, the
global bifurcation scenario near the 1:1 resonant Hopf–
Hopf bifurcation is not involved in cyclic Neimark–
Sacker bifurcation.

In Fig. 5b, taking GH1 as a dividing point, the super-
critical Hopf bifurcation happens on the left of GH1

and the subcritical Hopf bifurcation happens on the
right side. Corresponding to distinct d11, the coexis-
tence of equilibria and limit cycles detected between
two Hopf bifurcation points H1,2 is shown in Fig. 6a–
c, and their bifurcation values are listed in Table 4. The
limit cycles born at the supercritical Hopf bifurcation
point (FLC < 0) are stable. The limit cycles born at the
subcriticalHopf bifurcation point (FLC > 0) are unsta-
ble. The negative normal formcoefficient c(0) indicates
that the limit cycles born at the cyclic limit point are
stable. The positive index c(0) indicates that the limit
cycles born at the cyclic limit point are unstable. In
particular, if the cyclic limit point LPC coincides with
GH1, the index c(0) is equal to 0.

In Fig. 7, the cyclic bifurcation behaviors undergo
a cyclical process, which is portrayed between two
Hopf bifurcation points H1,2. When d11 = 2.1, the
cyclic bifurcation structure in 2D plane is displayed
in Fig. 7a, and a stereoscopic bifurcation structure in
3D space is exhibited in Fig. 7b. Due to the index
FLC = −0.03513515, a family of stable limit cycles
are arisen fromH1 at k11 = 2.594947.As k11 increases,
the limit cycles finally reach H2 after undergoing two
cyclic neutral saddles NS±. The negative index FLC =
−0.1331188 indicates the stability of the limit cycles
born at H2 remains unchanged.

In addition, the cyclical process between two Hopf
bifurcation points H1,2 is shown as:

H1
SC−→NS− SC−→NS+ SC−→H2

SC−→NS+ SC−→NS− SC−→H1.
(Here, SC denotes stable limit cycles portrayed by
black solid curves). The loop indicates that the stable
limit cycles generated by the wheelset coexist within
the region of H1 and H2.

Table 4 Labels and colors of bifurcation curves used in the figures

Figure d11(H1/H2) FLC(H1) FLC(H2) k11(LPC) c(0)

Figure 6a 2.12 −0.03104245 −0.1375144 – –

Figure 6b 2.197291 0.000027251 −0.1677935 2.613999 0.000011564

Figure 6c 2.20 0.002115517 −0.1696833 2.614436 −0.0048517
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(a)

(b)

Fig. 7 a Cyclic bifurcation structure for d11 = 2.1 and k22 =
3.322 on 2D plane. The black solid curves indicate stable limit
cycles, the yellow curves signify cyclic neutral saddles. b Cyclic
bifurcation structure in 3D space corresponds to the labels in a.
(Color figure online)

4.2 Parameter values close to the 2:3 resonant
Hopf–Hopf bifurcation condition

In order to analyze the Hopf–Hopf bifurcation close to
2:3 resonance, as presented in Fig. 8a, k22 is fixed at
1.78. The singularity point HH2:3 is located at d∗

11 =
2.259995 and k∗

11 = 1.079998. In the present case, the
frequenciesω1 = 1.0080,ω2 = 1.5112, i.e.,ω1 : ω2 ≈
0.6670 is relatively close to the 2:3 resonant condition.

The dynamic scene near the 2:3 resonantHopf–Hopf
singularity point can qualitatively describe the com-
plexity of this case. The detection of two Neimark–
Sacker branches TR1,2 and two cyclic fold curves
LPC1,2 are shown in themagnified view of Fig. 8b. Two
distinct Neimark–Sacker bifurcation structures TR1,2

(a)

(b)

(c)

(d)

Fig. 8 a Bifurcation diagram for k22 = 1.78 near the 2:3 reso-
nantHopf–Hopf bifurcation.bMagnifiedviewclose to the singu-
larity point HH2:3 for (d∗

11, k
∗
11) = (2.259995, 1.079998). c Bifur-

cation diagram associated with the Neimark–Sacker bifurcation
curve TR1. dBifurcation diagram related to the Neimark–Sacker
bifurcation curve TR2
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Hopf–Hopf bifurcation analysis based on resonance and non-resonance 1207

associated with the Hopf curves H1,2 can be clearly
determined. One of the outstanding features is that the
branches TR1,2 are connected by a neutral saddle curve
NS to form a closed curve starting and ending at HH2:3.

The two points where the curves LPC1,2 emerge are
generalizedHopf bifurcation pointsGH1,2 such that the
index FLC vanishes, which are involved in the connec-
tion of the cyclic fold curves. Specifically, the coordi-
nates and properties of the points GH1,2 (see Fig. 8b)
are as follows:

GH1, d11 = 2.128304, k11 = 1.033156,

Period1 = 0.976125, SLC = 0.09138855,

GH2, d11 = 2.719480, k11 = 1.003051,

Period2 = 2.158481, SLC = 0.05694257.

In addition, both the curves LPC1,2 encounter each
other where a cyclic cusp point C: (d11, k11) =
(2.017879, 0.9955397) with c(0) = 11762.70 appears,
as indicated in Fig. 8c. Moreover, a 1:1 resonance point
Ra
1 near to C is detected on the curve LPC1, this cycle

has a double Floquet multipliers with μ1,2 = 1 at this
singularity point.

The bifurcation diagram related to the branch TR1 is
presented in Fig. 8c, a couple of Fold-Neimark–Sacker
points, denoted as LPNSa1,2, located near the ends of
TR1. Moreover, there is a 1:3 resonance point (two
Floquet multipliers at e±i(2π/3)) and a 1:4 resonance
point (twoFloquetmultipliers at e±i(π/2)) on the branch
TR1, denoted as Ra

3 and Ra
4, respectively. Finally, the

branch TR1 ends at Ra
1 and connects the curve NS. As

mentioned for Ra
1, which is on both the curves TR1 and

LPC1, and divides this curve into TR1 and NS.
In Fig. 8d, a Fold-Neimark–Sacker point LPNSb1

is detected in the vicinity of HH2:3, which is similar
to LPNSa1 on the branch TR1. A Chenciner bifurca-
tion point CHb: (d11, k11) = (2.480187, 1.021899) with
Re(e) = −86.50386 is situated on TR2 related to the
limit cycle emanated from the Hopf curve H2, thus the
outer fixed point is stable and the inner one is unstable.
Moreover, a 1:4 resonance point Rb

4 is observed here.
Ultimately, the branch TR2 ends at a 1:1 resonance
point Rb

1 near to another point LPNS
b
2.

In general, the Neimark–Sacker branch TR1 born at
the singularity point HH2:3 connects the neutral saddle
curve NS after reaching the 1:1 resonance point Ra

1.
Then NS arrives at Rb

1 after two turns, which is con-
nected to the Neimark–Sacker branch TR2, and finally
forms a closed curve.

(a)

(b)

Fig. 9 a Cyclic bifurcation structure for d11 = 2.1 and k22 =
1.78 on 2D plane. The black solid curves stand for stable limit
cycles and the black dashed curves stand for unstable ones. The
red, yellow and green curves stand for cyclic limit points, cyclic
neutral saddles and cyclic Neimark–Sacker bifurcation points,
respectively. The labels and types corresponding to the follow-
ing situations have the same implications. b Cyclic bifurcation
structure in 3D space with respect to the labels in a. (Color figure
online)

In Fig. 9, the same parameter d11 is fixed at 2.1
to continue k11 and to observe the cyclic bifurca-
tion behaviors. Due to the negative index FLC =
−0.004220202, thus the limit cycles born at H1 are
stable. As k11 increases, the stability of limit cycles
remains unchanged when undergoing a cyclic limit
point LPC1 with normal form coefficient c(0) =
−0.003745364. Subsequently, due to the positive index
c(0) = 0.0001374898, a series of limit cycles become
unstable when a double complex Floquet multipliers
are outside the unit circle,which indicates that an unsta-
ble torus is created via a cyclic Neimark–Sacker bifur-
cation point TR1. The limit cycles restore stability until
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the point LPC2 with c(0) = −0.1138517 emerges
and then a cyclic neutral saddle NS is detected. Ulti-
mately, the limit cycles return to the point H2 with
FLC = −0.05211610 and start a recurrence.

Between two Hopf bifurcation points H1,2, the loop
in the process of numerical simulation can be shown

as: H1
SC−→LPC1

SC−→TR1
UC−→LPC2

SC−→NS
SC−→H2

SC−→
NS

SC−→ LPC2
UC−→TR1

SC−→LPC1
SC−→H1. (Here, SC

denotes stable limit cycles portrayed by black solid
curves, and UC denotes unstable limit cycles portrayed
by black dotted curves). Within the region of LPC1 and
TR1, the stable limit cycles arisen from the wheelset
coexist. Within the region of TR1 and LPC2, the stable
limit cycles arisen at LPC2 coexist with unstable limit
cycles born at TR1, which indicates the presence of an
unstable torus.

4.3 Parameter values close to the 1:2 resonant
Hopf–Hopf bifurcation condition

A global unfolding of the Hopf–Hopf bifurcation near
1:2 resonance is depicted in Fig. 10a, the singularity
point HH1:2 at d∗

11 = 2.260000 and k∗
11 = 0.632000

appears when k22 = 1.332. The ratio of both frequen-
cies ω1 = 0.694406 and ω2 = 1.38631 is approxi-
mately 0.5009, which satisfies the resonant condition
close to 1:2. This kind of connection of a neutral saddle
curve NS and two Neimark–Sacker branches TR1,2 is
similar to the case near 2:3 resonance. Two generalized
Hopf bifurcation pointsGH1,2 (see Fig. 10b) emerge on
two Hopf bifurcation curves H1,2, respectively, noted
as

GH1, d11 = 2.133968, k11 = 0.582715,

Period1 = 0.448234, SLC = 0.1660530,

GH2, d11 = 2.857789, k11 = 0.511944,

Period2 = 1.785885, SLC = 0.04155471.

Asimilar scenario observed is that the curvesLPC1,2

born at GH1,2 intersect at a cusp point, this point is
detected at C: (d11, k11) = (1.970543, 0.5222585) with
c(0) = 11888.44. For the 1:1 resonance point Ra

1 near
to C, as depicted in Fig. 10c, is encountered on both
the curves LPC1 and TR1.

Thebifurcationdiagramof the semi-structure related
to the branch TR1 is exhibited in Fig. 10c. Compared
with the Hopf–Hopf bifurcation near 2:3 resonance,
more strong resonances such as two 1:3 and two 1:4

(a)

(b)

(c)

(d)

Fig. 10 a Bifurcation diagram for k22 = 1.332 near the 1:2
resonant Hopf–Hopf bifurcation. b Expanded view close to the
singularity point HH1:2 for (d∗

11, k
∗
11) = (2.260000, 0.632000). c

Bifurcation diagram associated with the Neimark–Sacker bifur-
cation curve TR1. d Bifurcation diagram related to the Neimark–
Sacker bifurcation curve TR2
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resonance points are detected, denoted as Ra
3 and Ra

4,
respectively. In addition, the same scenario as both the
branches TR1 is the presence of the points LPNSa1,2,
TR1 intersects with LPC1 at a 1:1 resonance point Ra

1
and ends with this point.

The dynamics of the semi-structure associated with
the branch TR2 is illustrated in Fig. 10d . The backward
numerical continuation produces one Fold-Neimark–
Sacker point LPNSb1 close to HH1:2, and the other
LPNSb2 near to Rb

1 is created by the forward numeri-
cal continuation. Among them, a 1:4 resonance point
Rb
4 is observed near the curve NS, a Chenciner bifur-

cation point CHb: (d11, k11) = (2.552513, 0.5444179)
with Re(e) = −137.8334 emerges on the branch TR2.
Compared with the case near 2:3 resonance, the simi-
lar scenario of two Neimark–Sacker branches TR2 are
that both generate a point CHb and a couple of points
LPNSb1,2, and end in a 1:1 resonance point Rb

1. How-
ever, the discrepancy is the presence of a 1:3 resonance
point Rb

3.
Analogously, the parameter d11 is fixed at 2.1 to

observe the cyclic bifurcation behaviors when k11
changes in Fig. 11. The structure similar to the Hopf–
Hopf bifurcation near 2:3 resonance occurs in the pro-
cess of numerical continuation, just like the above
analysis. The inner Hopf bifurcation point H1 with
FLC = −0.005551508 and the outer one H2 with
FLC = −0.05254251 indicate that the limit cycles
born at H1,2 are both stable. Two cyclic limit points
are detected at LPC1 with c(0) = −0.001739350 and
LPC2 with c(0) = −0.1104969. A series of unsta-
ble limit cycles exist till a Neimark–Sacker bifurca-
tion point labeled by TR1 is encountered at k11 =
0.5591471, at which a positive index c(0) reveals that
an unstable torus is created. The presence of a cyclic
neutral saddle NS is located between H2 and LPC2.

An analogous loop between two Hopf bifurca-

tion points H1,2 can be exhibited as: H1
SC−→LPC1

SC−→
TR1

UC−→LPC2
SC−→NS

SC−→H2
SC−→NS

SC−→LPC2
UC−→

TR1
SC−→LPC1

SC−→ H1. The structure further explains
that the cyclic bifurcation behaviors emanated from the
wheelset are very close to the 2:3 resonant case.

4.4 Parameter values close to the 1:3 resonant
Hopf–Hopf bifurcation condition

Let us investigate the unfolding of the Hopf–Hopf
bifurcation near 1:3 resonance depicted in Fig. 12a,

(a)

(b)

Fig. 11 a Cyclic bifurcation structure for d11 = 2.1 and k22 =
1.332 on 2D plane. b Cyclic bifurcation structure in 3D space
with respect to the labels in a

the parameter k22 is settled at 1.084. The singular-
ity point HH1:3 is situated at d∗

11 = 2.259999 and
k∗
11 = 0.384000. The frequencies ω1 = 0.436733
and ω2 = 1.31047, i.e., ω1 : ω2 ≈ 0.3333 is fairly
close to the condition of 1:3 resonance. Two general-
ized Hopf bifurcation points GH1,2 (see Fig. 12b) are
shown below:

GH1, d11 = 2.138557, k11 = 0.334344,

Period1 = 0.159838, SLC = −1.451423,

GH2, d11 = 2.941620, k11 = 0.235757,

Period2 = 1.575520, SLC = 0.03593939.

In this case, two cyclic fold curves arisen fromGH1,2

no longer encounter at a cusp point. The curve LPC1
1

born at GH1 runs very close to the Hopf bifurcation
curve H1, a 1:1 resonance point R1

1 is observed on
this curve, and a cusp point C1: (d11, k11) = (2.25999,
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0.383996) with c(0) = 638.4611 appears in the vicin-
ity of HH1:3, then C1 joins the curve LPC1

2. The curve
LPC2

1 born at GH2 intersects the neutral saddle curve
NS at a 1:1 resonance point Ra

1, then forms a cusp
point C2

1 with the curve LPC
2
2, also LPC

2
2 forms a cusp

point C2
2 with the curve LPC2

3. Among them, these
cusp points are detected at C2

1: (d11, k11) = (1.944105,
0.2595407) with c(0) = 195.0080, and C2

2: (d11, k11)
= (2.007971, 0.2819056) with c(0) = 0.02310147.

The structure related to the left branch TR1 is shown
in Fig. 12c, compared with the previous two cases
near 2:3 and 1:2 resonance, the discrepancy about this
branch is that there is a Fold-Neimark–Sacker point
LPNSa1 near to HH1:3 and it no longer ends with a
1:1 resonance point. Furthermore, more complicated
resonance phenomena consisting of more strong reso-
nance points occur. There are a pair of 1:1, two pairs
of 1:3 and two pairs of 1:4 resonance points emerg-
ing on TR1, denoted as Ra

1, R
a
3 and Ra

4, respectively.
In addition, between two resonance points Ra

1 and Ra
4,

a Chenciner bifurcation point is detected at CH: (d11,
k11) = (2.240148, 0.3674266) with Re(e) = 2.357679,
which indicates the inner fixed point is stable and the
outer one is unstable.

The structure associated with the right branch TR2

is depicted in Fig. 12d, a Chenciner bifurcation point is
detected atCH: (d11, k11) = (2.600987, 0.2768758)with
Re(e) = −207.8293. The scenario similar to before is
that a couple of Fold-Neimark–Sacker points LPNSb1,2
emerge and this branch ends at a 1:1 resonance point
Rb
1. In particular, TR2 produces three 1:3 resonance

points Rb
3, two of which are near to HH1:3. A 1:4 res-

onance point Rb
4 is observed below the curve NS and

above the curve LPC2
1.

In Fig. 13, the cyclic bifurcation behaviors are
observed by keeping d11 = 2.1 unchanged and chang-
ing k11. The negative index FLC = −0.007029457
indicates that a series of stable limit cycles are
emanated from the Hopf bifurcation point H1. When
undergoing the cyclic limit point LPC1

2, the negative
index c(0) = −3.436286 indicates that the stable limit
cycles still exist. As k11 decreases, the stability of limit
cycles vanishes when the cyclic Neimark–Sacker point
TR1 with c(0) = 0.0002820793 emerges, which indi-
cates an unstable torus is created. Then the limit cycles
restore stability until LPC2

1 with c(0) = −0.1014374
arises. Finally, the limit cycles return to the point H2

after passing a cyclic neutral saddle NS.

(a)

(b)

(c)

(d)

Fig. 12 a Bifurcation diagram for k22 = 1.084 near the 1:3
resonant Hopf–Hopf bifurcation. b Expanded view close to the
singularity point HH1:3 for (d∗

11, k
∗
11) = (2.259999, 0.384000). c

Bifurcation diagram associated with the Neimark–Sacker bifur-
cation curve TR1. d Bifurcation diagram related to the Neimark–
Sacker bifurcation curve TR2
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(a)

(b)

Fig. 13 a Cyclic bifurcation structure for d11 = 2.1 and k22 =
1.084 on 2D plane. b Cyclic bifurcation structure in 3D space
with respect to the labels in a

The loop between two Hopf bifurcation points H1,2

can be shown as: H1
SC−→LPC1

2
SC−→TR1

UC−→LPC2
1

SC−→
NS

SC−→H2
SC−→NS

SC−→LPC2
1

UC−→TR1
SC−→LPC1

2
SC−→H1.

Within the region of LPC1
2 and TR1, the stable limit

cycles arisen from the wheelset coexist. Within the
region of TR1 and LPC2

1, the stable limit cycles arisen
at LPC2

1 coexist with unstable limit cycles born at TR1,
which indicates that thewheelset gives birth to anunsta-
ble torus via TR1.

4.5 Parameter values close to the 1:4 resonant
Hopf–Hopf bifurcation condition

When considering the Hopf–Hopf bifurcation near 1:4
resonance, the parameter k22 is set at k22 = 1.01, the
singularity point HH1:4 is located at d∗

11 = 2.260000
and k∗

11 = 0.310000. The frequencies ω1 = 0.3228

and ω2 = 1.2868, i.e., ω1 : ω2 ≈ 0.2508 is quite close
to the 1:4 resonant condition. Two generalized Hopf
bifurcation points GH1,2 (see Fig. 13a) are as follows:

GH1, d11 = 2.140128, k11 = 0.260366,

Period1 = 0.074224, SLC = −0.01398757,

GH2, d11 = 2.967883, k11 = 0.152679,

Period2 = 1.512267, SLC = 0.03449155.

In Fig. 14a, the condition close to the singular-
ity point HH1:4 leads to an extremely complicated
global dynamics scenario. It is noteworthy that two
neutral saddle curves NS1,2 and three Neimark–Sacker
branches TR1,2,3 are detected, one NS1 connects TR1

and TR3 and the other NS2 connects TR2 and TR3,
finally return to HH1:4 after four turns. The cyclic fold
curves LPC1

1,2 and LPC2
1,2,3 have an analogous struc-

ture in two cases compared with the Hopf–Hopf bifur-
cation near 1:3 resonance.

The bifurcation structure of Fig. 14c is involved
in the cyclic fold curves born at GH1. The curve
LPC1

1 forms a cusp point C1
1 with the curve LPC1

2, the
cusp point is detected at C1

1: (d11, k11) = (2.253659,
0.3048403) with c(0) = 0.1469519. In particular, a 1:1
resonance point Ra

1 is encountered on both the curves
LPC1

1 and TR1.
Starting from GH2, the curve LPC2

1 forms a cusp
point C2

1 with the second curve LPC
2
2, then LPC

2
2 ends

in a cusp point C2
2 along with the third curve LPC2

3,
which form a closed curve resembling a triangle shape,
as depicted in the magnified view of Fig. 14f. These
cusp points are detected at C2

1: (d11, k11) = (1.934561,
0.1807090)with c(0) = 0.09944319, andC2

2: (d11, k11)
= (1.945775, 0.1843113) with c(0) = 0.09944319.

The substantial difference between the cases near
1:3 and 1:4 resonance lies in the cyclic fold curves
LPC3

1,2 in Fig. 14d, which contain a couple of cusp

points, these cusp points are detected at C3
1: (d11, k11)

= (2.237032, 0.3015403) with c(0) = −56.60203, and
C3
2: (d11, k11) = (2.560117, 0.4154234) with c(0) =

0.6525401.Moreover, in addition to a couple of 1:1 res-
onance points R3

1 on LPC
3
2, the upper part of the branch

TR3 intersects LPC3
1 at LPNS

3
1, and the lower part of the

branch TR3 intersects LPC3
2 at LPNS

3
2 (see Fig. 14c).

On the branch TR1 (Fig. 14c), two 1:3 resonance
points Ra

3 and two 1:4 resonance points R
a
4 are observed

here. The Chenciner bifurcation point near LPC1
1 is

detected at CHa : (d11, k11) = (2.248896, 0.3035769)
with Re(e) = 131.4880. A couple of Fold-Neimark–
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(d)

(c)

(b)

(a)

Fig. 14 a Bifurcation diagram for k22 = 1.01 near the 1:4 reso-
nantHopf–Hopf bifurcation.bExpanded view close to the singu-
larity point HH1:4 for (d∗

11, k
∗
11) = (2.260000, 0.310000). c Bifur-

cation diagram associated with the Neimark–Sacker bifurcation
curve TR1. dBifurcation diagram related to the Neimark–Sacker
bifurcation curve TR2. e Bifurcation diagram with respect to the
Neimark–Sacker bifurcation curve TR3. f Schematic diagram in
the vicinity of the curves LPC2

1,2,3

(e)

(f)

Fig. 14 continued

Sacker points LPNSa1,2 emerge at the ends of this
branch. Moreover, a 1:1 resonance point Ra

1 is encoun-
tered on both the curves TR1 and LPC1

1.
On the branch TR2 (Fig. 14d), there also exist a

couple of Fold-Neimark–Sacker points LPNSb1,2, one

of which LPNSb1 is near to HH1:4, and the other LPNSb2
is close to Rb

1 . Four strong resonances such as a 1:1,
two 1:3 and a 1:4 resonance points appear, which are
denoted as Rb

1, R
b
3 and R

b
4, respectively. In addition, this

branch ends with Rb
1.

On the branch TR3 (Fig. 14e), the difference from
TR1,2 is that it forms a closed loop. The most notable
is that a couple of Chenciner bifurcation points CHc

1,2

emerge here, one CHc
1 is close to LPC2

1, and the other
CHc

2 is between R
c
1 and R

c
4. In the left half of CH

c
1, a 1:1

resonance pointRc
1 divides this curve intoTR3 andNS1.

In the left half of CHc
2, there exist three 1:1 resonance

points Rc
1 and a Fold-Neimark–Sacker point LPNSc,

among them, LPNSc divides this curve into TR3 and
NS2 (see Fig. 14f).Moreover, there are two 1:3 and two
1:4 resonance points, denoted as Rc

3 and Rc
4, respec-

tively. In the right half of CHc
2, the branch produces

a couple of 1:3 resonance points Rc
3 and a 1:4 reso-

nance point Rc
4. Furthermore, the left part of CHc

1,2 with
positive index c(0) are the subcritical Neimark–Sacker
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(a)

(b)

Fig. 15 a Cyclic bifurcation structure for d11 = 2.1 and k22 =
1.01 on 2D plane. bCyclic bifurcation structure in 3D space with
respect to the labels in a

bifurcations, which shows the presence of unstable
torus, whereas the part between CHc

1,2 with negative
index c(0) is the supercritical Neimark–Sacker bifur-
cation, which gives birth to stable torus.

In Fig. 15, more complex cyclic bifurcation behav-
iors occur when the same d11 is fixed. The nega-
tive index FLC = −0.007540120 indicates that the
Hopf bifurcation point H1 develops a family of stable
limit cycles, then a cyclic neutral saddle NS1 arises at
k11 = 0.2607852. A cyclic limit point LPC1

2 is detected
as k11 increases, the stability of the limit cycles remains
unchanged due to the index c(0) = −14.07494. Two
cyclic Neimark–Sacker bifurcation points are detected
at TR+

3 : k11 = 0.3426828 with c(0) = 0.285738, and
TR−

3 : k11 = 0.2287775 with c(0) = 0.0002770011,
which indicate that the limit cycles born at TR±

3 are
both unstable, thus two unstable torus can be observed.
So far the limit cycles have become distorted with com-
plex resonance. The stability of the limit cycles restores

via LPC2
1 with c(0) = −0.09781862, then a cyclic neu-

tral saddle NS2 emerges at k11 = 0.2219031. Finally,
the limit cycles begin a recurrence after reaching the
point H2 with FLC = −0.05429647.

Amore complex loop between twoHopf bifurcation

points H1,2 can be shown as: H1
SC−→NS1

SC−→LPC1
2

SC−→
TR+

3
UC−→TR−

3
UC−→LPC2

1
SC−→NS2

SC−→H2
SC−→NS2

SC−→
LPC2

1
UC−→TR−

3
UC−→TR+

3
SC−→LPC1

2
SC−→NS1

SC−→H1.
Within the region of LPC1

2 and TR+
3 , the stable limit

cycles arisen from the wheelset coexist. Within the
region of TR+

3 and TR−
3 , the stable limit cycles arisen

at H1 and LPC2
1 coexist with the unstable limit cycles

born at TR+
3 , which indicates the presence of an unsta-

ble torus via TR+
3 .Within the region of TR−

3 and LPC2
1,

the stable limit cycles arisen at LPC2
1 coexist with the

unstable limit cycles born at TR−
3 , which indicates the

presence of another unstable torus via TR−
3 .

5 Conclusions

Due to the interaction of lateral and yaw motion of the
simplified railway wheelset, the dynamics of the non-
resonant and near-resonant Hopf–Hopf bifurcations
are taken into account in this paper, which involves
local and global dynamical scenarios, respectively. The
parameter k22 plays a crucial role in the transitions of
distinct Hopf–Hopf bifurcations, and the result shows
that the ratio of the oscillation frequencies ω1/ω2 at
the Hopf–Hopf singularity point will reduce with the
decrease in k22 within a certain range.

At first, the local dynamics with respect to the trun-
cated normal form of the non-resonant Hopf–Hopf
bifurcation on this wheelset model has been presented,
which belongs to the “difficult” caseVI. TwoNeimark–
Sacker branches TR1,2 without emerging strong reso-
nance indicate that the running wheelset will not pro-
duce the maximum oscillation amplitude induced by
the resonance point. The wheelset gives birth to an
unstable 2D torus when undergoing TR1, and a sta-
ble 2D torus is created at TR2. In addition, the unstable
2D torus will lead to a stable 3D torus after suffering a
heteroclinic bifurcation.

Secondly, the global dynamics of five near-resonant
Hopf–Hopf bifurcations have been discussed. These
results show that near-resonant Hopf–Hopf bifurcation
scenario becomes more complicated as k22 decreases.
In particular, an extremely complex global bifurcation
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phenomenon occurs when k22 is reduced to satisfy the
case close to 1:4 resonance, which is the most remark-
able condition that affects wheelset hunting motions
and resonances, as follows:

(1) Case I: near the 1:1 resonant Hopf–Hopf bifurca-
tion. The intersection of two Hopf curves H1,2 does
not produce a closed loop, a neutral saddle curve
NS between H1,2 forms a closed curve starting and
ending at the singularity point HH1:1. Two general-
ized Hopf bifurcation points GH1,2 are connected
by the cyclic fold curve LPC, and the cyclic cusp
point C emerging on LPC is near to GH1.

(2) Case II: near the 2:3 resonant Hopf–Hopf bifur-
cation. The curves LPC1,2 born at GH1,2 intersect
at a cusp point C. Two Neimark–Sacker branches
TR1,2 born at HH2:3 are connected by a neutral
saddle curve NS, which give birth to a closed
curve after two turns.AChenciner bifurcation point
CHb emerges on TR2, and several strong resonance
points are detected on TR1,2.

(3) Case III: near the 1:2 resonant Hopf–Hopf bifur-
cation. This case undergoes the similar bifurcation
as near the 2:3 resonant condition, for example,
the curves LPC1,2 in both cases intersect at a cusp
point C, and a Chenciner bifurcation point CHb is
detected on TR2. The discrepancy is that the num-
ber of the strong resonance points on TR1,2 grows.

(4) Case IV: near the 1:3 resonant Hopf–Hopf bifur-
cation. Compared with the Hopf–Hopf bifurcation
near 2:3 and 1:2 resonance, the similar scenario is
that a neutral saddle curve NS joins two Neimark–
Sacker branches TR1,2 and forms a closed curve
after two turns, the discrepancy is that the number
and structure of cyclic fold curves have changed.
The cyclic fold curves born at GH1,2 no longer
encounter at a cusp point, the curve LPC1

1 born
at GH1 forms C1 and then joins LPC1

2. The curve
LPC2

1 born at GH2 forms C2
1 with LPC2

2, then the
curve LPC2

2 ends at C2
2 along with LPC2

3. In par-
ticular, a couple of points CHa,b emerge on TR1,2,
respectively. More strong resonance points can be
detected on TR1,2.

(5) Case V: near the 1:4 resonant Hopf–Hopf bifurca-
tion. Compared with the previous conditions near
resonance, it is the most complicated one that con-
tains quite rich dynamics scenario. One neutral sad-
dle curve NS1 joins TR2,3 and the other NS2 joins
TR1,3, which form a closed curve after four turns.

The curves LPC1
1,2 and LPC

2
1,2,3 born at GH1,2 are

analogous in structure and quantity to the 1:3 reso-
nant case. A particular structure is that the presence
of LPC3

1,2 and TR3. A couple of Chenciner bifur-
cation points CHc

1,2 divide TR3 into three parts,
the branch TR3 between CHc

1,2 with negative index
c(0) shows the existence of stable torus, and the
positive index c(0) of other parts of this branch
indicates the presence of unstable torus. In addi-
tion, the significant increase in the number of the
strong resonance points onTR1,2,3 means thatmore
complex resonance phenomena occur.

At last, under the near-resonant conditions, the
parameter d11 is fixed at 2.1 to observe the cyclic
bifurcation structures when k11 changes. These results
show the coexistence of multiple limit cycles arisen
from the wheelset. The loop of equilibria and limit
cycles detected between two Hopf bifurcation points
H1,2 indicates that the wheelset will develop a cyclical
motion in lateral and yaw direction, as follows:

• For case I: H1
SC−→NS− SC−→NS+ SC−→H2

SC−→
NS+ SC−→NS− SC−→H1, which indicates that the sta-
ble limit cycles emanated from the wheelset at H1,2

coexist.
• For case II: H1

SC−→LPC1
SC−→TR1

UC−→LPC2
SC−→

NS
SC−→H2

SC−→NS
SC−→LPC2

UC−→TR1
SC−→

LPC1
SC−→H1, which indicates that the coexistence

of stable limit cycles arisen from the wheelset
within the region of LPC1 and TR1. Within the
region of TR1 and LPC2, the stable limit cycles
born at LPC2 coexist with an unstable torus via
TR1.

• For case III: H1
SC−→LPC1

SC−→TR1
UC−→LPC2

SC−→
NS

SC−→H2
SC−→NS

SC−→LPC2
UC−→TR1

SC−→
LPC1

SC−→H1, which indicates that the cyclic bifur-
cation structure is similar to case II.

• For case IV: H1
SC−→LPC1

2
SC−→TR1

UC−→LPC2
1

SC−→
NS

SC−→H2
SC−→NS

SC−→LPC2
1

UC−→TR1
SC−→

LPC1
2

SC−→H1, which indicates that the stable limit
cycles emanated from the wheelset coexist within
the region of LPC1

2 and TR1. Within the region of
TR1 and LPC2

1, the stable limit cycles born at LPC2
1

coexist with an unstable torus via TR1.

• For case V: H1
SC−→NS1

SC−→LPC1
2

SC−→TR+
3

UC−→
TR−

3
UC−→LPC2

1
SC−→NS2

SC−→H2
SC−→NS2

SC−→
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LPC2
1

UC−→TR−
3

UC−→TR+
3

SC−→LPC1
2

SC−→NS1
SC−→H1,

which indicates that the coexistence of stable limit
cycles arisen from the wheelset within the region
of LPC1

2 and TR+
3 . Within the region of TR+

3 and
TR−

3 , the stable limit cycles born at H1 and LPC2
1

coexist with an unstable torus via TR+
3 . Within the

region of TR−
3 and LPC2

1, the stable limit cycles
born at LPC2

1 coexist with another unstable torus
via TR−

3 .

These obtained results indicate that the change in
frequency ratio induced by the intersection of the lat-
eral and yaw motion of the unbalanced wheelset will
greatly affect the hunting motions and resonances of
railway vehicles. Therefore, appropriately increasing
the value of k22 is helpful tomaintain the vehicle stabil-
ity. It is noted that what we present in this paper is only
the global dynamics scenarios of the non-resonant and
the near-resonance Hopf–Hopf bifurcations in a sim-
plified wheelset model, while it will be an extremely
complex task when it comes to discuss a bogie frame
or even a carbody. These issues are for future research
to investigate.
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