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Abstract The aim of this paper is to investigate the
influence of the coupling of two scales on the dynam-
ics of a piecewise smooth dynamical system. A rel-
atively simple model with two switching boundaries
is taken as an example by introducing a nonlinear
piecewise smooth resistor and a harmonically changed
electric source into a typical Chua’s circuit. Taking
suitable values of the parameters, four different types
of bursting oscillations are observed corresponding to
different values of the exciting amplitude. Regarding
the periodic excitation as a slow-varying parameter,
equilibrium branches of the fast subsystem as well
as the related bifurcations, such as fold bifurcation,
Hopf bifurcation, period doubling bifurcation, nons-
moothHopf bifurcation and nonsmooth fold limit cycle
bifurcation, are explored with theoretical and numeri-
cal methods. With the help of the overlap of the trans-
formed phase portrait and the equilibrium branches, the
mechanism of the bursting oscillations can be analyzed
in detail. It is found that for relatively small exciting
amplitude, since the trajectory is governed by a smooth
subsystem, only conventional bifurcations take place,
leading to the transitions between the spiking states and
quiescent states. However,with an increase of the excit-
ing amplitude so that the trajectory passes across the
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switching boundaries, nonsmooth bifurcations occur-
ring at the boundaries may involve the structures of
attractors, leading to complicated bursting oscillations.
Further increasing the exciting amplitude, the number
of the spiking states decreases although more bifurca-
tions take place, which can be explained by the delay
effect of bifurcation.
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1 Introduction

Multi-scale coupling systems, charactered by the sig-
nificant magnitude differences between change rates
of state variables, have striking advantage to reveal
the nonlinearity essence of many complex phenom-
ena. Meanwhile, they have been widely used as mod-
els in various fields of science and engineering, such
as chemical reactions [1,2], electrical activity of neu-
rons [3–5], mechanical systems [6–8], electrical cir-
cuits [9–11], population dynamics [12,13]. Compared
with general nonlinear systems, systems with multiple
scalesmaydisplaymore complexdynamical behaviors,
such as bursting oscillations [14], mixed-mode oscilla-
tions [15] and canard explosion phenomena [16]. Due
to lack of valid analytical method, most of the early
results related to those systems are obtained based on
the approximated approaches as well as the numerical
simulations [17,18]. Fortunately, as the slow-fast anal-
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ysis method first proposed by Rinzel [19] was intro-
duced, researchers turned to the triggering mechanism
of the dynamics under multiple scales. Generally, the
slow-fast systems are presented in two forms during
practical applications, i.e., the autonomous one with
state variables of different time scale and the non-
autonomous one containing slow excitations [20]. A
typical autonomous slow-fast dynamical system with
two scales can be divided into two subsystems, i.e.,
the fast subsystems(FS) and the slow subsystems(SS),
expressed in the standard form [21]

ẋ = f(x, y,µ), (Fast Subsystem)

ẏ = εg(x, y,µ), (Slow Subsystem)
(1)

where x ∈ R
M , y ∈ R

N , µ ∈ R
K , while 0 < ε � 1

describes the ratio between the fast and slow scales. The
state variables y are treated as slow-varying parameters
so that the equilibrium branches as well as the bifur-
cations of the fast subsystem can be derived, which
can be used to reveal the mechanism of the dynamics
[22]. This method has been manifested to be a pow-
erful tool in the study of bursting dynamics, and a
mass of research focusing on bursting oscillations as
well as the bifurcation mechanisms have been reported
[3,23–25]. For the non-autonomous systems, such as
periodic exciting systems with an order gap between
the exciting frequency and the natural frequency, i.e.,
two scales in frequency domain, bursting oscillations
can also be observed, while the bursting mechanism
can’t be obtained directly by the traditional slow-fast
analysis method. In recent years, Bi et al. [7,26–28]
presented a modified slow-fast method with the con-
ceptions of generalized autonomous system and trans-
formed phase portrait, which have been demonstrated
to be an effective tool to analyze the generation mecha-
nism of bursting oscillations in dynamical systemswith
a single slow excitation. The one periodic excitation
dynamical systems can be expressed in the form

ẋ = f[x,µ, Acos(ωt)], (2)

where A and ω represent the amplitude and the fre-
quency of the excitation, respectively. When the excit-
ing frequency is far less than the natural frequency,
system (2) can be converted to the form

ẋ = f(x,µ, w), (Fast Subsystem)

w = Acos(ωt), (Slow Subsystem)
(3)

in which the whole exciting term w is considered as
a generalized slow-varying state variable and the fast

subsystem can be called the generalized autonomous
system. Subsequently, one may obtain the equilibrium
branches and the related bifurcations of the general-
ized fast subsystem, which can be used to investigate
the spiking and quiescent states as well as the switch-
ing mechanism between the two states of the bursting
oscillations.

On the other hand, the study of nonsmooth dynam-
ical systems has attracted a rapidly increasing interest
in the last decades. In fact, different types of nons-
mooth factors may be involved in many science and
engineering problems. For example, switches in elec-
trical circuits and traffic management [29,30], dry fric-
tion and impact in mechanical systems [31,32], thresh-
old strategy in ecological economic dynamics [33], etc.
Besides, due to the nonsmooth property, the systems
may display many special dynamical behaviors, such
as grazing, sliding and chattering [34,35], which can’t
be investigated through traditional nonlinear theory of
smooth systems. Generally, nonsmooth dynamical sys-
tems can be distinguished into three types, i.e., nons-
mooth continuous systems, Filippov systems, and sys-
tems which expose discontinuities in time of the state
[36]. A nonsmooth system usually has one or more
switchingboundaries, atwhichnonsmoothbifurcations
may take place, leading to qualitative changes on the
dynamics of the system [37]. Bursting behaviors may
occur when a nonsmooth dynamical system involves
two scales. Many patterns of bursting oscillations as
well as different types of nonsmooth bifurcations have
beenobtained, such as symmetric focus/focus-fold/fold
bursting attractors with nonsmooth fold bifurcations
in a piecewise linear system [38], periodic move-
ments and quasi-periodic oscillations with general-
ized Hopf bifurcation in switched dynamical systems
[39], periodic symmetric Hopf/Hopf-fold-sliding and
fold/fold-fold-sliding bursting oscillations with sliding
bifurcations in Filippov systems [40], asymmetric and
symmetric nonsmooth bursting oscillations with nons-
mooth Hopf bifurcations in a piecewise smooth system
[41]. Recently, Wang et al. [42] have investigated the
C-bifurcation as well as its effects on the bursting oscil-
lations. Though much work has been done, it remains a
challenge to study the generation mechanism of burst-
ing oscillations in nonsmooth systems with two scales.
A case that the transition behaviors between the spik-
ing and quiescent states are triggered by the nonsmooth
fold limit cycle bifurcation, at which a nonsmooth limit
cycle and a smooth limit cycle coalesce and annihilate
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each other on the switching boundary, has barely been
reported and needs to be further explored.

In this paper, we try to investigate the bursting
oscillations as well as the mechanism in a piecewise
smooth Chua’s circuit with a periodically slow-varying
external excitation, focusing on the effects of the non-
smooth Hopf bifurcation and nonsmooth fold limit
cycle bifurcation on bursting dynamics. In addition,
we will show that slow-varying external excitation and
the delay effect of bifurcation play an important role in
the evolution processes of the system. The rest of this
paper is organized as follows. In Section 2, a piece-
wise smooth mathematical model with two scales in
frequency domain is established based on a typical
Chua’s circuit. In Section 3, the stability of the gen-
eralized autonomous fast subsystem is derived and dif-
ferent types of equilibrium branches as well as the
bifurcations are obtained with theoretical and numeri-
cal methods. In Section 4, the evolution of the bursting
oscillations and the related bifurcation mechanism cor-
responding to different excitation amplitudes are pre-
sented in detail. Finally, the conclusion of the research
is summarized.

2 Mathematical model

The Chua’s circuit, presented by Chua et al. [43] in
1986, has become one of the most simplest mod-
els exhibiting abundant nonlinear dynamic phenomena
such as bifurcations and chaos [44,45].When a period-
ically slowly varying electric current source is applied
on the circuit, implying an order gap exists between
the exciting frequency and the natural frequency, burst-
ing oscillations can be observed [26]. To reveal the
influence of nonsmoothness on the dynamics with two

Fig. 1 A modified Chua’s circuit with a piecewise nonlinear
resistor and a periodic excitation

scales, amodifiedChua’s circuit is established by intro-
ducing a nonlinear resistor NR with piecewise smooth
characteristics aswell as a periodically changed electri-
cal current source into the typical Chua’s circuit, shown
in Fig. 1, and the mathematical model can be given by
the following set of equations

dvC1

dτ
= 1

C1
[G(vC2 − vC1) − g(vC1) + IGcos(ωτ)],

dvC2

dτ
= 1

C2
[G(vC1 − vC2) + iL ],

diL
dτ

= − 1

L
vC2 , (4)

where G = 1
R , and g(vC1) denotes the relationship

between the current and voltage passing through the
nonlinear resistor NR , described by

g(vC1) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K1vC1 tanh(K2vC1) + K3vC1 + K0,

if vC1 > V0,

A1v
3
C1

+ B1vC1 ,

if |vC1 | ≤ V0,

−K1vC1 tanh(K2vC1) + K3vC1 − K0,

if vC1 < −V0,

(5)

with K0 = A1V 3
0 + (B1 −K3)V0 −K1V0 tanh(K2V0).

After the rescaling, vC1 = IC
G x , vC2 = IC

G y, iL = IC z,

τ = C2
G t , where IC is a variable direct current constant,

system (4) is transformed into the following simpler
dimensionless form

dx

dt
= α(y − x − f (x)) + w,

dy

dt
= x − y + z,

dz

dt
= −βy, (6)

where α = C2
C1
, β = C2

LG2 and w = A cos(Ωt), in

which A = IGC2
ICC1

and Ω = ωC2
G correspond to the

amplitude and frequency respectively, while f (x) can
be expressed by

f (x) =

⎧
⎪⎨

⎪⎩

γ x tanh(δx) + ηx + σ, if x > x0,

ax3 + bx, if |x | ≤ x0,

−γ x tanh(δx) + ηx − σ, if x < −x0,

(7)

with γ = K1
G , δ = K2 IC

G , η = K3
G , a = A1 I 2C

G3 , b = B1
G

and x0 = G
IC
V0.
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Because of the piecewise smooth characteristics of
the nonlinear resistor NR , two switching boundaries
Σ± = {(x, y, z)|x = ±x0} exist, which divide the
phase space into three regions, denoted by D+ =
{(x, y, z)|x > x0}, D0 = {(x, y, z)||x | ≤ x0} and
D− = {(x, y, z)|x < −x0}, respectively. Obviously,
the dynamics of the system in these regions are gov-
erned by three different subsystems, denoted by S+, S0
and S−, respectively. With the variation of the param-
eters, bifurcations may occur not only in the three
regions, but also at the switching boundaries, which
may lead to complicated behaviors of the dynami-
cal system. In this paper, we consider the case that
the exciting frequency Ω is far less than the natural
frequency ΩN , i.e., Ω � ΩN , implying the effect
of two time scales which often represents bursting
oscillations may appear in the system. Obviously, the
exciting term w oscillates periodically according to
the exciting frequency, i.e., O(dw/dt) ≈ O(Ω) ≡
T1, while the state variables x, y, z may oscillate
mainly according to another much larger scale, i.e.,
O(dx/dt, dy/dt, dz/dt) ≈ O(ΩN ) ≡ T2, leading to
a coupling between the two scales T1 and T2. Conse-
quently, the whole exciting term w and the state vari-
ables x, y, z are regarded as the slow and fast variables,
respectively.

3 Bifurcation analyses of the FS

As has been argued, if the exciting frequency Ω is suf-
ficiently small, the effect of two scales in frequency
domain may appear, which often behaves in bursting
oscillations. Such dynamical behaviors, characterized
by the periodic alternation between rapid oscillations,
denoted by the spiking states (SPs), and near steady-
state behaviors, represented by the quiescent states
(QSs), can be well understood by bifurcation analy-
sis of a frozen or fast subsystem. Now we turn to the
bifurcation analysis of the generalized fast subsystem
by regarding the whole excitation termw = Acos(Ωt)
as a bifurcation parameter.

3.1 Conventional bifurcation analysis of the three
subsystems

The equilibrium of the subsystem S0 can be computed
at E0 = (X0, 0,−X0), where X0 satisfies the equation

α(aX3
0 + (1 + b)X0) − w = 0. (8)

The stability of E0 can be determined by the associated
characteristic equation, expressed as

λ3 + d1λ
2 + d2λ + d3 = 0, (9)

where

d1 = 3αaX2
0 + αb + α + β + 1,

d2 = 3αa(β + 1)X2
0 + αβb + αb + αβ + β,

d3 = 3αβaX2
0 + αβb. (10)

According to the Routh–Hurwitz criterion, the equilib-
rium point E0 is stable for the conditions

3αaX2
0 + αb + α + β + 1 > 0,

3αβaX2
0 + αβb > 0,

9α2a2(β + 1)X4
0 + 3αa[2α(bβ + β + b)

+ (β + 1)2 + α]X2
0

+ (b + 1)(βb + β + b)α2

+ [(b + 1)(β + 1)2 − 1]α + β(β + 1) > 0. (11)

When the eigenvalues pass the imaginary axis,
codimension-1 bifurcations such as fold bifurcation
and Hopf bifurcation may occur. Fold bifurcation of
the equilibrium point may be observed at

FB : 3αβaX2
0 + αβb = 0, (12)

with d1 > 0 and d2 > 0, at which a zero eigenvalue
can be obtained, leading to the phenomena of jumping
between different equilibrium points. Hopf bifurcation
may take place at

HB : 9α2a2(β + 1)X4
0 + 3αa[2α(bβ + β + b)

+ (β + 1)2 + α]X2
0

+ (b + 1)(βb + β + b)α2

+ [(b + 1)(β + 1)2 − 1]α + β(β + 1) = 0, (13)

with d1 > 0 and d3 > 0, at which a pair of pure imag-
inary eigenvalues exists, causing periodic oscillation
with the frequency ΩH = √

d2.
For the two subsystems S±, the equilibria can be

computed at E±∗ = (±X∗, 0,∓X∗), where X∗ satisfies
the equation

α[γ X∗ tanh(δX∗) + (1 + η)X∗ + σ ] − w = 0. (14)

The stability of E±∗ can be determined by the associated
characteristic equation, written as

λ3 + e1λ
2 + e2λ + e3 = 0, (15)
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in which the coefficients are

e1 = αγ [δX∗ sech2(δX∗) + tanh(δX∗)]
+ αη + α + β + 1,

e2 = α(β + 1)γ [δX∗ sech2(δX∗) + tanh(δX∗)]
+ αη(β + 1) + (α + 1)β,

e3 = αβγ [δX∗ sech2(δX∗) + tanh(δX∗)] + αβη.

(16)

For simplicity, we denote g(X∗) � δX∗ sech2(δX∗) +
tanh(δX∗). Thus, the equilibria E±∗ are stable when

αγ g(X∗) + αη + α + β + 1 > 0,

αβγ g(X∗) + αβη > 0,

(αγ g(X∗) + αη + α + β + 1)[α(β + 1)γ g(X∗)
+ αη(β + 1) + αβ] + β(α + β + 1) > 0. (17)

Consequently, the fold bifurcation conditions for E±∗
can be described as

FB : αβγ g(X∗) + αβη = 0, (18)

with e1 > 0 and e2 > 0, while the Hopf bifurcation
conditions can be expressed as

HB : (αγ g(X∗) + αη + α + β + 1)[α(β + 1)γ g(X∗)
+ αη(β + 1) + αβ] + β(α + β + 1) = 0,

(19)

with e1 > 0 and e3 > 0, the frequency of which can be
computed by ΩH = √

e2.

3.2 Non-smooth bifurcation analysis on the switching
boundaries

When the trajectory passes across the switching bound-
aries, the behavior can be affected by both states on two
sides of the boundaries, while nonsmooth bifurcations
may take place, which can be explored by the differen-
tial inclusion theory [36]. The characteristic equation,
related to the generalizedmatrix J = (1−q)J0+qJ± at
the equilibrium points located on the switching bound-
aries, can be written as

λ3 + [(1 − q)d1 + qe1]λ2
+[(1 − q)d2 + qe2]λ + [(1 − q)d3 + qe3] = 0,

(20)

where q(q ∈ [0, 1]) is introduced as an auxiliary
parameter. With the variation of the auxiliary param-
eter, the associated eigenvalues may pass across the
real or the pure imaginary axes, resulting in possible
nonsmooth bifurcations. For the conditions

NFB : (1 − q)d3 + qe3 = 0,

((1 − q)d1 + qe1 > 0, (1 − q)d2 + qe2 > 0) (21)

nonsmooth fold bifurcation may be observed at the
switching boundaries, while nonsmooth Hopf bifurca-
tion may take place when

NHB : [(1 − q)d1 + qe1][(1 − q)d2 + qe2]
− [(1 − q)d3 + qe3] = 0,

((1 − q)d1 + qe1 > 0, (1 − q)d3 + qe3 > 0) (22)

with the frequency ΩH = √
(1 − q)d2 + qe2.

For example, we fix the parameters in system(6) at
{

α = 5.0, β = 7.0, γ = 0.76, δ = 0.5,

η = −1.2, a = 0.4, b = −1.2, x0 = 1.4,
(23)

while σ can be computed by γ x0 tanh(δx0) + ηx0 −
ax30 − bx0. When w = 4.088, the equilibrium
point located on the switching boundary Σ+ =
{(x, y, z)|x = 1.4} can be computed, namely, E+

N =
(1.4, 0,−1.4), at which the generalized Jacobian can
be expressed as the set-valued matrix J = {Jq , q ∈
[0, 1]} with

Jq = (1 − q)

⎡

⎣
−10.76 5 0

1 −1 1
0 0 −7

⎤

⎦

+q

⎡

⎣
1 − 3.8g(0.7) 5 0

1 −1 1
0 0 −7

⎤

⎦ , (24)

and the corresponding characteristic equation iswritten
as

λ3 + [18.76(1 − q) + (3.8g(1.4)

+ 7)q]λ2 + [88.08(1 − q)

+ (30.4g(1.4) − 6)q]λ
+ [40.32(1 − q) + (26.6g(1.4) − 42)q] = 0.

(25)

With the variation of the auxiliary parameter from q =
0 to q = 1, the path of the eigenvalues is depicted in
Fig. 2. A pair of pure imaginary eigenvalues can be
observed at q = 0.9941, leading to a nonsmooth Hopf
bifurcation(see Fig. 3c).
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(a) (b)

(c)

Fig. 2 Distribution of eigenvalues with the variation of q: a eigenvalue-path of λ1, b eigenvalue-path of λ2,3 with locally enlarged part
in (c)

3.3 Bifurcations for specific parameters

In order to explain the bifurcations in more detail, now
we take the parameters in the system as in (23). By
regarding the slow-varying parameter w as a bifurca-
tion parameter, there are different numbers of equilib-
rium points, which form a set of equilibrium branches.
The equilibriumbranches aswell as the bifurcations are
computed numerically and plotted in Fig. 3, in which
the black solid and dotted lines denote the stable and

unstable equilibrium branches, the red solid and dotted
lines correspond to the stable and unstable limit cycles,
while the green points refer to the bifurcation points. To
sum up, the branches of stable and unstable equilibria
as well as the abbreviations are listed in Table 1, while
the bifurcations as well as the labels are presented in
Table 2.

As shown in Fig. 3b, we can observe two fold bifur-
cation points at FB±, at which jumping phenomenon
may occur. Two supercritical Hopf bifurcations, lead-

Table 1 Equilibria as well as the stability

Label EB0 EB±1 EB±2 EB±3 EB±4 EB±5 EB±6

Stability Unstable foci Stable foci Unstable foci Stable foci Unstable foci Stable foci Unstable foci
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(a) (b)

(c) (d)

Fig. 3 Equilibrium branches and bifurcation diagram of FS in (a) with locally enlarged parts in (b), (c) and (d)

Table 2 Bifurcations as well as the abbreviations in Fig. 3

Abbreviation Bifurcation Critical value w Auxiliary parameter q

FB± Fold ∓0.272166

HB±1 Supercritical Hopf ∓0.242348

PD±1 Period doubling ∓0.075473

PD±2 Period doubling ±0.106226

HB±2 Subcritical Hopf ±0.404359

LPC±1 Fold limit cycle ±0.566757

NH± Nonsmooth Hopf ±4.0880 0.9941

HB±3 Subcritical Hopf ±5.519371

NLPC±1 Nonsmooth fold limit cycle ±5.566318

NLPC±2 Nonsmooth fold limit cycle ±9.555126

HB±4 Subcritical Hopf ±10.322103
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ing to the stable limit cycles LC (1)
±1, appear at HB±1,

while two subcritical Hopf bifurcations, causing the
unstable limit cycles LC±2, occur at HB±2. Specially,
two period doubling bifurcations take place at PD±1,
giving rise to the emergence of stable period-2 limit
cycles LCd± and the evolution of LC (1)

±1 into unstable

limit cycles LC (2)
±1, while another two period doubling

bifurcations happen at PD±2, leading to the disappear-
ance of LCd± and the evolution of LC (2)

±1 into stable limit

cycles LC (3)
±1. LC

(3)
±1 meet with LC±2 as w approaches

LPC±1, corresponding to w = ±0.566757, where the
two pairs of limit cycles coalesce and annihilate each
other, resulting in the occurrence of fold limit cycle
bifurcations.

In Fig. 3c, there exists a nonsmooth Hopf bifurca-
tion at the point NH+, leading to stable limit cycle
LC+3, which crosses the switching boundary Σ+ con-
tinuously but non-smoothly. The stable limit cycle
LC+3 connects with unstable limit cycle LC+4 which
bifurcates from subcritical Hopf bifurcation at HB+3,
forming fold limit cycle bifurcation at NLPC+1, cor-
responding to w = 5.566318. It is noteworthy that
when w approaches NLPC+1 from the left, the two
limit cycles LC+3 and LC+4 coalesce and annihi-
late each other on the switching boundary Σ+, which
implies such fold limit cycle bifurcation is somewhat
different from that of conventional one. Thus, we
call it nonsmooth fold limit cycle bifurcation. Simi-
larly, as illustrated in Fig. 3d, stable limit cycle LC+5

meets with unstable limit cycle LC+6 which bifurcates
from subcritical Hopf bifurcation at HB+4, leading to
nonsmooth fold limit cycle bifurcation at NLPC+2,
referring to w = 9.555126. Because of the symme-
try, another two nonsmooth fold limit cycle bifurca-
tions, i.e., NLPC−1 and NLPC−2, occur at w =
−5.566318 and w = −9.555126, respectively(see
Fig. 3a).

The equilibrium branches and the related bifurca-
tions with the variation of the slow-varying parame-
ter w can be used to investigate the mechanism of the
bursting oscillations, which will be presented in the
following.

4 Evolution of the Bursting Oscillations

In this section, we take the excitation frequency at
Ω = 0.0001 to study the bursting dynamics as well as

the mechanism and the evolution of nonsmooth behav-
iors, while the other parameters of the system are fixed
in (23). Note that system(6) remains unchanged under
the transformations x → −x , y → −y, z → −z,
t → π/Ω + t , indicating there exists a type of Z2

symmetry in the vector field. Thus, symmetric dynam-
ical behaviors of periodic bursting oscillations may
be observed with the increase of the exciting ampli-
tude. The evolution of the bursting oscillations as
well as the corresponding bifurcation mechanism will
be investigated by the time histories, the correspond-
ing phase portraits, the equilibrium bifurcation dia-
gram and the transformed phase portraits. For conve-
nience, the orbit of periodic bursting oscillations in the
transformed phase portraits is divided into two parts,
denoted by T− and T+. Here, T− represents the part for
Ωt (mod2π) ∈ [−π, 0] and is highlighted with blue,
while T+ describes the part for Ωt (mod2π) ∈ [0, π ]
and is highlighted with dark gray.

4.1 Symmetric fold/supHopf bursting oscillations

For the excitation amplitude fixed at A = 0.4, we can
find two fold bifurcation points FB±, two supercrit-
ical Hopf bifurcation points HB±1 and four period
doubling bifurcation points PD±i (i = 1, 2), which
are symmetrically distributed with respect to w = 0.
With the parameter w varying between −0.4 and 0.4,
symmetric bursting oscillations of system(6) can be
observed in Fig. 4 through numerical simulation, which
can be roughly divided into four stages, i.e., two spiking
states SPi and two quiescent states QSi (i = 1, 2). Fig-
ure 4a presents the time history of variable x , while
Fig. 4b depicts the corresponding phase portrait on
(x, y) plane.

To reveal the generation mechanism of the oscilla-
tions, we turn to the overlap of the transformed phase
portrait and the equilibrium branches on (w, x) plane,
exhibited in Fig. 4c–e. Assuming the trajectory of T−
starts at the point P1, corresponding to the minimum
value w = −0.4, large-amplitude oscillations appear
due to the attracting of the stable limit cycle LC (3)

−1,
manifesting the system as spiking state SP1. When the
parameter w increases to the point PD−2, period dou-
bling bifurcation takes place, giving rise to the attract-
ing period-2 limit cycle LCd−1 and the repelling limit

cycle LC (2)
−1. However, the trajectory still oscillates

along LC (2)
−1 for a short time and then starts to oscillate
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(a) (b)

(c) (d)

(e) (f)

Fig. 4 Symmetric fold/supHopf bursting oscillations for A=0.4:
a time history of x , b phase portrait on (x, y) plane, c overlap
of the transformed phase portrait and the equilibrium branches

on (w, x) plane with locally enlarged part in (d) and (e), (f) a
period-2 cycle corresponding to w = 0.031
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around LCd−1(see Fig. 4c and Fig. 4e). As w further
increases to the point PD−1, another period doubling
bifurcation occurs, resulting in the disappearance of
LCd−1 and the emergence of stable limit cycle LC (1)

−1.
After that, the trajectory starts to oscillate along the
stable limit cycle LC (1)

−1. It is worth noting that the
period doubling bifurcations do not cause the transi-
tion between quiescent state and spiking state, indicat-
ing that system(6) remains in spiking state SP1 at this
stage. Supercritical Hopf bifurcation occurs at the point
HB−1, causing the disappearance of stable limit cycle
LC (1)

−1 and appearance of stable equilibrium branch
EB−1, leading to the transition from SP1 to QS1. The
trajectory will move along equilibrium branch EB−1

for a while until it arrives at the fold bifurcation point
FB−, where jumping phenomenon to stable limit cycle
LC (3)

+1 takes place, resulting in repetitive spiking oscil-
lations SP2. The amplitudes of the oscillations increase
gradually and the trajectory finally arrives at the point
P2 with the maximum valuew = 0.4, at which the first
half period of the bursting oscillations T− is completed.
With further increase of time, the trajectorymoves back
from P2 to P1, forming the other half period of the
movement, i.e., T+, which we have omitted here for
simplicity as a result of the symmetry.

Since the transitions between the quiescent states
and the spiking states are caused by fold bifurcations
and supercriticalHopf bifurcations, and the two spiking
states show a symmetric relationship. Therefore, this
type of bursting oscillations can be called symmetric
fold/supHopf bursting oscillations.

4.2 Symmetric compound subHopf/supHopf-fold/fold
limit cycle bursting oscillations

When the excitation amplitude increases to A = 0.8,
the parameter w varies between −0.8 and 0.8, aside
from two fold bifurcation points FB±, two supercrit-
ical Hopf bifurcation points HB±1 and four period
doubling bifurcation points PD±i (i = 1, 2), two sub-
critical Hopf bifurcation points HB±2 and two fold
limit cycle bifurcations LPC±1 are also found. Thus, a
dynamical phenomenonof symmetric compoundburst-
ing oscillations may be observed when the parame-
ter w traverses all the bifurcation points. Figure 5a–b
exhibits the time history of variable x and the corre-
sponding phase portrait on (x, y) plane, respectively,
fromwhich onemay find that a period of bursting oscil-

lations consists of four spiking states SPi and four qui-
escent states QSi (i = 1, 2, 3, 4).Meanwhile, Fig. 5c–d
demonstrates the overlap of the transformed phase por-
trait and the equilibrium branches on (w, x) plane.

Starting at the point P1, located in stable equilib-
rium branch EB−3, corresponding to the minimum
value w = −0.8, the trajectory of T− moves almost
strictly along EB−3 and passes across the point HB−2,
at which subcritical Hopf bifurcation takes place and
the unstable equilibrium branch EB−2 appears. How-
ever, nearly straightmovement of the trajectorywill last
a short time until it reaches the point P2. At this stage,
system(6) stays in quiescent state QS1. Attracted by the
stable limit cycle LC (3)

−1, small-amplitude oscillations
emerge, the amplitudes of which develop rapidly with
the increase of w, resulting in the spiking state SP1, as
shown in Fig. 5d. Because of the influence of the super-
critical Hopf bifurcation at HB−1, the trajectory then
settles down to stable equilibrium branch EB−1, lead-
ing to the quiescent state QS2. Fold bifurcation occurs
at the point FB−, causing the trajectory to jump to the
stable limit cycle LC (3)

+1 and behave in large-amplitude
oscillations, implying the transition from QS2 to SP2.
When w increases to w = 0.566757, fold limit cycle
bifurcation occurs, the amplitudes of repetitive spik-
ing oscillations SP2 decrease quickly and finally the
trajectory settles down to EB+3, appearing in the qui-
escent state QS3. As the trajectory along EB+3 arrives
at the point P3, corresponding to the maximum value
w = 0.8, the first half period of the compound bursting
oscillations T− is completed.

In this case, there are four spiking states in one
excitation cycle, two of them are ignited by subcrit-
ical Hopf bifurcations and quit by supercritical Hopf
bifurcations, while the other two are ignited by fold
bifurcations and quit by fold limit cycle bifurcations.
So, this type of bursting pattern can be called symmet-
ric compound subHopf/supHopf-fold/fold limit cycle
bursting oscillations.

Remark 1 When the slow-varying parameter travels
across a bifurcation point from one equilibrium branch
to another, the corresponding bifurcation behavior of
the trajectory may not occur immediately. Further
change of the slow-varying parameter may lead to
the bifurcation behavior, the example of which can be
observed in Fig. 5c. This phenomenon is called the
delay of bifurcation, which has been explained by the
slow passage effect in reference [46].
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(a) (b)

(c) (d)

Fig. 5 Symmetric compound subHopf/supHopf-fold/fold limit
cycle bursting oscillations for A=0.8: a time history of x , b phase
portrait on (x, y) plane, c overlap of the transformed phase por-

trait and the equilibrium branches on (w, x) plane with locally
enlarged part in (d)

4.3 Symmetric compound subHopf/nonsmooth
Hopf-subHopf/supHopf-fold/fold limit
cycle-nonsmooth Hopf/nonsmooth fold limit
cycle bursting oscillations

With the exciting amplitude increasing to A = 6.0,
more bifurcations such as nonsmoothHopf bifurcations
occurring at the points NH± and nonsmooth fold limit
cycle bifurcations corresponding to w = ±5.566318
may involve the attractors, which will possibly lead
to new patterns of the bursting oscillations. As can be
observed in Fig. 6a, there exists eight spiking states SPi
and eight quiescent states QSi in one period of burst-
ing oscillations(i = 1, 2, ..., 8), and some of the tra-
jectories of the spiking states travel across the switch-
ing boundaryΣ±, implying nonsmooth bifurcations of

limit cycle may involve in the spiking attractors. In the
following, we focus on the bursting oscillation mech-
anism with the help of the overlap of the transformed
phase portrait and the equilibrium branches on (w, x),
illustrated in Fig. 6c–f.

Taking P1 as the initial point with w = −6.0,
the trajectory of T− runs strictly along stable equi-
librium branch EB−5 and passes across the point
HB−3, at which subcritical Hopf bifurcation takes
place. Because of the delay effect, the trajectory does
not oscillate immediately but moves along unstable
equilibrium branch EB−4 for a while until it arrives
at point P2, shown in Fig. 6d. At this stage, sys-
tem(6) stays in quiescent state QS1. Affected by stable
limit cycle LC−3, small-amplitude oscillations can be
observed, the amplitudes of which increase quickly,
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(a) (b)

(c) (d)

(e) (f)

Fig. 6 Symmetric compound subHopf/nonsmooth Hopf-
subHopf/supHopf-fold/fold limit cycle-nonsmooth Hopf/
nonsmooth fold limit cycle bursting oscillations for A=6.0: a

time history of x , b phase portrait on (x, y) plane, c overlap of
the transformed phase portrait and the equilibrium branches on
(w, x) plane with locally enlarged part in (d), (e) and (f)
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leading to spiking state SP1. The repetitive spiking
keeps until the trajectory meets the point NH−, at
which nonsmooth Hopf bifurcation occurs, causing the
spiking state settle down to quiescent state QS2. The
QS2 continues before the trajectory arrives at the point
P3. After that, the trajectory begins to oscillate around
EB−2 due to the attraction of the stable period-2 limit
cycle LCd−1, resulting in spiking state SP2. The effect
of supercritical Hopf bifurcation at the point HB−1

appears, which causes the trajectory gradually settle
down to stable equilibrium branch EB−1, yielding qui-
escent state QS3, the time window of which seems a
bit short, shown in Fig. 6a. With the increase of time,
the trajectory jumps to oscillate according to the sta-
ble limit cycle LC (3)

+1 via fold bifurcation at the point
FB−1, appearing in spiking state SP3. As w increases
to w = 0.566757, fold limit cycle bifurcation occurs,
leading to rapid decrease in the oscillating amplitude,
resulting in transition to quiescent state QS4.When the
trajectory along EB+3 arrives at the point NH+, the
oscillations caused by nonsmooth Hopf bifurcation do
not appear immediately due to the delay effect. After
a short straightly movement of the trajectory, small-
amplitude oscillations emerge, the amplitude of which
increases gradually to begin the spiking oscillations
SP4, as shown in Fig. 6f. The repetitive spiking keeps
until w increases to w = 5.566318, at which nons-
mooth fold limit cycle bifurcation occurs, causing the
trajectory to settle down to EB+3, yielding the qui-
escent state QS5. When the trajectory moves almost
strictly along EB+3 to the point P4 with the maximum
value w = 6.0, the half period of the bursting oscilla-
tions T− is finished.

According to the bifurcations at the transitions
between the quiescent states and the spiking states,
this pattern of bursting oscillations can be called sym-
metric compound subHopf/nonsmooth Hopf-subHopf/
supHopf-fold/fold limit cycle-nonsmooth Hopf/
nonsmooth fold limit cycle bursting oscillations.

Remark 2 When the trajectorypasses across the switch-
ing boundaries, nonsmooth bifurcations, such as non-
smooth Hopf bifurcation and nonsmooth fold limit
cycle bifurcation, may take place, which will possibly
involve the bursting attractors and change the bursting
pattern.

4.4 Symmetric compound subHopf/nonsmooth fold
limit cycle-fold/fold limit cycle-nonsmooth
Hopf/nonsmooth fold limit cycle bursting
oscillations

Further increase in the exciting amplitude to A =
12.0, although another four bifurcations can be found,
namely subcritical Hopf bifurcations emerging at
HB±3 and nonsmooth fold limit cycle bifurcations
withw = ±9.555126, which may change the structure
of the bursting attractor. The time history of variable
x and the corresponding phase portrait on (x, y) plane
are plotted in Fig. 7a–b, from which we may find that
the number of the spiking states doesn’t increase but
decreases to 6 compared with the case with A = 6.0.
The principal reason for this phenomenon is that not
only the bifurcations but also the delay effect of bifurca-
tion may lead to different bursting attractors. To inves-
tigate the mechanism of the oscillations, we also turn
to the overlap of the transformed phase portrait and the
equilibrium branches on (w, x), shown in Fig. 7c–f.

Starting from the point P1 with w = −12.0, the tra-
jectory of T− behaves in spiking state SP1, the ampli-
tude of which increases rapidly due to the attraction
of stable limit cycle LC−5, shown in Fig. 7d. After
undergoing a period of large amplitude oscillations,
the trajectory tries to settle down to stable equilibrium
branch EB−5 via nonsmooth fold limit cycle bifur-
cation, corresponding to w = −9.555126. Then the
trajectory moves almost strictly along EB−5, EB−4,
EB−3, EB−2 and EB−1 until it arrives at the neigh-
borhood of the point FB−, behaving in quiescent state
QS1. Fold bifurcation takes place, causing the trajec-
tory to jump rather abruptly to stable limit cycle LC (3)

+1,
yielding repetitive spiking oscillations SP2, as shown
in Fig. 7e. Because of the fold limit cycle bifurcation,
corresponding to w = 0.566757, the trajectory gradu-
ally settles down to EB+3 to begin the quiescent state
QS2 until it arrives at the boundary Σ+. Attracted by
stable limit cycle LC+3 via nonsmooth Hopf bifurca-
tion at NH+, small-amplitude oscillations appear, the
amplitude of which increases gradually to start spiking
oscillations SP3, shown in Fig. 7f.Whenw increases to
w = 5.566318, nonsmooth fold limit cycle bifurcation
causes the trajectory to settle down to stable equilib-
rium branch EB+5, yielding the quiescent state QS3.
As the trajectory moving along EB+5 and EB+6 and
arriving at the point P2 with w = 12.0, the half period
of the bursting oscillations T− is finished.
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(a) (b)

(c) (d)

(e) (f)

Fig. 7 Symmetric compound subHopf/nonsmooth fold limit
cycle-fold/fold limit cycle-nonsmooth Hopf/nonsmooth fold
limit cycle bursting oscillations for A=12.0: a time history of

x , b phase portrait on (x, y) plane, c overlap of the transformed
phase portrait and the equilibrium branches on (w, x) plane with
locally enlarged part in (d), (e) and (f)
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(b)(a)

Fig. 8 The trajectory between the two Hopf bifurcation points HB−1 and HB−2: a locally enlarged overlap of the transformed phase
portrait and the equilibrium branches on (w, x) plane, b time history of w

Here, we call this bursting pattern as symmetric
compound subHopf/nonsmooth limit cycle-fold/fold
limit cycle-nonsmoothHopf/nonsmooth fold limit cycle
bursting oscillations

Remark 3 It is noteworthy that the trajectory between
the two Hopf bifurcation points HB−1 and HB−2

doesn’t appear spiking behavior in the case with A =
12.0. The main reason for this phenomenon can be
accounted for by the fact that an increase in the exciting
amplitude A may lead to a shorter travel time between
the two Hopf bifurcation points, leading to more delay
effect of bifurcation, shown in Fig. 8. Thus, the trajec-
tory keeps always in quiescent state along the unstable
equilibrium branch EB−2.

5 Conclusions

Nonsmooth dynamical systems, usually possessing one
or more switching manifolds, may exhibit complex
dynamics and have become an interesting topic in the
study of nonlinear dynamics. In this research, bursting
oscillations, characterized by large-amplitude oscilla-
tions that alternate with small-amplitude oscillations
or rest, have been investigated in a piecewise smooth
Chua’s circuit with a slow-varying external excitation.
By using the modified slow-fast analysis method, the
evolutionarymechanismof the equilibriumbranches as
well as the related bifurcations of the generalized fast
subsystem are obtained. As a result, two novel bursting
patterns, i.e., bursting of “subHopf/nonsmooth Hopf-
subHopf/supHopf-fold/fold limit cycle-nonsmooth

Hopf/nonsmooth fold limit cycle” type and bursting
of “subHopf/nonsmooth fold limit cycle-fold/fold limit
cycle-nonsmooth Hopf/nonsmooth fold limit cycle”
type, have been revealed aside from another two com-
monones.With the increase of the slow-varying param-
eter, not only the conventional bifurcations, such as fold
and Hopf bifurcations, but also the nonsmooth bifur-
cations, such as nonsmooth Hopf and nonsmooth fold
limit cycle bifurcations, can lead to transitions between
different attractors. Furthermore, it can be found that
the delay effect of bifurcation can be observed near the
conventional and nonsmooth bifurcations, which may
change the structure of bursting attractors, resulting in
different types of bursting oscillations. Our research
enriches the nonsmooth dynamics of bursting oscilla-
tions in the nonsmooth continuous dynamical system.
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