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Abstract In this work, bilinear residual network
method is proposed to solve nonlinear evolution equa-
tions. The activation function in final layer of deep
neural network cannot interact with the neuron inside
the deep neural network, but the residual network can
transfer the input layer to the activation function in final
layer to realize the interaction within the network. This
reduces the complexity of the model and gives more
interactive results. The steps of solving the exact ana-
lytical solution through the residual network are given.
The rogue wave solution of Caudrey–Dodd–Gibbon–
Kotera–Sawada-like equation is obtained by using the
bilinear residual network method. Characteristic plots
and dynamic analysis of these rogue waves are given.

Keywords Rogue wave · Bilinear residual network
method ·Physics-informed neural networks ·Caudrey–
Dodd–Gibbon–Kotera–Sawada-like equation

1 Introduction

In the field of deep learning, the increase in the num-
ber of network layers is generally accompanied by the
increase in the consumption of computing resources,
the model is easy to over fit, generation of gradient
disappearance problem. He et al. [1] found that, with
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the increase of network layers, the network degraded.
When the network degenerates, the shallow network
can achieve better training effect than the deep net-
work. If the characteristics of the lower layer are trans-
mitted to the higher layer, the effect should be at least
no worse than that of the shallow network. Resid-
ual neural network have been proposed, via “short-
cut connections,” the underlying features are transmit-
ted to the deep layer. Most importantly, in this pro-
cess, no additional parameters and model complex-
ity are added. Zhang et al. [2] have proposed bilin-
ear neural networks method (BNNM). Then, Zhang
et al. used BNNM to find the exact analytical solu-
tion of the (3+1)-dimensional Jimbo–Miwa equation
[3], Generalized lump solutions of Caudrey–Dodd–
Gibbon–Kotera–Sawada-like (CDGKS-like) equation
[4], and the interaction solutions for p-gBKP equation
[5,6]. BNNM brings the neural network model into the
analytical solution field of partial differential equation
for the first time, based on the bilinear method.When it
comes to bilinear methods, the Hirota bilinear operator
method is firstly come out of mind. Hirota was firstly
proposed D operator: [7]
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Many physical phenomena have been studied via bilin-
ear method: soliton solution [8–13], localized waves
[14–17], rogue wave solutions [18–21], lump solutions
[22], solitary waves [23], lump-type solutions [24–27],
breather solutions [28], interactions [29–32], M-lump
solutions [33]. Based on the theory of Hirota bilinear
method, Ma [34] has proposed a generalized bilinear
method with the generalized bilinear operator as fol-
lows:
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The generalized bilinear method will be shown by
using following (2+1)-dimensional CDGKS equation

− 45u2ux + 15uyu − 15uuxxx + 15∂−1
x uy

− 15uxxux − 36ut

+ 5uxxy − uxxxxx + 5∂−1
x uyy = 0,

(2)

where ∂−1 is the integral operator. Konopelchenko et
al. firstly proposed Eq. (2) in 1984 [35]. Fang et al.
[36] have obtained the Lump-type solution, fusion and
fission phenomena, rogue wave of Eq. (2). Manafian et
al. [37] have got the interaction solutions and N-lump
of localized waves for the variable-coefficient CDGKS
equation by using Hirota bilinear method. Geng et al.
[38] have got the Riemann theta function solutions via
characteristic polynomial for the CDGSK hierarchy.
Cheng et al. [39] have studied Interaction behavior of
the (2+1)-dimensional CDGKS equation. Tang et al.
[40] have obtained the lump solutions of CDGKS equa-
tion via direct method.

Generally, using the following bilinear transforma-
tion:

u(x, y, t) = 2[ln f (x, y, t)]xx , (3)

the bilinear form of Eq. (2) will be obtained as follows:

BCDGKS( f ) := (5Dp,y D
3
p,x + 5D2

p,y

− D6
p,x − 36Dp,x Dp,t ) f · f.

(4)

When p=2, bilinear operator D follows theHirota bilin-
ear formula (1), so we can get
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When p=3, bilinear operator D follows the generalized
bilinear formula (2); the generalized bilinear equation
can be obtained as follows:
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When p=5, bilinear operator D follows the generalized
bilinear formula (2); the generalized bilinear equation
can be obtained as follows:

Bp=5( f ) := (5D5,y D
3
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5,x

− 36D5,x D5,t ) f · f

= −72 ft x f + 10 fyy f + 10 fxxxy f

+ 72 fx ft − 30 fxxy fx

− 10 fy
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2 = 0,

(7)

by using the bilinear transformation as follows:

u = 2[ln f ]xx , v = 2[ln f ]xy,
w = 2[ln f ]xyy, (8)
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Fig. 1 Residual block formed by “shortcut connections”

the following CDGKS-like equation can be derived
from generalized bilinear equation (7),
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(9)

where vx = uy, wx = uyy .
The rest of thiswork is in the following organization.

Section 2 will introduce the residual network and pro-
pose a new method, bilinear residual network method,
for solving the exact analytical solution of NLEEs. In
Sects. 3 and 4, the applications of BRNMwill be given.
Rogue wave solutions of Eq. (9) will be obtained via
“2-2” and “2-3” residual networkmodel. Characteristic
plots and dynamic analysis of these rogue waves will
be given. Section 5 will conclude this paper.

Fig. 2 Residual network formed by “shortcut connections” net-
work

2 BRNM

2.1 Residual block and residual network

In order to realize the internal interaction of neural net-
work without increasing the complexity, we use “short-
cut connections” to form a residual network. Countless
residual blocks form such a residual network. The for-
mula of a residual block can be written as

F(
−→
ξi + −→x ), (10)

where F(·) is the activation function, −→x represents
input vector, and

−→
ξi represents neurons of i-th layer,

−→
ξi = −→w F(

−−→
ξi−1), (11)

where w represents the weight value vector, and the
residual block with “shortcut connections” can be intu-
itively understood through Fig. 1. Since “shortcut con-
nections” add neither extra parameter nor computa-
tional complexity, the whole neural network model can
get more interactive results without increasing param-
eters and complexity.

Taking the output of the residual network, stacked
by these residual blocks, as the test function f , we can
finally get the following expression,

fn = F(
−→
ξn + −→x + fn−2),

f2 = F(
−→
ξ2 + −→x ),

(12)

where F(·) is the activation function, −→x represents
input vector, and

−→
ξn represents neurons of n-th layer.

the residual network with “shortcut connections” can
be intuitively understood through Fig. 2. The residual
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Fig. 3 Algorithm flow of physics-informed residual network

network not only share the input vector −→x of the input
layer, but also share the cross-layer vector F(

−→
ξn +−→x )

of cross-layer connection. In addition, we give a defini-
tion of generalized residual network, that is, the “short-
cut connections” can be amultiple of two layers, a mul-
tiple of one layer, or even amultiple of 3, 4, . . . , i layers
as,

fn = F(
−→
ξn + −→x + fn−i ),

fi = F(
−→
ξi + −→x ).

(13)

2.2 Bilinear residual network method

The residual network can enrich the diversity of solu-
tions without increasing the model parameters and
complexity by using “shortcut connections,” so how
to use the residual network to obtain the original func-
tion of nonlinear evolution equation? Next, we give the
specific steps to solve the exact analytical solution by
using bilinear residual network.

Step 1: Using the Hirota bilinear method (or gen-
eralized bilinear method), the bilinear equa-
tion of a given nonlinear evolution equation is
derived. If it is a system of nonlinear evolution
equations, it can be carried out separately, and
combined calculation in step 5.

Step 2: The bilinear equation obtained in step 1 is the
equation concerning the test function f as fol-
lows:

B( f, fx , fy, ft , fxy, fty,

fxt , fxyt , ...) = 0. (14)

Substitute the test function f, which is con-
structed by using the residual network as Eq.
(12), into Eq. (14), a nonlinear overdetermined
algebraic equation about x, y, t, xy, xt, t y,
xyt, F(x, y, t, ...), ... will be obtained as fol-
lows:

A(x, y, t, xy, xt, t y, xyt,

F(x, y, t, ...), ...) = 0. (15)

Step 3: Extracting the coefficient about x, y, t, xy, xt,
t y, xyt, F(x, y, t, ...), ... from Eq. (15), the
system of nonlinear equations concerning
weight w and threshold value b will be
obtained.

Step 4: Solving this system of algebraic equations
concerning weight w and threshold value b
by using symbolic computation technology,
the coefficient solutions of this system can be
obtained.

Step 5: Substituting these coefficient solutions into
test function f Eq. (12), the exact analyti-
cal solutions of bilinear equation (14) will be
obtained.

Step 6: The analytical solutions u for NLEEs will be
got via Hirota (or generalized) bilinear trans-
formation.

Different from the approximate numerical solution,
the bilinear residual network method, proposed in this
paper, is used to solve the exact analytical solution of
the nonlinear model. The similarities between the two
methods can be seen from Figs. 3 and 4. The neu-
ral network model is used to fit the original function
of the partial differential equation in both two algo-
rithms. As can be seen from Fig. 3, physics-informed
neural networks (PINNs) method obtains the optimiza-
tionproblemaboutweightW bybringing in data points,
so as to obtain the optimal weight parameterW . Differ-
ent from PINNs, the bilinear residual network method
extracts the coefficients before the independent vari-
ables x, . . . , t to obtain a system of equations (Fig. 4),
containing weight parametersW . Through solving this
system of equations, the exact constraint relationship
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Fig. 4 Algorithm flow of bilinear residual network

between weights W is obtained. Data-driven methods
usually require discrete data points, so that the infor-
mation of the original equation cannot be fully utilized.
However, the bilinear residual network method pro-
posed in this paper does not require discrete data points,
so the exact analytical solution of the original equation
can be obtained.

3 Rogue wave solutions and the “2-2” residual
network

The “2-2” ResNet with generalized activation function
can be expressed as follows:

f = w3,u F3 (N3) + w4,u F4 (N4) + b5,

N1 = xwx,1 + ywy,1 + twt,1,

Fig. 5 “2-2” residual network model of Eq. (16) by setting
F1(ξ1) = (ξ1), F2(ξ2) = exp(ξ2), F3(·) = (·)2, F4(·) = (·)2

N2 = xwx,2 + ywy,2 + twt,2,

N3 = w2,3F2 (N2) + w1,3F1 (N1) + x + y + t,

N4 = w2,4F2 (N2) + w1,4F1 (N1) + x + y + t, (16)

setting F1(ξ1) = (ξ1), F2(ξ2) = exp(ξ2), F3(·) =
(·)2, F4(·) = (·)2, we procure

f :=w3,u
(
w2,3e

twt,2+xwx,2+ywy,2

+w1,3
(
xwx,1 + ywy,1 + twt,1

) + x + y + t
)2

+ w4,u
(
w2,4e

twt,2+xwx,2+ywy,2

+w1,4
(
xwx,1 + ywy,1 + twt,1

) + x + y + t
)2

+ b5. (17)

Substituting the test function Eq. (17), constructed by
the “2-2” ResNet model (Fig. 5), into the generalized
bilinear equation (7), we can get a system of nonlin-
ear equations through collecting the coefficient of each
term. By using symbolic computing techniques with
the help of Maple, we obtain the following solution of
this algebraic system,

{b5 =
2700w4, f

(
wx,1 − wy,1

)3 (
31
36 +

(
wx,1 − 5wy,1

36

)
w1,4

)
w3
1,4

34596w2
1,4w

2
x,1 − 9610w2

1,4wx,1wy,1 + 4805w2
1,4w

2
y,1 + 59582w1,4wx,1 + 29791

,

w3, f = −36

31
w2
1,4w4, f w

2
x,1 + 10

31
w2
1,4w4, f wx,1wy,1 − 5

31
w2
1,4w4, f w

2
y,1 − 2w1,4w4, f wx,1 − w4, f ,

w1,3 = 0, w2,4 = 0, wt,1 = −18w1,4wx,1 − 5w1,4wy,1 + 31

18w1,4
,

wt,2 = 0, wx,2 = 0, wy,2 = 0.} (18)

Substituting solution above into the test function
(17), the analytical solution for original equation (9)
will be obtained via generalized bilinear transforma-
tion (8),

123



526 R. Zhang, M. Li

(a) (b)

(c) (d) x-curves (e) y-curves

Fig. 6 (Color online) The characteristic diagrams of the rogue waves for Eq. (19) with w2,3 = 1, w1,4 = 1, wX,1 = 1, wy,1 = 2
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Fig. 7 “2-3” residual network model for Eq. (20) by setting
F1(ξ1) = (ξ1), F2(ξ2) = exp(ξ2), F3(·) = (·)2, F4(·) =
(·)2, F5(·) = (·)2

The dynamical shapes for the rogue wave solutions
are exhibited in Fig. 6. Two soliton dark waves and a
series of periodic waves are shown in Fig. 6a, c. But
from density plot in Fig. 6b, we can find that two soli-
tons shown in Fig. 6a are a series of periodicwaveswith

small energy. Figure 6d shows the x-curve graphs, and
Fig. 6e shows the y-curve graphs.

4 Rogue wave solutions and the “2-3” residual
network

The “2-2” ResNet with generalized activation function
can be expressed as follows:

f = w3,u F3 (N3) + w4,u F4 (N4)

+ w5,u F5 (N5) + b6,

N1 = xwx,1 + ywy,1 + twt,1,

N2 = xwx,2 + ywy,2 + twt,1,

N3 = w2,3F2 (N2) + w1,3F1 (N1) + x + y + t,

(a) t=-0.7 (b) t=-0.4 (c) t=0

(d) t=0.35 (e) t=0 .6

Fig. 8 (Color online) The dynamic evolution 3−D plots of rogue waves for Eq. (23) with t = −0.7, t = −0.4, t = 0, t = 0.35, t = 0.6
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Fig. 9 (Color online) The
contour plot, density plot
and curve plots of rogue
waves for Eq. (23)

(a) x-curves (b) y-curves

N4 = w2,4F2 (N2) + w1,4F1 (N1) + x + y + t,

N5 = w2,5F2 (N2) + w1,5F1 (N1) + x + y + t, (20)

setting F1(ξ1) = (ξ1), F2(ξ2) = exp(ξ2), F3(·) =
(·)2, F4(·) = (·)2, F5(·) = (·)2, we procure

f := w3, f
(
w2,3e

twt,2+xwx,2+ywy,2

+w1,3
(
xwx,1 + ywy,1 + twt,1

) + x + y + t
)2

+ w4, f
(
w2,4e

twt,2+xwx,2+ywy,2

+w1,4
(
xwx,1 + ywy,1 + twt,1

) + x + y + t
)2

+ w5, f
(
w2,5e

twt,2+xwx,2+ywy,2

+w1,5
(
xwx,1 + ywy,1 + twt,1

) + x + y + t
)2

+ b6. (21)

Substituting the test function Eq. (21), constructed by
the “2-3” ResNet model (Fig. 7), into the generalized

bilinear equation (7), we can get a system of nonlin-
ear equations through collecting the coefficient of each
term. By using symbolic computing techniques with
the help of Maple, we obtain the following solution of
this algebraic system,

{w3, f = − 5

36
w2
1,5w5, f w

2
y,1

− 5

18
w1,5w5, f wy,1

− 5

36
w5, f , w4, f = 0,

wt,1 = 5w1,5wy,1 − 31

36w1,5
, wt,2 = 0, wx,1

= 5w1,5wy,1 − 31

36w1,5
,

wx,2 = 0, wy,2 = 0, b6 = 0, w1,3 = 0,

w2,3 = 0, w2,5 = 0.} (22)
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Substituting solution above into the test function (21),
the analytical solution for original equation (9) will be
obtained via generalized bilinear transformation (8),

u = −155w5,f
(
w1,5wy,1 + 1

)2
648 f

−
8
(
�1 (x + y + t) + 5�2w5,f (w1,5wy,1+1)

36

)2
f 2

,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f = �3 (x + y + t)2 + w5, f �
2
2,

�1 = − 5

36
w2
1,5w5,f w

2
y,1 − 5

18
w1,5w5,f wy,1 − 5

36
w5,f ,

�2 = w1,5

(
t
(
5w1,5wy,1 − 31

)
36w1,5

+ x
(
5w1,5wy,1 − 31

)
36w1,5

+ ywy,1

)
+ x + y + t,

�3 = − 5

36
w2
1,5w5, f w

2
y,1 − 5

18
w1,5w5, f wy,1 − 5

36
w5, f .

(23)

The evolution plots of Eq. (23) at different times are
shown in Fig. 8, from which we can find that the rogue
wavesmoves in the negative direction of X as time goes
by. When time reaches 0, the two waves merge at one
point slowly; then it spreads out slowly. The contour
plot, density plot and curve plots of rogue waves for
Eq. (23) are shown in Fig. 9, from which we could find
that the rogue waves for Eq. (23) are composed of two
columns of periodic waves.

5 Conclusions

In this work, bilinear residual networkmethod has been
proposed for the first time to get the exact analytical
solutions of NLEEs. Without increasing the additional
parameters and complexity of the model, the shal-
low layer parameters are transferred to the deep layer,
which increases the interaction within the network by
using the “shortcut connections.” So richer interactive
solutions can be find without increasing the additional
parameters and complexity of the model. The specific
steps of bilinear residual network method have been
given. An example have been solved by this method:
CDGKSequation. Strangewave solutions are obtained,
and the dynamic characteristics of these strange waves
have been analyzed. In the future, we will try to solve
other NLEEs or even a system of nonlinear partial
differential equations by using BRNM. Readers can

read and participate our source code1,2 for implemen-
tation details
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