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Abstract In this paper, we firstly deduce a reverse
space-time Fokas–Lenells equation which can be deri-
ved from a rather simple but extremely important sym-
metry reduction of corresponding local equation. Next,
the determinant representations of one-fold Darboux
transformation and N-fold Darboux transformation are
expressed in detail by special eigenfunctions of spectral
problem. Depending on zero seed solution and nonzero
seed solution, exact solutions, including bright soliton
solutions, kink solutions, periodic solutions, breather
solutions, rogue wave solutions and several types of
mixed soliton solutions, can be presented. Further-
more, the dynamical behaviors are discussed through
some figures. It should be mentioned that the solu-
tions of nonlocal Fokas–Lenells equation possess new
characteristics different from the ones of local case.
Besides, we also demonstrate the integrability by pro-
viding infinitely many conservation laws. The above
results provide an alternative possibility to understand
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physical phenomena in the field of nonlinear optics and
related fields.
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1 Introduction

The completely integrable Fokas–Lenells (FL)
equation [1–4]

i qxt − i qxx + 2 qx − qx q q
∗ + i q = 0, (1.1)

plays an important role in the study of soliton the-
ory and integrable system, where q = q(x, t) repre-
sents complex field envelope, asterisk denotes com-
plex conjugation, and subscript x and t appended to
q denote partial derivative with respect to x and t . In
optics, the FL equation has been derived as a model
to describe femtosecond pulse propagation through
single-mode optical silica fiber when suitable higher-
order linear and nonlinear optical effects were taken
into account [2]. Another remarkable feature of the
FL system is that it corresponds to the first negative
flow of the integrable hierarchy associated with the
derivative nonlinear Schrödinger (NLS) equation in the
same way that the Camassa–Holm equation is related
to the Korteweg–de Vries equation [3]. Furthermore,
Lenells and Fokas used the bi-Hamiltonian structure
and inverse scattering transformation to analyze the
first few conservation laws, its Lax pair, the initial value
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problem and soliton solutions [4]. The explicit formu-
las for the N-bright, dark soliton solutions, breathers
and higher-order rogue waves of the FL equation were
constructed by means of the dressing method, Hirota
direct method, the complex envelope function method,
Darboux transformation (DT) method and so on [4–
10]. In addition, the long-time asymptotic behavior of
the solution of the FL equation was also discussed by
the nonlinear steepest descent method [11].

Nonlocal problems in integrable equations have
recently been the subject of intensive investigation [12–
20], where they occur due to parity-time (PT ) symme-
try. Bender and Boettcher showed that large amounts
of non-Hermitian Hamiltonians, the so-called PT -
symmetric Hamiltonians, possess entirely real and pos-
itive spectrum [21]. Furthermore, they also obtained
that the non-Hermitian Hamiltonian H = ∂xx + V (x)
is PT -symmetric if the complex potential V (x) holds
for V (x) = V ∗(−x) [22]. Following these ideas
and using a new symmetry reduction of the well-
known Ablowitz–Kaup–Newell–Segur (AKNS) sys-
tem, a nonlocal NLS equation

i qt + qxx + 2 σ q2 q∗(−x, t) = 0, (1.2)

was first proposed by Ablowitz andMusslimani [23] in
2013. Since possessing new special properties which
are different from its corresponding local model, the
nonlocal NLS equation has drawn interest [24,25].
Subsequently, many new reverse space-time and in
some cases reverse time nonlinear integrable equations
have been investigated by utilizing the classical meth-
ods, like inverse scattering method, bilinear approach,
Bäcklund transformation and DT method [26–29].
Meanwhile, the potential applications of nonlocal sys-
tems were also studied from various physical branches,
such as optics,Bose–Einstein condensation,magnetics,
electric circuits,mechanical systems and soon [30–34].
It is worth noting that the aforementioned work related
to nonlocal integrable equations is based on the ones of
local integrable equations. At present, various studies
have exhibited great richness of local integrable equa-
tions, such as the work of Zhang in Ref. [35–37] and
the work of Tian in Ref. [38,39]. These results might
be helpful for understanding how to construct exact
solutions of nonlocal integrable equations and analyze
potential physical phenomena.

Here, considering the physical significance of the FL
equation and the importance of the recent interesting
developments in the analysis of PT -symmetric of the

NLS and the derivative-type NLS equations, we pro-
pose a new reverse space-time nonlocal FL equation as
follow

i qxt − i qxx + 2 qx − qx q q(−x,−t) + i q = 0,

(1.3)

which can be derived from a special reduction of the
negative flow for the Kaup–Newell (KN) hierarchy.
As we all know, the DT method is a powerful and
effective mathematical tool to seek new exact soliton
solutions [40–47]. Among the nonlinear waves, bright
soliton, dark soliton, periodic soliton, rogue waves and
lumpwaves have been studied for some local nonlinear
evolution equations [48–50]. In Ref. [9,10], construc-
tion of DT method reveals that there exists a difference
between the FL system and other integrable system,
like the AKNS system and the KN system. Moreover,
the solutions of nonlocal systems possess the novelty in
comparisonwith its corresponding local systems.How-
ever, the reverse space-time FL equation (1.3) admits
PT -symmetric, so the DT for Eq. (1.3) is rather hard
to find. For these reasons, it is the meaningful research
work to investigate the DT, various types of soliton
solutions and the integrability of the reverse space-time
nonlocal FL equation (1.3) by making use of the FL
spectral problem. It should be mentioned that the ques-
tions of bright solitons, dark solitons, kink solitons,
periodic solitons and mixed solitons to a nonlocal FL
equation addressed [51], results of DT proved, as well
as style of analysis borrow heavily, but higher-orderDT
involved to cope with mixed-type solution of breather
and two periodic line waves, mixed-type solution of
bright soliton, dark soliton and two periodic linewaves,
and mixed-type solution of two-breather and periodic
line waves for a reverse space-time nonlocal FL equa-
tion (1.3) is non-trivial. Additionally, we also present
propagation and interaction characteristics of the soli-
ton solutions through figures.

The organization of this paper is as follows. In
Sect. 2, the one-fold DT, N-fold DT, and formu-
las q[1], q[1](−x,−t), q[N ], q[N ](−x,−t) are given
in detail by choosing appropriate eigenfunctions
(ϕ j (x, t), ϕ j (−x,−t))T of the Lax pair. Starting from
zero seed solution and periodic seed solution with con-
stant amplitude, Sect. 3 presents the construction of
bright soliton solutions, kink solutions, periodic solu-
tions, breather solutions, rogue wave solutions and sev-
eral types of mixed soliton solutions by DT. More-
over, infinitely many conservation laws of Eq. (1.3) are
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obtained in Sect. 4. Finally, the conclusion is addressed
in Sect. 5.

2 Darboux transformation

For our analysis, we start from the non-trivial flow of
the FL system in the following form

i qxt − i qxx + 2 qx − qx q r + i q = 0, (2.1a)

i rxt − i rxx − 2 rx + rx r q + i r = 0, (2.1b)

which are exactly reduced to Eq. (1.1) for r(x, t) =
q∗(x, t). Under the new symmetry reduction r(x, t) =
q(−x,−t), the compatible system (2.1) leads to the
reverse space-time FL equation (1.3), which is different
from previous classic FL equation (1.1). The following
Lax pair of a completely integrable equation (1.3) can
be given by the FL spectral problem

Ψx =U Ψ = (J λ2 + Q λ)Ψ, (2.2a)

Ψt =V Ψ = (J λ2 + Q λ + V0 + V−1

λ−1 + 1

4
J λ−2)Ψ, (2.2b)

with

J =
(−i 0

0 i

)
, Q =

(
0 qx

qx (−x,−t) 0

)
,

V0 =
(
i − 1

2 i q q(−x,−t) 0
0 −i + 1

2 i q q(−x,−t)

)
,

V−1 =
(

0 1
2 i q− 1

2 i q(−x,−t) 0

)
,

where λ is called spectral parameter, and Ψ is the vec-
tor eigenfunction associated with λ of the nonlocal FL
system. Through direct computation, it is shown that
the compatibility conditionUt − Vx + [U, V ] = 0 can
precisely yield Eq. (1.3).

In what follows, based on the DT of FL system
and nonlocal system, we will study DT method for the
reverse space-time FL equation (1.3).

2.1 One-fold Darboux transformation
for the reverse space-time FL equation

Taking gauge transformation for spectral problem with
following form

Ψ [1] = T [1] Ψ, (2.3)

the new function Ψ [1] satisfies

Ψ [1]
x =U [1] Ψ [1] = (J λ2 + Q[1] λ)Ψ [1], (2.4a)

Ψ
[1]
t =V [1] Ψ [1] = (J λ2 + Q[1]

λ + V [1]
0 + V [1]

−1 λ−1 + 1

4
J λ−2)Ψ [1], (2.4b)

with

Q[1] =
(

0 q[1]
x

q[1]
x (−x,−t) 0

)
, V [1]

−1 =
(

0 1
2 i q

[1]
− 1

2 i q
[1](−x,−t) 0

)
,

V [1]
0 =

(
i − 1

2 i q
[1] q[1](−x,−t) 0

0 −i + 1
2 i q

[1] q[1](−x,−t)

)
.

Moreover, substituting Eq. (2.3) into (2.4), T [1] satis-
fies the following relations

U [1] = (T [1]
x + T [1] U )(T [1])−1, (2.5a)

V [1] = (T [1]
t + T [1] V )(T [1])−1. (2.5b)

Next, we assume the trial one-fold Darboux matrix
T [1] as

T [1] = T [1](λ; λ1, λ2) =
(
a1 b1
c1 d1

)
λ +

(
a0 b0
c0 d0

)

+
(
a−1 b−1

c−1 d−1

)
λ−1, (2.6)

where a−1, b−1, c−1, d−1, a0, b0, c0, d0, a1, b1, c1, d1
are functions of x and t . According to Eq. (2.5), it is
directly deduced that b−1 = c−1 = b1 = c1 = 0 and
a−1, d−1 are functions of t only (see Appendix A). In
order to facilitate the subsequent calculations and anal-
ysis, under an assumption that a−1 = d−1 = 1, a0 =
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d0 = 0, let universality matrix T [1] be the form of

T [1] = T [1](λ; λ1, λ2) =
(
T [1]
11 T [1]

12
T [1]
21 T [1]

22

)
=

(
a1 0
0 d1

)
λ

+
(

0 b0
c0 0

)
+

(
1 0
0 1

)
λ−1. (2.7)

From the coefficient of λ−2 in Eq. (2.5b), the
relationships between the new potential functions
q[1], q[1](−x,−t) and the old potential functions q,

q(−x,−t) are given by

q[1] = q + b0, q[1](−x,−t) = q(−x,−t) + c0.

(2.8)

To obtain the exact form of T [1], we consider special
eigenfunctions Ψ j of the Lax pair as

Ψ j =
(

ϕ j (x, t)
ϕ j (−x,−t)

)
, j = 1, 2. (2.9)

Specially, from algebraic equations

T [1](λ)|λ=λ j Ψ j = 0, j = 1, 2, (2.10)

coefficients a1, d1, b0, c0 are acquired by Cramer’s
rule (see Appendix B). Then, T [1] with eigenfunctions
(ϕ j (x, t), ϕ j (−x,−t))T , j = 1, 2 associated with λ j

guarantees the validity of the reduction condition, that
is, b0(−x,−t) = c0. Thus, it is the one-fold DT for the
reverse space-time FL equation (1.3).

2.2 N-fold Darboux transformation
for the reverse space-time FL equation

Considering the N-fold Darboux matrix T [N ] with the
following form

Ψ [N ] = T [N ] Ψ, (2.11)

the spectral problem (2.2) turns to

Ψ [N ]
x = U [N ] Ψ [N ] = (J λ2 + Q[N ] λ)Ψ [N ], (2.12a)

Ψ
[N ]
t = V [N ] Ψ [N ] = (J λ2 + Q[N ]

λ + V [N ]
0 + V [N ]

−1 λ−1 + 1

4
J λ−2)Ψ [N ], (2.12b)

with

Q[N ] =
(

0 q[N ]
x

q[N ]
x (−x,−t) 0

)
, V [N ]

−1 =
(

0 1
2 i q

[N ]
− 1

2 i q
[N ](−x,−t) 0

)
,

V [N ]
0 =

(
i − 1

2 i q
[N ] q[N ](−x,−t) 0

0 −i + 1
2 i q

[N ] q[N ](−x,−t)

)
,

where Ψ [N ] is the eigenfunction of the Lax pair (2.12).
In addition, T [N ] satisfies the following equalities

U [N ] = (T [N ]
x + T [N ] U )(T [N ])−1, (2.13a)

V [N ] = (T [N ]
t + T [N ] V )(T [N ])−1. (2.13b)

Now, our aim is to propose the determinant repre-
sentation of the N-fold Darboux matrix for the reverse
space-time FL equation (1.3) in this subsection. For
this purpose, we set

D =
{(

a 0
0 d

)
| a, d are complex f unctions of x and t

}
,

A =
{(

0 b
c 0

)
| b, c are complex f unctions of x and t

}
,

as in Ref. [52]. According to the form of T [1] in
Eq. (2.7), we assume the matrix T [N ] as following
expression

T [N ] = T [N ](λ; λ1, λ2, . . . , λ2N ) =
(
T [N ]
11 T [N ]

12
T [N ]
21 T [N ]

22

)

=
N∑

k=−N

Sk λk, (2.14)

with

SN =
(
aN 0
0 dN

)
∈ D, SN−1

=
(

0 bN−1

cN−1 0

)
∈ A,

Sk ∈ D (if k-N is even), Sk ∈ A (if k-N isodd).
Here, S−N is a constant matrix with a−N = d−N =

1,every member of the matrix Sk(−(N −1) ≤ k ≤ N )
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is the function of x and t . Specifically, from algebraic
equations

Ψ
[N ]
j = T [N ](λ; λ1, λ2, . . . , λ2N )|λ=λ j Ψ j

=
N∑

k=−N

Sk λkj Ψ j = 0, j = 1, 2, . . . , 2N , (2.15)

the values of all unknown coefficients Sk are solved by
means of Cramer’s rule. Similarly, in order to investi-
gate the exact form of T [N ], we need to set eigenfunc-
tions Ψ j of the Lax pair

Ψ j =
(

ϕ j (x, t)
ϕ j (−x,−t)

)
, j = 1, 2, . . . , 2N . (2.16)

After tedious but straightforward calculations, we can
get the N-fold Darboux matrix T [N ] (see Appendix C)
as

T [N ](λ; λ1, λ2, . . . , λ2N ) =
(
T [N ]
11 T [N ]

12
T [N ]
21 T [N ]

22

)

=
⎛
⎜⎝

˜

T [N ]
11

W [N ]
˜

T [N ]
12

W [N ]
˜

T [N ]
21

˜W [N ]

˜

T [N ]
22

˜W [N ]

⎞
⎟⎠ . (2.17)

Next, we consider the transformed new solutions
(q[N ], q[N ](−x,−t)) corresponding to the N-fold DT
for the reverse space-time FL equation (1.3). Sub-
stituting T [N ] given by Eq. (2.14) into Eq. (2.13b)
and then comparing the coefficients of λ−(N+1), we
can get the relationships between the new solutions
q[N ], q[N ](−x,−t) and the old solutions q, q(−x,−t)

q[N ] = q + b−(N−1), q[N ](−x,−t)

= q(−x,−t) + c−(N−1). (2.18)

Furthermore, taking b−(N−1), c−(N−1), which are
obtained from Eq. (2.15), new solutions (q[N ],
q[N ](−x,−t)) can be rewritten (see Appendix D) as

q[N ] = q + Ω−(N−1)

W [N ] , q[N ](−x,−t)

= q(−x,−t) + ˜Ω−(N−1)

˜W [N ]
. (2.19)

It is easy to check the resulting T [N ] with the help
of following choice eigenfunctions (ϕ j (x, t), ϕ j (−x,
−t))T , j = 1, 2, · · · , 2N associated with λ j can be
called as N-fold Darboux matrix for the reverse space-
time FL equation (1.3). In other words, T [N ] shares the
invariance, that is, b−(N−1)(−x,−t) = c−(N−1).

3 Exact solutions

In this section, from zero seed solution and nonzero
seed solution, we will combine N-fold DT to seek var-
ious types of exact solutions for the reverse space-time
FL equation (1.3).

3.1 Exact solutions from zero seed
solution for the reverse space-time FL equation

First of all, choosing zero seed solution q = 0, q(−x,
−t) = 0, the eigenfunctions of Lax pair can be
expressed as

Ψ j =
(

ϕ j (x, t)
ϕ j (−x,−t)

)

=
(
e−i(λ2j x+(λ2j−1+ 1

4 λ−2
j )t)

ei(λ
2
j x+(λ2j−1+ 1

4 λ−2
j )t)

)
,

j = 1, 2, . . . , 2N . (3.1)

Moreover, N-fold soliton solutions can be derived by
direct calculation for the reverse space-time FL equa-
tion (1.3), which are omitted here.

When N = 2, substituting Eq. (3.1) and the seed
solution into Eq. (2.19), we can obtain second-order
soliton solutions. Setting λ1 = λ∗

2, λ3 = λ∗
4, the typ-

ical two-bright soliton is displayed with appropriate
parameters in Fig. 1(a). Taking spectral parameters as
λ2R = 0, λ1I = −λ2I , λ3 = λ∗

4, mixed-type solu-
tion of kink and bright soliton can be seen in Fig. 1(b).
Meanwhile, the heights of soliton wave are different
under different planes background. Furthermore, with
the help of parameters λ1I = λ3I = λ4I = 0, λ2R = 0,
mixed-type solution of soliton and periodic waves is
shown in Fig. 1(c).

3.2 Exact solutions from nonzero seed
solution for the reverse space-time FL equation

In the following, using the results ofN-foldDT,we con-
struct exact solutions from nonzero seed solution. Let a
be real number and c be complex number, then assum-

ing seed solution q = c ei(a x+(
(a+1)2

a −c2)t), q(−x,

−t) = c e−i(a x+(
(a+1)2

a −c2)t) and substituting the above

123



3810 J.-Y. Song et al.

Fig. 1 Two-bright soliton solution with λ1 = 1 + i, λ2 =
1 − i, λ3 = 0.6 − 0.5 i, λ4 = 0.6 + 0.5 i ; (b) Mixed-type
solution of kink and bright soliton with λ1 = 1 + 1.8 i, λ2 =

−1.8 i, λ3 = 0.57 − 0.01 i, λ4 = 0.57 + 0.01 i ; (c) Mixed-type
solution of soliton and periodic waves with λ1 = 1, λ2 = 3 i,
λ3 = 0.2, λ4 = 0.8

of form q, q(−x,−t) into the Lax pair, the eigenfunc-
tions Ψ j associated with λ j are given by

Ψ j =
(

ϕ j (x, t)
ϕ j (−x,−t)

)

=
⎛
⎝ (C1, j e

A j − C2, j e
−A j )e

i
2 (a x+(

(a+1)2
a −c2)t)

(C1, j e
−A j − C2, j e

A j )e− i
2 (a x+(

(a+1)2
a −c2)t)

⎞
⎠ ,

j = 1, 2, . . . , 2N , (3.2)

where

Pj = −a2 + 4 a(a c2 − 1)λ2j − 4 λ4j ,

A j = 1
2

√
Pj (x + 2 a λ2j+1

2 a λ2j
t),

C1, j = a+2 λ2j+i
√

Pj−2 a c λ j

2 a c λ j
√

Pj
,

C2, j = a+2 λ2j−i
√

Pj−2 a c λ j

2 a c λ j
√

Pj
.

Through direct calculation, substituting Eq. (3.2)
and the periodic seed solution into Eq. (2.19), we focus
on various types of solutions for the reverse space-time
FL equation (1.3). Here, we omit their analytic expres-
sions to avoid the complicated formula.

When N = 1, according to Eq. (3.2), we can
obtain one-order soliton solutions. Choosing λ1R =
λ2R = 0, λ2I → λ1I and appropriate parameters a
and c, special breather, which appears both in space
and time, is derived under periodic line waves back-
ground, see Fig. 2(a). Setting λ1R = 0, λ1I = −λ2I
with appropriate a and c, a composition of two peri-
odic line waves with different background heights is
illustrated in Fig. 2(b). In addition, we can easily get all
kinds of breathers, including Ma breather [53], general
breather [54],Akhmediev breather [55]. The dynamical

evolution of q[1] is plotted in Figs. 2(c) and 3(a), (b).
Under the choice in Eq. (3.2) with one-paired eigen-
value λ1 = α1 + i β1 and λ2 = α1 − i β1, combin-
ing with the limit a → 2 (α2

1 + β2
1 ) for the condition

c = −
√
a+2 (α2

1−β2
1 )

a , then we obtain new eigenfunc-
tions which are the product of plane wave and rational
function as form

Ψ1 =
(

ϕ1(x, t)
ϕ1(−x,−t)

)

=
⎛
⎝− η1

2 α1 (α2
1+β2

1 ) (α1+i β1)2
e

i
4 θ

η′
1

2 α1 (α2
1+β2

1 ) (α1+i β1)2
e− i

4 θ

⎞
⎠ , (3.3a)

Ψ2 =
(

ϕ2(x, t)
ϕ2(−x,−t)

)

=
⎛
⎝− η2

2 α1 (α2
1+β2

1 ) (α1−i β1)2
e

i
4 θ

η′
2

2 α1 (α2
1+β2

1 ) (α1−i β1)2
e− i

4 θ

⎞
⎠ , (3.3b)

where

θ = 4 (α2
1 + β2

1 ) (x + t) + 4 t − (α2
1 − β2

1 ) t

(α2
1 + β2

1 )
2
,

η1 = 4α1 (α2
1 + β2

1 ) (α1 + i β1)
2 (x + t) + (α2

1

+β2
1 ) (i α1 − β1) + α1 t,

η′
1 = 4α1 (α2

1 + β2
1 ) (α1 + i β1)

2 (x + t) − (α2
1

+β2
1 ) (i α1 − β1) + α1 t,

η2 = 4α1 (α2
1 + β2

1 ) (α1 − i β1)
2 (x + t)

+(α2
1 + β2

1 ) (i α1 + β1) + α1 t,

η′
2 = 4α1 (α2

1 + β2
1 ) (α1 − i β1)

2 (x + t)

−(α2
1 + β2

1 ) (i α1 + β1) + α1 t.
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Fig. 2 (a) Mixed-type solution of breather and periodic line
waves with λ1 = i, λ2 = 1.0001 i, a = 0.1, c = 0.1; (b) Mixed-
type solution of two periodic line waves with λ1 = 2 i, λ2 =

1− 2 i, a = 2, c = 1; (c) Ma breather with λ1 = 1+ 0.5 i, λ2 =
1 − 0.5 i, a = −0.24, c = 4.68

Fig. 3 (a) General breather with λ1 = 0.5 + 0.67 i, λ2 =
0.5 − 0.67 i, a = 1, c = 1; (b) Akhmediev breather with
λ1 = 0.5 + 0.2 i, λ2 = 0.5 − 0.2 i, a = 1.35, c =

1; (c) First-order rogue wave with α1 = 0.34, β1 =
0.5

Next, substituting Eq. (3.3) into Eq. (2.19), the first-
order rogue wave solution can be derived. Through
Fig. 3(c), the main features, such as one peak and
two depressions [56], of the first-order rogue wave are
clearly shown.

When N = 2, using Eq. (3.2), we can obtain second-
order soliton solutions under periodic waves back-
ground. Taking λ1 = λ∗

2, λ3I = −λ4I , λ4R = 0 and
appropriate parameters a and c, mixed-type solution of
breather and two periodic line waves and mixed-type
solution of bright soliton, dark soliton and two periodic
line waves are plotted in Figs. 4(a), (b), respectively.
Fig. 4(c) shows mixed-type structure of two-breather
and periodic line waves with λ1 = λ∗

2, λ3 = λ∗
4.

4 Conservation laws

In this section, we will seek the infinitely many conser-
vation laws to discuss the integrability for the reverse
space-time FL equation (1.3).

From Lax pair (2.2), we can deduce that

ϕx (x, t)

ϕ(x, t)
= −i λ2 + λ qx Γ,

ϕx (−x,−t)

ϕ(−x,−t)
= λ qx (−x,−t) Γ −1 + i λ2, (4.1)

where Γ = ϕ(−x,−t)/ϕ(x, t). According to ω =
q Γ , we can derive the following Riccati-type equation

ωx = qx
q

ω + λ q qx (−x,−t) + 2 i λ2 ω − λ
qx
q

ω2.

(4.2)

Assuming that

ω =
∞∑
j=0

ω j
1

λ2 j+1 , (4.3)

and substituting Eq. (4.3) into Eq. (4.2), the recursion
formulas can be obtained as

ω0 = −q qx (−x,−t)

2 i
, ω1

= 1

4
(q qxx (−x,−t) − 1

2 i
q qx q

2
x (−x,−t)),

ω2 = 1

16
(4 q qx qx (−x,−t) qxx (−x,−t)

+q qxx q
2
x (−x,−t) + i q q2x q

3
x
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Fig. 4 (a) Mixed-type solution of breather and two periodic
line waves with λ1 = 0.5 − 0.01 i, λ2 = 0.5+ 0.01 i, λ3 =
0.7 + 1.5 i, λ4 = −1.5 i, a = 1, c = 1; (b) Mixed-type solution
of bright soliton, dark soliton and two periodic line waves with

λ1 = 0.5 − 0.01 i, λ2 = 0.5 + 0.01 i, λ3 = 1 + 1.8 i, λ4 =
−1.8 i, a = 1, c = 2; (c) Mixed-type solution of two-breather
and periodic line waves with λ1 = 0.7 + 0.05i, λ2 = 0.7 −
0.05 i, λ3 = 0.7 + 0.3 i, λ4 = 0.7 − 0.3 i, a = 1, c = 1

(−x,−t) − 2 i q qxxx (−x,−t)),

· · ·
ωm = 1

2 i
(ω(m−1)x − qx

q
ωm−1

+qx
q

m∑
j=0

ω j ωm−1− j ), (m ≥ 1). (4.4)

From the compatibility condition (
ϕx (x,t)
ϕ(x,t) )t = (

ϕt (x,t)
ϕ(x,t) )x ,

direct calculations lead to

(−i λ2 + λ qx Γ )t = (A + B
ω

q
)x , (4.5)

with

A = −i λ2 + i − 1

2
i q q(−x,−t) − 1

4
i λ−2,

B = λ qx + 1

2
i q λ−1.

Equating the terms with the same power series of λ in
Eq. (4.5), we can get the infinite number of conserva-
tion laws for Eq. (1.3). The first few conserved densities
are expressed explicitly as follows:

(qx qx (−x, −t))t = (qx qx (−x,−t) − q q(−x,−t))x ,

(qx qxx (−x,−t) − 1

2 i
q2x q

2
x (−x,−t))t

= (qx qxx (−x,−t) − q qx (−x,−t)

− 1

2 i
q2x q

2
x (−x, −t))x ,

(4 q2x qx (−x,−t) qxx (−x,−t) + qx qxx q
2
x (−x,−t)

+i q3x q
3
x (−x, −t) − 2 i qx qxxx (−x, −t))t

= (qx qxx q
2
x (−x,−t) + 4 q2x qx (−x,−t)

qxx (−x, −t) + i q3x q
3
x (−x, −t)

−2 i qx qxxx (−x, −t)

+2 i q qxx (−x, −t) − q qx q
2
x (−x, −t))x . (4.6)

5 Conclusion

The reverse space-time FL equation has been systemat-
ically investigated in this paper.With the help of its Lax
pair and infinitely many conservation laws, the inte-
grability has been demonstrated. Under vanishing and
non-vanishing backgrounds, we have given some soli-
ton solutions with DT. Based on the obtained solutions,
the dynamic characteristics of these solitons, including
bright solitons, kink, periodic waves, breather, rogue
wave and several types of mixed solitons, have been
shown throughfigures. It’s easy to find that the nonlocal
FL equation exhibits some novel results in comparison
with local case. For instance, mixed-type solution of
kink and bright soliton, mixed-type solution of soliton
and periodic waves, mixed-type solution of breather
and periodic line waves, mixed-type solution of two
periodic line waves, mixed-type solution of breather
and two periodic line waves, mixed-type solution of
bright soliton, dark soliton and two periodic linewaves,
and mixed-type solution of two-breather and periodic
line waves, which do not occur in the classic FL equa-
tion (1.1), exist in the reverse space-time FL equa-
tion (1.3). These results can be used to enrich solitary
wave phenomena in the field of nonlinear wave. There-
fore, the potential applications of solitary wave solu-
tions obtained will be an interesting issue to be studied
in future. In addition, N-fold rogue wave in this equa-
tion will be desirable, too.
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Appendix A

From Eq. (2.5a), comparing the coefficients of λ j , j =
3, 2, 1, 0,−1, we can get

λ3 : b1 = 0, c1 = 0,

λ2 : 2 i b0 + a1 qx − d1

q[1]
x = 0,−2 i c0 + d1

qx (−x,−t) − a1 q
[1]
x (−x,−t) = 0,

λ1 : a1x + b0 qx (−x,−t) − c0

q[1]
x = 0, 2 i b−1 + a0 qx − d0 q

[1]
x = 0,

−2 i c−1 + d0 qx (−x,−t) − a0

q[1]
x (−x,−t) = 0, d1x + c0 qx

−b0 q
[1]
x (−x,−t) = 0,

λ0 : a0x + b−1 qx (−x,−t) − c−1 q
[1]
x = 0,

b0x + a−1 qx − d−1 q
[1]
x = 0,

c0x + d−1 qx (−x,−t) − a−1 q
[1]
x (−x,−t) = 0,

d0x + c−1 qx − b−1 q
[1]
x (−x,−t) = 0,

λ−1 : a−1x = 0, b−1x = 0, c−1x = 0, d−1x = 0.

Similarly, from Eq. (2.5b), comparing the coefficients
of λ j , j = 2, 1, 0,−1,−2,−3 under the condition
b1 = 0, c1 = 0, we can get

λ2 : 2 i b0 + a1 qx − d1 q
[1]
x = 0,

−2 i c0 + d1 qx (−x,−t)

−a1 q
[1]
x (−x,−t) = 0,

λ1 : d0 qx (−x,−t) − a0 q
[1]
x (−x,−t) = 0,

a0 qx − d0 q
[1]
x = 0,

−1

2
i a1 q(−x,−t) q + 1

2
i a1

q[1](−x,−t) q[1] + a1t + b0 qx (−x,−t)

−c0 q
[1]
x = 0,

1

2
i d1 q(−x,−t) q − 1

2
i d1

q[1](−x,−t) q[1] + d1t + c0 qx

−b0 q
[1]
x (−x,−t) = 0,

λ0 : −1

2
i a0 q(−x,−t) q + 1

2
i a0

q[1](−x,−t) q[1] + a0t = 0,
1

2
i d0 q(−x,−t) q − 1

2
i d0

q[1](−x,−t) q[1] + d0t = 0,

−2ib0 + 1

2
ia1 q + 1

2
ib0q(−x,−t)q

−1

2
id1q

[1] + 1

2
ib0q

[1](−x,−t)q[1] + b0t

+a−1qx − d−1q
[1]
x = 0,

2 i c0 − 1

2
i d1 q(−x,−t)

−1

2
i c0 q(−x,−t)

q + 1

2
i a1 q

[1](−x,−t)

−1

2
i c0 q

[1](−x,−t) q[1]

+c0t + d−1 qx (−x,−t) − a−1

q[1]
x (−x,−t) = 0,

λ−1 : a0 q − d0 q
[1] = 0,

−d0 q(−x,−t) + a0 q
[1](−x,−t) = 0,

−1

2
i b0 q(−x,−t) − 1

2
i a−1

q(−x,−t) q − 1

2
i c0 q

[1]

+1

2
i a−1 q

[1](−x,−t) q[1] + a−1t = 0,

1

2
i c0 q + 1

2
i d−1 q(−x,−t) q

+1

2
i b0 q

[1](−x,−t) − 1

2
i d−1 q

[1](−x,−t) q[1]

+d−1t = 0,

λ−2 : b0 + a−1 q − d−1 q
[1] = 0,

c0 + d−1 q(−x,−t) − a−1 q
[1](−x,−t) = 0,

λ−3 : b−1 = 0, c−1 = 0.
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Appendix B

The a1, d1, b0, c0 for one-fold Darboux matrix T [1]
yield

a1 =

∣∣∣∣−λ−1
1 ϕ1(x, t) ϕ1(−x,−t)

−λ−1
2 ϕ2(x, t) ϕ2(−x,−t)

∣∣∣∣∣∣∣∣λ1 ϕ1(x, t) ϕ1(−x,−t)
λ2 ϕ2(x, t) ϕ2(−x,−t)

∣∣∣∣
,

d1 =

∣∣∣∣−λ−1
1 ϕ1(−x,−t) ϕ1(x, t)

−λ−1
2 ϕ2(−x,−t) ϕ2(x, t)

∣∣∣∣∣∣∣∣λ1 ϕ1(−x,−t) ϕ1(x, t)
λ2 ϕ2(−x,−t) ϕ2(x, t)

∣∣∣∣
,

b0 =

∣∣∣∣λ1 ϕ1(x, t) −λ−1
1 ϕ1(x, t)

λ2 ϕ2(x, t) −λ−1
2 ϕ2(x, t)

∣∣∣∣∣∣∣∣λ1 ϕ1(x, t) ϕ1(−x,−t)
λ2 ϕ2(x, t) ϕ2(−x,−t)

∣∣∣∣
,

c0 =

∣∣∣∣λ1 ϕ1(−x,−t) −λ−1
1 ϕ1(−x,−t)

λ2 ϕ2(−x,−t) −λ−1
2 ϕ2(−x,−t)

∣∣∣∣∣∣∣∣λ1 ϕ1(−x,−t) ϕ1(x, t)
λ2 ϕ2(−x,−t) ϕ2(x, t)

∣∣∣∣
.

In other words, we can deduce

T [1]
11 =

∣∣∣∣∣∣
λ 0 λ−1

λ1 ϕ1(x, t) ϕ1(−x,−t) λ−1
1 ϕ1(x, t)

λ2 ϕ2(x, t) ϕ2(−x,−t) λ−1
2 ϕ2(x, t)

∣∣∣∣∣∣∣∣∣∣λ1 ϕ1(x, t) ϕ1(−x,−t)
λ2 ϕ2(x, t) ϕ2(−x,−t)

∣∣∣∣
,

T [1]
12 =

∣∣∣∣∣∣
0 1 0

λ1 ϕ1(x, t) ϕ1(−x,−t) λ−1
1 ϕ1(x, t)

λ2 ϕ2(x, t) ϕ2(−x,−t) λ−1
2 ϕ2(x, t)

∣∣∣∣∣∣∣∣∣∣λ1 ϕ1(x, t) ϕ1(−x,−t)
λ2 ϕ2(x, t) ϕ2(−x,−t)

∣∣∣∣
,

T [1]
21 =

∣∣∣∣∣∣
0 1 0

λ1 ϕ1(−x,−t) ϕ1(x, t) λ−1
1 ϕ1(−x,−t)

λ2 ϕ2(−x,−t) ϕ2(x, t) λ−1
2 ϕ2(−x,−t)

∣∣∣∣∣∣∣∣∣∣λ1 ϕ1(−x,−t) ϕ1(x, t)
λ2 ϕ2(−x,−t) ϕ2(x, t)

∣∣∣∣
,

T [1]
22 =

∣∣∣∣∣∣
λ 0 λ−1

λ1 ϕ1(−x,−t) ϕ1(x, t) λ−1
1 ϕ1(−x,−t)

λ2 ϕ2(−x,−t) ϕ2(x, t) λ−1
2 ϕ2(−x,−t)

∣∣∣∣∣∣∣∣∣∣λ1 ϕ1(−x,−t) ϕ1(x, t)
λ2 ϕ2(−x,−t) ϕ2(x, t)

∣∣∣∣
.

123



Darboux transformation, exact solutions and conservation laws 3815

Appendix C

The W [N ], ˜T [N ]
11 ,

˜T [N ]
12 , ˜W [N ], ˜T [N ]

21 ,
˜T [N ]
22 for N-fold

Darboux matrix T [N ] read

W [N ] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λN
1 ϕ1(x, t) λN−1

1 ϕ1(−x,−t) · · · λ
−(N−2)
1 ϕ1(x, t) λ

−(N−1)
1 ϕ1(−x,−t)

λN
2 ϕ2(x, t) λN−1

2 ϕ2(−x,−t) · · · λ
−(N−2)
2 ϕ2(x, t) λ

−(N−1)
2 ϕ2(−x,−t)

...
...

...
...

...

λN
2N−1 ϕ2N−1(x, t) λN−1

2N−1 ϕ2N−1(−x,−t) · · · λ
−(N−2)
2N−1 ϕ2N−1(x, t) λ

−(N−1)
2N−1 ϕ2N−1(−x,−t)

λN
2N ϕ2N (x, t) λN−1

2N ϕ2N (−x,−t) · · · λ
−(N−2)
2N ϕ2N (x, t) λ

−(N−1)
2N ϕ2N (−x,−t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

˜T [N ]
11 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λN 0 · · · 0 λ−N

λN
1 ϕ1(x, t) λN−1

1 ϕ1(−x,−t) · · · λ
−(N−1)
1 ϕ1(−x,−t) λ−N

1 ϕ1(x, t)

λN
2 ϕ2(x, t) λN−1

2 ϕ2(−x,−t) · · · λ
−(N−1)
2 ϕ2(−x,−t) λ−N

2 ϕ2(x, t)

...
...

...
...

...

λN
2N−1 ϕ2N−1(x, t) λN−1

2N−1 ϕ2N−1(−x,−t) · · · λ
−(N−1)
2N−1 ϕ2N−1(−x,−t) λ−N

2N−1 ϕ2N−1(x, t)

λN
2N ϕ2N (x, t) λN−1

2N ϕ2N (−x,−t) · · · λ
−(N−1)
2N ϕ2N (−x,−t) λ−N

2N ϕ2N (x, t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

˜T [N ]
12 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 λN−1 · · · λ−(N−1) 0

λN
1 ϕ1(x, t) λN−1

1 ϕ1(−x,−t) · · · λ
−(N−1)
1 ϕ1(−x,−t) λ−N

1 ϕ1(x, t)

λN
2 ϕ2(x, t) λN−1

2 ϕ2(−x,−t) · · · λ
−(N−1)
2 ϕ2(−x,−t) λ−N

2 ϕ2(x, t)
...

...
...

...
...

λN
2N−1 ϕ2N−1(x, t) λN−1

2N−1 ϕ2N−1(−x,−t) · · · λ
−(N−1)
2N−1 ϕ2N−1(−x,−t) λ−N

2N−1 ϕ2N−1(x, t)

λN
2N ϕ2N (x, t) λN−1

2N ϕ2N (−x,−t) · · · λ
−(N−1)
2N ϕ2N (−x,−t) λ−N

2N ϕ2N (x, t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

˜W [N ] =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λN
1 ϕ1(−x,−t) λN−1

1 ϕ1(x, t) · · · λ
−(N−2)
1 ϕ1(−x,−t) λ

−(N−1)
1 ϕ1(x, t)

λN
2 ϕ2(−x,−t) λN−1

2 ϕ2(x, t) · · · λ
−(N−2)
2 ϕ2(−x,−t) λ

−(N−1)
2 ϕ2(x, t)

...
...

...
...

...

λN
2N−1 ϕ2N−1(−x,−t) λN−1

2N−1 ϕ2N−1(x, t) · · · λ
−(N−2)
2N−1 ϕ2N−1(−x,−t) λ

−(N−1)
2N−1 ϕ2N−1(x, t)

λN
2N ϕ2N (−x,−t) λN−1

2N ϕ2N (x, t) · · · λ
−(N−2)
2N ϕ2N (−x,−t) λ

−(N−1)
2N ϕ2N (x, t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,
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˜T [N ]
21 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 λN−1 · · · λ−(N−1) 0

λN
1 ϕ1(−x,−t) λN−1

1 ϕ1(x, t) · · · λ
−(N−1)
1 ϕ1(x, t) λ−N

1 ϕ1(−x,−t)

λN
2 ϕ2(−x,−t) λN−1

2 ϕ2(x, t) · · · λ
−(N−1)
2 ϕ2(x, t) λ−N

2 ϕ2(−x,−t)
...

...
...

...
...

λN
2N−1 ϕ2N−1(−x,−t) λN−1

2N−1 ϕ2N−1(x, t) · · · λ
−(N−1)
2N−1 ϕ2N−1(x, t) λ−N

2N−1 ϕ2N−1(−x,−t)

λN
2N ϕ2N (−x,−t) λN−1

2N ϕ2N (x, t) · · · λ
−(N−1)
2N ϕ2N (x, t) λ−N

2N ϕ2N (−x,−t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

˜T [N ]
22 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λN 0 · · · 0 λ−N

λN
1 ϕ1(−x,−t) λN−1

1 ϕ1(x, t) · · · λ
−(N−1)
1 ϕ1(x, t) λ−N

1 ϕ1(−x,−t)

λN
2 ϕ2(−x,−t) λN−1

2 ϕ2(x, t) · · · λ
−(N−1)
2 ϕ2(x, t) λ−N

2 ϕ2(−x,−t)
...

...
...

...
...

λN
2N−1 ϕ2N−1(−x,−t) λN−1

2N−1 ϕ2N−1(x, t) · · · λ
−(N−1)
2N−1 ϕ2N−1(x, t) λ−N

2N−1 ϕ2N−1(−x,−t)

λN
2N ϕ2N (−x,−t) λN−1

2N ϕ2N (x, t) · · · λ
−(N−1)
2N ϕ2N (x, t) λ−N

2N ϕ2N (−x,−t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Appendix D

TheΩ−(N−1), ˜Ω−(N−1) forN-soliton solutions (q[N ], q[N ](−x,−t))
arrive at

Ω−(N−1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λN1 ϕ1(x, t) λN−1
1 ϕ1(−x, −t) · · · λ

−(N−2)
1 ϕ1(x, t) −λ−N

1 ϕ1(x, t)

λN2 ϕ2(x, t) λN−1
2 ϕ2(−x, −t) · · · λ

−(N−2)
2 ϕ2(x, t) −λ−N

2 ϕ2(x, t)

...
...

...
...

...

λN2N−1 ϕ2N−1(x, t) λN−1
2N−1 ϕ2N−1(−x, −t) · · · λ

−(N−2)
2N−1 ϕ2N−1(x, t) −λ−N

2N−1 ϕ2N−1(x, t)

λN2N ϕ2N (x, t) λN−1
2N ϕ2N (−x, −t) · · · λ

−(N−2)
2N ϕ2N (x, t) −λ−N

2N ϕ2N (x, t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

˜Ω−(N−1) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

λN1 ϕ1(−x, −t) λN−1
1 ϕ1(x, t) · · · λ

−(N−2)
1 ϕ1(−x,−t) −λ−N

1 ϕ1(−x,−t)

λN2 ϕ2(−x, −t) λN−1
2 ϕ2(x, t) · · · λ

−(N−2)
2 ϕ2(−x,−t) −λ−N

2 ϕ2(−x,−t)

...
...

...
...

...

λN2N−1 ϕ2N−1(−x,−t) λN−1
2N−1 ϕ2N−1(x, t) · · · λ

−(N−2)
2N−1 ϕ2N−1(−x,−t) −λ−N

2N−1 ϕ2N−1(−x,−t)

λN2N ϕ2N (−x,−t) λN−1
2N ϕ2N (x, t) · · · λ

−(N−2)
2N ϕ2N (−x,−t) −λ−N

2N ϕ2N (−x,−t)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.
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