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Abstract This paper is concerned with an uncer-
tainty and disturbance estimator-based tracking control
problem for a class of interval type-2 fractional-order
Takagi-Sugeno fuzzy systems subject to time-varying
delays. The footprints of the uncertainty of the under-
lying fuzzy systems are taken into account to capture
and model different levels of uncertainties. The uncer-
tainty and disturbance estimator is used to promote the
tracking behavior of rejecting disturbance in the con-
trol system. First, by applying the Lyapunov approach,
we focus on the examination of stability and perfor-
mance of the fractional-order tracking error system.
Next, unknown system uncertainties, external distur-
bances and nonlinearities are accurately estimated via
an appropriate filter design. Particularly, the proposed
control technique does not require any prior knowledge
about above said unknown factors and it only requires
the bandwidth information about the low-pass filter.
Then, four numerical examples with simulation results
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are presented in the end, to show the potential of the
theoretical results of the proposed control method.
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1 Introduction

In recent few decades, the study of nonlinear control
systems has paidmuch attention sincemany real-world
happenings are governed by nonlinear differential and
difference equations [1–4]. It is often very difficult
to design accurate controllers for nonlinear systems
directly due to their complicated dynamical behaviors.
Recent studies of control theory have mainly resolved
this issue with the aid of various advanced linearisa-
tion techniques, where the actual nonlinear systems
are approximated as linear systems and then various
linear control techniques are applied [5–7]. Among
various linearisation approaches, Takagi-Sugeno (T-S)
fuzzy model-based approach developed in [8] has been
described as an important and successful method for
linearizing of any smooth nonlinear system. Support
of T-S fuzzy model technique, the nonlinear system
is approximated as sum of a collection of linear sub-
systems with their weighting membership functions
(MFs). Under this framework, a variety of linear type
controllers are proposed for many nonlinear systems,
which canbe applied to various kinds of real-timeappli-
cations [9–12].
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The research of the T-S fuzzy model technique can
represent the nonlinear information of the system effec-
tively, but it shows limitations in dealingwith the uncer-
tainty that existing in the system. In order to handle this
situation, the interval type-2 (IT2) fuzzy model-based
approach are introduced. The main advantage of this
approach is that it could efficiently handle the grades
of membership uncertainties over fuzzy systems by
capturing the effect of uncertainties through the upper
and lower MFs. Recently, the IT2 fuzzy model strate-
gies has been researched and some results have been
produced [13–18]. In [14], the adaptive sliding mode
controller has been proposed for IT2FSs to keep the
closed-loop system stable. Based on imperfect premise
matching, the state space was split into two sub-spaces
to enhance the stability analysis in the interval type-2
T-S fuzzy systems (IT2FSs) in [15].

Up to now, it was also well-known that one of the
superiorities of fractional-order (FO) systems com-
pared with integer-order systems are that FO systems
can possess the capacity of infinite memory and also
can express heredity and then can describe the real-
world physical systems more accurately and precisely
[19,20]. In particular, the general form of integer-order
calculus as fractional calculus and it can be expected
to provide a more accurate description of the system
dynamics compared to classical integer-order models.
Due to its potential applications of fractional calculus,
the researches have been increased in many industrial
and research fields, such as bioengineering, physics,
economics and signal processing. Also, studies on FO
system have recently gained significant attention from
control research communities because of their potential
applications in various engineering systems and control
processes, such as stabilization, synchronization, state
estimation and reference tracking [21–26]. Although
many useful research works have been constructed
based on fuzzy approach, most of them are concerned
with integer-order systems and only a little amount of
them are dealt with FO fuzzy systems [27,28].

The modeling errors, parameter uncertainties, and
external disturbances are unavoidable in real-time con-
trol systems, which may degrade systems efficiency
and lead to instability. Therefore, uncertainties and
external disturbances rejection is a key objective in
the synthesis of modern control systems and several
robust control techniques have been developed to han-
dle the aforementioned factors in recent years [29–33].
At the early stage, high-gain feedback control approach

is developed for many dynamical systems to compen-
sate the disturbance effect [29], where the feedback
control loop-gain needs to extend large value to get
required control performance. In addition, many physi-
cal actuator devices fail to provide larger outputs,which
will bring considerable practical difficulties in the pro-
cess of high-gain control design. In order to avoid this
difficulty, the integral control scheme is developed in
[30],which could attenuate the constant external distur-
bance effect without increasing gain value largely but it
may not be suitable when the time-varying disturbance
exists. Recently, the sliding mode control approach is
constructed for motion control system in [33], which
effectively handles uncertainty, constants and time-
varying disturbances but it requires the bound value
of the external disturbance and its derivative. In some
practical situations, it may be difficult to get enough the
information about external disturbances and uncertain-
ties. To handle this issue, many modern control tech-
niques are developed to estimate them [34–37]. Among
such techniques, uncertainty and disturbance estimator
(UDE)-based control design proposed by Zhong and
Rees in [36], has been widely used in many indus-
trial and engineering applications [37]. This approach
not only compensates the uncertainty and disturbance
effect but also helps linearise highly nonlinear systems.
In addition, it does not require any information about
the disturbance and systemuncertainties,which is prac-
tically more important and significant.

Motivated by the aforementioned studies and achie-
vements, in this paper, a robust tracking problem is
considered for FO IT2FSs via a UDE-based control
strategy. Moreover, the main contributions and advan-
tages of the proposed study are summarized as follows:

(i) The robust tracking problem of UDE-based con-
trol strategy is first time proposed for FO IT2FSs
with unknown uncertainties, nonlinearities, and
external disturbances.

(ii) The proposed UDE-based control design relaxes
the general assumption considered on unknown
uncertainties, nonlinearities and external distur-
bances since it requires only its bandwidth infor-
mation. Also, proposed method has significantly
fewer tuning parameters, so it is easy to imple-
ment in many practical systems such as aerial
vehicles, underwater vehicles, and satellites.

(iii) To facilitate the stability analysis, the lower and
upper MFs of plant and controller are considered
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within the footprint of uncertainty (FOU), which
leads to obtain less conservative stability result.

(iv) The stability criterion of the designed method
is derived by employing a Lyapunov functional
method, slack matrix and linear matrix inequal-
ities. In order to demonstrate the validity of
the developed theoretical results, three numeri-
cal examples are presented.

The paper is organized as follows: FO IT2FSs
model, FO IT2 fuzzy reference and FO IT2 fuzzy error
dynamics are introduced systematically in Sect. 2. Sec-
tion 3 provides performance analysis results for FO IT2
fuzzy error dynamics. The corresponding simulation
results are provided in Sect. 4. Conclusions and future
works are given in Sect. 5.

Notation Throughout this paper, Z+ is the set of all
positive integers. Rn and R

n×m are, respectively, the
n-dimensional vector space and the n × m real matrix
space. ‘∗’ represents the symmetric terms in a symmet-
ric matrix. ‘�’ indicates the convolution operator.B+

l is
the pseudo-inverse of Bl . L−1{·} stands for the inverse
Laplace transform operator. The superscripts “T ′′ and
“−1′′ indicate matrix transposition and matrix inverse,
respectively.

2 Problem formulation

As presented in [38], Caputo derivative is well under-
stood in physical situations andmore applicable to real-
world problems. Therefore, in this paper, we consider
the following Caputo fractional derivative.

Definition 1 [38] The Caputo fractional derivative of
FO α of function f (t) is defined as

Dα f (t) = 1

�(i − α)

di

dt i

∫ t

t0
(t − �)i−α−1 f (�)d�,

where α represents the order of the derivative, such that
0 ≤ i−1 ≤ α < i, i ∈ Z

+ and�( j) = ∫ ∞
0 t j−1e−1dt .

Remark 1 It should be mentioned that the Laplace
transform of the Caputo fractional derivative requires
for the use of initial values of integer-order derivatives
with clear physical representations in practical theoret-
ical models, whereas the Riemann-Liouville fractional
derivative does not. In general, the Caputo fractional
differential equation is appropriate for analyzing real

dynamic models with nonzero initial values, whereas
the Riemann-Liouville fractional differential equation
is better suited for presenting fractional-order systems
with a static initial state. As a result, the Caputo opera-
tor is utilized in thiswork to investigate fractional-order
IT2FSs.

Consider the following FO IT2FSs with m̄ fuzzy
rules subject to unknown uncertainties, nonlinearities
and external disturbances:

Plant rule l IF δ̄1(ρ(t)) is Ēl
1, δ̄2(ρ(t)) is Ēl

2, . . . ,
δ̄ψ (ρ(t)) is Ēl

ψ THEN

Dαρ(t) = (Al + ΔAl(t))ρ(t)

+ Alτ ρ(t − τ(t)) + Blϑ(t)

+ Clβ(t) + g(ρ(t)), (1)

where Ēl

̃
(l ∈ L = {1, 2, . . . , m̄}, 
̃ = 1, 2, . . . , ψ)

denotes the IT2 fuzzy set with the integer ψ > 0;
δ̄
̃(ρ(t)) denotes the measurable premise variable;
ρ(t) ∈ R

n indicates the system state vector; ϑ(t) ∈
R
nϑ is the control input vector; g(ρ(t)) ∈ R

ng denotes
the unknown nonlinear function; τ(t) is time-varying
delay and satisfy the conditions 0 ≤ τ(t) ≤ τ , where
τ are known positive constants; β(t) ∈ R

nβ stands
for external disturbance input. Further, Al , Alτ , Bl

and Cl represent known system matrices;ΔAl(t) is the
unknown time-varying uncertainty matrix. The follow-
ing interval set presents the firing strength of the l-th
fuzzy rule:

Ml(ρ(t)) = [λl(ρ(t)), λl(ρ(t))], l ∈ L,

where the nonlinear functions λl(ρ(t)) and λl(ρ(t))
stand for lower and upper grade ofMFs of the l-th fuzzy
rule, respectively. Further, they satisfy 0 ≤ λl(ρ(t)) =∏ψ


̃=1
ζ
Ē
l

̃

(δ̄
̃(ρ(t))) ≤ λl(ρ(t)) = ∏ψ


̃=1
ζ
Ē
l

̃

(δ̄
̃

(ρ(t))) in which the positive functions ζ
Ē
l

̃

(δ̄
̃(ρ(t))),

ζ
Ē
l

̃

(δ̄
̃(ρ(t))) denote the lower and upper MFs of l-th

fuzzy rule, respectively.
Then, the overall FO fuzzy system is represented by

Dαρ(t) =
m̄∑
l=1

λl(ρ(t))

[
(Al + ΔAl(t))ρ(t) + Blϑ(t)

+Alτ ρ(t−τ(t))+Clβ(t)

]
+g(ρ(t)), (2)

where λl(ρ(t)) = y
l
(ρ(t))λl(ρ(t))+ yl(ρ(t))λl(ρ(t))

with yl(ρ(t)) and y
l
(ρ(t)) being nonlinear weighting
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functions and they satisfy 0 ≤ yl(ρ(t)), y
l
(ρ(t)) ≤ 1

and y
l
(ρ(t))+ yl(ρ(t)) = 1. Further, λl(ρ(t)),∀l ∈ L

indicates the grades of MFs with
∑m̄

l=1 λl(ρ(t)) = 1.
Next, let us consider the following FO fuzzy refer-

ence model:

Dαρm(t) =
m̄∑

a=1

λa(ρm(t))

[
Aamρm(t) + Bamr(t)

+ Aamτ ρm(t − τ(t))

]
, a ∈ L, (3)

where ρm(t) ∈ R
n indicates the reference state vector;

r(t) = [r1(t), r2(t), . . . , rp(t)]T ∈ R
p is the piecewise

continuous and uniformly bound command to the ref-
erencemodel;Aam ,Aamτ andBam are known constant
matrices.

The objective of this work is to determine a state
feedback control ϑ(t) for the system (2) that forces the
error vector e(t) = ρm(t) − ρ(t) between the system
and the reference model to zero. That is, the desired
error dynamics in the form

Dαe(t) =
m̄∑

a=1

n̄∑
b=1

λa(ρm(t))μb(ρm(t))

[
(Aam + Kb)e(t) + Aamτ e(t − τ(t))

]
(4)

should be asymptotically stable, where Kb (b∈H={1,
2, . . . , n̄}) are the feedback control gain matrices

andμb(ρm(t))= zb(ρm(t))μ
b
(ρm(t))+zb(ρm(t))μb(ρm(t))∑n̄

b=1

(
zb(ρm(t))μ

b
(ρm(t))+zb(ρm(t))μb(ρm (t))

)
in which zb(ρm(t)) and zb(ρm(t)) denote the lower and
upper nonlinear weighting functions, respectively.

Remark 2 It is worthy to mention that the dynamical
behavior of some of the physical phenomena, such as
the memory, acquired properties of various materials
and procedure, can be described only by fractional-
order nonlinear models, which is generalization of
integer-order nonlinear models. That is, the generaliza-
tion of the derivative order of a parameter enriches the
system performance by expanding degree of freedom
flexibility. On the other hand, the existence of nonlin-
ear terms in the model of dynamical systems makes the
stability analysis complex. Recent decades, T-S fuzzy
model approach is used to represent complex nonlin-
ear model as easy-to-analyze forms by combining the
fuzzy logic theory with the linear system theory. Based

on these factors, the reference dynamics ofmost of real-
time systems can be represented as fractional-order
fuzzy model. So, the fractional-order fuzzy reference
model is adapted in this study.

From equations (2)–(4), we have the following con-
trol relation:

ϑ(t) =
m̄∑
l=1

m̄∑
a=1

n̄∑
b=1

λl(ρ(t))λa(ρm(t))μb(ρm(t))B+
l

×
[

− Kbe(t) + Aamρ(t) + Bamr(t) − Alρ(t)

+ (
Aamτ − Alτ

)
ρ(t − τ(t)) − β̂(t, ρ(t))

]
, (5)

where B+
l = (BT

l Bl)
−1BT

l is the pseudo-inverse of Bl

and β̂(t, ρ(t)) = ∑m̄
l=1 λl(ρ(t))

(
ΔAl(t) + Clβ(t)

) +
g(ρ(t)) is the lumped unknown nonlinearity, which is
the sum of uncertainty, unknown nonlinear dynamics
and unknown external disturbance.

It is noted that the control law (5) cannot be used
directly because control expression contains unknown
lumped dynamic elements. Hence, it is necessary to
estimate the statewith the aid of known factors to access
the control law (5). According to the considered FO
IT2FSs dynamics (2), the lumped unknown nonlinear-
ity term β̂(t, ρ(t)) can be represented as

β̂(t, ρ(t)) =Dαρ(t) −
m̄∑
l=1

λl(ρ(t))

{
Alρ(t) + Blϑ(t)

+ Alτ ρ(t − τ(t))

}
, (6)

which demonstrates that the unknown lumped nonlin-
earity can be obtained from the known dynamics of
the system and control signal. But it cannot be directly
accessible to formulate a control law since it depends
on the fractional derivative of the state vector. Accord-
ing to UDE-based control scheme [37], an estimation
of this signal is adopted based on the assumption that a
signal can be approximated and estimated using a filter
with the appropriate bandwidth.

To accurately approximate the β̂(t, ρ(t)), the frac-
tional low-pass filter H f (s) = 1

Tk sα+1 is adopted,

where the small positive scalar Tk = 1
ωc
, in which ωc

represents the cut-off frequency of the filter H f (s).
Now, the unknown lumped nonlinearity passes into the
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filterH f (s) and the accurately estimated filtered output
is expressed as follows:

β̄(t, ρ(t)) = β̂(t, ρ(t)) � h f (t) =
[
Dαρ(t) −

m̄∑
l=1

λl (ρ(t))

×
(
Alρ(t) + Alτ ρ(t − τ(t)) + Blϑ(t)

)]
� h f (t),

(7)

where h f (t) indicates the impulse response of H f (s).
Further, replacing the unknown lumped nonlinear-

ity β̂(t, ρ(t)) in (5) by estimated lumped nonlinear-
ity in (7) and by simple calculation, the control law is
expressed as

ϑ(t) =
m̄∑
l=1

m̄∑
a=1

n̄∑
b=1

λl(ρ(t))λa(ρm(t))μb(ρm(t))B+
l

×
[
L−1

{
1

1 − H f (s)

}
�

(
− Kbe(t) + Aamρ(t)

+ Bamr(t) + Aamτ ρ(t − τ(t))
)

− Alτ ρ(t − τ(t))

− Alρ(t) − L−1
{

sαH f (s)

1 − H f (s)

}
� ρ(t)

]
, (8)

where L−1{·} is the inverse Laplace transform opera-
tor. Then, we can obtain the resulting control law as
follows:

ϑ(t) =
m̄∑
l=1

m̄∑
a=1

n̄∑
b=1

λl(ρ(t))λa(ρm(t))μb(ρm(t))B+
l

×
[(

1 + 1

Tk
Iα

) (
Aamρ(t) + Bamr(t) − Kbe(t)

+ Aamτ ρ(t − τ(t))
)

− Alρ(t) − Alτ ρ(t − τ(t))

− 1

Tk
ρ(t)

]
, (9)

whereIα is theCaputo fractional integral operatorwith
order α.

Figure 1 presents the frame works of the fuzzy sys-
tem (2) and referencemodel (3) alongwith UDE-based
control model (9).

In order to complete the system description, the fol-
lowing assumptions are more essential.

Assumption 1 The bandwidth of unknown lumped
disturbance signal is known.

Assumption 2 The control coefficient matrices of
each fuzzy rule of the system (2) have full column rank.

Fig. 1 Configuration of fractional-order fuzzy UDE-based con-
trol systems

Remark 3 From Assumption 1, the bandwidth of the
lumped disturbance signal is only required to estimate
that unknown term. This assumption is easily guaran-
teed for most of the practical systems. Besides that,
Assumption 2 is required for the existence of the pseudo
inverse B+

l . It should be noted that if the pseudo inverse
exists then each control action has a various effect
on the system. Otherwise, the choice of the reference
model and the error feedback gain matrix is restricted.

Moreover, we consider the IT2FSs and controllers
of the upper and lower MFs are recommended within
the FOU. The state � is split into γ connected sub-
state spaces designed by �υ in which γ is the num-
ber of sub-states which implies � = ∪γ

υ=1�υ . The
FOU is partitioned into � + 1 sub-FOUs, for c ∈ J =
{1, 2, . . . , � + 1}. Then, the upper and lower MFs are
defined as follows:

χabc(ρm(t)) =
γ∑

υ=1

2∑
a1=1

2∑
a2=1

· · ·

2∑
an=1

p∏
j=1

w ja jυc(ρmj (t))

× εaba1a2...anυc, (10)

χ
abc

(ρm(t)) =
γ∑

υ=1

2∑
a1=1

2∑
a2=1

· · ·

2∑
an=1

p∏
j=1

w ja jυl(ρmj (t))

× εaba1a2...anυc, (11)
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γ∑
υ=1

2∑
a1=1

2∑
a2=1

. . .

2∑
an=1

p∏
j=1

w ja jυc(ρ j (t)) = 1, (12)

where 0 ≤ w jamjυc(ρmj (t)) ≤ 1, w j1υc(ρmj (t))
+ w j2υc(ρmj (t)) = 1,∀ j = 1, 2, . . . , p, 0 ≤
χ
abc

(ρm(t)) ≤ χabc(ρm(t)) ≤ 1, εaba1a2...anυc and
εaba1a2...anυc are scalars to be determined and 0 ≤
εaba1a2...anυc ≤ εaba1a2...anυc ≤ 1, for j = 1, 2, . . . ,
p, a j = 1, 2, υ = 1, 2, . . . , γ and ρm(t) ∈ �υ .

Remark 4 It should be noted that the proposed con-
troller (9) has only two degrees of freedom, namely
error feedback gain matricesKb, b = 1, 2, . . . , n̄, and
the filter parameter Tk and their selection is indepen-
dent of each other.More precisely, the feedback control
gain matrices can be easily obtained from the solution
of the stability problem of nominal error system (4).
Moreover, Tk’s value depends on the specified appli-
cation including the hardware capability and the per-
formance requirements, which can be easily identified
based on the assumption that bandwidth information
of the unknown lumped nonlinear signal is known. In
particular, if the filter has a wide enough bandwidth,
the UDE is able to accurately and quickly estimate the
lumped uncertainty.

3 Main results

In this section, the issue of robust tracking control
design for error system (4) is considered. To be pre-
cise, based on the UDE-based controller (9), a tracking
control is designed to guarantee the asymptotic sta-
bility of the states of error systems (4). In particular,
some slack matrices under the S − procedure [18]
are employed in the derivation of obtaining required
stability conditions. For representation convenience,
we denote: νabc(ρm(t)) = νabc, κabc(ρm(t)) = κabc,
κabc(ρm(t)) = κabc, χabc

(ρm(t)) = χ
abc

,

χabc(ρm(t)) = χabc,
m̄∑

a=1

n̄∑
b=1

λa(ρm(t))μb(ρm(t))

=
m̄∑

a=1

n̄∑
b=1

�+1∑
c=1

νabc(κabcχabc
+ κabcχabc).

Theorem 1 For the given scalars τ , α ∈ (0, 1], the
FO IT2 fuzzy error system (4) is asymptotically stable,
if there exist symmetric positive-definite matrices P̄ ∈
R
n×n,Vabc ∈ R

n×n, symmetricmatrixU ∈ R
n×n, (a ∈

L, b ∈ H, c ∈ J) and matrices Xb (b ∈ H) such that

ϒab + Vabc + U > 0,∀a, b, c, (13)

m̄∑
a=1

n̄∑
b=1

�+1∑
c=1

[
εaba1a2...anυcϒab − (εaba1a2...anυc

− εaba1a2...anυc)Vabc + ε̄aba1a2...anυcU
]

− U < 0,∀υ, c, (14)

where ϒab =
⎡
⎣ϒ1

ab ϒ2
ab ϒ4

ab
∗ ϒ3

ab ϒ5
ab∗ ∗ ϒ6
ab

⎤
⎦, Vabc =

⎡
⎣V1abc V2abc V3abc

∗ V4abc V5abc

∗ ∗ V6abc

⎤
⎦,

U =
⎡
⎣U1 U2 U3

∗ U4 U5

∗ ∗ U6

⎤
⎦, ϒ1

ab = Sym(AamP̄ + Xb) +

ταα−1P̄ + P̄ , ϒ2
ab = Aamτ P̄ , ϒ3

ab = −P̄ , ϒ4
ab =

ταα−1AT
amP̄ + ταα−1Xb, ϒ5

ab = ταα−1Aamτ , and
ϒ6
ab = −ταα−1 I . Moreover, the control gain matrices

can be obtained by Kb = P̄−1Xb.

Proof Wechoose a Lyapunov function for error system
(4) as

W(e(t)) =eT (t)Pe(t). (15)

The derivative of the Lyapunov functional can be com-
puted in the view of [38].

DαW(e(t)) ≤
m̄∑

a=1

n̄∑
b=1

λa(ρm(t))μb(ρm(t))

×
{
eT (t)(P(Aam + Kb)

+ (Aam + Kb)
TP)e(t)

+ eT (t)PAamτ e(t − τ(t))
}
. (16)

On the other hand, the following inequality holds:

ταα−1
[

e(t)
Dα(e(t))

]T [
P 0
0 I

] [
e(t)

Dα(e(t))

]

−
∫ t

t−τ(t)
(t − s)α−1

[
e(t)

Dα(e(t))

]T [
P 0
0 I

] [
e(t)

Dα(e(t))

]
ds

≥ 0. (17)
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Form (16) and (17), we have

DαW(e(t)) ≤
m̄∑

a=1

n̄∑
b=1

λa(ρm(t))μb(ρm(t))

×
{
eT (t)

(
P(Aam + Kb)

+ (Aam + Kb)
TP

)
e(t)

+ eT (t)PAamτ e(t − τ(t))
}

+ ταα−1eT (t)Pe(t)

+ ταα−1Dα(e(t))T I Dα(e(t))

−
∫ t

t−τ(t)
(t − s)α−1

[
e(t)

Dα(e(t))

]T

×
[
P 0
0 I

] [
e(t)

Dα(e(t))

]
ds. (18)

Since e(t) satisfies for −τ ≤ θ ≤ 0,

W(t + θ, e(t + θ)) ≤pW(t, e(t)), (19)

for some p > 1, one can conclude that

peT (t)Pe(t) − eT (t − τ(t))Pe(t − τ(t)) ≥ 0. (20)

Combining (18) and (20), one has

DαW(e(t)) ≤
m̄∑

a=1

n̄∑
b=1

λa(ρm(t))μb(ρm(t))

×
{
eT (t)

(
P(Aam + Kb)

+ (Aam + Kb)
TP + ταα−1P

)
e(t)

+ eT (t)PAamτ e(t − τ(t))

+ ταα−1
((

(Aam + Kb)e(t)

+ Aamτ e(t − τ(t))
)T

I
(
(Aam + Kb)e(t)

+ Aamτ e(t − τ(t))
))

−
∫ t

t−τ(t)
(t − s)α−1

[
e(t)

Dα(e(t))

]T [
P 0
0 I

]

×
[

e(t)
Dα(e(t))

]
ds + peT (t)Pe(t)

− eT (t − τ(t))Pe(t − τ(t))
}

= −
∫ t

t−τ(t)
(t − s)α−1

[
e(t)

Dα(e(t))

]T [
P 0
0 I

]

×
[

e(t)
Dα(e(t))

]
ds +

m̄∑
a=1

n̄∑
b=1

�+1∑
c=1

νabc

× (κabcχabc
+ κabcχabc)�

T (t)ϒ̃ab�(t),

(21)

where �T (t) =
[

eT (t)
eT (t − τ(t))

]T

, ϒ̃ab =
[
ϒ̃1
ab ϒ̃2

ab
∗ ϒ̃3

ab

]
,

ϒ̃1
ab = P(Aam +Kb) + (Aam +Kb)

TP + ταα−1P +
pP + ταα−1(Aam + Kb)

T I (Aam + Kb), ϒ̃2
ab =

PAamτ + ταα−1(Aam +Kb)Aamτ and ϒ̃3
ab = −P +

ταα−1AT
amτAamτ .

By applying the Schur complement to ϒ̃ab is equiv-
alent written as

ϒ̄ab =
⎡
⎣ϒ̄1

ab ϒ̄2
ab ϒ̄4

ab
∗ ϒ̄3

ab ϒ̄5
ab∗ ∗ ϒ̄6
ab

⎤
⎦ , (22)

where ϒ̄1
ab = P(Aam + Kb) + (Aam + Kb)

TP +
ταα−1P + pP , ϒ̄2

ab = PAamτ , ϒ̄3
ab = −P , ϒ̄4

ab =
ταα−1(Aam + Kb)

T , ϒ̄5
ab = ταα−1Aamτ , and ϒ̄6

ab =
−ταα−1 I .

Let us consider slack matrices Ū = ŪT and 0 ≤
V̄abc = V̄T

abc, then we have

[ m̄∑
a=1

n̄∑
b=1

�+1∑
c=1

νabc

(
κabcχabc

+ κabcχabc

)
− 1

]

× �T (t)Ū�(t) = 0, (23)

−
m̄∑

a=1

n̄∑
b=1

�+1∑
c=1

νabc(1 − κabc)(χabc

− χabc)�
T (t)V̄abc�(t) ≥ 0. (24)

From (21)-(24), we can get

DαW(e(t)) ≤ −
∫ t

t−τ(t)
(t − s)α−1

[
e(t)

Dα(e(t))

]T

×
[
P 0
0 I

] [
e(t)

Dα(e(t))

]
ds

+
m̄∑

a=1

n̄∑
b=1

�+1∑
c=1

νabc(κabcχabc
+ κabcχabc)

× �T (t)ϒ̄ab�(t) + [ m̄∑
a=1

n̄∑
b=1

�+1∑
c=1

νabc

× (κabcχabc
+ κabcχabc) − 1

]
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�T (t)Ū�(t) −
m̄∑

a=1

n̄∑
b=1

�+1∑
c=1

νabc(1 − κabc)

× (χ
abc

− χabc)�
T (t)V̄abc�(t)

= −
∫ t

t−τ(t)
(t − s)α−1

[
e(t)

Dα(e(t))

]T [
P 0
0 I

]

×
[

e(t)
Dα(e(t))

]
ds

+ �T (t)

{ m̄∑
a=1

n̄∑
b=1

�+1∑
c=1

νabc

(
κabcϒ̄ab

− (χ
abc

− χabc)V̄abc + χabcŪ
)

− Ū

+
m̄∑

a=1

n̄∑
b=1

�+1∑
c=1

νabcκabc(χabc
− χabc)

×
(
ϒ̄ab + V̄abc + Ū

)}
�(t). (25)

Now talking p → 1+ in (25), the following inequality
holds for some small h > 0.

DαW(e(t)) ≤ − h||e(t)||2 −
∫ t

t−τ(t)
(t − s)α−1

[
e(t)

Dα(e(t))

]T

[
P 0
0 I

] [
e(t)

Dα(e(t))

]
ds ≤ −h||e(t)||2. (26)

Let P−1 = P̄ , KbP̄ = K̄b, P−1Ū1P−1 = U1,
P−1Ū2P−1 = U2, P−1Ū3 = U3, P−1Ū4P−1 =
U4, P−1Ū5 = U5, Ū6 = U6, P−1V̄1P−1 = V1,
P−1V̄2P−1 = V2, P−1V̄3 = U3, P−1V̄4P−1 = V4,
P−1V̄5 = V5, V̄6 = V6. Pre- and post-multiplying (25)
with diag{P̄, P̄, I }, the following inequality holds.

DαW(e(t)) ≤�T (t)

{ m̄∑
a=1

n̄∑
b=1

�+1∑
c=1

νabc

(
κabcϒab

− (χ
abc

− χabc)Vabc + χabcU
)

− U

+
m̄∑

a=1

n̄∑
b=1

�+1∑
c=1

νabcκabc(χabc
− χabc)

×
(
ϒab + Vabc + U

)}
�(t), (27)

It follows from [38] that the FO IT2 fuzzy error system
(4) is asymptotically stable if DαW(e(t)) < 0 is satis-
fied. Thus, it is sufficient to show thatϒab+Vabc+U >

0 and
m̄∑

a=1

n̄∑
b=1

�+1∑
c=1

νabc

(
κabcϒab−(χ

abc
−χabc)Vabc+

χabcU
)

− U < 0. From inequalities (13) and (14), it

can be seen that these two conditions are guaranteed.
Therefore, it is concluded that the FO IT2 fuzzy error
system is asymptotically stable.

Remark 5 It should be mentioned that the developed
stability condition for the error system is dependent
on the fuzzy MFs of both the plant and the controller.
Also, it is noticed that the fuzzy MFs of the plant and
controller are chosen as different, which provides more
freedom to choose the fuzzy controller than having the
sameMFs [15]. Thus, both the above-said factors make
that the developed theorem has less conservativeness
and more freedom to choose the robust feedback con-
troller design for analyzing the required results.

Suppose that the time-varying delay and the non-
linear function are not treated in FO IT2FSs (2) and
fuzzy reference model (3). That means, ρ(t − τ(t)) =
0, ρm(t − τ(t)) = 0 and g(ρ(t)) = 0. Then, UDE-
based control law (9) can be expressed as follows:

ϑ(t) =
m̄∑
l=1

m̄∑
a=1

n̄∑
b=1

λa(ρ(t))λa(ρm(t))μb(ρ(t))

×
{
B+
a

[(
1 + 1

Tk
Iα

)( − Kbe(t) + Aamρ(t)

+ Bamr(t)
)

− Alρ(t) − 1

Tk
ρ(t)

]}
. (28)

By the support of above controller, the stability con-
ditions for the error system (4) are established without
time-varying delay as indicated in the following corol-
lary.

Corollary 1 Consider the FO IT2 fuzzy error system
(4) without time-varying delay and the UDE-based
controller (28). For the given scalar α ∈ (0, 1], the
system (4) without time-varying delay is asymptoti-
cally stable, if there exist symmetric positive-definite
matrices P̄ ∈ R

n×n, Vabc ∈ R
n×n, symmetric matrix

U ∈ R
n×n, (a ∈ L, b ∈ H, c ∈ J) and matrices Xb

(b ∈ H) such that

�ab + Vabc + U > 0,∀ a, b, c, (29)
m̄∑

a=1

n̄∑
b=1

�+1∑
c=1

[
εaba1a2...anυc�ab − (εaba1a2...anυc

−εaba1a2...anυc)Vabc + ε̄aba1a2...anυcU
]

− U < 0,∀υ, c,

(30)
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where �ab = AT
am P̄ + P̄Aam + Xb + X

T
b . Then, the

controller gain matrices can be expressed as Kb =
P̄

−1
Xb.

In the upcoming section, we will show the effective-
ness of the proposed results in three numerical exam-
ples. In particular, to reduce the computational com-
plexity, the upper and lower MFs (10) and (11) with
state space j = 1 (i.e. ρ1(t)), sub-FOU c = 1 and sub
domain a1 = 1, 2 are considered in both examples.

4 Numerical simulations

In this section, four numerical examples with simula-
tions are presented to illustrate the validity of the pro-
posed UDE-based control scheme. Specifically, Exam-
ple 1 exhibits the efficiency of the proposed method
against parameter uncertainty and external disturbance.
Next, in the practical example, a permanent magnet
synchronous motor [40,41] is considered and validated
in Example 2. Example 3 discusses the selection filter
parameter to estimate the lumped unknown disturbance
effect in the designed UDE-based controller. Example
4 provides the practical prospects of the desired control
methods for FO Rössler fuzzy systems.

Example 1 Consider the FO IT2FSs in the form of (2)
with four fuzzy rules and the following system matri-
ces:

A1 =
[−1 0
1 −1

]
,A2 =

[
0 −1
0 −3

]
,A3 =

[−1 −2
1 −1

]
,

A4 =
[−2 1
0 −1

]
,A1τ =

[
1 0.5
1 0.6

]
,A2τ =

[
0.5 0.1
0.2 0.3

]
,

A3τ =
[
0 0.2
0.1 0.1

]
,A4τ =

[
0.7 0.2
0.5 0.4

]
, C1 =

[
1 1
0.5 −1

]
,

C2 =
[
0.5 1
1.5 1

]
, C3 =

[
0 −1
0 2

]
, and C4 =

[
1 1

−1 −1

]
.

Further, the system matrices of reference model (3)
with four fuzzy rules (l = 1, 2, 3, 4) are chosen as
follows:

A1m =
[
0 1
0 −2

]
,A2m =

[
1 −1
2 −1

]
,A3m =

[−2 1
−2 −1

]
,

A4m =
[−1 −2
−1 −3

]
,A1mτ =

[
1 1
0 −3

]
,A2mτ =

[
0 −2
0 1

]
,

A3mτ =
[
0 1
0 −2

]
,A4mτ =

[−1 0
1 −2

]
,

and Bl = Blm = I2×2, (l = 1, 2, 3, 4).

Table 1 Plants membership functions

UBs LBs

λ
E
1
1
(ρ1) = 1 − 0.23e− ρ21

0.25 λ
E
1
1
(ρ1) = 1 − e− ρ21

1.2

λ
E
2
1
(ρ1) = 1 − 0.23e− ρ21

0.25 λ
E
2
1
(ρ1) = 1 − e− ρ21

1.2

λ
E
3
1
(ρ1) = e− ρ21

1.2 λ
E
3
1
(ρ1) = 0.23e− ρ21

0.25

λ
E
4
1
(ρ1) = e− ρ21

1.2 λ
E
4
1
(ρ1) = 0.23e− ρ21

0.25

λ
E
1
2
(ρ1) = e− ρ21

1.5 λ
E
1
2
(ρ1) = 0.5e− ρ21

0.25

λ
E
2
2
(ρ1) = 1 − 0.5e− ρ21

0.25 λ
E
2
2
(ρ1) = 1 − e− ρ21

1.5

λ
E
3
2
(ρ1) = e− ρ21

1.5 λ
E
3
2
(ρ1) = 0.5e− ρ21

0.25

λ
E
4
2
(ρ1) = 1 − 0.5e− ρ21

0.25 λ
E
4
2
(ρ1) = 1 − e− ρ21

1.5

Table 2 Controllers membership functions

UBs LBs

μ
G
1
1
(ρ1) = e−ρ2

1 μ
G
1
1
(ρ1) = e

−ρ21
0.5

μ
G
2
1
(ρ1) = 1 − e

−ρ21
0.5 μ

G
2
1
(ρ1) = 1 − e−ρ2

1

Further, the reference command input and time
delay are chosen as [r1(t) r2(t)]T = [1.2 sin(π t) 1.2
cos(π t)]T and τ(t) = 0.1 cos(t), respectively.

Moreover, the upper bounds (UBs) and lower bounds
(LBs) of four-rule MFs for the considered fuzzy model
(2) and two fuzzy-rule MFs of the controller (5) are
given in Tables 1 and 2, respectively. In which, the
weight coefficient functions of the plant and the con-
troller are taken as y

1
(ρ(t)) = y

4
(ρ(t)) = cos2(ρ(t)),

y
2
(ρ(t)) = y

3
(ρ(t)) = sin2(ρ(t)), zb(ρ(t)) =

sin2(ρ(t)), yl(ρ(t)) = 1 − y
l
(ρ(t)) and zb(ρ(t)) =

1 − zb(ρ(t)) (l = 1, 2, 3, 4, and b = 1, 2) respec-
tively. The corresponding MFs of considered system
and proposed controller are plotted in Figs. 2 and 3,
respectively. In addition, to improve the accuracy of
the fuzzy model the system state ρ1 ∈ [−π/3, π/3]
is divided to 500 equal-size sub-states. To express the

lower and upper MFs as w11υ(ρ1) = 1 − ρ1−ρ
1,υ

ρ1,υ−ρ
1,υ

and w12υ(ρ1) = 1 − w11υ(ρ1), where ρ
1,υ

=
2π
1500 (υ − 251) and ρ1,υ = 2π

1500 (υ − 250) (υ =
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Fig. 2 Membership functions of plant λl , l = 1, 2, 3, 4
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Fig. 3 Membership functions of controller μb, b = 1, 2

1, 2, . . . , 500) and the corresponding constant scalars
can be determined as εab1υ = λa(ρ1,υ

)μb(ρ1,υ
),

εab1υ = λa(ρ1,υ
)μ

b
(ρ

1,υ
), εab2υ = λa(ρ1,υ)μb(ρ1,υ)

and εab2υ = λa(ρ1,υ)μ
b
(ρ1,υ) for all υ. Let Tk =

0.001, τ = 0.1, under these parameters by solving the
linear matrix inequality (LMI) constraints developed
in Theorem 1 with the aid of LMI toolbox [39], the
control gain matrices are obtained as

K1 =
[−64.4571 76.0176
77.0147 −139.2830

]
,

K2 =
[−74.9535 88.7277
88.1766 −159.1919

]
.
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Then, for simulation purpose, unknown disturbance
in the dynamics of system (2) are taken as follows:

β1(t) =

⎧⎪⎪⎨
⎪⎪⎩

10 sin(π t), 3 ≤ t ≤ 7
3, 7 < t ≤ 10
5 cos(π t), 10 < t ≤ 18
0, otherwise.

and

β2(t) =

⎧⎪⎪⎨
⎪⎪⎩

7 cos(π t), 3 ≤ t ≤ 7
6, 7 < t ≤ 10
3 sin(π t), 10 < t ≤ 16
0, otherwise.

Let the nonlinear functions g(ρ(t)) = [g1(ρ(t))
g2(ρ(t))]T and the unknown uncertainty ΔAl(t) be
given by

g1(ρ(t)) = 3 sin(ρ1(t)) cos(ρ2(t)),

g2(ρ(t)) = sin(ρ2(t)) cos(ρ1(t)),

ΔA1(t) = ΔA3(t) =
[
0.3 sin(t) 0.2 cos(t)
0.2 cos(t) 0.4 sin(t)

]
, and

ΔA2(t) = ΔA4(t) =
[
0.3 cos(t) 0.1 sin(t)
0.1 sin(t) 0.6 cos(t)

]
.

Let us take the initial states as ρ1(0) = −1, ρ2(0) = 1,
ρ1m(0) = 0.2, and ρ2m(0) = 0.5 and fractional-
derivative order α = 0.7. Under these initial condi-
tions, the simulation results are provided to show the
efficiency of the obtained controller.

The state responses of the FO IT2FSs (2) are pre-
sented in Figs. 4 and 5, respectively. From these fig-
ures, ’it can be concluded that the proposed controller
can guarantee that the error signals asymptotically
converge to zero and that the effect of the lumped
unknown nonlineartiy is estimated effectively. In the
absence of controller, the system states fails to track
the reference signal. Moreover, corresponding control
performance is shown in Fig. 6. Figure 7 displays
the lumped unknown nonlinearity and their estima-
tions. Thus, from these simulation results, it is easy to
conclude that the proposed controller guarantees that
the error responses are asymptotically converged to
zero and also perfectly estimates the effect of lumped
unknown nonlinearity effectively.

Remark 6 It should be mentioned that in the simula-
tions, the control signal is passed through the input
channel along with the uncertainty and external distur-
bances. To identify and reduce the effect of uncertainty
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Fig. 4 State responses of the open-loop system

and external disturbances, the proposed control should
take more effort which is the reason that the control
signals reach peak values at the beginning of the simu-
lations. Moreover, due to the uncertainty and external
disturbances effect on the control system, the control
signals reach peak values at the beginning in a very
short period. It can be observed from Fig. 6 that though
the control signals initially reach very high value, after
some short period the signals converge to zero very
quickly which shows the effectiveness of the designed
controller.

Example 2 In practical example, the permanent mag-
net synchronous motor [40] is considered. It is consid-
ered that there happens to be a time delay in this system,
which is characterized as:
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Fig. 5 State responses of the closed-loop system

0 2 4 6 8 10 12 14 16 18 20

Time (secs)

-150

-100

-50

0

50

100

150

Fig. 6 Control responses

t0D0.9
t ρ(t) =

2∑
l=1

λl(ρ(t))

[
((1 − a)Al + ΔAl(t))ρ(t)
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Fig. 7 Lumped nonlinearity and its estimation

+aAlρ(t − τ(t)) + Blϑ(t) + Clβ(t)

]

+ g(ρ(t)),

where

A1 =
⎡
⎣−d1 0 d1

0 −1 d3
d2 −d3 −1

⎤
⎦ ,A2 =

⎡
⎣−d1 0 d1

0 −1 r4
d2 −d4 −1

⎤
⎦ ,

Bl =
⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦ , C1 =

⎡
⎣1
0
1

⎤
⎦ , C2 =

⎡
⎣ 1

0
−1

⎤
⎦ ,

g1(ρ(t)) = 3 sin(ρ1(t)), g2(ρ(t)) = sin(2ρ2(t)),

g3(ρ(t)) = 2 sin(ρ1(t)) cos(ρ2(t)),

ΔAl(t) =
⎡
⎣ 1.5 sin(t) 0 −1.5 sin(t)

−1.5 sin(t) 0 1.5 sin(t)
0 0 0

⎤
⎦ .

with a = 0.2, d1 = −1.9 d2 = 5, d3 = −1.5 and
d4 = 3. The upper and lower MFs of the IT2FSs are
considered in [41].

The parameters of the reference model are defined
as follows:

A1m =
⎡
⎣−3 0 −2

0 1 −1
0 1 −5

⎤
⎦ ,A2m =

⎡
⎣−2 1 −5

1 −1 −2
−1 0 −4

⎤
⎦ ,

A1mτ =
⎡
⎣−1 1 0

0 1 −2
1 1 −1

⎤
⎦ ,A2mτ =

⎡
⎣−1 1 −1

0 −2 1
−1 0 −2

⎤
⎦ ,

Blm =
⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦ .
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The reference input, initial states, time delay, distur-
bance and simulation parameters are defined below:

[r1(t), r2(t), r3(t)]T = [1.2 sin(π t), 1.2 cos(π t),
sin(2π t)]T , [ρ1(0), ρ2(0), ρ3(0)]T = [−0.1, 0.1, 0.5]T ,

[ρ1m(0), ρ2m(0), ρ3m(0)]T = [0.2, 0.5, 0.3]T , τ = 0.1,

τ (t) = 0.1 cos(t), β(t) = sin(t)e−2t ,

α = 0.9,Tk = 0.01.

Based on the conditions obtained in Theorem 1 with
the abovementioned parameters, a set of controller gain
values are obtained as

K1 =
⎡
⎣−63.3648 0.0270 −58.9855

0.2616 −33.4233 14.5663
−58.8226 14.1586 −159.9604

⎤
⎦ ,

K2 =
⎡
⎣−50.0185 0.1707 −46.5004

0.5108 −26.5024 11.8139
−46.3260 11.1638 −126.1175

⎤
⎦ .

Figure 8 plots the state responses under the control
scheme (9), where it can be seen that the proposed con-
troller satisfies the required estimation constraints. The
actual lumped nonlinearity acting on the system and
its estimation are displayed in Fig. 9. In particular, the
designed UDE-based dynamics are perfectly estimated
and compensated tracking performance within a very
short period. Hence, the proposed controller performs
successfully.

Remark 7 The time-delay control estimation tech-
nique is proposed in [40],which is basedon the assump-
tion that a continuous signal remains unchanged during
a small enough period. By using the past observation
of uncertainties and disturbances, the control action is
modified directly, instead of adjusting controller gains,
or identifying system parameters. However, it suffers
from some problems, which are caused by the need for
the derivatives of system states and the difficulty in sta-
bility analysis due to the use of time-delayed signals.

Example 3 Consider the FO IT2FSs with three fuzzy
rules in the following form:

t0Dα
t ρ(t) =

3∑
l=1

λl

{
(Al + ΔAl(t))ρ(t) + Blϑ(t)

}
,

(31)
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Fig. 8 State responses of the closed-loop system
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Fig. 9 Lumped nonlinearity and its estimation

where

A1 =
⎡
⎣ 1 2 −1

−2 1 1
1 0 −1

⎤
⎦ ,A2 =

⎡
⎣−1 0 1

−1 1 −1
1 1 −2

⎤
⎦ ,

A3 =
⎡
⎣ 1 1 −2

1 −1 −2
−1 0 1

⎤
⎦ ,

Bl =
⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦ , ΔA1(t) =

⎡
⎣5 sin(t) cos(π t) 3 sin(t)

sin(t) cos(π t) 0.1 sin(π t)
5 sin(t) 2 cos(π t) sin(π t)

⎤
⎦ ,

ΔA2(t) =
⎡
⎣ sin(π t) 0.6 cos(π t) 0.8 cos(t)
0.3 sin(π t) 0.7 sin(t) 0.2 sin(π t)
cos(π t) 0.5 cos(π t) 0.9 cos(t)

⎤
⎦ ,

and ΔA3(t) =
⎡
⎣0.1 cos(t) 0.7 sin(π t) cos(t)
0.6 cos(t) 0.9 sin(π t) 0.9 cos(π t)
cos(t) sin(t) sin(π t)

⎤
⎦ .
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Table 3 Plants membership functions

UBs LBs

λ
E
1
1
(ρ1) = 1 − 0.23e− ρ21

0.3 λ
E
1
1
(ρ1) = 1 − e− ρ21

1.5

λ
E
2
1
(ρ1) = 1 − 0.23e− ρ21

0.3 λ
E
2
1
(ρ1) = 1 − e− ρ21

1.5

λ
E
3
1
(ρ1) = e− ρ21

1.5 λ
E
3
1
(ρ1) = 0.23e− ρ21

0.3

λ
E
1
2
(ρ1) = e− ρ21

2.5 λ
E
1
2
(ρ1) = 0.5e− ρ21

0.2

λ
E
2
2
(ρ1) = 1 − 0.5e− ρ21

0.2 λ
E
2
2
(ρ1) = 1 − e− ρ21

2.5

λ
E
3
2
(ρ1) = e− ρ21

2.5 λ
E
3
2
(ρ1) = 0.5e− ρ21

0.2

Further, the parameters of the referencemodel of the
form (5) are selected as follows:

A1m =
⎡
⎣ 0 5 10
12 3 10
1 5 −5

⎤
⎦ ,A2m =

⎡
⎣−1 4 −3

2 −6 −7
5 1 −6

⎤
⎦ ,

A3m =
⎡
⎣0 −5 7
0 10 −3
0 −2 −7

⎤
⎦ ,Bam =

⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦ .

with the reference input

r(t) = [1.2 sin(π t) 1.2 cos(π t) sin(2π t)]T .

The upper and lower MFs of the system (31) are
presented in Table 3. In addition, the upper and lower
bounds of MFs of the controller are taken same as the
MFs of the Example 1 as in Table 2. Moreover, we con-
siderρ1 ∈ [−100, 100] and is split into 1000 equal-size
sub-states. Let us choose the initial states as ρ1(0) = 1,
ρ2(0) = 2, ρ3(0) = 3, ρ1m(0) = 0.2, ρ2m(0) = 0.6,
ρ3m(0) = 0.1 and fractional-derivative order α = 0.7.
From the feasible solutions of LMIs in Corollary 1, we
can get the feedback control gain matrices as follows:

K1 =
⎡
⎣−7.6194 −6.3806 −11.1873
10.8845 −63.4957 1.6564
−7.6432 9.0576 −11.2766

⎤
⎦ ,

K2 =
⎡
⎣−8.5863 −6.0351 −11.7922
10.8306 −63.5511 1.8458
−8.0549 10.0444 −11.9460

⎤
⎦ .
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Fig. 10 Error responses for closed-loop system
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Fig. 11 Lumped uncertainty and its estimation
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Fig. 12 Tracking error for various bandwidth

In order to compare with time-delay control, the fol-
lowing time-delay control design is provided in [42]:

ϑ(t) =ϑ(t − L) +
m̄∑
l=1

m̄∑
a=1

n̄∑
b=1

λl(ρ(t))λa(ρm(t))μb(ρm(t))

× B+
l

[
− Kbe(t) + Aamρ(t) + Bamr(t)

− Alρ(t) − ρ̇(t) − ρ̇(t − L)

L

]
, (32)

where L = 0.005s and the derivative of ρ̇(t) is approx-
imated by ρ̇(t)−ρ̇(t−L)

L .
Based on UDE-based control design (28) and time-

delay control design (32), the simulation result for the
controlled error signals and lumped uncertainty esti-
mations are presented in Figs. 10 and 11. That is, it
can be seen that the state of the system can track the
reference state under the proposed controller and time-
delay controller, which verifies the developed theoreti-

cal result in Corollary 1. In particular, there are oscilla-
tions in the error signals and lumped uncertainty esti-
mations for time-delay control but in the case with
UDE-based control, the control signal is very smooth.
Moreover, Fig. 12 depicts that the tracking error per-
formance of the closed-loop system under various cut-
off frequency of the filter. It is easy to conclude that
when the filter parameter decreases then both tracking
performance and disturbance estimation performance
improve. Moreover, Tk is the inverse of the cut-off fre-
quency and it is well-known that high frequency signals
highly affect the stability margin. So, it is important
to select the filter parameter for trade-off between the
stability margin and system performance against the
unknown lumped uncertainty.

Example 4 Let us consider the FORössler system [22]
as follows:

⎧⎪⎪⎨
⎪⎪⎩

dαρ1(t)/dtα = −ρ2(t) − ρ3(t),
dαρ2(t)/dtα = ρ1(t) + s1ρ3(t),
dαρ3(t)/dtα = s2ρ1(t) − (s3
−ρ1(t))ρ3(t) + ϑ(t) + β(t),

where ρ1(t) ∈ [s3 − s4, s3 + s4]. The above system can
be represented with two fuzzy rules in the following
form;

t0Dα
t ρ(t) =

2∑
l=1

λl

{
Alρ(t) + Blϑ(t) + Clβ(t)

}
,

(33)

where ρ(t) = [ρ1(t), ρ2(t), ρ3(t)]T ,

A1 =
⎡
⎣ 0 −1 −1
1 s1 0
s2 0 −s4

⎤
⎦ ,A2 =

⎡
⎣ 0 −1 −1
1 s1 0
s2 0 s4

⎤
⎦ ,

B1 = B2 =
⎡
⎣1 0 0
0 1 0
0 0 1

⎤
⎦ , and C1 = C2 =

⎡
⎣0
0
1

⎤
⎦ .

The aforementionedFO fuzzy system (33) is consid-
ered with the type-1 fuzzy MFs in [22] with s1 = 0.34,
s2 = 0.4, s3 = 5 and s4 = 10 and the type-2 fuzzy
MFs in [14]. The type-1 fuzzy MFs are chosen as
λ1(t) = 1

2 (1 + s3−ρ1(t)
s4

) and λ2(t) = 1 − λ1(t). Here,
we assume that s3 is an uncertain parameter and it is
denoted as s3 = s3(t) ∈ [0, 5]. On the other hand, the
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Table 4 Plant’s membership functions

LBs UBs

μ
E
1
1
(ρ1) = 1

2 (1 + 0−ρ1
s4

) μ
E
1
1
(ρ1) = 1

2 (1 + 5−ρ1
s4

)

μ
E
2
1
(ρ1) = 1

2 (1 − 5−ρ1
s4

) μ
E
2
1
(ρ1) = 1

2 (1 − 0−ρ1
s4

)

UBs and LBs of fuzzyMFs for the type-2 fuzzy system
are given in Table 4 and the MFs for the controller (5)
are given in Table 1. Further, the parameters of fuzzy
reference model are taken as follows:

A1m =
⎡
⎣1 0 0
0 1 −4
0 1 −2

⎤
⎦ ,A2m =

⎡
⎣−3 0 5

0 −2 −3
0 0 −1

⎤
⎦ , and

B1m = B2m =
⎡
⎣0
0
1

⎤
⎦ .

We choose the external disturbance as β(t) =
1.2 sin(t), the reference input as r(t) = 0.1 sin(t)

1+0.01t , and
Tk = 0.001. The choice of the initial condition for
the system states and the reference states are taken as
ρ1(0) = 1, ρ2(0) = −1, ρ3(0) = 2.5, and ρ1m(0) =
0.5, ρ2m(0) = −0.5, ρ3m(0) = 0.5, respectively. By
solving the conditions obtained in Corollary 1 with the
values of the parameters referred to above, a set of fea-
sible matrices are found subsequently from which the
associated UDE-based controller gain values are cal-
culated as

K1 =
⎡
⎣−3.7069 2.8351 2.2129

−0.2079 −1.2172 2.4178
−0.1623 3.1626 −1.2291

⎤
⎦ ,

K2 =
⎡
⎣−3.6646 2.8352 2.1596

−0.2209 −1.1598 2.4144
−0.1510 3.1798 −1.2708

⎤
⎦ .

Based on the boundary information of the MFs, we
obtain the membership function-dependent stabiliza-
tion conditions for reducing conservativeness. Oncewe
ignored the upper and lowerMFs information in Corol-
lary 1, we can obtain the stabilization conditions cor-
responding to FO type-1 fuzzy system. By solving the

Fig. 13 Error responses for FO α = 0.50 and α = 0.97

obtained LMIs, we can get the following gain matrices:

K1 =
⎡
⎣−1.3333 0.0000 0.0000

0.0000 −1.3333 1.5000
−0.0000 1.5000 1.6667

⎤
⎦ ,

K2 =
⎡
⎣ 2.6667 0.0000 −2.5000

0.0000 1.6667 1.5000
−2.5000 1.5000 0.6667

⎤
⎦ .

The tracking error trajectories of the closed-loop sys-
tem under type-1 and IT2FS approach are displayed in
Fig. 13. It is clearly seen that the overshoot of the error
trajectory under the IT2FS model is smaller than of the
type-1 fuzzy model. It indicates the superiority of the
IT2FS design.

It can be seen from above four examples that the
proposedUDE-based controller guaranteed the asymp-
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totic tracking performance of the FO IT2FSs (2) and
also effectively estimated.

5 Conclusion

This paper has introduced the UDE-based fuzzy track-
ing controller for FO IT2FSs. Firstly, the UDE-based
control problem has been formulated, in which the pro-
posed control design is split into two control problems,
namely the stability of the nominal error dynamic and
the unknown lumped uncertainty estimation problem.
By employing Lyapunov stability and fractional calcu-
lus theories required asymptotic stability criterion for
closed-loop error system have been formulated in the
form of LMIs. Further, by selecting appropriate filter
parameters, the unknown terms in the dynamics of the
considered system have been estimated and compen-
sated. Finally, four numerical examples have been pro-
vided to demonstrate the effectiveness of the designed
robust tracking controller. Theworkability about UDE-
based control law has been demonstrated by the FO
IT2FSs. In the future, we shall extend the proposed
UDE-based control method to FO fuzzy neural net-
work systems with actuator faults and input saturation
[43,44].
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