
Nonlinear Dyn (2022) 107:3767–3777
https://doi.org/10.1007/s11071-021-07147-y

ORIGINAL PAPER

Solitons and rogue wave solutions of focusing and defocusing
space shifted nonlocal nonlinear Schrödinger equation

Jun Yang · Hai-Fang Song ·
Miao-Shuang Fang · Li-Yuan Ma

Received: 4 October 2021 / Accepted: 12 December 2021 / Published online: 30 January 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract In this paper, we are concerned with the
explicit analytic solutions for the focusing and defo-
cusing space shifted nonlocal nonlinear Schrödinger
(NLS) equation introduced by Ablowitz and Musski-
mani (Phys Lett A 409:127516, 2021). The nonsingu-
lar N-soliton solutions of the defocusing space shifted
nonlocal NLS equation are obtained, while the multi-
roguewave solutions are constructed for focusing space
shifted nonlocal NLS equation by Darboux transfor-
mation. The asymptotic analysis of the soliton solu-
tions is investigated theoretically and numerically. The
dynamic features of first-, second-order RW solutions
are analysed explicitly. It shows that the space shift x0
reveals more general dynamic behaviors in the space
shifted nonlocal NLS equation.

Keywords Darboux transformation · Space shifted
nonlocal NLS equation · Soliton · Rogue wave

1 Introduction

The integrable NLS equation along with its higher-
order ones has numerous applications, such as non-

J. Yang
College of Arts and Sciences, Shanghai Polytechnic
University, Shanghai 201209, People’s Republic of China

H.-F. Song · M.-S. Fang · L.-Y. Ma (B)
Department of Applied Mathematics, Zhejiang University
of Technology, Hangzhou 310023, People’s Republic of
China
e-mail: mly2016@zjut.edu.cn

linear optics, Bose–Einstein condensates, biophysics
and water waves [1–5]. It is solvable based on the
inverse scattering transform, DT and Hirota bilinear
method [6–11]. The nonlocal NLS equation has been
proposed by Ablowitz and Musslimimain [12]

iqt (x, t) = qxx (x, t) + 2σq2(x, t)q∗(−x, t), (1)

which is non-Hermitian and PT-symmetric, q(x, t)
is a complex-valued function of real variables x , t ,
and can become the local NLS equation under the
variable transformations x → i x, t → −t . Here
σ = ±1 denotes the focusing NLS equation or
defocusing NLS equation, respectively. The soliton
solutions and RW solutions have been obtained by
DT in determinant form for the two cases [13,14].
Gauge equivalent structure of Eq. (1) has been stud-
ied in [15,16]. For the past few years, a series of non-
local integrable nonlinear equations have been stud-
ied, which includes the PT-symmetric nonlocal NLS
equation [17–19], reverse space–time complex mod-
ified Korteweg–de Vries (mKdV) equation [20–23],
reverse space–time nonlocal Sasa–Satsuma equation
[24,25] and PT-symmetric Davey–Stewartson equa-
tion [26–29]. Integrable discrete version of the non-
local NLS equation is also discussed [30]. In recent
months, Ablowitz and Musslimimain have introduced
a series of new integrable space–time shifted nonlocal
nonlinear equations in [31], which contain the space
shifted nonlocal NLS equation, time shifted nonlocal
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NLS equation and space–time shifted nonlocal NLS
equation as well as the real and complex space–time
shifted nonlocal mKdV equation. The one of the space
shifted nonlocal NLS equations reads

iqt (x, t) = qxx (x, t) + 2σq2(x, t)q∗(x0 − x, t), (2)

where x0 is an arbitrary real parameter. The Lax pair
and the infinite number of conserved quantities have
been given, which indicates that Eq. (2) is integrable.
The exact one-soliton solution is obtained via the
inverse scattering transform in Ref. [19]. Soon after,
the periodic wave solution and one-, two-soliton solu-
tions of the shifted nonlocal NLS and mKdV equations
are obtained by using the Hirota bilinear method [32].
On the variable transformation scale, one cannot get
the local NLS equation from the space shifted nonlo-
cal NLS equation, which is different from the nonlocal
NLS equation [33]. Therefore, we consider the focus-
ing and defocusing nonlocal space shifted NLS equa-
tion. Our main attention focuses on the space shifted
coefficient x0,which can cause the spatial displacement
of the wave propagation of solitons and RWs.

The paper is organized as follows. In Sect. 2, we
derive the nonsingular N-soliton solutions and the
dynamic behavior of two-soliton solutions are analyzed
for the defocusing space shifted nonlocal NLS equa-
tion. In Sect. 3, using the known DT, we construct the
higher-order RW solutions for focusing space shifted
nonlocal NLS equation. The first-, second-order RWs
are studied by the analysis of the space shifted factor
x0. The conclusion is summarized in the last section.

2 Soliton solutions for defocusing nonlocal space
shifted NLS Eq. (2)

In this section, we construct the exact solutions of
the defocusing space shifted nonlocal NLS Eq. (2) on
nonzero seed solution via DT. The dynamic behavior
of the solitons with respect to the space shift x0 is also
investigated.

The Lax pair of Eq. (2) is

�x = U (Q, z)� (3a)

�t = V (Q, z)� (3b)

with

U (Q, z) = zσ3 + Q,

V (Q, z) = −2i z2σ3 − 2i zQ − iσ3(Qx − Q2),

Q(x, t) =
(

0 q(x, t)
−σq∗(x0 − x, t) 0

)
,

σ3 = diag(1,−1),

where � = (φ1, φ2)
T is the vector eigenfunction and

z is the spectral parameter. One can check that the
space shifted nonlocal NLS equation can derive from
the compatibility condition Ut − Vx + [U, V ] = 0.

Following the method of constructing the DT for
nonlocal NLS equation in [13], we directly give the
N th iterated potential transformations

qN (x, t) = q(x, t) + 2
τN+1,N−1

τN ,N
, (4a)

q∗
N
(x, t) = q∗(−x, t) − 2

τN−1,N+1

τN ,N
, (4b)

with

τM,2N−M =
∣∣∣∣ FN×M GN×(2N−M)

G∗
N×M F∗

N×(2N−M)

∣∣∣∣ , (5)

where M = N − 1, N , or N + 1, the block matrices
FN×M ,GN×(2N−M),G∗

N×M , F∗
N×(2N−M) are defined

as below

FN×N = [zm−1
k fk(x, t)]1�k,m�N ,

GN×N = [(−zk)
m−1gk(x, t)]1�k,m�N ,

F∗
N×N = [(−z∗k )m−1 f ∗

k (x, t)]1�k,m�N ,

G∗
N×N = [(z∗k )m−1g∗

k (x, t)]1�k,m�N .

To obtain the exact solutions, we start from the
plane-wave solution q = ce2ic

2t with σ = −1, where c
is a real parameter, and solve the system (3a) and (3b).
Then we get the eigenfunctions

(
fk
gk

)
=

(
eic

2t (akeskξk + bke−skξk )

e−ic2t (
(sk−zk )ak

c eskξk − (sk+zk )bk
c e−skξk )

)

(6)

with sk = √
z2 + c2 and ξk = x − 2i zk t , where ak and

bk(1 � k � N ) are complex parameters. Taking the
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above eigenfunction into the N th iterated solution (4a)
and (4b), we can get the exact solutions of the defocus-
ing space shifted nonlocal NLS equation (2). Here we
stress that the conjugate eigenfunction in (5) is essen-
tially connected with the space shifted parameter x0 in
symmetric forms, e.g., ( f ∗

k (x0−x, t), g∗
k (x0−x, t)). In

order to seek the soliton solutions, we impose sk to be
real numbers, zk pure imaginary and 0 < |Im(zk)| < c,
which results in the existence of the ξk-solitary wave.

When N = 1, the solution (4a) is reduced to

q = ce2ic
2

[
1 − 2z1I(e2s1ξ1 + γ1)(μ1e2s1(x0−η1) + μ∗

1γ
∗
1 )

c2e2s1(ξ1+x0−η1) + z1Iμ1γ1e2s1(x0−η1) + z1Iμ∗
1γ

∗
1 e

2s1ξ1 + c2|γ1|2
]

, (7)

where ξ1 = x + 2z1It, η1 = x − 2z1It, μ1 =
z1I − is1, s1 =

√
c2 − z21I, γ1 = a1/b1 and z1 =

z1R + i z1I. The singularity problem can be avoid with
the constraint condition sgn(z1I)Re(μ1γ1) > 0 or
Im(μ1γ1) �= 0. Under the nonsingular conditions, the
exact solution (7) contains twowaves, i.e., ξ1-wave and
η1-wave. Let us consider the asymptotic analysis for the
soliton solution (7).

(i) Along the line x + 2z1It = 0 as |t | → ∞, we
have

q → q±
1 = ce2ic

2t

[
1 − 2z1I(e2s1ξ1 + γ1)

ζ±
1 e2s1ξ1 + ϑ±

1

]
, (8a)

|q|2 → |q±
1 |2 = c2[

1 − 2γ1Is1
sgn(z1I)c|γ1| cosh(2s1ξ1 + �±

1 ) + Re(μ1γ1)

]
,

(8b)

where ζ−
1 = z1I, ϑ

−
1 = μ1γ1, ζ

+
1 = μ∗

1, ϑ
+
1 =

z1Iγ1,�
−
1 = ln |z1I|

c|γ1| ,�
+
1 = ln c

|z1I||γ1| . The minus sign
corresponds to z1I > 0 as t → −∞ or z1I < 0 as
t → ∞ and the plus sign to z1I < 0 as t → −∞ or
z1I > 0 as t → ∞.

(ii) Along the line x − 2z1It = 0 as |t | → ∞, we
have

q → q±
2 = ce2ic

2t

[
1 − 2z1I(μ1e2s1(x0−η1) + μ∗

1γ
∗
1 )

ω±
1 e

2s1(x0−η1) + ϕ±
1

]
,

(9a)

|q|2 → |q±
2 |2 = c2

+ 2s1 Im(μ2
1γ1)

sgn(z1I)c|γ1| cosh(2s1(η1 − x0) − �±
1 ) + Re(μ1γ1)

,

(9b)

where η−
1 = μ1z1I, ϕ

−
1 = c2γ ∗

1 , η+
1 = c2, ϕ+

1 =
μ∗
1z1Iγ

∗
1 . The minus sign corresponds to z1I > 0 as

t → −∞ or z1I < 0 as t → ∞ and the plus sign to
z1I < 0 as t → −∞ or z1I > 0 as t → ∞.

From the above expression, we can deduce that Eq.
(8a) represents the dark soliton for z1Iγ1I > 0 or anti-
dark soliton for z1Iγ1I < 0, while Eq. (9a) represents
the dark soliton for z1IIm(μ2

1γ1) < 0or antidark soliton
for z1IIm(μ2

1γ1) > 0 under the nonsingular constraints.
Asymptotic analysis expressions (8b) and (9b) reveal
that the velocities and amplitudes of two solitons main-
tain unchanged before and after collisions but a phase
shift |�+

1 − �−
1 | = 2 ln c

|z1I||γ1| .
Next, we exhibit several typical solitons with spe-

cific parameter values z1, μ1 and γ1. Figure 1 shows
the elastic interactions of exact two-soliton solutions
(7) with three profiles: two antidark soliton, dark and
antidark soliton and two dark soliton. However, for the
caseγ1I = 0 or Im(μ2

1γ1) = 0, the two solitons degrade
into a single soliton, which is not a trivial single soliton
as the existence of phase shift (see Fig. 2). In Fig. 3,
contour plots of the soliton solution (7) are displayed
with the different space shifts. We see that the space
shift x0 only has the effect of translation on the q2 soli-
ton.

3 Rogue wave solutions of focusing space shifted
nonlocal NLS Eq. (2)

In this section,we construct theRWsolutions for focus-
ing space shifted nonlocal NLS equation (2) through
the DT. This derivation follows the DT [14] with the
Lax pair (3a) and (3b) under the spectrum transforma-
tion z = iλ, which implies the symmetric condition
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Fig. 1 The soliton solution (7) of the space shifted nonlocal
defocusingNLSEq. (1): a two antidark solitonswith c = 1, z1 =
0.2i, γ1 = 1 − 2i, x0 = 1; b dark and antidark solitons with

c = 2, z1 = i, γ1 = 1 − i, x0 = −1; c two dark solitons with
c = 2, z1 = 0.2i, γ1 = 1 + 2i, x0 = −2

Fig. 2 Degenerate two-soliton interactions a dark soliton with c = 2, z1 = γ1 = 1, x0 = 1 and b antidark soliton with c = 2, z1 =
1, γ1 = 1 − √

3i, x0 = −1

Fig. 3 Contour plots of the soliton solution (7) with c = 1, z1 = i
7 , γ1 = 1

4 − i
2 at x0 = −3, 0, 3 from left to right, respectively
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σ1Q
∗(x0 − x, t)σ1 = −Q(x, t), (10)

where

σ1 =
(
0 1
1 0

)
.

Let’s review the DT in the ZS-AKNS system

T = I + ζ1 − λ1

λ − ζ1
P1, P1 = �1�1

�1�1
, (11)

where �1 is the column eigenvectors solution of the
transformed Lax pair with λ = λ1 and�1 is row eigen-
vectors solution of the one with λ = ζ1. The relation-
ship between the old and new potentials is

Q[1] = Q + i(ζ1 − λ1)[σ3, P1], (12)

For Eq. (2), the Lax pair satisfies the following sym-
metry

σ1U
∗(x0 − x, t,−λ∗)σ1 = −U (x, t, λ),

σ1V
∗(x0 − x, t,−λ∗)σ1 = −V (x, t, λ), (13)

Using the above symmetries, we can obtain the sym-
metries ofwave functions� and adjointwave functions
�. Applying these symmetries to the Lax pair, we have

[σ1�∗(x0 − x)]x = U (x,−λ∗)[σ1�∗(x0 − x)],
[σ1�∗(x0 − x)]t = V (x,−λ∗)[σ1�∗(x0 − x)], (14)

Thus, if�(x) is a wave function of the linear system at
λ, then σ1�

∗(x0 − x) is a wave function of this same
system at −λ∗. In the same wave, if �(x) is a wave
function of the linear system at ζ , then �∗(x0 − x)σ1
is a wave function of this same system at −ζ ∗.

Under the above symmetric condition, ifλ1, ζ1 ∈ iR
and the wave functions satisfy

σ1�
∗
1(x0 − x) = α�1(x), �∗

1 (x0 − x)σ1 = β�1(x),

(15)

where α, β are complex constants, the transformation
(11) is the DT of the focusing space shifted nonlocal
NLS equation (2). Thus we directly give the multi-RW
solutions of the focusing space shifted nonlocal NLS

equation

q[N ](x, t) = e−2i t

(
1 + 2i

τ
(1)
1

τ
(1)
0

)
, (16)

where

τ
(1)
0 = det

1�i, j�N

(
m(1)

i, j

)
,

τ
(1)
1 = det

((
m(1)

i, j

)
1�i, j�N

ν(1)

μ(1) 0

)
,

μ(1) =
(
φ

(0)
1 , φ

(1)
1 , . . . , φ

(n−1)
1

)
,

φ
(k)
1 = lim

ε1→0

∂2kφ1(λ)

(2k)!∂ε2k1

,

ν(1) =
(
ψ

(0)
1 , ψ

(1)
1 , . . . , ψ

(n−1)
1

)T
,

ψ
(k)
2 = lim

ε2→0

∂2kψ2(ζ )

(2k)!∂ε2k2

,

m(1)
i, j = lim

ε1,ε2→0

1

(2i − 2)!(2 j − 2)!
∂2i+2 j−4

∂ε2i−2
2 ∂ε

2 j−2
1

(
ψ(ζ )φ(λ)

λ − ζ

)
,

λ = i(1 + ε21), ζ = −i(1 + ε22).

The eigenfunctions φ(λ) = (φ1, φ2)
T and ψ(ζ ) =

(ψ1, ψ2) are given by

φ(λ) = 1√
h1 − 1⎛

⎜⎜⎝
sinh

[
A1 + 1

2 ln(h1 +
√
h21 − 1)

]

sinh

[
−A1 + 1

2 ln(h1 +
√
h21 − 1)

]
⎞
⎟⎟⎠ ,

λ = ih1, h1 = 1 + ε21 ,

A1 =
√
h21 − 1(x − x0

2
− 2ih1t + iθ1),

θ1 =
n−1∑
k=1

skε
2k
1 ,

ψT (ζ ) = 1√
h2 − 1⎛

⎜⎜⎝
sinh

[
A2 + 1

2 ln(h2 +
√
h22 − 1)

]

sinh

[
−A2 + 1

2 ln(h2 +
√
h22 − 1)

]
⎞
⎟⎟⎠ ,

ζ = −ih2, h2 = 1 + ε22 ,
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Fig. 4 The nonsingular first-order RW with a r0 = −1/3, s0 = 1/7,= −4; b r0 = −1/3, s0 = 1/7,= 0; c r0 = −1/4, s0 = −1/3,=
4. d– f are density plots of the above 3D figures

A2 =
√
h22 − 1(x − x0

2
+ 2ih2t + iθ2),

θ2 =
n−1∑
k=1

rkε
2k
2 ,

where sk and rk (k = 0, 1, . . . , n−1) are arbitrary real
parameters.

When N = 1, we derive the first-order RW from
(16) as

q[1] = e−2i t

(
1 − 2(4t − 2i x + i(1 + x0) + 2r0)(4t + 2i x + i(1 − x0) − 2s0)

16t2 + 4x2 + 8(r0 − s0)t + 4i(r0 + s0 + i x0)x − 2i x0(r0 + s0) − 4r0s0 + x20 + 1

)
. (17)

If we set t0 = (r0 − s0)/4 and b = (r0 + s0)/2, the
solution can be rewritten as

q[1] = −e−2i t
(
1 + 4(4i t̂ − 1)

16t̂2 + 4(x̂ + ib)2 + 1

)
, (18)

where t̂ = t + t0, x̂ = x − x0/2. The first-order RW
(18) is nonsingular when b2 < 1/4. To understand

the properties of this RW solution, the intensity minus
background is

|q[1]|2 − 1

= 8(16t̂2 + 32bt̂ x̂ − 4x̂2 + 4b2 + 1)

(16t̂2 − 4b2 + 1)2 + 8(16t̂2 + 4b2 + 1)x̂2 + 16x̂4
,

(19)

The nonsingular first-order RW solution (18) has three
critical points: (x1, t1) = ( x02 ,−t0), (x2,3, t2,3) =

( x02 ∓ 1
2

√
4b2+3
b2+1

,−t0 ± b
4

√
4b2+3
b2+1

). The first point
(x1, t1) is a maximum amplitude with |q[1]|max =
3+ 16b2

1−4b2
and the other two critical points (x2,3, t2,3) are

minimum, at which the amplitudes reduce to zero. We
can see the background value |q[1]| → 1 as x, t → ∞
and the space shift x0 produces x0/2 spatial translation
onRWs (18) (see Fig. 4).When b2 > 1/4, theRWsolu-
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Fig. 5 The singular first-order RW with r0 = 1, s0 = −2, x0 = 2 (left). On the right is density plot

Fig. 6 Density plot of second-order rogue waves for strong interaction (above) with r0 = 1/5, s0 = −1/5, r1 = s1 = 0 and weak
interaction (below) with r0 = 1/2, s0 = −1/4, r1 = −s1 = 200 at x0 = −2, 0, 2 from left to right, respectively
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Fig. 7 Six collapsing second-order RWs. a r0 = 2, s0 = 2, r1 =
40, s1 = 40, x0 = 1; b r0 = s0 = 4, r1 = s1 = −30, x0 = − 1

2 ;
c r0 = −s0 = 1, r1 = s1 = 20, x0 = 1; d r0 = s0 = 8, r1 =

−s1 = 30, x0 = 2; e r0 = s0 = 8, r1 = −s1 = −30, x0 = 0; f
r0 = s0 = 8, r1 = s1 = −30, x0 = −2

tion collapses at point (x, t) = ( x02 ,−t0± 1
4

√
4b2 − 1)

(see Fig. 5).
We remark here that the RWs cannot be considered

as time-translation invariance since the time shift trans-
formation t̂ and peak amplitude associates with the
same parameters s0, r0.

When N = 2, we get the second-order RWs from
the formula (16). The explicit expressions of the solu-
tions are given in Appendix, which has five parameters
s j , r j , ( j = 0, 1) and x0. If we changed these param-
eters, the different types of singular and nonsingular
RWs are derived.

• When r1 = s1 = 0, the second-order RW exists
in the regime of strong interaction, with the corre-
sponding density graphs exhibited in Fig. 6a–c.

• When r1s1 �= 0, theweak interaction occurs and the
second-order RW splits into three first-order RWs,
which form a triangular pattern, see Fig. 6d–f.

Moreover, the abundant collapsing second-order
RW solutions can be obtained by choosing proper
parameters. They display a variety of profiles, includ-
ing the quadrilaterals, triangles as well as cyclic struc-
tures, which represent singular second-order RWs (see
Fig. 7). Interestingly, among the collapsing RWs, there
exist two kinds of nonsingular RWs. The ones is on the
horizontal x-axis (see Fig. 7a) and the other is located
in the centre of quadrilateral structures (see Fig. 7b).
The rest of six collapsing second-order RWs with the
corresponding density plots are displayed in Fig. 7c–f.
Thesemodels have appeared in the local NLS equation,
but each of which has no “space shift” effect on RWs
[33].

Thus, it demonstrates that the peak and depression
points increase spatial translational displacement of
x0/2 for each of the RWs, which is quite distinct from
the ones in solitons with the increase of x0. We should
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point out that, by the reconstruction of different eigen-
function in the DT, we can also obtain type-II and
type-III RW solutions as in the nonlocal NLS equa-
tion [14]. Although these RW solutions have the simi-
lar properties except the space translation, they cannot
be obtained from a simple variable transformation.

4 Conclusions

In this paper, we have constructed the N-soliton solu-
tions and multi-rogue wave solutions for defocusing
and focusing space shifted nonlocal NLS equation on
different plane-wave solutions. The asymptotic analy-
sis has indicated that the elastic two-soliton solutions
have rich soliton types. The effect of the space shift
x0 on soliton solutions and multi-rogue wave solutions
have been investigated. It is shown that the solitons of
the space shifted nonlocal NLS equation possess the
spatial translational distance with x0 and the RWs have
the distance x0/2 compared with the same solutions in
nonlocal NLS equation. But the space shift x0 does not
affect the amplitude of solutions. Besides the results of
the nonlocal NLS equation with space shifts obtained
in this paper, it isworth studying other real and complex
space–time shifted nonlocal equations.
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Appendix

The second-order RW solutions of (16) are expressed
in details as follows

q[2](x, t) = e−2i t

(
1 + 2i

τ
(1)
1,2

τ
(1)
0,2

)
, (20)

where

τ
(1)
1,2 = 1

24
(−1280i t4 − 1024t5

− 128t3(1 + (−2x + x0)
2)

− 96i t2(3 + (−2x + x0)
2)

− 4t (−15 + (−2x + x0)
2(−6

+ (−2x + x0)
2)) − i(−3 + (−2x + x0)

2

(6 + (−2x + x0)
2))

− 4r30 (4t + i(1 + 2x − x0) − 2s0)
2 − 6r1(4t

+ i(1 + 2x − x0) − 2s0)
2

− 9s0 + 96i ts0 + 1280i t3s0

+ 1280t4s0 + 24xs0 + 96i t xs0

+ 384t2xs0 − 512i t3xs0

+ 192i t x2s0 + 384t2x2s0 + 32x3s0

− 128i t x3s0 + 16x4s0

− 12x0s0 − 48i t x0s0 − 192t2x0s0 + 256i t3x0s0

− 192i t xx0s0 − 384t2xx0s0

− 48x2x0s0 + 192i t x2x0s0

− 32x3x0s0 + 48i t x20s0 + 96t2x20s0 + 24xx20s0

− 96i t xx20s0 + 24x2x20s0 − 4x30s0

+ 16i t x30s0 − 8xx30s0 + x40s0

− 384i t2s20 − 512t3s20 − 192t xs20 + 384i t2xs20

+ 32i x3s20 + 96t x0s
2
0 − 192i t2x0s

2
0

− 48i x2x0s
2
0 + 24i xx20s

2
0 − 4i x30s

2
0

− 4s30 + 32i ts30 + 64t2s30 + 16xs30

− 64i t xs30 − 16x2s30 − 8x0s
3
0 + 32i t x0s

3
0

+ 16xx0s
3
0 − 4x20s

3
0

− 4r20 ((4t + 2i x − i x0)(32t
2 + 4i t (6 + 2x − x0)

+ (−2x + x0)
2) + s0(−3(−1 + 48t2

− 4x + 8i t (3 + 2x − x0)

+ 2x0 + (−2x + x0)
2) + 4(3i + 12t − s0)s0)

− 6s1) − 6s1 + 6(4t − 2i x + i x0)

(4t + i(2 − 2x + x0))s1

+ r0(−1280t4 − 96t2(−2 + 2x − x0)(2x − x0)

− 256i t3(5 + 2x − x0)

− (−3 + 4x2 − 4x(2 + x0)

+ x0(4 + x0))(3 + (−2x + x0)
2) − 16i t (6 + 8x3

− 12x2(−1 + x0) + x0(3 − (−3 + x0)x0)

+ 6x(−1 + (−2 + x0)x0))

+ 24(i + 4t)(1 + 8t (i + 2t)

+ (−2x + x0)
2)s0 − 12
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(−1 + 48t2 + 4x − 8i t (−3 + 2x − x0)

− 2x0 + (−2x + x0)
2)s20

+ 16(4t + i(1 − 2x + x0))s
3
0

+ 24(4t + i(1 − 2x + x0))s1)),

τ
(1)
0,2 = 1

144
(−9(1 + 12x2) − 16(256t6 + x4(3 + 4x2)

+ 48t4(9 + 4x2) + t2(99 − 72x2 + 48x4))

+ 12x((3 − 16t2)2

+ 8(1 + 16t2)x2 + 16x4)x0

− 3((3 − 16t2)2 + 24(1 + 16t2)x2 + 80x4)

x20 + 8x(3 + 48t2 + 20x2)x30

− 3(1 + 16t2 + 20x2)x40 + 12xx50 − x60

− 8r30 (64t3 + 48i t2(2x − x0)

− 12t (−3 + (−2x + x0)
2)

− i(2x − x0)(−3 + (−2x + x0)
2) + 2s0

(−3(4t + i(−1 + 2x − x0))(4t + i(1 + 2x − x0))

+ 2(12t + 6i x − 3i x0 − 2s0)s0) − 12s1)

− 12r1(64t
3 + 48i t2(2x − x0)

− 12t (−3 + (−2x + x0)
2)

− i(2x − x0)(−3 + (−2x + x0)
2) + 2s0

(−3(4t + i(−1 + 2x − x0))

(4t + i(1 + 2x − x0)) + 2(12t

+ 6i x − 3i x0 − 2s0)s0) − 12s1)

− 12r20 (192t2 + 256t4 + 128i t3(2x − x0)

+ 8i t (2x − x0)
3 − (−2x + x0)

4

− 6(64t3 + 16i t2(2x − x0)

+ i(2x − x0)(1 + (−2x + x0)
2)

+ 4t (3 + (−2x + x0)
2))s0 + 12(1 + 16t2

+ (−2x + x0)
2)s20 − 8(4t − 2i x + i x0)s

3
0

− 12(4t − 2i x + i x0)s1)

+ 2(3(1024t5 − 9i(2x − x0) − 256i t4(2x − x0)

− 32i t2(2x − x0)(−3 + (−2x + x0)
2)

− i(2x − x0)
3(2 + (−2x + x0)

2)

+ 128t3(8 + (−2x + x0)
2) + 4t (15

+ (−2x + x0)
4))s0 − 6(192t2

+ 256t4 − 128i t3(2x − x0)

− 8i t (2x − x0)
3 − (−2x + x0)

4)s20 + 4(64t3

− 48i t2(2x − x0) − 12t (−3 + (−2x + x0)
2)

+ i(2x − x0)(−3 + (−2x + x0)
2))s30

+ 6(64t3 − 48i t2(2x − x0)

− 12t (−3 + (−2x + x0)
2) + i(2x − x0)

(−3 + (−2x + x0)
2))s1)

− 6r0(1024t
5 + 9i(2x − x0) + 256i t4(2x − x0)

+ 32i t2(2x − x0)(−3 + (−2x + x0)
2)

+ i(2x − x0)
3(2 + (−2x + x0)

2)

+ 128t3(8 + (−2x + x0)
2) + 4t (15

+ (−2x + x0)
4) − 12s1

+ 2(−3(3 + 256t4 + (−2x + x0)
2

(2 + (−2x + x0)
2) + 32t2(3 + (−2x + x0)

2))s0

+ 6(64t3 − 16i t2(2x − x0) − i(2x − x0)

(1 + (−2x + x0)
2) + 4t (3 + (−2x + x0)

2))s20
− 4(4t − i(1 + 2x − x0))(4t + i(1 − 2x + x0))

s30 − 6(4t − 2i x + i x0)
2s1))).
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