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Abstract We report on the first numerical implemen-
tation of photonic reservoir computing (RC) based
on an optically pumped spin vertical-cavity surface-
emitting laser (spin VCSEL) with optical feedback and
injection. The proposed RC aims at both fast, single
task processing and parallel tasks processing, benefit-
ing from feasible tunability and multiplexing of the
left and right circularly polarized modes. We evaluate
its prediction and classification abilities through two
benchmarks, i.e., a Santa Fe time series prediction task
and a waveform recognition task. In particular, both
the influence of external and internal parameters on the
prediction and classification performance is systemat-
ically analyzed. The numerical results show that the
proposed RC based on a spin VCSEL has remarkable
prediction and classification abilities overwider param-
eter ranges due to the feasible adjustment of the pump
intensity and polarization as compared to conventional
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VCSELs.Most importantly, because of its intrinsic fast
response, the spin VCSEL-based RC system is capable
of enhancing the information processing rate by signif-
icantly reducing the allowable feedback delay time and
virtual node interval, reaching 20 Gbps for single task
processing and 10 Gbps for parallel tasks processing,
respectively. Such a spin VCSEL-based RC system has
a potential to achieve high-speed information process-
ing and lower power consumption.

Keywords Reservoir computing · Spin vertical-cavity
surface-emitting lasers · Delay systems · Polarization
dynamics

1 Introduction

To efficiently process the unprecedented amount of
data at high speed, a variety of novel computational
systems have been proposed. Among them, artificial
neural networks (ANNs), whichmimic the information
processing way in the biological brain, have been suc-
cessfully applied to tackle numerous necessary tasks
with the improvement of machine learning. Generally
speaking, ANNs have a powerful processing capabil-
ity thanks to their trained connection weights and non-
linear relationship between the input and output [1–
3]. Although ANNs require complex training algo-
rithms to learn the weights, they still penetrate into all
aspects of technology and are widely studied. Later,
recurrent neural networks (RNNs) are derived from
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feed-forward neural networks and characterized by the
existence of self-feedback nodes, so they are com-
petent to process time-dependent series [4], which is
a great advance compared to other ANNs. However,
RNNs inevitably increase the complexity of the train-
ing procedure due to the self-feedback, where the con-
nections in the network need training as well. Thus,
a neuron-like computing system with a simple learn-
ing algorithm and small calculation power is highly
desirable.

In 2007, the concept of reservoir computing (RC)
was proposed by Verstraeten et al. [5] as a joint name
of the echo state network (ESN) [6] and liquid state
machine (LSM) [7]. The RC is composed of an input
layer, a reservoir (usually consisting of a large number
of physical nodes), and an output layer. It optimizes the
traditional RNNs by fixed randomly connections both
in the reservoir and between the input layer and the
reservoir. To be precise, the portion in the RC needs to
be trained is the output weight, consequently leading
to simple training mechanism and low consumption.
According to the literature, such RC has accomplished
a large range of hard tasks with high performances,
including chaos time series prediction, nonlinear chan-
nel equalization, hand written digit recognition, speech
recognition [5–11], and so on.

In 2011, to avoid the large number of physical
nodes and further simplify the RC architecture, time-
delayed RC consisting of a nonlinear node with a
delay feedback loop was proposed [12], which has
attracted extensive interest in recent years [13–29].
Especially, the time-delayed RC schemes based on
semiconductor lasers (SLs) have been vastly investi-
gated due to their fast response and low energy con-
sumption features [11]. Since Brunner et al. proposed
a time-delayed RC system in 2013 based on transient
responses of a SL with delayed feedback for the first
time [13], both the performance and the information
processing rate became the focus of the laser-based
RC. For example, Nakayama et al. adopted chaos mask
to achieve better prediction performance compared to
other masks, and confirmed by a chaotic time series
prediction task numerically [14] as well as experimen-
tally [15]. In 2018, Nguimdo et al. [16] numerically
investigated the prediction and reconstruction abilities
of the time-delayed RC based on a single quantum cas-
cade laser (QCL) with optical feedback. The results of
performing different tasks show robustness for feed-
back phase. In the same year, time-delayed RC formed

by a SL subject to double optical feedback and injec-
tion was proposed, which realized a prediction error
below 0.03 at the processing rate of 1 Gbps [17]. In
2020, Guo et al. improved the information process-
ing rate to 10 Gbps through a compact semiconduc-
tor nanolaser with optical feedback under electrical
modulation [18]. Furthermore, the SL-based RC allow-
ing for simultaneously accomplishing several different
tasks has already entered people’s vision. For example,
Nguimdoet al. [19,20] demonstrated aparallel process-
ing time-delayed RC system based on a semiconductor
ring laser (SRL) subject to optical feedback, which can
simultaneously process the nonlinear channel equaliza-
tion task and time series prediction task by multiplex-
ing the clockwise and counterclockwise modes of the
SRL. However, this system exhibited a low processing
speed of 0.25 Gbps and a degraded performance due to
the unwanted coupling effects between the directional
modes. Interestingly, vertical-cavity surface-emitting
lasers (VCSELs) with rich polarization dynamics and
low power consumption were proposed to improve
the computational accuracy and the processing rate
by Vatin et al. [21,22]. Furthermore, Guo et al. pro-
posed a four-channel RC system based on twomutually
coupled VCSELs by taking advantage of the orthogo-
nal polarization modes and numerically demonstrated
its high computing efficiency [23]. The more exciting
thing is that an ultrafast processing rate of 20 Gbps
was realized in total four polarization modes of the
two VCSELs. More recently, it has been demonstrated
numerically [24] and experimentally [25] that even a
single conventional VCSEL allows for the parallel pro-
cessing by making use of the polarization multiplexing
technology.

The above VCSEL-based RC shows a remarkable
computing performance largely benefited from the
multiplexing of the two linear polarization modes, and
therefore has a susceptibility to the stability of modes.
The two orthogonal polarization modes of conven-
tional VCSELs are usually inadequately stable, and in
other words, polarization switching occurs as the oper-
ation condition varies. These phenomena definitely
degrade the computing performance. On the contrary,
spin VCSELs, whose emitted polarization can be read-
ily controlled via the pumping either electrical or opti-
cal, can exhibit superior properties over conventional
VCSEL counterparts, including precise spin control
of the lasing output, threshold reduction, and much
faster dynamics [30–33]. In our previous works, the
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dynamics of solitary spin VCSELs including steady-
state operation, polarization oscillations, and rich bifur-
cations, and its potential application to secure com-
munications have been well studied [35–42]. If such
novel spin VCSELs are applied to RC, several fea-
tures might be outlined as follows. Firstly, the compli-
cated dynamics can be found in a spin-VCSEL with-
out feedback [37], which may enrich the virtual node
states and contribute to improving RC performance.
Secondly, the spin VCSEL allows fast polarization
dynamics of the order of the magnitude of ∼200 GHz
or even higher [34], which may enhance the comput-
ing rate. Thirdly, due to its threshold reduction [33],
lower power consumption might be expected in the
practical application. Compared with electrical spin-
injection, optical pumping can generate spin-oriented
carriers without the limitation of magnetic fields and
temperatures [43]. On the other hand, Nguimdo et al.
have demonstrated that an optically pumped erbium-
doped microchip laser can be used to implement a RC
system [26],which yields prediction performance com-
parable to those obtained for electrically pumped lasers.
Hence the optically pumped spin VCSEL is a potential
candidate to realize time-delayed RC with enhanced
computing performance.

In this work, a time-delayed RC system based on
an optically pumped spin VCSEL subject to optical
feedback and injection is proposed to realize high-
speed single task or parallel tasks processing. We will
demonstrate how fast dynamics properties allowed by
the spinVCSEL can be beneficially employed for high-
speed processing. Here, both the left circularly polar-
ized (LCP) and right circularly polarized (RCP) modes
in the spin VCSEL are adopted to build the reservoir.
The consistent or independent input signals correspond
to the case of single task or two different tasks process-
ing, respectively. The parameter region for good com-
puting performance is numerically explored. Besides,
we also investigate the influence of some important
external and internal parameters on the prediction and
classification abilities of the spin VCSEL-based RC,
to show the robustness of the proposed scheme. This
paper is organized as follows. In Sect. 2, the con-
ceptual scheme of the RC system and the theoreti-
cal model of an optically pumped spin VCSEL with
optical feedback and injection are described. Section 3
provides the main numerical results for spin VCSEL-
based RC for single task and parallel tasks process-
ing, where a large range of parameter dependence is

also explored. Finally, our basic conclusion is given in
Sect. 4.

2 Theory and model

The conceptual scheme of the proposed RC based on
an optically pumped spin VCSEL subject to optical
feedback and injection is shown in Fig. 1, which is
divided into three parts: an input layer, a reservoir and
an output layer. The input layer is primarily composed
of two drive SLs (SL1 and SL2), two Mach-Zehnder
modulations (MZM1 andMZM2) and two polarization
controllers (PC1 and PC2). Signals u± (n) are prepro-
cessed with two randommasks, which are used to con-
struct two masked input signal S± (t), and are, respec-
tively, injected into the RCP and LCPmodes of the spin
VCSEL through external modulation. The masks have
discrete {-1,1} values that vary at each interval θ in
a period of T and can ensure the variability of masked
signals. The PC1 and PC2 are used to shift the polariza-
tion states of two drive lasers. The LCP andRCPmodes
of the optically pumped spin VCSEL with a feedback
loop can present abundant nonlinear responses, thereby
form the reservoir. The feedback delay time τ is deter-
mined by the length of delay line. The variable optical
attenuator is adopted to control the feedback strength
while the circulator is used to ensure the light trans-
mission direction. As for the output layer, the virtual
nodes are sampled from the two polarization modes at
a fixed interval θ during each feedback time τ = T ,
leading to M = τ/θ node states in both two modes.
For single task processing, we use consistent series as
u+(n) and u−(n) in the input layer and compute the
results using all 2M virtual nodes. When dealing with
two independent tasks, disparate signals are chosen and
output results are determined by the independent linear
combination of the virtual nodes from the two polariza-
tion modes and the corresponding output weights. The
ridge regression method is used in our system to mini-
mize the mean-square error between target and output
values.

The spin-flipmodel (SFM) is used tomodel the opti-
cally pumped spin VCSEL with optical feedback and
injection. In this model, the influence of the sponta-
neous emission noise on the laser mode is considered
using the spontaneous factor β and the noise source
ξ , which is the independent Gaussian white noise with
unit variance and zeromean. The complex electric field
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Fig. 1 System diagram of the RC based on an optically pumped
spin VCSEL. SL, semiconductor laser; MZM, Mach-Zehnder
modulator; PC, polarization controller; VA, variable optical
attenuator; OC, optical circulator; PBS, polarization beam split-
ter; PD, photodiode

E , the difference between carrier inversions m and the
total carrier population N can be modeled by the fol-
lowing rate equations [44,45]:

dE±
dt

= κ(1 + iα)(N±m − 1) − (γa + iγp)E∓

+ k f E±(t − τ)e−iω0τ + kinj Einj±
+ ξ±

√
βγ (N±m) (1)

dN

dt
= γ [η+ + η− − (1 + |E+|2 + |E−|2)N
− (|E+|2 − |E−|2)m] (2)

dm

dt
= γ (η+ − η−) − [γs + γ (|E+|2 + |E−|2)]m
− γ (|E+|2 − |E−|2)N (3)

where the subscripts +,− indicate the RCP and LCP
modes, respectively. Other parameters are defined as
follows: γa represents the linear dichroism, γp is the
linear birefringence, κ is the optical field decay rate, γ
is the decay rate of N , γs is the spin-flip relaxation rate,
and α is the linewidth enhancement factor. The experi-
mentally available parameter η = η+ + η− is the total
normalized pump power of the optical pumping and
P = (η+−η−)/(η++η−) is defined as the pumppolar-
ization ellipticity, where η+ and η− are dimensionless
circularly polarized pumpcomponents that describe the
polarized optical pumping.

The third term on the right-hand side of Eq. (1) is
the feedback term, where k f is the feedback strength,
τ is the feedback delay time, and ω0 is the optical
angular frequency, respectively. The fourth term on the
right-hand side of Eq. (1) describes the optical injection

effect, where the kinj stands for the injection strength,
and Einj± represent the outputs of the two MZMs
described as [29]:

Einj± = |E0|
2

{1 + ei[S±(t)+�0]}ei�ωin j±t (4)

In Eq. (4), the E0 denotes the injection field amplitude
from the drive laser, and themasked input signals S±(t)
are generated by multiplying the input data u±(n) and
the mask signals M±(t), i.e., S±(t) = u±(n)×M±(t).
�0 is the normalizedbias voltageofMZMs.�ωin j± are
the angular frequency detuning between the laser fields
E± and the external injection fields Einj±, which can
be calculated from the corresponding optical frequency
detuning � f as �ωin j± = 2π� f .

In order to investigate the performance of the RC
system based on an optically pumped spin VCSEL,
we use two classical benchmark tasks, i.e., a Santa Fe
time series prediction task and a waveform recognition
task. The first task aims to perform single-point pre-
diction of the Santa-Fe chaotic time series experimen-
tally recorded from a chaotic far-infrared laser [46].
We select 3000 and 1000 points from the chaotic data
for training and testing, respectively. For the waveform
recognition task, a sequence of random input data con-
sists of square, sine and triangle waves (each of them
is discretized into 10 points per period). Total 4000
points are used to realize the classification (likewise,
3000 for training and 1000 for testing), with the target
value 0 for square wave, 1 for sine wave, and 2 for tri-
angle wave [24]. For both tasks, the normalized mean
square error (NMSE) between the target value y and
the predicted value Y is calculated as an indicator for
the performance of the RC scheme [29]:

NMSE = 1

L

∑L
i (y(i) − Y (i))2

σ 2 (5)

where L is the number of the test data, n is the dis-
crete time index, and σ denotes the standard deviation
of the target value y. The lower NMSE value means
better performance, and more concretely, the perfor-
mance can be considered good enough when NMSE is
less than 0.1. In the following section, the mean and
the standard deviation of the NMSE values for 5 runs
are shown except Figs. 2 and 9, where the vertical bar
depicts the standard deviation.
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Fig. 2 Performance illustration of a the time series prediction
task and b the waveform recognition task with k f = 30 ns−1 ,
kinj = 60 ns−1 , and� f = −20 GHz . a1 temporal waveform of
the original signal, a2 predicted waveform by the proposed RC,
and a3 the error signal between the original signal and the pre-
dicted signal. b1 temporal waveform of the random input wave,
b2 comparison between the classification target and result, and
b3 the error between the original waveform and the predicted
waveform

3 Numerical results

In this section, we use the above-mentioned benchmark
tasks to evaluate the performance of our proposed RC
system both for processing a single task and two inde-
pendent tasks in parallel. In our numerical simulation,
the fourth-order Runge–Kutta algorithm is employed
to solve Eqs. (1)–(3), and the following parameter val-
ues that make the spin VCSEL yields a steady-state
output when absent from the modulated input data are
chosen [37]: κ = 230 ns−1, α = 4, γs = 30 ns−1,
γa = 0 ns−1, γp = 8.8 ns−1, γ = 0.68 ns−1, P = 0.1,
η = 1.5, k f = 30 ns−1, τ = 1 ns, �0 = 0, kinj = 60
ns−1, � f = −20 GHz, E0 = 1.5, and β = 10−6.
For the reservoir, a virtual node interval of θ = 10 ps
is used. It should be noted that the above parameter
values are kept constant, unless otherwise specified.

3.1 Single task processing

Firstly, to realize the single task processing, both the
RCP and LCP are utilized to execute a specific bench-

Fig. 3 a Bifurcation diagrams and b NMSE values of the RC
system as a function of the feedback strength k f with� f = −20
GHz. (a1, b1) kinj = 20 ns−1, (a2, b2) kinj = 40 ns−1, and (a3,
b3) kinj = 60 ns−1

mark task. To begin with, the target value and predicted
value for the Santa Fe time series prediction task are
shown in Fig. 2a1–a3. The NMSE value in this case is
estimated as 0.0025, which means that our RC system
has excellent prediction ability. In addition, the corre-
sponding result for waveform recognition task can be
found in Fig. 2b1–b3, with a NMSE value as low as
3.02 × 10−5. For both tasks, the prediction results can
almost overlap with the targets, as shown in Fig. 2a3
and b3, where the error is negligible. This indicates that
outstanding performance can be expected for the two
tasks in the proposed RC. For simplicity, we only focus
on the Santa Fe time series prediction task for single
task processing because of the consistent trends of the
two tasks.

It is well-accepted that the optimal performance of
the time-delayed RC largely benefits from the stable
steady state of the used laser [12]. Therefore, it is of
vital importance to investigate the relationship between
the injection locking area and the prediction perfor-
mance of the current RC. To this end, one-parameter
bifurcation diagrams representing the intensity extrema
(the bifurcation can also be solved by other mathemat-
ical tools [48]) as a function of the feedback strength
k f are depicted in Fig. 3a1–a3, where the input masked
signal S±(t) is set to 0. It is worth noting that no noise
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Fig. 4 Two dimensional maps of the NMSE in the plane of the
injection strength kinj and the frequency detuning� f . a k f = 10
ns−1, b k f = 20 ns−1, and c k f = 30 ns−1

is added to the model for better classification of the
laser dynamicswhen drawing the bifurcation diagrams,
i.e., β = 0. Accordingly, the NMSE as a function of
the feedback strength k f can be found from Fig. 3b1–
b3. In Fig. 3, three levels of the injection strength kinj
are considered, and only the results computed from the
RCP intensity are presented in Fig. 3a since the results
for the RCP and LCP are almost identical. For an inter-
mediate value of the injection strength kinj = 20 ns−1,
it can be observed from Fig. 3a1 that the stable steady
state exists when k f is less than 32 ns−1. As the injec-
tion strength kinj is increased gradually, we observe
the stabilization of the laser dynamics in a wider range
of k f , as shown in Fig. 3a2 and (a3). This is expected
since injection locking can be found in a wider area
of parameters as stronger injection condition is applied
for a given detuning frequency. According to Fig. 3b1–
b3, good consistence between the NMSE values and
bifurcation diagrams is confirmed. In all cases of kinj ,
the NMSE curve decreases first, reaches a minimum,
and finally increases dramatically as k f is increased. It
is interesting to find that the lowest NMSE is obtained
before instability occurs in the spin VCSEL-based RC,
consistent with the literature [12].

To further identify the influence of the optical injec-
tion on the prediction performance of the proposed RC,
we turn to draw the two-dimensional maps of NMSE
values in the plane of kinj and � f . Here, three val-
ues of the feedback strength, i.e., k f = 10, 20 and 30
ns−1 are considered. The results are shown in Fig. 4,
and in all panels, the parameter space of kinj and � f
leading to better prediction performance with NMSE
≤ 0.02 is denoted as A. As shown in Fig. 4a, the region
A, resembling a “V” shape, is mainly located at neg-
ative � f for k f = 10 ns−1, and a wider region can
be found for larger kinj . Fig. 4b indicates that a larger
value of the feedback strength, i.e., k f = 20 ns−1,
leads to a narrower region A and to the occurrence of a

Fig. 5 Two dimensional maps of the NMSE in the plane of the
pump polarization ellipticity P and the total normalized pump
power η of the optical pumping with k f = 30 ns−1 and � f =
−20 GHz. a kinj = 20 ns−1, b kinj = 30 ns−1, c kinj = 40
ns−1, and d kinj = 60 ns−1

shift toward negative � f . As the feedback strength is
further increased to k f = 30 ns−1, a more remarkable
shifting can be observed in Fig. 4c, and in this case,
only sufficiently negative � f and intermediate to large
kinj can guarantee the good prediction performance. In
fact, the goodprediction region is almost in linewith the
injection lock area regardless of the feedback strength
k f . Therefore, detuning the response laser negatively
with respect to the drive laser is beneficial for injection
locking and thus for better prediction results.

For the specific spin VCSEL-based RC, there are
other two experimentally available parameters, i.e., the
pumppolarization ellipticity P and the total normalized
pump power of the optical pumping η, which are two
key parameters modeling the external optical pumping.
It iswell examined that a spinVCSELundergoes a vari-
ety of bifurcations and thus supports rich dynamics as
either the P or η is varied [40]. Thus, it is interest-
ing to study their influence on the performance of the
RC. Here, for different kinj , the two-dimensional maps
of NMSE values in the parameter space of P and η

are shown in Fig. 5. The region of lower NMSE values
(NMSE≤ 0.02) is also termedA,which represents bet-
ter prediction performance. Several important features
can be identified from this figure. Firstly, the region A
is symmetric with respect to the polarization elliptic-
ity P = 0. This can be understood by the dynamics
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Fig. 6 TheNMSEvalues as a function of the internal parameters
with different values of kinj = 20, 40, and 60 ns−1. a γp , b γs ,
c γ , d γa , e α, and f κ

of the spin VCSEL is symmetric for positive and nega-
tive values of the polarization ellipticity. Secondly, bet-
ter prediction performance is always achieved for the
low pump power η, which is similar to the case of the
electrical pump. In that case, low prediction errors are
obtained when the laser is biased close to the threshold.
Thirdly, given the pump power η, larger absolute values
of the polarization ellipticity leads to lower NMSE val-
ues,where onepolarizationmode is dominated. Finally,
the region A expands in size as the injection strength
kinj increases. This is because that it is much easier
to injection-lock the spin VCSEL for larger kinj , no
matter what the optical pumping condition is.

Subsequently, we evaluate the NMSE values as a
function of some key internal parameters to give a thor-
ough understanding of operating conditions of the pro-
posed RC. The obtained results can be seen in Fig. 6.
The above results have shown that the injection strength
plays an important role in the prediction performance,
so three injection levels, i.e., kinj = 20, 40, 60 ns−1,

are adopted. According to Fig. 3, the feedback strength
k f is fixed at 30 ns−1 to ensure stable steady-state oper-
ation originally. We consider single parameter vari-
ation when other parameters are kept constant. Fig-
ure 6a illustrates the NMSE values as a function of
the linear birefringence γp (can be controlled through
mechanical strain). For kinj = 20 ns−1 and kinj = 40
ns−1, the NMSE values keep at the around of 0.01
before reaching a critical value of γp, and then sig-
nificantly increases with the further increment of γp.
In addition, a wider range of γp leading to good per-
formance (NMSE ≤ 0.1) is found for a larger value
of kinj . Especially in the case of kinj = 60 ns−1, the
discernible fluctuations of the NMSE values disappear
and maintain an extremely low level. Figure 6b pro-
vides the NMSE curves versus spin-flip relaxation rate
γs , which is material-dependent but can be changed
via laser design. The obvious variation of the NMSE
values is shown only for kinj = 20 ns−1, whereas for
kinj = 40 ns−1 and kinj = 60 ns−1, the performance
of our RC system is hardly affected by γs . Besides, the
effect of γ on the NMSE values is given in Fig. 6c.
In the case of week injection of kinj = 20 ns−1, the
trend of the NMSE variation firstly decreases, reaches
its minimum, and then increases with the increase of
γ . A larger injection strength, e.g., kinj = 40 ns−1 and
60 ns−1, can contribute to basically identical NMSE
values under 0.5 ns−1 ≤ γ ≤ 4 ns−1. The similar
stability for linear dichroism γa in Fig. 6d, while only
the NMSE curve for kinj = 20 ns−1 shows an upward
trend as γa is increased. As shown in Fig. 6e, when the
linewidth enhancement factor α is larger than a critical
value and increases further, the prediction performance
of the RC worsens. The stronger the injection strength
is, the larger the critical α is. It can be seen that the
critical values of α for three different injection condi-
tions are 4, 5.5 and 7, respectively. Finally, in Fig. 6f,
the values and fluctuations of the NMSE appear for
kinj = 40 ns−1 either when the optical field decay rate
κ is too small or large. In contrast, no obvious changes
can be identified as κ is varied for kinj = 20 ns−1 and
kinj = 60 ns−1. Note that, on the one hand, the vari-
ations of γs , γa and κ does not force the NMSE val-
ues to be larger than the acceptable NMSE level, i.e.,
NMSE ≤ 0.1, which means that good prediction per-
formance is maintained as these parameters are varied.
On the other hand, no matter which internal parameter
we change, the larger injection always makes the RC
system be easier to achieve low NMSE. That is to say,
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Fig. 7 The NMSE values as a function of the delay time τ with
five different values of the virtual node interval, i.e., θ = 1, 5,
10, 25, and 50 ps

the robustness to the internal parameter fluctuation can
be enhanced by increasing the injection strength kinj .
This also indicates that the proposed RC can achieve
the good prediction in wide parameter space.

Fast information processing rate is one of the pur-
sued goals in the RC field, and can be calculated
as the reciprocal of the feedback delay time τ , i.e.,
B = 1/τ . Moreover, the shorter delay line undoubt-
edly contributes to the miniaturization of time-delayed
RC systems and their engineering application. There-
fore, the influence of the delay time τ on the RC per-
formance is discussed in Fig. 7. Based on the previous
results, kinj = 60 ns−1 and k f = 30 ns−1 are adopted
for achieving better prediction performance. As τ is
decreased, the prediction performance becomes worse
mainly because of the less available virtual nodes. In
Fig. 7, various virtual node intervals θ are compared. It
can be found that smaller θ can guarantee the endurable
prediction error of our RC system. More precisely, in
the three cases of θ ≤ 10 ps , the NMSE values are
always lower than 0.1 even for an especially short delay
time τ , i.e., τ = 0.05 ns. These results demonstrate that
the spin VCSEL-based RC system can process a single
information computing task at the rate up to 20 Gbps.
To gain further insight into the influence of τ and θ ,
Fig. 8 depicts the NMSE values as a function of the
feedback strength k f for kinj = 60 ns−1. In this figure,
various values of τ and θ are considered. As can be
seen, for large delay times τ , e.g., τ = 1 ns in Fig. 8a
and τ = 0.4 ns in Fig. 8b, the low prediction errors
can be achieved in a wide range of k f , regardless of θ .

Fig. 8 The NMSE values as a function of the feedback strength
k f for a τ = 1 ns, b τ = 0.4 ns, c τ = 0.3 ns, d τ = 0.2 ns, e
τ = 0.1 ns and f τ = 0.05 ns, and for five different values of the
virtual node interval, i.e., θ = 1, 5, 10, 25, and 50 ps

As the delay time τ decreases to a critical value, e.g.,
τ = 0.3 ns in Fig. 8c and τ = 0.2 ns in Fig. 8d, the pre-
diction errors gradually become sensitive to the choice
of θ . When the delay time τ is too small, e.g., τ = 0.1
ns in Fig. 8e and τ = 0.05 ns in Fig. 8f, only extremely
small values of θ can guarantee the satisfied RC per-
formance, which also set higher demands for the data
acquisition device.

3.2 Parallel tasks processing

In order to realize the parallel tasks processing, the
RCP andLCPmodes in the spinVCSEL-basedRC sys-
tem are utilized to deal with the time series prediction
task (denoted as T-task) and the waveform recognition
task (denoted as W-task), respectively. However, the
reservoir is operating in the same condition as that in
the case of single task processing. Typical computing
results are shown in Fig. 9, from which one can see
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Fig. 9 Parallel processing performance illustration of a time
series prediction task and b waveform recognition task with
k f = 30 ns−1, kinj = 60 ns−1, � f = −20 GHz. a1 tempo-
ral waveform of the Santa Fe data, a2 Predicted waveform by the
proposed RC, and a3 the error signal between the original signal
and the predicted signal. b1 temporal waveform of the random
input wave, b2 comparison between the classification target and
result, and b3 the error signal between the original waveform and
the predicted waveform

satisfactory prediction performance for parallel tasks
processing. It is worth noting that the NMSE values of
the time series prediction task and the waveform recog-
nition task are estimated as 0. 03478 and 0. 03008,
respectively, which is much larger than those for single
task processing (Fig. 3). This is due to the fact that the
inevitable coupling between two polarization modes
leads to the degradation. In fact, this phenomenon has
also been observed in the RC based on either semicon-
ductor ring lasers [19] or conventional VCSELs [24],
where there exist two modes.

Likewise, the influence of some external parameters
on the RC computing performance is evaluated first.
Fig. 10 illustrates the dependence of the prediction and
classification performance on the feedback strength k f

for three levels of the injection strength kinj . TheNMSE
values of the two tasks have almost the same varia-
tion tendency, which is associated with the underlying
dynamics of the reservoir as illustrated in the bifurca-
tion diagrams in Fig. 3. Although larger NMSE values
are obtained for the parallel tasks processing, the evo-
lution of the NMSE curves is consistent with the single

Fig. 10 The NMSE values for T-task and W-task as a function
of the feedback strength k f with� f = −20 GHz and with three
different values of kinj = 20, 40, and 60 ns−1

Fig. 11 Two dimensional maps of the NMSE in the plane of the
pump polarization ellipticity P and the total normalized pump
power η for T-task (left column) and W-task (right column) with
k f = 30 ns−1 and � f = −20 GHz. (a1, a2) kinj = 20 ns−1,
(b1, b2) kinj = 40 ns−1, and (c1, c2) kinj = 60 ns−1

task processing. It seems that the NMSE values for the
waveform recognition task increase more dramatically
than those for the time series prediction task after the
reservoir enters into the nonlinear dynamics region.

Figure 11 shows the evolution of the NMSE val-
ues in the parameter space of P and η when process-
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ing the T-task and W-task in parallel. For both tasks,
the good performance region is depicted as A, corre-
sponding to NMSE ≤ 0.1. As shown in Fig. 11a1 and
(a2) for kinj = 20 ns−1, the better performance mainly
appears in a narrow region A that lies on the left side
of the subfigure. To achieve the excellent parallel tasks
processing, the optical pumping parameters should be
controlled within the overlapped range of the region A
of the two tasks, occupied in the area of low η. For T-
task, the region A shown in Fig. 11a1 is not symmetric
about the line P = 0, which is different from the sin-
gle tasking processing. We speculate that the change
of P results in a variation of output intensities for LCP
and RCP, andmeanwhile the weak intensities influence
the variety of virtual node states. However, Fig. 11a2
shows a good performance region for theW-task wider
than the counterpart for T-task, which signifies that the
W-task is less affected by the pump polarization ellip-
ticity P . For even higher injection strengths such as
kinj = 40 ns−1 and kinj = 60 ns−1 in Fig. 11b and
c, the region A resembles the similar shape to that for
kinj = 20ns−1 but expands to a larger area reaching to
higher η. This phenomenon is also similar to the case
of single task processing as displayed in Fig. 5; how-
ever, worse computing performance is obtained for the
parallel tasks processing as expected.

To provide amore complete picture of the parameter
dependence of the computing performance for parallel
tasks processing, the NMSE values as a function of the
variation of internal parameters for different kinj are
displayed in Figs. 12 and 13. All the conditions are the
same as those in the single task processing in Fig. 6,
except that the LCP and RCP modes deal with two
different tasks here, respectively.

Among the internal parameters, the linear birefrin-
gence γp can be skillfully controlled in an optically
pumped spin-VCSEL, for example, by the mechan-
ically applied in-plane anisotropic strain [47], so its
influence on the computing performance is first stud-
ied. Fig. 12a1 and a2 show the parallel processing abil-
ities for varied γp. It can be seen that the computing
performance for both T-task andW-task worsens when
γp is gradually increased. The range of γp correspond-
ing to NMSE ≤ 0.1 gets wider when a larger kinj
is applied, similar to the single task processing case
(Fig. 6a). We would like to point out that, by com-
paring the calculated results of the two tasks, one can
find that the NMSE results of T-task are more easily
to get worse than that of W-task. That is to say, the T-

Fig. 12 The NMSE values of T-task and W-task as a function
of the internal parameters for three different values of kinj = 20,
40, and 60 ns−1. a γp , b γs , and c γa

task is more sensitive to the variation of γp. Figure 12b
and c show the NMSE values of the two tasks as a
function of γs and γa in different injection conditions,
respectively. Both parameter dependences show simi-
lar tendency under stronger injection levels of 40 ns−1

and 60 ns−1. In this case, our RC system can main-
tain good parallel processing capability as γs or γa is
varied, where the NMSE curves are almost unchanged
and kept well below 0.1. For relatively low injection
(kinj = 20 ns−1), as γs is gradually increased, the
NMSE is decreased from a large value and then sat-
urated at a value close to 0.1(good performance) for
both tasks. This indicates that a large value of γs is
beneficial for the computing task, which is important
since γs is usually large at room temperature for most
materials [45]. In contrast, for such low injection, the
NMSE is monotonically increased with increasing γa .
Especially for T-task, only a small range of γs can guar-
antee good performance, i.e., NMSE ≤ 0.1.
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Fig. 13 The NMSE values of T-task and W-task as a function
of the internal parameters for three different values of kinj = 20,
40, and 60 ns−1. a γ b α, and c κ

Figures 13a1 and a2 show the NMSE values for
T-task and W-task when γ is changed, respectively.
The variations of parallel processing performance are
mainly similar to those for single task processing.With
large values of the injection strength kinj , low NMSE
can be achieved in a wider range of γ . The influence of
the linewidth enhancement factor α on the computing
performance is presented in Fig. 13b. The results for
the two tasks are also similar to those for single task
processing, that is, the NMSE value decreases before
reaching its minimum,maintains at the lowest value for
a certain range of α, and then increases with increasing
α. Fig. 13c deals with the influence of the optical field
decay rate κ . As shown in Fig. 13c1, for kinj = 20
ns−1, it is difficult to achieve the desired NMSE value
of below0.1 in the case of T-task.On the contrary, in the
case of W-task, one can realize good classification per-
formance for large enough κ . For strong injection, both
tasks are insensitive to the change of κ . However, for
single task processing, good computing performance is

Fig. 14 The NMSE values as a function of the delay time τ with
different virtual node interval θ for a T-task and bW-task

assured for the considered range of κ , independent of
the injection condition.

The RC systems reported previously with paral-
lel processing abilities only supported the informa-
tion processing rate of 1 Gbps or less, since the value
of the feedback delay time was limited to a nanosec-
ond or higher [19,24]. However, parallel executing two
tasks at a high information processing rate is obviously
attractive. The NMSE values as functions of the feed-
back delay time τ for different virtual node intervals θ

are presented in Fig. 14. Different from the single task
processing, the case of θ = 50 ps is not considered
since it is difficult to achieve low NMSE values here.
For all considered θ , the NMSE curves show a rising
trend with the decrement of τ because of the number
reduction of the virtual nodes. However, it is expected
that a smaller θ is more beneficial to obtaining better
performance for both tasks, consistent with the single
task processing. More precisely, the NMSE values of
the two tasks are still less than 0.1 for an extremely
short delay time (τ = 0.1 ns) when θ = 1 ps. Hence,
10 Gbps parallel tasks processing by the RC system
based on an optically pumped spin VCSEL is success-
fully achieved.

Finally, for intuitively expound the effects of the
delay time and the virtual node interval, the NMSE
values versus the feedback strength for kinj = 60 ns−1

are shown in Fig. 15. Again, for large delay times, one
can still achieve desired performance for both tasks for
large enough θ , i.e., θ = 10 ps. However, only the
condition corresponding to θ = 1 ps can realize par-
allel processing with NMSE ≤ 0.1 when τ = 0.1 ns,
as shown in Fig. 15d, in accordance with the results
illustrated in Fig. 14.
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Fig. 15 The NMSE values of (a1-d1) T-task and (a2-d2) W-task
as a function of the feedback strength k f with different virtual
node interval θ for a τ = 1 ns, b τ = 0.4 ns, c τ = 0.2 ns, and
d τ = 0.1 ns

According to our above results, the proposed RC
system based on a spin-VCSEL has the following
characteristics and advantages. The spin-VCSEL pro-
vides additional pump polarization ellipticity P and
can make the RC system to obtain desirable perfor-
mance in a larger range of the total normalized pump
power η compared to the case of an ordinary VCSEL
(P = 0); By using the controllable LCP and RCP
modes, multiple tasks processing can be realized in this
RC; a smaller virtual node interval is available in the
RC system due to the fast dynamics in spin-VCSEL,
thus the information processing rate can be height-
ened for both single task processing and parallel tasks
processing. Such a RC system has great application

potential in different fields, such as communication,
image recognition, speech recognition and reconstruct-
ing chaotic systems [49–54]. For recovering distorted
signals after transmission in ultrafast fiber communica-
tion field, the faster information processing in the spin-
VCSEL-based RC system may allow for higher data
encoding rates as well as longer transmission distance.
For modulation format identification of optical signals,
the proposed RC’s multi-channel parallel processing is
attractive to identify more than one signals at the same
time. In addition, shorter node interval also means that
the time-delayed RC system has more virtual nodes
in a given delay time, which is almost necessary to
ensure the classification performance in complex tasks
of recognition field.

4 Conclusion

We numerically investigate the possibility to establish
a time-delayed RC based on the optically pumped spin
VCSEL subject to feedback and injection. A Santa Fe
time series prediction task and a waveform recogni-
tion task are employed to evaluate the prediction and
classification abilities of the RC system. The good per-
formance of single task processing similar to those
obtained from other conventional SL-based RC sys-
tems can be acquired by our scheme. However, when
compared to the conventional RC schemes, desirable
computing performance can be obtained inmuchwider
ranges of experimentally accessible parameters in the
proposed RC due to the feasible tunability of the pump
intensity and polarization. We also realize multiple
tasks processing using the LCP and RCP modes in
the proposed RC. The consistency between the RC
computing performance and the laser dynamics is dis-
cussed aswell. In particular, we comprehensively study
the effects of internal and external parameters on the
computing performance for both single task and paral-
lel tasks processing, and meanwhile we find that the
robustness of the system to internal parameters can
be effectively improved by increasing the injection
strength. Moreover, the information processing rate of
our RC system for executing single task and parallel
tasks is improved to 20 Gbps and 10 Gbps, respec-
tively. Our proposed RC system has the potential to
develop highly integrated neuromorphic photonic sys-
tems and provide theoretical guidelines for high-speed
laser-based RC systems.
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