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Abstract Nonlinear Quasi-zero-stiffness (QZS)

vibration isolation systems with linear damping can-

not lead to displacement isolation with different

excitation levels. In this study, a QZS system with

nonlinear hysteretic damping is investigated. The

Duffing-Ueda equation with a coupling nonlinear

parameter g is proposed to describe the dynamic

motion of the QZS system. By using the harmonic

balance method (HBM), the primary and secondary

harmonic responses are obtained and verified by

numerical simulations. The results indicate that non-

linear damping can guarantee a bounded response for

different excitation levels. The one-third subharmonic

response is found to affect the isolation frequency

range even when the primary response is stable. To

evaluate the performance of the QZS system, the

effective isolation frequency Xe and maximum trans-

missibility Tp are proposed to represent the vibration

isolation range and isolation effect, respectively. By

discussing the effect of g on Xe and Tp, the conditions

to avoid nonlinear phenomena and improve the

isolation performance are provided. A prototype of

the QZS system is then constructed for vibration tests,

which verified the theoretical analysis.

Keywords Quasi-zero-stiffness � Vibration
isolation � Nonlinear hysteretic damping � Harmonic

balance method � One-third subharmonic resonance �
Transmissibility

1 Introduction

In recent decades, there has been a significant increase

in the application of quasi-zero stiffness (QZS)

vibration isolators [1–4], which are essential for

systems sensitive to low-frequency vibrations, such

as ultra-precision manufacturing systems, ultra-high-

precision measuring systems, and optical instruments

for gravitational wave detection [5–7]. In general, for a

payload of massm, a linear isolator with stiffness k can

function only for an excitation frequency greater than
ffiffiffiffiffiffiffiffiffiffiffi

2k=m
p

[8]. Therefore, ultra-low-stiffness isolators

are required for isolating the frequency range to low

and ultra-low frequencies. However, for traditional

linear spring systems, low stiffness may cause a large

static displacement due to the weight of the payload,

which is generally impractical considering the instal-

lation space restrictions and stability of the system.

Thus, nonlinear QZS isolators have been proposed to

overcome this limitation; these isolators possess a

localized zero stiffness at equilibrium by combining a

matched nonlinear negative-stiffness structure in par-

allel with a positive spring. Hence, the positive spring
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has relatively high stiffness to reduce the static

deflection due to the weight of the payload.

The design of a structure to obtain negative stiffness

is essential to QZS isolators, and can be traced back to

a conceptual design introduced by Molyneux with two

oblique linear springs to provide negative stiffness [9].

The fundamental theory and design methodology of

this type of isolator was comprehensively studied by

Alabuzhev et al. [1], Carrella et al. [10–14], Kovacic

et al. [15], Hao and Cao [16], and Lan. et al. [17].

Similar mechanisms have been introduced by apply-

ing electromagnets or magnet springs to form tunable

QZS isolators [14, 18–22]. Meanwhile, various other

mechanisms have been exploited to construct nega-

tive-stiffness elements, including inverse pendulums

[23], bulking beams [24–26], and roll-cam-springs or

ball-roller-spring [27, 28], as reviewed in detail by

Ibrahim [2], Mizuno [3], and recently Li et al. [4].

However, the nonlinearity of a QZS system may

cause the occurrence of subharmonic, superharmonic,

and sometimes chaotic behavior, and the jump-

through phenomenon, which can degrade the perfor-

mance of the system. The transmissibility defined by

the linear theory of vibration isolation is not quite

applicable for demonstrating above phenomena [2].

Theoretical studies on Duffing oscillators [27, 29]

have shown that as the excitation level increases,

secondary harmonic responses other than the principle

harmonic response may dominate the response. Then,

chaotic motion may appear with the loss of stability of

the secondary harmonic response and the separation of

two periodic solutions with different periods. How-

ever, the boundaries between the principle and

secondary harmonic responses and the effect of the

onset of the secondary harmonic response on the

isolation region have rarely been reported.

Moreover, almost all studies on QZS systems have

adopted linear viscous damping with a damping force

proportional to the velocity, which implies that the

energy dissipated per cycle is dependent on the

frequency and becomes infinitely small as this is

reduced to zero [24]. Previous studies in refs.

[13, 15, 17] have indicated that for a system with

viscous damping, an unbounded response may appear

with an increase in the excitation level, which may

cause a deterioration in the isolation system. There-

fore, hysteretic damping is adopted in this study to

accurately describe the physical system and safety of

the isolation system. A recent study by Liu and Yu

[30] revealed that a large damping nonlinearity factor

is beneficial for improving the vibration isolation

performance.

Inspired by the theoretical research of Liu and Yu

[30], a QZS system with nonlinear hysteretic damping

is investigated in this study. The complex dynamic

behavior of the system, including the primary, super-

harmonic, and subharmonic responses, is analyzed

theoretically and numerically. Based on the dynamic

analysis, parameter optimization is performed to

improve the isolation performance. The isolation

performance of the QZS system is evaluated using

two indicators, i.e., the effective isolation frequency

Xe and maximum transmissibility Tp. To verify the

theoretical results, a prototype QZS system with

nonlinear hysteretic damping is designed, and exper-

iments are conducted with the prototype.

2 Dynamic analysis of QZS system with hysteretic

damping

Figure 1 illustrates the idealized lumped parameter

model to be considered, in which the mass m is

supported by a three-spring QZS isolator and two

lateral hysteretic dampers with coefficients cl. The

structure is similar to that in Ref. [30], damping force

applied on the object can be written as

Fig. 1 Idealized lumped parameter QZS model with a lateral

hysteretic damper, m represents mass, cl represents the lateral

hysteretic damping, Y is the response displacement of mass and

Z is the excitation displacement from the base
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Fd ¼ �2F1sinh ð1Þ

where F1 is the damping force and h is the angle of the
lateral spring. Since the effect of lateral hysteretic

damper is independent of frequency, the damping

force F1 can be obtained according to Ref.[30], which

is

F1 ¼
Cl

_dl
x

ð2Þ

where dl is the compressed deformations of the lateral

spring. When the isolated object experiences a vertical

displacement y, the deformation dl of the lateral spring
is

dl ¼ L0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D2 þ y2
p

ð3Þ

where L0 is the original length of the lateral spring

without deformation and D is the horizontal distance

between the two ends of the lateral spring. And sinh
can be written as y

ffiffiffiffiffiffiffiffiffiffi

D2þy2
p . Substituting Eq. (2), Eq. (3)

and sinh into Eq. (1) gives

Fd ¼
2Cly

2 _y

x D2 þ y2ð Þ ð4Þ

Considering vertical displacement y is much less

than length D of the lateral spring, and omitting higher

order nonlinear items, Fd can be rewritten as

Fd ¼ 2
Cl

D2x
y2 _y ð5Þ

Let us assume that the vertical displacement y of the

static equilibrium position is small and the system is

well tuned such that the effective linear stiffness is

zero. Then, the equation of motion of the system about

the static equilibrium position can be approximated

using Duffing’s equation with no linear term [10–14].

Thus, combined with Eq. (5), the equation of motion

for harmonic base excitation, is

myþ2
Cl

D2x
y2 _yþ k3y

3 ¼ mzx2 cos xtð Þ ð6Þ

where m is the mass of the payload, k3 is the cubic

stiffness of the QZS system, and z is the displacement

excitation. To facilitate the analysis, Eq. (6) is rewrit-

ten in non-dimensional form as a Duffing-Ueda

oscillator [31] with hysteretic damping,

o2y

os2
þ 2g

X
oy

os
y2 þ y3 ¼ X2 cos Xsð Þ ð7Þ

where y ¼ y
z, x�2 ¼ k3z

2

m ,s ¼ x�t, g ¼ cl
D2k3

, and

X ¼ x=x�. It is important to note that x� is propor-

tional to the displacement level. It can be observed in

Eq. (7) that through the above non-dimensional

transformation, the dynamic characteristics of the

system are mainly governed by the non-dimensional

parameterg.
Hassan [32] pointed out that the linear, undamped,

and unforced oscillator corresponding to the system

described by Eq. (7) is neutrally stable. In this

situation, the system described by Eq. (7) does not

represent a small perturbation of a stable linear

system. Therefore, standard perturbation methods

cannot be used directly. Consequently, for solving

the periodic response in this situation, we rely on the

harmonic balance method (HBM) and numerical

simulations.

This study aims to investigate the isolation effect of

the proposed isolation system, which is evaluated

using the transmissibility parameter. Herein, we focus

on the absolute displacement transmissibility. Accord-

ing to numerous previous studies [33–35], there are

two possibilities for the steady-state response. The first

is the harmonic solution alone, which has the same

frequency as the excitation frequency, resulting in

primary resonance in the amplitude-frequency curve.

The second is the harmonic solution, which has the

same frequency as the excitation frequency, and a

permanent harmonic term whose frequency is a

fraction 1
3

� �

or three times that of the excitation

frequency (the former is called the one-third subhar-

monic resonance and the latter is called the superhar-

monic resonance of order three). The initial conditions

determine the possibilities that may occur in the actual

response. Thus, we separately present three cases to

discuss the transmissibility of the proposed QZS

system. The following analysis is aimed at obtaining

the effective isolation frequency ranges by examining

the transmissibility of the system through the HBM

and numerical simulations. These frequency ranges

are established by examining the boundaries of the

operational regime of the isolator with respect to the

primary and secondary responses.
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2.1 Primary resonance

In the region of the primary resonance, the lowest

harmonic dominates, whereas the higher harmonics

are relatively small and can be omitted. Hence, the

response of the system at the excitation frequency is

assumed to be of the form y ¼ A cos Xsþ uð Þ.
According to ref. [36], the harmonic balance method

is an effective method for obtaining approximate

analytic solutions of strongly nonlinear vibrations.

Thus, the primary resonance was investigated by

applying the harmonic balance method. Substituting

y ¼ A cos Xsþ uð Þ into Eq. (7) yields

3

4
A
3 � X2A

� �

cos Xsþ uð Þ þ 1

2
gA

3
sin Xsþ uð Þ

þ 1

2
gA

3
sin 3 Xsþ uð Þ þ 1

4
A
3
cos 3 Xs� uð Þ

� X2 cos Xsð Þ ¼ 0

ð8Þ

Equating the coefficient of cos Xsð Þ and sin Xsð Þ to
zero, we obtain

3

4
A
3 � X2A

� �

cosuþ 1

2
gA

3
sinu� X2 ¼ 0

� 3

4
A
3 � X2A

� �

sinuþ 1

2
gA

3
cosu ¼ 0

8

>

>

<

>

>

:

ð9Þ

Rearranging Eq. (9) by eliminating the parameter u
yields the implicit amplitude-frequency (A-X)
relationship

A
3
g

2X2

 !2

þð3A
3 � 4X2A

4X2
Þ2 ¼ 1 ð10Þ

This can be expanded as

A
2 � 1

� �

X4 � 3

2
A
4
X2 þ 9

16
A
6 þ 1

4
g2A

2 ¼ 0 ð11Þ

Solving for X, the two positive solutions are

X1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4 A
2 � 1

� � 3A
4 þ

ffiffiffiffiffiffi

D1

p

� �

v

u

u

t

ð12aÞ

X2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4 A
2 � 1

� � 3A
4 �

ffiffiffiffiffiffi

D1

p

� �

v

u

u

t

ð12bÞ

where D1 ¼ A
6
9þ 4g2 1� A

2
� �h i

. Equation (12a)

and (12b) yields two real values of X, which are used

to plot the relative displacement transmissibility-

frequency (A-X) curves with different values of g in

Fig. 2. X1 represents the lower branch of the A-X
curve while X2 represents the upper branch A ¼ Tr.

Figure 2 also depicts the trend of the relative dis-

placement transmissibility. Similar to the viscous

damping QZS system, owing to the existence of

nonlinearity, the A-X curve behaves as a hardening

curve characterizing bending to the right. This

nonlinear characteristic leads to the physical jump

phenomenon [16]. The curve of the phenomena

depicted by the lower branch of the A vs X curve

determined by Eq. (12b), is concave when g is weak

[20]. The occurrence of the inflection point leads to the

jump-up phenomenon when

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8
Jump-down point
Jump-up point

A
m

pl
itu

de
 (A

)

Non-dimensional frequency (Ω)

η = 0.2
η = 0.5
η = 1
η = 2
 Unstable solution

Fig. 2 Non-dimensional amplitude—frequency (A-X) curves

with stable solutions (solid line) and unstable solutions (dashed

line) under g ¼ 0.2 (black), 0:5 (red), 1 (blue) and 2 (green)

123

2156 X. Hu, C. Zhou



oX1

oA
¼ �9A

5
3� A

2
� �

þ 4 5A
2 � 2A

4 � 3
� �

g2A
5

þ 6 A
2 � 2

� �

A
3
ffiffiffiffiffiffi

D1

p

¼ 0

ð13Þ

The frequency and amplitude of the jump-up point

can be obtained by solving Eq. (13) as

Xu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 9þ 12g2ð ÞD2 þ 24g4 � 90g2 þ 2g2D3ð Þ
16g2D2

s

ð14aÞ

Au ¼
ffiffiffi

6
p

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ 3

g2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 3� 4g2ð Þ
p

g2

s

ð14bÞ

where D2 ¼ 9þ 4g2 � 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9� 12g2
p

and

D3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6ð 3þ 8g2 � 16g4ð ÞD1 þ 2g2 200g2 þ 16g4 � 15ð Þ
p

.

The threshold value of g for the appearance of the

unstable jump phenomenon can be solved using

Eq. (14),

gcr 1 ¼ 0:866 ð15Þ

above which no jump phenomenon occurs and the

whole A-X curve is similar to that of a linear system.

Jumping down occurs at the interaction of the two

branches of the A-X curves as

D1 ¼ A6 9þ 4g2 1� A2ð Þ½ � ¼ 0. From Eq. (12), the

peak amplitude and frequency can be solved as

Ap ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 4g2

4g2

s

ð16aÞ

Xp ¼
9þ 4g2

4
ffiffiffi

3
p

g
ð16bÞ

For the QZS system with hysteretic damping, the

backbone curve is given by Xbackbone ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

3A4

4 A2�1ð Þ

q

. It

should be noted that from Eq. (16a), unlike the linear

damping QZS system [12], the response of the present

nonlinear hysteretic damping system always has a

limited response. Furthermore, as the non-dimensional

damping coefficient g is independent of the excitation

amplitude, the peak response defined by the primary

resonance is constant for different excitation levels.

However, for a linear damping system, the non-

dimensional damping is inversely proportional to the

excitation amplitude and causes a weak damping

effect with high excitation.

As transmissibility is the key parameter to evaluate

the vibration isolation effect, the displacement trans-

missibility is expressed in absolute form:

T ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ A2 þ 2Acos uð Þ
p

ð17Þ

where u can be determined from Eq. (9) as

cosu ¼ 3A
3 � 4X2A

4X2
ð18Þ

The transmissibility curves with different values of

g are plotted in Fig. 3. The transmissibility curves

increase from 1 to the peak and then decrease as the

frequency increases. When an unstable area exists in

the response A-X curves, the transmissibility curve

exhibits the same hardening trend (as depicted by the

curves for g ¼ 0:2 and 0.5). The curves reach the peak

point and jump down to the lower branch. The peak

transmissibility can be obtained by solving oT
oA

¼ 0,

which yields A ¼ 3
2g and the corresponding frequency

XT ¼ 3
ffiffi

3
p

4g . The frequency of the peak transmissibility

XT is different from that of the peak relative amplitude

response Xp determined by Eq. (16).) Thus, the peak

transmissibility is

Tp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 9

4g2

s

ð19Þ

As g ! þ1, the peak transmissibility Tp tends to be

close to 1, and the corresponding frequency XT tends

to be close to 0. Thus, a large damping ratio suppresses

the peak transmissibility and decreases the effective

isolation frequency.

As effective isolation of the system implies T\1,

we define the frequency corresponding to T ¼ 1 as the

effective frequency Xe. Solving for T ¼ 1,

X ¼ 0orX ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

54

9þ 4g2

s

ð20Þ

As shown in Fig. 3, the stable isolation frequency

range of the transmissibility curves without an unsta-

ble area starts from XC ¼
ffiffiffiffiffiffiffiffiffiffi

54
9þ4g2

q

. However, when an

unstable area exists, the stable isolation frequency

range of the transmissibility curves starts from XT .

The transmissibility after this XT point is close to 0.
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This indicates that when the frequency exceeds the

peak point, the vibration isolator exhibits an excellent

stable isolation effect. Therefore, the effective fre-

quency Xe can be determined by

Xe ¼

3
ffiffiffi

3
p

4g
g� 0:866ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

54

9þ 4g2

r

ðg[ 0:866Þ

8

>

>

<

>

>

:

ð21Þ

Xe depends only on the damping ratio g. Figure 4

depicts the effect of the damping ratio g on the

effective vibration isolation frequency, as defined by

Eq. (21). As demonstrated previously, the effective

frequency decreases significantly as g increases.When

g is larger than the critical value gcr 1 ¼ 0:866, the

nonlinearity of the system is suppressed. The trans-

missibility beyond Xe is lesser than 0.01, and

approaches zero as the frequency increases. Therefore,

when the primary resonance is suppressed, the

proposed system can achieve an excellent isolation

effect.

2.2 One-third subharmonic resonance

2.2.1 Response components

Previous numerical studies have revealed that in

harmonically excited oscillators with symmetric non-

linearity and single degree-of-freedom, as in system

(b), the second harmonic response of odd order may

grow steadily to a significant value without any

bifurcation of periodic solutions of one type to another

[32]. The approximate solution of the subharmonic

response assumes the form [34]

y ¼ A1=3 cos Xs=3ð Þ þ A0 cos Xsð Þ þ B0 sin Xsð Þ
ð22Þ

For convenience, the differential equation in

Eq. (7) is written in the form

y
00 þ 2g

X
y2y

0 þ y3 ¼ HX2 cos Xsð Þ � GX2 sin Xsð Þ

ð23Þ

where H2 þ G2 ¼ 1. Substituting Eq. (22) into

Eq. (23) yields the following four equations, when

the harmonic term higher than cos Xsð Þ is neglected.

A1=3 �4X2 þ 27 2A
2

0 þ A1=3A0 þ A
2

1=3 þ 2B
2

0

� �

þ 6gA1=3B0

� �

¼ 0

ð24aÞ
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si
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η = 1
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 Effective frequency

Fig. 3 Non-dimensional transmissibility-frequency (T �X)

curves defined by primary resonance with stable solutions (solid

line) and unstable solutions (dashed line) under g ¼ 0.2 (black),
0:5 (red), 1 (blue) and 2 (green); the effective frequency point is
represented by the black dot
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Fig. 4 Effective isolation frequency Xe defined by primary

resonance under various values of the damping ratio g
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A1=3 �9A1=3B0 þ 2g 2A
2

0 þ A
2

1=3 þ A0A1=3 þ 2B
2

0

� �� �

¼ 0

ð24bÞ

A
2

0 þ 2A
2

1=3 þ B
2

0

� �

3A0 þ 2gB0

� �

� 4X2A0 þ A
3

1=3

¼ 4HX2

ð24cÞ

A
2

0 þ 2A
2

1=3 þ B
2

0

� �

9B0 � 6gA0

� �

� 12X2B0

� 2gA
3

1=3 ¼ �12GX2
ð24dÞ

when A1=3 ¼ 0 is satisfied identically in Eq. (24a) and

Eq. (24b), Eq. (24c) and (24d) are reduced to Eq. (9)

for the primary resonance harmonic case. For

A1=3 6¼ 0, by simplifying Eq. (24a) and Eq. (24b), A0

and B0 can be rewritten in the form

A0 ¼
� 2A1

2 þ A1=3
2

� �

81þ 4g2ð Þ þ 12X2

81þ 4g2ð ÞA1=3

ð25aÞ

B0 ¼
8gX2

3 81þ 4g2ð ÞA1=3

ð25bÞ

where A
2

1 ¼ A
2

0 þ B
2

0 is the square of the amplitude of

the harmonic whose frequency is the same as that of

the excitation. Substituting Eq. (24a) and Eq. (24b)

into Eq. (24c) and Eq. (24d) yields the relationship

between the frequency X and amplitude, A1 and A1=3:

1

A1=3
2

4g2
D4

12X2
� 24D5 þ 16X2

12 81þ 4g2ð Þ

� �2
"

þ D4

4X2
þ�4D6 þ 144X2

12 81þ 4g2ð Þ

� �2
#

¼ 1

ð26Þ

where D4 ¼ 5A
2

1=3 þ 15A
2

1=3A
2

1 þ 6A
2

1 and D5 ¼ 2A
2

1=3

þA
2

1,D6 ¼ A
2
1
3
297þ 20g2ð Þ þ A

2

1 513þ 28g2ð Þ. Not-

ing that A1 is a function of A1=3, Eq. (26) can be

regarded to represent the relationship between the

frequency X and the one-third subharmonic amplitude

A1=3, and A1=3 can be obtained with a certain X value.

Thus, the solution to Eq. (22) can now be written as

y ¼ A1=3 cos Xs=3ð Þ þ A1 cos Xsþ hð Þ ð27Þ

where h ¼ arctan A0

B0
� p

2
. Thus, the natural amplitude

of the response is A
	

	

	

	 ¼ A1=3 þ A1 cos hð Þ
	

	

	

	.

Figure 5a shows the two possible response curves,

one-third subharmonic resonance A
	

	

	

	

1=3
(A1=3 6¼ 0)

and primary resonance A
	

	

	

	

1
(A1=3 ¼ 0) under

g ¼ gcr 1 ¼ 0:866. Noting although the primary har-

monic resonance curve A
	

	

	

	

1
has no unstable jump-up

region, one-third of the subharmonic resonance A
	

	

	

	

1=3

may still occur. (This phenomenon does not exist in

the viscous QZS system). Unlike the primary har-

monic resonance, the curve of the one-third
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Fig. 5 a The two possible response curves, one-third subhar-

monic resonance A
	

	

	

	

1=3
and primary resonance A

	

	

	

	

1
, point P and

Q present the intersections of the two curves, and point P is the

bifurcation point; b) One-third harmonic component amplitude-

frequency curve of the response (red), compared with the

primary harmonic component amplitude-frequency curve of the

response (black) under g ¼ 0:866
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subharmonic resonance forms a loop and assumes a

limited frequency range, from point M to point N. In

this frequency region, the occurrence of the two

response cases is determined by the initial condition.

Figure 5b shows theA1=3 and A1 components of A
	

	

	

	

1=3
.

Point P in Fig. 5a is the intersection point of the two

curves, and the corresponding frequency of that

subharmonic also corresponds to the intersection point

in Fig. 5b. According to refs. [32, 34], the subhar-

monic vibration results from the bifurcation of the

harmonic vibration. Point P is the bifurcation point.

The corresponding point R in the lower branch is the

minimum amplitude point. The bifurcation point P

symbolizes the minimum frequency at which the

response is dominated by the one-third subharmonic

resonance. Although point Q in the lower graph is also

an intersection point, the corresponding one-third

subharmonic and primary harmonic components are

different (shown in the upper graph). Thus, point Q is

not a bifurcation point.

2.2.2 Stability of the solution

Figure 5a reveals that the nonlinear solutions originate

from the linear solution, which is also verified by the

results of other researchers [37–39], and for different

types of oscillators. Similar to the treatment used in

ref. [40], the steady-state displacement amplitude of

the primary harmonic under displacement harmonic

excitation is approximately 1, and the phase is

approximately p. Thus, we assume A1 � �1 to

simplify the expression of the response amplitude

A
	

	

	

	 to analyze the isolation performance when a one-

third subharmonic exists. Considering the phase

between the primary and one-third harmonics, the

response in Eq. (27) can be rewritten as

y ¼ A1=3 cos Xs=3þ hð Þ � cos Xsð Þ ð28Þ

Substituting Eq. (28) into Eq. (7) and by comparing

the coefficients of the terms containing cos Xsð Þ and
sin Xsð Þ, we can obtain the relationship between A1=3

	

	

	

	

and X as

8gX2

3A1=3 81þ4g2ð Þ

 !2

þ 2

A1=3

þA1=3�
12X2

A1=3 81þ4g2ð Þ

 !2

¼1

ð29Þ

Thus, the amplitude of A1=3

	

	

	

	 can be solved as:

To discuss the stability of the two solutions of the

response, we assume that A1=3 and h are functions of

time s. Substituting Eq. (28) into Eq. (7), _A1=3 and _h
can be obtained by integrating in the period from s ¼ 0

to 2p. The results are

A
1=3

¼ �
3A1=3 2 2þ A2

1=3

� �

g� 2A1=3gcos 3hð Þ þ 9A1=3sin 3hð Þ
� �

8X2

ð31aÞ

_h ¼ �
�54� 27A2

1=3 þ 4X2 þ 27A1=3cos 3hð Þ þ 6A1=3gsin 3hð Þ
8X2

ð31bÞ

As singularity exists when _h ¼ 0 and A
1=3

¼ 0,

cos 3hð Þ and sin 3hð Þ can be obtained, and we assume

that

A1=3 1

	

	

	

	 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 3

2
þ 12X2

81þ 4g2
� 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�63þ
16X2 2187þ 4g2 26� 4X2

� �� �

81þ 4g2ð Þ2

s

v

u

u

t ð30aÞ

A1=3 2

	

	

	

	 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 3

2
þ 12X2

81þ 4g2
þ 1

6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�63þ
16X2 2187þ 4g2 26� 4X2

� �� �

81þ 4g2ð Þ2

s

v

u

u

t ð30bÞ
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M ¼ cos 3hð Þ ¼ 2

A1=3

þ A1=3 �
12X2

A1=3 81þ 4g2ð Þ
ð32aÞ

N ¼ sin 3hð Þ ¼ � 8gX2

3A1=3 81þ 4g2ð Þ
ð32bÞ

By introducing the disturbance variables DA1=3 ¼
A1=3 � A1=3 0;Dh ¼ h� h0 into Eq. (32), the first

approximation of Eq. (31), close to the singularity

(A1=3 0,h0) yields

D _A1=3 ¼ �
3 2 2þ 3A

2

1=3 0

� �

gþ 2 9N0 � 2gM0ð ÞA1=3 0

� �

DA1=3 þ 3 2gN0 þ 9M0ð ÞA1=3 0Dh
� �

8X2

ð33aÞ

D _h ¼ �
�54A1=3 0 þ 27M0 þ 6gN0

� �

DA1=3 þ 9 2gM0 � 9N0ð ÞA1=3 0Dh

8X2
ð33bÞ

The Jacobian matrix of the right-hand function of

Eq. (33) is

�3 2 2þ 3A
2
1
30

� �

gþ 2 9N0 � 2gM0ð ÞA 1
30

� �

� k �9 2gN0 þ 9M0ð ÞA 1
30

� �54A 1
30

þ 27M0 þ 6gN0

� �

�9 2gM0 � 9N0ð ÞA 1
30

� k

	

	

	

	

	

	

	

	

	

	

	

	

¼ k2 þ a1kþ a2 ¼ 0 ð34Þ

where a1 and a2 can be written as

a1 ¼ 24g 1þ A
2

1=3 0

� �

a2 ¼
27 A

4

1=3 0 � 4
� �

4g2A1=3 0 � 81
� �

� 1296X2 þ 48X4

A1=3 0

8

<

:

ð35Þ

The Lyapunov linearized stability theory indicates

that the instability of a nonlinear system coincides

with that of the corresponding linear system [41].

Hence, the stability of the system can be demonstrated

based on the first-order Lyapunov approximation

stability theory and the Routh–Hurwitz criterion

[42, 43]. When a1 [ 0 and a2 [ 0, the singularity is

asymptotically stable. In contrast, when a1 [ 0 and

a2\0, the singularity is asymptotically unstable. We

note that a1 [ 0 is always satisfied in Eq. (35). Thus,

a2 is a critical criterion.

Combined with Eq. (29), the one-third subhar-

monic amplitude-frequency (A1=3 � X) curves are

plotted in Fig. 6 by identifying the stable solution.

The solution in the upper branch (solid lines in Fig. 6)

of the A1=3

	

	

	

	� X curve is stable, whereas that in the

lower branch (dotted lines in Fig. 6) is unstable. The

results indicate that in the actual experiment, the

response amplitude solution in the upper branch of the

A1=3

	

	

	

	� X curve can be observed in the response. As

the frequency increases, the lower branch of the

A1=3

	

	

	

	� X curve first drops to a turning point R.

Exceeding the turning point R, the A1=3

	

	

	

	� X curve

rises with increasing frequency X until it reaches the

peak point. According to Sect. 2.2.1, the turning point

R corresponds to the bifurcation point R. As the lower

branch is unstable, a one-third subharmonic resonance

can be observed from the turning point P in the upper

branch, which corresponds to R. The frequency of the

turning point XTP can be solved by
oA1=3 1

oX ¼ 0

XTP ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

27

8g2
81þ 4g2ð Þ �

ffiffiffiffiffiffi

D7

p

� �

s

ð36Þ

D7 ¼ 81þ 4g2ð Þ 81� 28g2ð Þ. The corresponding

amplitude is

ATP

	

	

	

	 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 3

2
þ

ffiffiffiffiffiffi

D6

p

81þ 4g2
þ 81�

ffiffiffiffiffiffi

D7

p

8g2

s

ð37Þ

This is approximately 1, as shown in Fig. 6. The

frequency range of the one-third subharmonic reso-

nance is determined by the turning point and peak

point, which we refer to as the start and end points.

Noting the one-third subharmonic A1=3 � X curve

forms a loop and there are two intersections of the

upper branch and the lower branch. By solving

A1=3 1 ¼j jA1=3 2

	

	

	

	, we can obtain the expressions for

the two intersections. The frequencies of the two

intersections are

X1=3 min ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 9�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

81� 28g2ð Þ
p

� �

81þ 4g2ð Þ
32g2

v

u

u

t

ð38aÞ

X1=3 max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 9þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

81� 28g2ð Þ
p

� �

81þ 4g2ð Þ
32g2

v

u

u

t

ð38bÞ

and the corresponding amplitudes of the two points

are
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A1=3 min ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 3

2
�
9 �9þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

81� 28g2ð Þ
p

� �

8g2

v

u

u

t

ð39aÞ

A1=3p max ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 3

2
þ
9 9þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

81� 28g2ð Þ
p

� �

8g2

v

u

u

t

ð39bÞ

Noting the peak exists at the intersection with

maximum value of the two branches of the A1=3

	

	

	

	� X

curve, which is also the end point. Since
dA1=3p max

dg \0

and
dX1=3 max

dg \0, the frequency and amplitude of peak

decrease as g increases. The effects of g on XTP and

ATP are opposite. Hence, as shown in Fig. 6, the

frequency range of the subharmonic resonance

decreases as g increases. It can be observed from

Fig. (6), when g reaches the critical value gcr 1=3, the

one-third subharmonic resonance disappears. By

solving X1=3 min ¼ X1=3 max, gcr 1=3 can be obtained

as

gcr 1=3 ¼ 1:701 ð40Þ

In Sect. 2.1, we obtained the critical condition for

avoiding the jump phenomena in the existing primary

harmonic resonance as gcr 1 ¼ 0:866. By combining

the results in Eq. (15), although the jump phenomenon

is suppressed when g[ 0:866, one-third subharmonic

resonance may exist and degrade the effective isola-

tion frequency to a higher frequency when

g 0:866; 1:701ð Þ.

2.2.3 Transmissibility and effective isolation

frequency

As this study focuses on the isolation performance of

the proposed QZS system, we attempted to obtain the

transmissibility with the natural amplitude. Consider-

ing that the phase difference between the excitation

and the primary harmonic in the response is approx-

imately p, the absolute response Aa is

Aa ¼ A1=3 cos
Xs
3

þ h

� �

� cos Xsð Þ þ cos Xsð Þ

¼ A1=3 cos
Xs
3

þ h

� �

ð41Þ

Thus, the absolute displacement transmissibility

can be written in the form

Ta ¼ A1=3 ð42Þ

As only a stable solution exists in the actual experi-

ment, the transmissibility is plotted in Fig. 7. As g
increases, the frequency range of the transmissibility is

narrowed. The transmissibility curve increases with

increasing frequency X until it reaches the peak point.

Moreover, the transmissibility peak corresponds to the

end point in Sect. 2.2.2, which is

Tp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 3

2
þ
9 9þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

81� 28g2ð Þ
p

� �

8g2

v

u

u

t

ð43Þ

With the existing condition of the one-third subhar-

monic resonance g 2 0; 1:701ð Þ, the value range of Tp

is 1:414;þ1ð Þ. The minimum value of 1.414 is

obtained with g ¼ 1:701. The result indicates that

when one-third subharmonic resonance is possible, the

maximum value of the transmissibility-frequency

curve always exceeds 1 and occurs at the maximum

frequency point. Hence, the isolation effect of the

system fails when the excitation frequency approaches

X1=3 max. Comparing X1=3 max with Xe, we obtain
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Fig. 6 One-third harmonic component amplitude-frequency

curve of the response under g ¼ 0.5 (black), 0:866 (red), 1

(blue), and 1.5 (green); the turning point P is marked by the

black dot while R is marked by the square dot
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Therefore, the effective isolation frequency is

extended from Xe in the primary resonance to

X1=3 max in the one-third subharmonic resonance.

Figure 8 presents the possible transmissibility

response-frequency curve when g ¼ 0:5; 0:866, 1.5,

and 2. In the curves of g ¼ 0:5; 0:866, and 1.5

(g\gcr 1=3), there are two observations for the

transmissibility curves. The two curves both reach

the first resonance and then drop from the peak point

P1 until the turning point S. The difference appears

after crossing the turning point S. The initial condition

determines whether the curve continues to decline or

experiences secondary resonance. If the latter occurs,

the curve continues to rise until it reaches the end point

P2 and then drops again to the primary resonance

curve. Exceeding the end point, the transmissibility is

lesser than 1 in a stable manner. When g[ gcr 1=3, as

shown in the curve of g ¼ 2, there is only one possible

transmissibility response-frequency curve. Thus, the

effective isolation frequency in Eq. (21) is modified as

Xe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 9þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

81� 28g2ð Þ
p

� �

81þ 4g2ð Þ
32g2

v

u

u

t

g� 1:701ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

54

9þ 4g2

r

ðg[ 1:701Þ

8

>

>

>

>

<

>

>

>

>

:

ð45Þ

Moreover, it is observed that the transmissibility

curve exhibits a weaker hardening characteristic in the

first resonance with increasing g under g\gcr 1, as

shown in the curves of g ¼ 0:5; 0:866. Comparing the

figure of g ¼ 0:5; 0:866; and 1.5, it can be noted that

the frequency region of the secondary resonance is

narrowed down with increasing g under g\gcr 1=3:

2.3 Superharmonic resonance of order 3

Numerous studies have demonstrated [32, 44] that the

superharmonic may exist in the response of a nonlin-

ear system. Noting that Eq. (8) has a superharmonic

term, the second approximation of the solution can be

written in the form

y ¼ A1cos Xsð Þ þM3cos 3Xsð Þ þ N3sin 3Xsð Þ ð46Þ

where M
2

3 þ N
2

3 ¼ A
2

3:A3 is the amplitude of the

superharmonic of order 3. Substituting Eq. (46) into

Eq. (23), we expand the resulting expression in

trigonometric series and obtain

A
2

1

16X4
D2
10 þ D2

11

� �

¼ 1 ð47aÞ

1þ 4g2
� �

D12 ¼ 1296A
2

3X
4 ð47bÞ

where D8 ¼ 2A
2

1 þ A
2

3, D9 ¼ A
2

1 þ 2A
2

3,

D10 ¼
2gðD7 5 A

2

1þA
2

3

� �

D8�4A
2

3

� �

1þ4g2ð Þ�24 4A
2

1þ7A
2

3

� �

D8�8A
2

3

� �

X2þ432D8X
4Þ

3D2
7 1þ4g2ð Þ�72D7X

2þ432X4 ,

D11 ¼ 3D8 � 4X2 þ A
4

1 �D7 1þ4g2ð Þþ4 3�4g2ð ÞX2ð Þ
D2
7 1þ4g2ð Þ�24D7X

2þ144X4 , D12

¼ A
6

1 þ 9D2
7A

2

3 þ
2A

6

1D7 �D7 1þ4g2ð Þþ12X2ð Þ
D2
7 1þ4g2ð Þ�24D7X

2þ144X4 .

Equation (47b) indicates the relationship between

A1;A3 and the excitation frequency X. As A1 is a

function of A3 and X, Eq. (47a) can be rewritten using
A3 and X. Then, the relationship between A3 and X is

obtained and plotted as shown in Fig. 9. As X
increases, A3 increases until the peak point is reached,

and then gradually decreases. The damping ratio g can
suppress the behavior of the third superharmonic. To

discuss the relationship between the third superhar-

monic and the primary harmonic, the two curves of A3

and A1 under g ¼ 0:866 are plotted in Fig. 10a. We

note that the trend of the curve A3 is the same as that of

X1=3 max � Xe ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 9þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

81� 28g2ð Þ
p

� �

81þ 4g2ð Þ
32g2

v

u

u

t � 3
ffiffiffi

3
p

4g
[ 0 g� 0:866ð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 9þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

81� 28g2ð Þ
p

� �

81þ 4g2ð Þ
32g2

v

u

u

t �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

54

9þ 4g2

r

[ 0 ð0:866\g\1:701Þ

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð44Þ
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the curve A1, but with a smaller value. The amplitude

of the third harmonic is always 1/24 of the primary

harmonic in the steady-state response [45].

As in the preceding section, the solution of Eq. (47)

can be written as

y ¼ A1 cos Xsð Þ þ A3 cos 3Xsþ h2ð Þ ð48Þ

where h2 ¼ arctan M3

N3
� p

2
. Thus, the natural amplitude

of the response is A
	

	

	

	

3
¼ A1 þ A3 cos hð Þ
	

	

	

	. Figure 10b

shows the natural response-frequency curve compared

with the primary resonance curve. The third super-

harmonic only affects the response near the resonance

peak, and this effect is slight. Thus, when the third

superharmonic exists without the one-third subhar-

monic, the response of the system is still dominated by

the primary harmonic. In this case, the first approx-

imation with the primary harmonic can describe the

behavior of the system. Hence, the effect of the third

superharmonic on the isolation performance and

effective isolation frequency can be ignored.

2.4 Effect of g on effective frequency

and maximum transmissibility

According to the above analysis, the critical points of

the main resonance and one-third subharmonic reso-

nance can be expressed as a function of the damping

ratio g. With the existing conditions of the jump

phenomena g 2 0; 0:866ð Þ and the one-third subhar-

monic resonance g 2 0; 1:701ð Þ, the value range of the
critical points can be obtained in the non-dimensional

form, which are summarized in Table 1.

The effective isolation frequency is presented in

Fig. 11. The corresponding maximum transmissibility

of the QZS system can be summarized as

Tp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 3

2
þ
9 9þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

81� 28g2ð Þ
p

� �

4 ðg\1:701Þ
8g2

v

u

u

t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 9

4g2

r

g� 1:701ð Þ

8

>

>

>

>

<

>

>

>

>

:

ð49Þ

Figure 11 shows the effect of the damping ratio g
on the effective isolation frequency and the corre-

sponding transmissibility peak. The damping ratio g
can reduce the effective isolation frequency; thus, the

vibration isolation frequency band is expanded.

Moreover, the damping ratio g can dampen the

transmissibility peak to a lower value, which results

in an improvement in isolation performance. The

value of the effective frequency and maximum

transmissibility experience a substantial decline from

X ¼ 0 to X ¼ 1:7. After exceeding X ¼ 1:7, the two

curves experience a further decrease at a slow rate, and

the value gradually stabilizes close to 0. Therefore, to

improve the stability of the response and avoid

complex nonlinear dynamic behavior, the condition

of the damping ratio can be determined using

g� 1:701 ð50Þ

2.5 Numerical analysis of nonlinear dynamic

response

The details of numerical simulations are provided in

this section to conduct theoretical analysis. The

simulations implement a vibration experiment under

sine-sweep frequency excitation. The non-dimen-

sional excitation frequency X varies from 0.01 to 20,

with a sweep time of 2000pX and a sweep rate of p
50X. The

initial conditions at the initial frequency X ¼ 0:01 are

y 0ð Þ ¼ 0 and y0 0ð Þ ¼ 0. At the subsequent frequency,

the initial conditions are set as the response results

y 2000p
X

� �

and y0 2000p
X

� �

obtained from the simulation at

the previous frequency. The parameters of the
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damping ratio are fixed at g ¼ 0:866 (the condition for

the existence of the one-third subharmonic resonance)

and g ¼ 2 (the condition for the non-existence of the

one-third subharmonic resonance). The ODE45

method in MATLAB software was used to obtain

the numerical results.

Figure 12 depicts the transmissibility of the QZS

system described in Eq. (7) using numerical simula-

tions and theoretical analysis with g ¼ 0:866. The

numerical results in Fig. 12 are in good agreement

with the theoretical results. The transmissibility first

increases with increasing frequency until it reaches the

peak point of the primary resonance and then

decreases. The reduction ends at a critical point where

the frequency X = 3.79, with T = 1.025, and then the

numerical result jumps up to the one-third resonance

transmissibility curve. The frequency value and the

transmissibility correspond to those of the turning

point in Table 1 at g ¼ 0:866, which are X = 3.82 and

T = 1.006. Thus, the obtained turning point can

predict the start point of the one-third resonance.

The transmissibility increases again along with the

one-third resonance until the peak point, and then

jumps down to the main resonance curve. It is

observed that error exists and increases between the

numerical and theoretical results from X = 9.15 to

X = 13.15. This phenomenon is caused by the error in

the approximate assumption in Eq. (28). We have

obtained the numerical frequency of the peak point as

13.15, which is close to the theoretical solution

X = 13.26 from Table 1. The corresponding numerical

transmissibility of the peak is 5.18, while that obtained
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from Eq. (49) is 4.88. Although there are small errors

in the solution, the effective isolation frequency and

maximum transmissibility can approximately deter-

mine the peak point of transmissibility. Moreover, the

results again indicate that the effective isolation

frequency depends on the jump-down frequency of

the one-third subharmonic resonance, even when the

primary resonance is stable. Figure 13a presents a

Fourier analysis of the point X ¼ 10. We note that

there exists not only the excitation frequency X ¼ 10

with an amplitude close to 1, but also the one-third

excitation frequency harmonic of X ¼ 3:333 with a

larger amplitude of 3.88. Thus, the harmonic compo-

nent X ¼ 3:333 dominates the response, which veri-

fies the theoretical analysis. The time-domain

response diagram at the excitation frequency X ¼ 10

is compared with the time-domain excitation diagram,

as shown in Fig. 13b.

Figure 14 presents the effect of initial conditions on

the transmissibility at a frequency of X ¼ 1 and 10,

respectively. At X ¼ 1, i.e., the frequency in the

stable region, it is noted that the response of the system

is independent of the initial conditions and has only

one certain solution. When the external excitation

frequency is in the unstable frequency range, as

X ¼ 10, the solution of the transmissibility is deter-

mined by the initial conditions. As shown in Fig. 15b,

the solutions under various initial conditions lie on

either the primary resonance close to 0 or 1/3

subharmonic resonance close to 3.91. Attractor-basin

phase portraits of Fig. 15b is shown in Fig. 15c. As the

result in ref.[16], we could control the initial value

condition of the QZS dynamic system to make the

steady-state motion settle into the non-resonant

period-1 motion, even if the subharmonic solutions

exist, which would extend the effective isolation

frequency to low and ultra-low frequency. The range

of vibration isolation is thus in a large extent

theoretically beyond the traditional understand for

nonlinear vibration isolation.

Figure 15 shows the transmissibility for the damp-

ing ratio g ¼ 2. Similar to the theoretical result, only

the primary resonance exists in the transmissibility

curve. Figure 16 shows the transmissibility response

at the frequencies of X ¼ 1 and 10 under various
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initial conditions. As the damping ratio

g ¼ 2[ gcr 1=3, the transmissibility response is inde-

pendent of the initial conditions and has only one

stable solution.

As the system is dominated by nonlinear stiffness,

chaos may be triggered when the damping is small.

Under chaos, the response of the system cannot be

predicted, and the QZS system may fail to realize the

predicted isolation effect. Thus, the effective fre-

quency in Eq. (45) cannot effectively estimate the

vibration isolation frequency range of the system

owing to chaos. To discuss the effect of g on the

nonlinear behavior of the system, a bifurcation

diagram at X ¼ 5.195 is presented in Fig. 17.

According to Table 1, the frequency X ¼ 5.195 is

the maximum start point frequency and the minimum

end point frequency. Hence, when the existing con-

dition of the one-third subharmonic resonance is

satisfied, the response at X ¼ 5.195 always has a

solution of the one-third subharmonic. Hence, X ¼
5.195 is used in the analysis. When the damping ratio

is less than 0.003, the response of the system exhibits

chaos. Exceeding 0.003, the response of the system

alternates between multi-period motion and 1-period

motion until the damping ratio increases to 0.013. The

response of the system exhibits a stable 1-period

motion when the damping ratio is within (0.013, 0.25).

As the damping ratio increases from 0.25 to 1.66, the

Table 1 The expression of the critical point in primary resonance and one-third subharmonic resonance

Critical point Expression

Jump Phenomena in Primary Resonance Jump-up Point Frequency
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 9þ12g2ð Þ2þ24g4�90g2þ2g2
3ð Þ

16g2
2

r

Value Range (2.121, 2.25)

Amplitude ffiffi

6
p

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4þ 3
g2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 3�4g2ð Þ
p

g2

r

Value Range (1.50, 1.732)

Jump-down Point Frequency 9þ4g2

4
ffiffi

3
p

g

Value Range (2.00, Inf)

Amplitude
ffiffiffiffiffiffiffiffiffiffi

9þ4g2

4g2

q

Value Range (2.00, Inf)

Transmissibility Peak Transmissibility
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 9
4g2

q

Value Range (1, Inf)

One-third Subharmonic Resonance Turning Point Frequency
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

27
8g2 81þ 4g2ð Þ � ffiffi

7
p� �

r

Value Range (3.674, 5. 195)

Amplitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 3
2
þ

ffiffi

6
p

81þ4g2 þ
81� ffiffi

7
p

8g2

q

Value Range (1, 1.401)

End Point Frequency
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 9þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

81�28g2ð Þ
p� �

81þ4g2ð Þ
32g2

r

Value Range (5.195, Inf)

Amplitude
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 3
2
þ 9 9þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

81�28g2ð Þ
p� �

8g2

r

Value Range (1.414, Inf)

Transmissibility Peak Transmissibility
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� 3
2
þ 9 9þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

81�28g2ð Þ
p� �

8g2

r

Value Range (1.414, Inf)
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response exhibits 3-period motion with a maximum

amplitude close to 2.25. Therefore, to avoid the

existence of chaos, the damping ratio must be larger

than 0.003. When the damping ratio is in the interval

(0.25, 1.701), the response exhibits 3-period motion.

According to the analysis of the one-third subhar-

monic resonance in Sect. 2.2, the damping ratio range

(0.25, 1.701) corresponds to the existing condition of

the one-third subharmonic resonance. Therefore,

when the damping ratio is in the range (0.25, 1.701),

the effective isolation can be determined by Eq. (45).

By implementing the numerical simulation, the

theoretical analysis of the QZS system described in the

previous section can be verified. When the damping

ratio is smaller than the critical damping ratio of 1.701,

one-third subharmonic resonance occurs owing to

nonlinearity. In the transmissibility curve, as the

frequency increases, the 1/3 harmonic leads to a

second peak with a larger value after the main

resonance peak frequency (as shown in Fig. 17).

Therefore, the effective frequency is pushed to a

higher frequency. When the damping ratio is larger

than 1.701, there exists only a main resonance peak in

the response. After reaching the peak, the transmissi-

bility curve decreases as the frequency increases, and

gradually approaches zero with superior vibration

isolation performance.

3 Experiment and design for QZS isolator

To evaluate the above results of the QZS system, an

experimental prototype was constructed for the vibra-

tion tests. Considering the stability of the system, the

horizontal springs in Fig. 1 are replaced by two

slightly rectangular steel bar as the negative-stiffness

structure, as illustrated in Fig. 18 The two bars were

hinged by ball bearings at one end and connected in

parallel with the vertical spring at the other end.

Various experiments [46–50] have revealed that

bearings contribute a significant amount of damping

in comparison with other structural components, and

the damping ratio is constant under low sinusoidally

varying loads. Thus, it is reasonable to conclude that

the presented prototype can be applied to the idealized

model shown in Fig. 1.

3.1 Static test and results

The prototype of the QZS system was tested using an

INSTRON universal testing machine to obtain the

actual static characteristics. To obtain the force–

displacement characteristic of only the negative-

stiffness element and that of the entire QZS system,

the tests were conducted with one group without a

vertical spring and the other with a vertical spring.

Figure 19a presents the experimental results of the

force–displacement characteristic of the negative
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stiffness element alone, which are compared with the

theoretical results presented in the previous section

and the simulation predictions. Owing to the occur-

rence of a snap-through, the prototype and the

machine were separated, and the static test could not

be continued after a displacement of 3.6. From the F-D

curve, the stiffness–displacement (S–D) relationship

can be obtained, and the stiffness of the vertical spring

can be determined from the value of the equilibrium

position, which is 9.17 N/mm.

Figure 19b shows the force–displacement charac-

teristics of the entire QZS system based on the

experimental results and comparison with theoretical

results. The two curves agree qualitatively. By fitting

the experimental curve, the value of the nonlinear

cubic stiffness k3 k3can be obtained, which is 2.38 N/

mm3. At the equilibrium position, the force is 31.7 N.

Hence, the system can support a mass of 3.17 kg.

3.2 Vibration test and results

The isolated system with the payload was fixed on a

shake table, and sine sweep tests were conducted to

evaluate the performance of the isolation system. The

excitation frequency range was set to sweep from

0.1 Hz to 70 Hz with 0.05 Hz resolution. Three swept

sine tests were produced with the excitation ampli-

tudes of 0.15, 0.5, and 1 mm. The vibration response

was measured by an accelerometer attached to the

payload, and another accelerometer was fixed on the

shaker platform.

To directly compare the dynamic response under

various displacement amplitudes, the response curve

is presented in the form of the acceleration transmis-

sibility with respect to the excitation frequency. The

experimental results of the transmissibility of the QZS

vibration isolation system are shown in Fig. 20. Here,

the orange, purple, and green curves depict the

excitation levels of 0.15 mm, 0.5 mm, and 1 mm,

respectively. It can be observed that the transmissi-

bility increases rapidly at first and reaches the peak

point, after which a sharp decrease occurs and it drops

below 1. Then, the curve rises again and approaches

another peak. After exceeding the second peak, the

transmissibility of the system decreases to a low value

close to zero and continues to decrease as the

excitation frequency increases. Thus, the frequency

of the second peak corresponds to the effective

isolation frequency. It is noted from Fig. 20 that the

effective isolation frequencies are 7.55 Hz, 23.9 Hz,

and 43.5 Hz at the points Pe 1;Pe 2; and Pe 3 for the

excitation levels of 0.15 mm, 0.5 mm, and 1 mm,

respectively.

To compare the results with the previously pre-

sented numerical analysis, the simulation results have

been obtained in the form of the acceleration trans-

missibility. Based on the numerical simulation with

parameters specified by the prototype experimental

system with an excitation level of z = 0.15 mm, the
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damping ratio g obtained by curve fitting is 1.05. With

g ¼ 1:05, the numerical simulations are implemented

with the same swept sine excitation process as the

experimental tests under z = 0.15,0.5, and 1 mm. As

shown in Fig. 20, the numerical curves closely match

the experimental measurements. Hence, according to

the previous section analysis, the results reveal that.

(1) The response model predicted by the theoretical

analysis can describe the experimental results.

When the damping ratio is smaller than

gcr 1=3 ¼ 1:701, two peaks exist in the trans-

missibility-frequency curve. The first peak is

caused by the primary resonance, and the

second is due to the one-third subharmonic

resonance.

(2) The nonlinearity of the system is stronger with

the increase in the excitation displacement,

which results in the effective isolation fre-

quency extending to a higher frequency.

Exceeding the effective isolation frequency,

the transmissibility remains at an ultra-low

value (\ 0.01). Thus, the proposed QZS system

can achieve a good vibration isolation effect at

stable frequencies, which is consistent with the

theoretical results. According to the theoretical

results, the isolation effect at low frequencies

(a) (b)

(c)

Fig. 14 Dynamic response under various initial conditions at a
X ¼ 1 and bÞX ¼ 10; the blue dots represent the solution in

primary resonance, and the red dots represent that in one-third

subharmonic resonance; c) attractor-basin phase portraits of b,

yellow basin represents the non-resonant period-1 motion, red

basin represents the one-third subharmonic resonant period-1

motion
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can be improved by increasing the damping

ratio.

(3) Xe obtained in the previously described theo-

retical analysis can predict the effective isola-

tion frequency. Based on the experimental

results at g ¼ 1:05, the theoretical non-dimen-

sional effective isolation frequency Xe can be

calculated as 10.74. We substitute X ¼ 10:74

into the definition of the actual frequency

f ¼

ffiffiffiffiffiffiffi

k3z2

m

q

X

2p . The theoretical actual effective

isolation frequency can be obtained as

7.03 Hz, 23.43 Hz, and 46.87 Hz at z ¼
0.15 mm, 0.5 mm, and 1 mm, respectively.

The results are close to the experimental results

of 7.55, 23.9, and 43.5 Hz.

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

 Theoretical primary resonance
 Numerical result

Tr
an

sm
is

si
bi

lit
y 

(T
)

Non-dimensional frequency (Ω)

η = 2

Fig. 15 Transmissibility curve from numerical results com-

pared with the theoretical results under g ¼ 2. The blue curve

represents the theoretical primary resonance, and the red dashed

line represents the numerical result
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It is noted that the numerical and experimental

results at z ¼ 1 mm do not fit as well as those at

z ¼ 0:15 mm and 0.5 mm. This behavior may have

been caused by the self-locking of the system. When

the displacement transmissibility is larger than 3.6, the

displacement response at z ¼ 1 mm is larger than

3.6 mm, which is the maximum deformation of the

system. Thus, the structure may self-lock and result in

the transmissibility remaining at 1, as shown in the

experimental curve.

Figure 21a shows the time-domain diagram under

the displacement excitation of 0.5 mm at 20 Hz in

Fig. 20. It can be observed under the sweep mode, the

one-third subharmonic resonance is excited in the

response. Figure 21b shows the time-domain diagram

of the system with the same excitation parameters

under the initial condition of y ¼ 0 and _y ¼ 0. Noting

the response is in non-resonant steady state with

smaller amplitude than the excitation. Hence as

demonstrated in Sect. 2.5, controlling the initial value

condition of the QZS dynamic system can make the

steady-state motion settle into the non-resonant

period-1 motion and widen the isolation frequency

range.

4 Conclusion

In this study, the vibration isolation effect of a QZS

system with nonlinear hysteretic damping was studied

theoretically and experimentally. Considering the

QZS characteristics, the Duffing-Ueda equation was

used to describe the dynamic motion of the system. By

non-dimensional transformation, the nonlinear

Fig. 18 Engineering design

drawing of the proposed

QZS system time-domain,

and the prototype in the

vibration tests

Fig. 19 Force–

displacement characteristic

of the a negative stiffness

structure from the static test

and, b the entire QZS system
from the static test, in

comparison with the

theoretical curves
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dynamic equation of the system was determined using

only one key parameter, the effective damping ratio g.
As the system was dominated by nonlinear stiffness,

theoretical analysis was performed for the complex

nonlinear responses including the primary and sec-

ondary harmonic responses by employing the HBM

method. Since the paper focused on the isolation effect

of the system, the analysis was discussed based on

transmissibility. Then, the analytical solutions for the

nonlinear equation were confirmed by numerical

simulations. The results reveal that the isolation

system with nonlinear hysteretic damping exhibits

several characteristics.

(1) Unlike the linear damping model adopted in

previous studies, the response of the present

QZS system is always bounded for different

damping ratios g, which implies that the system

can always achieve an isolation effect when

exceeding the critical frequency point, which

we term as the effective isolation frequency

point Xe:

(2) The g value for the present system is indepen-

dent of the excitation level, which implies that

the present QZS can provide a stable isolation

effect.

(3) For the damping ratio g\1:701, one-third

subharmonic resonance may occur in the

response and degrade the effective isolation

frequency to a higher frequency, although the

primary response is stable.

(4) When the damping ratio g[ 1:701, the jump

phenomena in the primary resonance and one-

third subharmonic resonance are suppressed,

and the system has the advantage of guarantee-

ing a sufficient damping effect at low frequency
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and extremely low transmissibility at high

frequencies.

To evaluate the actual isolation effect, we proposed

two critical parameters, i.e., the effective isolation

frequency Xe and maximum transmissibility Tp. The

theoretical and numerical results indicate that Xe can

predict the start excitation frequency at which the

system achieves a stable isolation effect, while Tp
predicts the maximum transmissibility of the system

under different excitations.

To verify the above theoretical results, an experi-

ment using a prototype of the QZS system was

constructed for the vibration test. As predicted, two

peaks were observed in the experimental transmissi-

bility curve. According to the theoretical analysis, the

first peak was due to the primary harmonic resonance,

and the second was due to the one-third subharmonic

resonance. In addition, the frequency range of the one-

third resonance was narrowed down as the excitation

displacement decreases. When compared with the

numerical results, the experimental curve also verified

that the effective isolation frequency Xe could effec-

tively predict the start frequency of the stable isolation

frequency range.
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