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Abstract In this paper, a robust adaptive neural con-
trol scheme is proposed for a class of multi-input
multi-output nonlinear systems in pure-feedback form
with unmodeled dynamics and full state constraints.
Radial basis function neural networks are employed
to approximate and compensate for the unknown non-
linear continuous functions. By introducing nonlinear
symmetric mapping, the full state-constrained tracking
control problem of the multi-input multi-output pure-
feedback system is transformed into a novel equiva-
lent unconstrained one. For the transformed systems, a
dynamic surface control method is applied to remove
the difficulties for themultiple explosion of complexity
problem. The use of Nussbaum-type function removes
the need for any assumption on the function of con-
trol gain. By combining variable separation technique
and the function’s monotonously increasing property,
the restrictive assumption of the dynamic disturbances
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caused by unmodeled dynamics is relaxed. One advan-
tage is that only one adjustable parameter is used in
the controller design. It is proved that all the closed-
loop signals remain semi-globally uniformly ultimately
bounded with good tracking performance, while the
system states never violate the constraints.

Keywords Nonlinear MIMO systems · Adaptive
neural control · Full state constraints · Dynamic
surface control · Unmodeled dynamics

1 Introduction

In recent decades, adaptive control of nonlinear sys-
tems has been a rapidly developed research area,
and many significant works have been established
[1]. However, the systems to which adaptive control
schemes can be applied may contain the so-called
matching condition, which, unfortunately, are quite
restrictive. To remove this condition, adaptive back-
stepping, as a recursive and systematic technique, was
first proposed in [2] to obtain asymptotically track-
ing and globally stable controller, in which the con-
trol input was not matched with dynamic nonlinear-
ities. Furthermore, intensive developments have been
achieved on adaptive control of nonlinear systems in
strict-feedback or lower-triangular form via backstep-
ping, for instance, [3] for output-feedback control, [4]
for sampled-data control and [5] for quantized con-
trol. Despite the efforts, the applicability of adaptive
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backstepping control schemes is subject to the repeated
differentiations on virtual controllers at each recursive
step, which may cause explosion of complexity prob-
lem. The work of D. Swaroop [6] initiated a surge
of interest in providing the ease in nonlinear control
design and implementation. By introducing a first-
order filter at each step of recursive procedure, dynamic
surface control (DSC) allows a design to prevent the
problem of “explosion of terms” without model differ-
entiation. Formattersmentioned above, adaptive neural
tracking control problem of multi-input multi-output
(MIMO) nonlinear systems subject to full state con-
straints and unmodeled dynamics is considered in this
paper.

In most applications, due to the practical limitations
of physical devices or the requirements on control per-
formance and safety operation, many practical systems
are always subject to output/state constraints or input
constraints [7,8]. Violation of such constraints may
lead to instability, performance degradation, or dan-
ger. To address this issue, some classical algorithms are
employed to handle the problem of constraints, such
as model predictive control, extremum-seeking con-
trol and nonlinear reference governor. Recently, bar-
rier Lyapunov function (BLF) method has become a
common tool to deal with output or state constraints
since it was first proposed to design asymptotically
stable controllers for a feedback linearizable system
with constraints [9]. The main idea of this method-
ology is that the control Lyapunov function will turn
to infinity when the signals approach the constraints,
imposing hard bound on the associated signals. Based
on BLF and adaptive backstepping, a great deal of
results have been obtained to control uncertain non-
linear systems with constraints( [10–15], to just name
a few). Taking the asymmetric state constraints into
account in [16], the authors constructed a piecewise
BLF, which made the stability analysis complicated in
order to avoid discontinuity. In [17], a tan-type BLF
was developed to cope with the full state constraints
for high-order uncertain nonlinear systems, and this
BLF can be extended to address free-constrained sys-
tems. However, such a form is limited to the symmet-
ric constraints. Note that the abovementioned schemes
require the so-called feasibility condition on virtual
controllerswithBLF,whichposes complexity anddiffi-
culty for the implementation of stable control. To relax
such restriction, a nonlinear state-dependent function
was first introduced in [18], with which the feasibility

condition was completely circumvented. This method
has also been extended to practical tracking control
[19], adaptive DSC [20]. Recently, based on nonlin-
ear mapping (NM), an output-constrained control was
studied in [21] for a class of nonlinear strict-feedback
systems, and the constraint was guaranteed as long as
the boundedness of the transformed unconstrained sys-
tem was ensured. However, the uncertain terms in the
related literatures [10–16,18–21] were compelled to
be parametrically decomposable, namely the nonlin-
ear functions in system dynamics were either linearly
parameterized or assumed to extract known functions
multiplying unknown constants.

On the other hand, Neural networks (NNs) [22] or
Fuzzy Logic Systems (FLSs) [23] with the inherent
capabilities in function approximation were claimed to
model unknown functions merged in uncertain non-
linear systems. With the aid of NNs/FLSs and BLFs,
considerable efforts on output tracking, event-triggered
control, finite-time control and proportional-integral
control have been given to prevent the violation of full
state constraints for various uncertain nonlinear sys-
tems with completely unknown functions. In [24], the
adaptive fuzzy control scheme was developed, which
confirmed the asymptotic tracking of the nonlinear
nonstrict-feedback systems. However, those studies are
focused on single-input single-output (SISO) nonlin-
ear systems. An adaptive fuzzy control was investi-
gated in [25] for MIMO systems in the nested mul-
tiple coupling structure by constructing BLFs in the
backstepping design, while in [26], the adaptive con-
trol of uncertainMIMOnonlinear block-triangular sys-
tems was concerned by fusing neural function approx-
imation with novel integral BLFs. Despite the efforts,
there still remains a significant issue needs to be
addressed in most NNs/FLSs-based control schemes,
where the number of estimated parameters to be tuned
normally gets larger as the neural nodes becomeshigher
[25,26], dramatically leading to a computational cost
for learning. Approximation-based backstepping con-
trol schemes were proposed by updating norms of the
unknown fuzzy or neural weight vector [27–30], in
which only one adaptive parameter was involved in
each step of the recursive design, substantially reduc-
ing the online computational burden. One parameter-
based adaptive control strategies have been investigated
in [20,31,32], which derive from the consistency struc-
ture of the adaptation law in backstepping/DSC anal-
ysis. It is noted that, compared with SISO nonlinear
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systems, an effective solution for eliminating adaptive
parameters for MIMO nonlinear systems with com-
pletely unknown functions is much more demanding
and complicated. Furthermore, when the purpose of
preventing full state constraints violation is incorpo-
rated, the control design becomes more challenging.

The problem of unmodeled dynamics resides in
almost all real systems because of the external distur-
bance, measurement noise and modeling errors. Their
existences frequently make the system performances
degradation, in addition to the instability of controlled
system. Hence, the study on the unmodeled dynamics
problem is of great significance and a series of valu-
able results were reported in [33–41]. In early days, by
adaptive backstepping algorithms, several classic con-
trol frameworks were established in [33,34] for para-
metric strict-feedback nonlinear systems with unmod-
eled dynamics. Further, to handle nonlinear systems
containing unknown functions, in [35,36], adaptive
backstepping design approach was incorporated with
fuzzy or neural networks compensators for SISO strict-
feedback nonlinear systems with unmodeled dynam-
ics. In [37,38], two robust adaptive control schemes
formulated to achieve semiglobal tracking stability
were proposed for nonaffine pure-feedback nonlinear
systems in presence of unmodeled dynamics. In an
attempt to relax the system structure, the works in [39]
and [40] developed two adaptive approximation-based
strategies for SISO nonstrict-feedback systems with
unmodeled dynamics, and their extension to intercon-
nected systems with unmodeled dynamics in nonstrict-
feedback formwas also discussed in [41]. Even though
tremendous works have been presented for versatile
nonlinear systems with unmodeled dynamics, the lim-
ited control algorithm results in a common assump-
tion that the upper bound function of the dynamic dis-
turbance with respect to unmodeled dynamics should
be of lower-triangular structure, i.e., �i (z, x, t) ≤
ϕi (|x̄i |) + φi (‖z‖), ϕi (|x̄i |)(x̄i = [x1, . . . , xi ]T ) only
contains previous i state variables. This presupposi-
tion is crucial in practice. In [42], adaptive fuzzy track-
ing control was addressed for a class of SISO non-
linear systems with unmodeled dynamics, in which
the upper bound function may be a function of whole
state variables, but it has to be a known smooth func-
tion. When the upper bound function appears as an
unknown function containing the whole state variables
of the full state-constrained MIMO systems, the exist-

ing approximation-based recursive control strategies
may be invalidated.

Motivated by the above statements, this paper inves-
tigates a single-adaptive-parameter-basedDSC scheme
for a class of uncertain MIMO nonlinear systems with
full state constraints and unmodeled dynamics. Com-
pared with output constraints, full state constraints are
more difficult to conduct. Based on the transformed
function [18–20] or nonlinear mapping [21,38,43]
method, only one state needs to be transformed into the
newvariable for output constraints, while full state con-
straints problem is considered to transform the entire
states into the new free-constrained ones, which made
the controller design more complicated. On the basis
of the monotonously increasing characteristics of the
upper bound function of dynamic disturbances, a vari-
able separation approach is applied to overcome the
difficulties in strong coupled terms. Nussbaum func-
tions are used to handle the unknown control directions
and the problem of unmodeled dynamics is tackled by
introducing a dynamic signal. Through nonlinear sym-
metric mapping and Lyapunov stability analysis, it is
proved that the full state constraints can never be vio-
lated. The main contributions of this paper lie in:

(1) Compared with the existing works [9–16] on
the control of state-constrained nonlinear systems
which mainly utilize BLF technique, while in this
note, by applying nonlinear symmetric mapping,
the full state-constrained MIMO nonlinear sys-
tem is transformed into a novel pure-feedback
MIMO system without any constraints. Thus, the
traditional Lyapunov functions can directly be
employed and the controllers neednot be redesigned.

(2) By developing the novel algorithm, the assumption
can be classified as the least restrictive imposed
condition available for dynamic disturbance caused
by unmodeled dynamics, of which the upper bound
function can cover the whole states of nonlinear
MIMO systems.

(3) Based on the maximal norm of the weight vec-
tor estimation technique, the proposed design only
needs one adaptive parameter to construct the neu-
ral controller for the entire MIMO systems, sub-
stantially alleviating the computation burden.

The plan for this paper is as follows. Section 2 gives
the problem statement and the key nonlinear symmet-
ric mapping techniques. Following that, the adaptive
neural dynamic surface controller and stability anal-
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ysis for uncertain state-constrained MIMO nonlinear
systems subject to unmodeled dynamics are presented
in Sect. 3. A numerical simulation example is studied
in Sect. 4. Lastly, we draw the conclusion of this paper.

2 Problem statement and preliminaries

Consider the following uncertainMIMOnonlinear sys-
tems with unmodeled dynamics:
⎧
⎪⎪⎨

⎪⎪⎩

ż = q(z, x1,1, t)
ẋi, j = fi, j (x̄i−1, x̄i, j+1) + xi, j+1 + �i, j (z, X, t)
ẋi,ni = fi,ni (x̄i ) + gi,ni (x̄i )ui + �i,ni (z, X, t)
yi = xi,1

(1)

where i = 1, . . . , N , j = 1, . . . , ni − 1, X =
[xT1 , . . . , xTN ]T with xi = [xi,1, . . . , xi,ni ]T ∈ Rni , x̄i =
[xT1 , . . . , xTi ]T ∈ Ri , and x̄i, j = [xi,1, . . . , xi, j ]T ∈ R j

are the system state vectors. ui and yi = xi,1 denote
the system control inputs and outputs, respectively.
�i,1(z, X, t),�i,2(z, X, t), . . . , �i,ni (z, X, t) are the
unknown dynamic disturbances with z ∈ Rn0 being the
unmodeled dynamics. fi,1(·), fi,2(·) . . . , fi,ni (·) and
g1,n1(·), g2,n2(·), . . . , gN ,nN (·) are totally unknown
smooth functions and control coefficients. All the states
xi, j are subject to the open set �xi, j := {xi, j : ∣∣xi, j

∣
∣ <

kbi, j }, where kbi, j are known positive scalars due to per-
formance requirements and physical constraints.

Control objective. Given the reference signal ydi for
system (1) under the aforementioned symmetric state
constraints, design adaptive neural controllers such
that the tracking errors yi − ydi converge to some
small regions, and all the closed-loop signals are semi-
globally uniformly ultimately bounded (SGUUB) with
full state constraints being strictly obeyed.

Definition 1 The unmodeled dynamics z is exponen-
tially input-to-state practically stable (exp-ISpS) pro-
vided that there exist a Lyapunov function V (z) and
functions ᾱ1, ᾱ2 of class K∞ such that

ᾱ1(‖z‖) ≤ V (z) ≤ ᾱ2(‖z‖) (2)

and there exist two positive constants c, d and a class
K∞ function γ such that

∂V (z)

∂z
q(z, x1,1, t) ≤ −cV (z) + γ (

∣
∣x1,1

∣
∣) + d (3)

where c and d are known positive constants, γ is a
known K∞ function.

Assumption 1 The unmodeled dynamics z is expo-
nentially input-to-state practically stable (exp-ISpS).

Assumption 2 The uncertain dynamic disturbances
�i, j (z, X, t) are upper bounded such that

∣
∣�i, j (z, X,

t)| ≤ ϕi, j (‖X‖) + φi, j (‖z‖), where ϕi, j (·) are
unknown strictly increasing smooth functions and
φi, j (·) are nondecreasing continuous functions.

Remark 1 Let ā = max{am,l , b, c, l = 1, . . . , nm,m
= 1, . . . , N }. From the increasing property of ϕi, j (·) in
Assumption2,wehaveϕi, j

(∑N
m=1

∑nm
l=1 am,l + b + c

)
≤

ϕi, j (p0ā) ≤∑N
m=1

∑nm
l=1 ϕi, j

(
p0am,l

)+ϕi, j (p0b)+
ϕi, j (p0c) with p0 = ∑N

m=1 nm + 2. Note that ϕi, j (·)
is a smooth function, and ϕi, j (0) = 0; therefore, there
exists a smooth function qi, j (s) such that ϕi, j (s) =
sqi, j (s), which leads to

ϕi, j

(
N∑

m=1

nm∑

l=1

am,l + b + c

)

≤
N∑

m=1

nm∑

l=1

p0am,lqi, j
(
p0am,l

)+ ϕi, j (p0b)

+ϕi, j (p0c)

Assumption 3 It holds that |ydi | ≤ d∗
i < kbi,1 with d

∗
i

being a known positive constant. The desired trajec-
tory vector [ydi , ẏdi , ÿdi ]T is available, continuous and
satisfies �di = {[ydi , ẏdi , ÿdi ]T : y2di + ẏ2di + ÿ2di ≤
Bi0} ∈ R3, where Bi0 > 0, i = 1, . . . , N are known
constants.

To implement the stable controller design, the fol-
lowing lemmas and concepts are needed.

The continuous function N (ξ) is defined as a
Nussbaum-type function when it carries the properties
lim

s→+∞ sup 1
s

∫ s
0 N (ξ) dξ = +∞ and lim

s→−∞ sup 1
s

∫ s
0

N (ξ) dξ = −∞. Commonly used Nussbaum-type
functions satisfying the above conditions are ξ2 sin (ξ),
eξ2 cos ((π/2) ξ) and ξ2 cos (ξ) as stated in [44]. In
this paper, we chose eξ2 cos ((π/2) ξ) to handle the
unknown control gains.

Lemma 1 [43] Let V (t) ≥ 0 and ξi (t) be smooth
functions defined on [0, t f ), and consider an even
Nussbaum-type function N (ξi ). If the following inequal-
ity holds
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V (t) ≤ a+ e−bt
N∑

i=1

∫ t

0
(gi (x̄i (τ )) N (ξi ) + 1)

ξ̇i e
bτdτ (4)

where a > 0 and b > 0 are constants, and gi (x̄i (t))
is a time-varying parameter which takes values in the
unknown closed intervals D := [d−, d+], with 0 /∈
D, then V (t),

N∑

i=1

∫ t
0 (gi (x̄i (τ )) N (ξi ) + 1) ξ̇i ebτdτ ,

ξi (t) must be bounded on [0, t f ).
Lemma 2 [45] The following inequality holds for any
vectors a, b ∈ Rn:

aT b ≤ εm‖a‖m
m

+ ‖b‖n
nεn

where ε > 0,m > 1, n > 1 and (m − 1)(n − 1) = 1.

Lemma 3 [33] Suppose there exists an exp-ISpS Lya-
punov function V for a system ż = q(z, x1,1, t),
i.e., (2) and (3) hold, then, for any initial conditions
z0 = z(t0), v0 = v(t0) with any initial instant t0 > 0,
any constant c̄ ∈ (0, c), for any continuous func-
tion γ̄

(∣
∣x1,1

∣
∣
) ≥ γ

(∣
∣x1,1

∣
∣
)
, there exist a finite time

T0 = max{0, log (V (z0)/v0)/(c − c̄)} ≥ 0, a non-
negative function D(t0, t), and a signal described as
follows:

v̇(t) = −c̄v(t) + γ̄ (|x1,1|) + d

such that V (z) ≤ v(t) + D(t0, t) with D(t0, t) =
max{0, e−c(t−t0)V (z0) − e−c̄(t−t0)v0}, and D(t0, t) =
0 for all t ≥ t0 + T0.

Remark 2 Common to the existing literatures [33–41]
on dynamic disturbance caused by unmodeled dynam-
ics is the restrictive triangularity condition, where the
upper bound functionϕi, j (·) is required to be a function
of the current states in order to make the corresponding
backstepping-based control schemes feasible, which is
obviously impractical. Note that in this paper, the upper
bound function term ϕi, j (·) contains the whole states
ofMIMO nonlinear systems. In this sense, we relax the
assumption broadly used in other works. However, the
more general model of dynamic disturbance makes the
controller design more challenging and difficult.

2.1 Neural network approximation

Weuse radial basis functionneural networks (RBFNNs)
to approximate the unknown continuous function in the

uncertain MIMO system due to its good capabilities in
function approximation. Suppose that h(Z) : Rn → R
be an unknown nonlinear function. Then, the function
approximator of RBFNN WT S(Z) can precisely esti-
mate any continuous function h(Z) with sufficiently
large number of neural nodes, over the compact set�Z

as follows

h(Z) = W ∗T S(Z) + δ(Z) (5)

where Z ∈ �Z ⊂ Rq is the input vector, S(Z) =
[s1(Z), . . . , sl(Z)]T ∈ Rl donates the basis function
vectorwith s j (Z) determined by theGaussian function,
which can be expressed as

s j (Z) = exp

[

− (Z − c j )T (Z − c j )

φ2
j

]

(6)

where j = 1, . . . , l, c j = [c j1, . . . , c jq ]T and φ j are
the center of receptive field and the width of Gaus-
sian function, respectively. Theoretically, the approx-
imation accuracy can be high enough via increasing
the number of neural nodes, which implies δ(Z) →
0 when l → ∞. However, we cannot choose infi-
nite number of neural nodes in reality. Thus, approx-
imate error δ(Z) would be nonzero. Actually, we can
increase l to obtain a less approximate error.The ideal
constant weighting vector W ∗ is defined as W ∗ =
arg min

W∈Rl

[

sup
Z∈�Z

∣
∣h(Z) − WT S(Z)

∣
∣

]

. Note that W ∗ is

only used for the purpose of stability analysis, its actual
value is not in need.

2.2 Nonlinear symmetric mapping

In this paper, nonlinear symmetric mapping technique
is used to handle full state constraints.

Define the following one-to-one nonlinear mapping
M : xi, j → si, j :

si, j = Mi, j (xi, j ) := log
kbi, j + xi, j
kbi, j − xi, j

, |xi, j (0)| < kbi, j

(7)

where log(•) denotes the natural logarithm of •.
From (7), we obtain that its inverse mapping is

xi, j = esi, j − 1

esi, j + 1
kbi, j (8)

The derivative of si, j with respect to t leads to

ṡi, j = esi, j + e−si, j + 2

2kbi, j
ẋi, j (9)
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Then, system (1) can be described as follows:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ż = q(z, x1,1, t)
ṡi, j = Fi, j (s̄i−1, s̄i, j+1)

+si, j+1 + Ci, j (si, j )Di, j (z, S, t)
ṡi,ni = Fi,ni (s̄i ) + Ci,ni (si,ni )gi,ni (s̄i )ui

+Ci,ni (si,ni )Di,ni (z, S, t)

(10)

where s̄i = [sT1 , . . . , sTi ]T , si = [si,1, . . . , si,ni ]T ,
s̄i, j = [si,1, . . . , si, j ]T , i = 1, . . . , N . S = [sT1 , . . . ,

sTN ]T .

Ci, j (si, j ) = esi, j + e−si, j + 2

2kbi, j
Fi, j (s̄i−1, s̄i, j+1)= Ci, j (si, j )
(
fi, j
(
x̄i−1, xi, j+1

)+ xi, j+1
)− si, j+1

j = 1, . . . , ni − 1, i = 1, . . . , N

Fi,ni (s̄i ) = Ci,ni (si,ni ) fi,ni (x̄i )

gi,ni (s̄i ) = gi,ni (x̄i ), i = 1, . . . , N

Di, j (z, S, t) = �i, j (z, X, t), j = 1, . . . , ni ,

i = 1, . . . , N

The reference signal is rewritten as follows:

ŷdi = log
kbi,1 + ydi
kbi,1 − ydi

(11)

Therefore, it holds that as long as si, j can be made
bounded, then, for the initial condition |xi, j (0)| < kbi, j ,
xi, j will not exceed the predefined region �xi, j by (7),
which implies the full state constraints are never vio-
lated.

Remark 3 By employing nonlinear symmetric map-
ping, we transform a class of MIMO pure-feedback
state-constrained system to the unconstrained one
(10) and (11), which also has a pure-feedback form,
but without full state constraints. Thus, the adap-
tive backstepping-based DSC can be directly extended
to guarantee tracking properties and full state con-
straints, and the adaptive neural controller need not be
redesigned.

Remark 4 Different from the BLF-based algorithm
dealing with state/output constraints, it is shown that
the nonlinear symmetric mapping technique allows
a design where selected Lyapunov functions are all
smooth functions, thus avoiding extra efforts due to the
adoption of piecewise BLFs that are made to ensure
the continuity and differentiability of the virtual con-
trol functions.

3 Main results

In this section, we will propose an adaptive DSC-
based neural control scheme for MIMO nonlinear sys-
tems with full state constraints. To facilitate controller
design, we introduce the following coordinate transfor-
mation:

zi,1 = si,1 − ŷdi (12)

zi, j+1 = si, j+1 − βi, j+1 (13)

yi, j+1 = βi, j+1 − αi, j (14)

where i = 1, . . . , N , j = 1, . . . , ni − 1. For the j th
subsystem, the intermediate control (virtual control)
αi, j is required to be in the following form:

αi, j = −ki, j zi, j − 1

2a2i, j
zi, j λ̂S

T
i, j

(
Zi, j
)
Si, j

(
Zi, j
)

(15)

where ki, j > 0 and ai, j > 0 are design parameters.
Si, j (Zi, j ) is the basis function vector of RBFNNs with
Zi, j serving as the neural input to be specified shortly,
and λ̂ is the estimation of an unknown constant λ with

λ = max

{∥
∥
∥W ∗

i, j

∥
∥
∥
2
, i = 1, . . . , N , j = 1, . . . , ni

}

(16)

The neural adaptation law is given by

˙̂
λ =

N∑

i=1

ni∑

j=1

γ

2a2i, j
z2i, j S

T
i, j

(
Zi, j
)
Si, j

(
Zi, j
)− σ λ̂ (17)

where γ and σ are positive design parameters. For ease
of description, the following notations are defined.

Y =[yT1 , . . . , yTN ]T , yi = [yi,2, . . . , yi,ni ]T
Z =[zT1 , . . . , zTN ]T , zi = [zi,1, . . . , zi,ni ]T (18)

Lemma 4 For the whole states vector X = [xT1 , . . . ,

xTN ]T of theMIMOnonlinear systems (1), the following
inequality holds:

‖X‖ ≤
N∑

i=1

ni∑

j=1

ρi, j
∣
∣zi, j

∣
∣+ D∗ + ϕ(Y ) (19)

with ρi, j (λ̂) = kbi, j

(

1 + ki, j + 1
2a2i, j

λ̂

)

, ρi,ni = kbi,ni ,

and D∗ = ∑N
i=1 di kbi,1 with di = log

kbi,1+d∗
i

kbi,1−d∗
i
, for

i = 1, . . . , N, j = 1, . . . , ni − 1.
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Proof From Assumption 3, (8), (12)-(15) and using
∑N

i=1
∑ni

j=2

∣
∣yi, j

∣
∣ kbi, j ≤ ϕ(Y )withϕ(Y ) being a non-

negative continuous function, one has

‖X‖=
N∑

i=1

ni∑

j=1

∣
∣xi, j

∣
∣

=
N∑

i=1

ni∑

j=1

∣
∣
∣
∣
esi, j − 1

esi, j + 1

∣
∣
∣
∣ kbi, j ≤

N∑

i=1

ni∑

j=1

∣
∣si, j

∣
∣ kbi, j

=
N∑

i=1

∣
∣zi,1 + ŷdi

∣
∣ kbi,1

+
N∑

i=1

ni∑

j=2

∣
∣zi, j + yi, j + αi, j−1

∣
∣ kbi, j

≤
N∑

i=1

∣
∣zi,1

∣
∣ kbi,1 +

N∑

i=1

di kbi,1

+
N∑

i=1

ni∑

j=2

(∣
∣zi, j

∣
∣+ ∣∣yi, j

∣
∣
)
kbi, j

+
N∑

i=1

ni−1∑

j=1

∣
∣αi, j

∣
∣ kbi, j

≤
N∑

i=1

ni∑

j=1

∣
∣zi, j

∣
∣ kbi, j

+
N∑

i=1

ni−1∑

j=2

kbi, j

(

ki, j + 1

2a2i, j
λ̂

)
∣
∣zi, j

∣
∣

+D∗ + ϕ(Y )

=
N∑

i=1

ni∑

j=1

ρi, j
∣
∣zi, j

∣
∣+ D∗ + ϕ(Y ) (20)

Remark 5 It should be stressed that Lemma 4 plays
a crucial role in removing the restrictive triangularity
conditions on dynamic disturbances�i, j (·) as imposed
in most existing works [33–41], because it sets up a
relation between the norm of the whole states vector
X and the norm of zi, j . As shown in the sequel, the
upper bound function ϕi, j (·) can be decomposed into a
sum of the continuous functions with respect to zi, j by
combining variable separation approach. Thus, there is
no need for the triangularity conditions indispensable
for developing a backstepping-based recursive design.

At the present stage, we carry out the neural control
design step by step.

Step 1: Considering (10) and the derivative of zi,1 in
(12) yields

żi,1 = ṡi,1 − ˙̂ydi
= Fi,1

(
s̄i−1, s̄i,2

)+ si,2

+Ci,1
(
si,1
)
Di,1(z, S, t) − ˙̂ydi (21)

Choose a Lyapunov candidate as Vzi,1 = 1
2 z

2
i,1. By tak-

ing the derivative of Vzi,1 and using (21), (13) and (14),
one has

V̇zi,1 = zi,1
[
Fi,1

(
s̄i−1, s̄i,2

)

+si,2 + Ci,1
(
si,1
)
Di,1(z, S, t) − ˙̂ydi

]

= zi,1
(
zi,2 + yi,2 + αi,1

)

+zi,1
[
Fi,1

(
s̄i−1, s̄i,2

)− ˙̂ydi
]

+zi,1Ci,1
(
si,1
)
Di,1(z, S, t) (22)

According to the Definition of z in (2), we have ||z|| ≤
ᾱ−1
1 (V (z)). In view of Lemma 3, we have

||z|| ≤ ᾱ−1
1 (v(t) + D0) (23)

where D0 is a positive constant. Upon using Assump-
tion 2, (23) and employing Lemma 2, Lemma 4, we
obtain

zi,1Ci,1
(
si,1
)
�i,1(z, X, t) ≤ ∣∣zi,1

∣
∣Ci,1

(
si,1
) ∣
∣�i,1(z, X, t)

∣
∣

≤ ∣∣zi,1
∣
∣Ci,1

(
si,1
)

⎡

⎣ϕi,1

⎛

⎝
N∑

i=1

ni∑

j=1

ρi, j
∣
∣zi, j

∣
∣+ D∗ + ϕ(Y )

⎞

⎠+ φi,1(‖z‖)
⎤

⎦

≤ ∣∣zi,1
∣
∣Ci,1

(
si,1
)

N∑

m=1

nm∑

l=1

ϕi,1
(
p0ρm,l

∣
∣zm,l

∣
∣
)

+ ∣∣zi,1
∣
∣Ci,1

(
si,1
)
ϕi,1

(
p0D

∗)

+ ∣∣zi,1
∣
∣Ci,1

(
si,1
)
ϕi,1 (p0ϕ(Y ))

+ ∣∣zi,1
∣
∣Ci,1

(
si,1
)
φi,1

(
ᾱ−1
1 (v(t) + D0)

)

≤ 1

2
C2
i,1

(
si,1
)
z2i,1 +

N∑

m=1

nm∑

l=1

z2m,l ϕ̄
2
i,1

+z2i,1C
2
i,1

(
si,1
)
ϕ2
i,1

(
p0D

∗)

+z2i,1C
2
i,1

(
si,1
)
ϕ2
i,1 (p0ϕ(Y ))

+z2i,1C
2
i,1

(
si,1
)
φ2
i,1

(
ᾱ−1
1 (v(t) + D0)

)
+ 3

4
(24)

123



4012 X. Shi et al.

where p0 =∑N
m=1 nm + 2, ϕ̄2

i,1 = 1
2 p

2
0ρ

2
m,lq

2
i,1

(
p0ρm,l∣

∣zm,l
∣
∣
)
. Substituting (24) into (22) yields

V̇zi,1 ≤ zi,1αi,1 + 1

4
z2i,2 + 1

4
y2i,2 + zi,1

×
[
Fi,1

(
s̄i−1, s̄i,2

)+ 2zi,1 − ˙̂ydi
]

+z2i,1C
2
i,1

(
si,1
)

×
[
1

2
+ ϕ2

i,1

(
p0D

∗)+ ϕ2
i,1 (p0ϕ(Y ))

+φ2
i,1

(
ᾱ−1
1 (v(t) + D0)

)]

+
N∑

m=1

nm∑

l=1

z2m,l ϕ̄
2
i,1 + 3

4
(25)

By introducing a first-order low-pass filter, that is,
τi,2β̇i,2+βi,2 = αi,1,βi,2(0) = αi,1(0), where τi,2 > 0,
and using (14), (15), we arrive at

ẏi,2 = − yi,2
τi,2

− α̇i,1

= − yi,2
τi,2

+
[

ki,1 żi,1 + 1

2a2i,1
żi,1λ̂

∣
∣|Si,1

(
Zi,1
)∣
∣ |2

+ 1

2a2i,1
zi,1

˙̂
λ
∣
∣|Si,1

(
Zi,1
)∣
∣ |2

+ 1

2a2i,1
zi,1λ̂

d
∣
∣|Si,1

(
Zi,1
)∣
∣ |2

dt

]

(26)

∣
∣
∣
∣ẏi,2 + yi,2

τi,2

∣
∣
∣
∣ ≤ ηi,2

(
Z ,Y, λ̂, ydi , ẏdi , ÿdi , v(t)

)

(27)

where ηi,2

(
Z ,Y, λ̂, ydi , ẏdi , ÿdi , v(t)

)
is a continuous

function. Consequently, we have

yi,2 ẏi,2 ≤ − y2i,2
τi,2

+ ∣∣yi,2
∣
∣ ηi,2

(
Z ,Y, λ̂, ydi , ẏdi , ÿdi , v(t)

)

≤ − y2i,2
τi,2

+ y2i,2 + 1

4
η2i,2 (28)

Step j (2 ≤ j ≤ ni − 1): Taking derivative of zi, j in
(13) yields

żi, j = ṡi, j − β̇i, j = Fi, j (s̄i−1, s̄i, j+1) + si, j+1

+Ci, j (si, j )Di, j (z, S, t) − β̇i, j (29)

Consider a Lyapunov function candidate as Vzi, j =
1
2 z

2
i, j . Then, the time derivative of Vzi, j along (13), (14)

and (29) is given by

V̇zi, j = zi, j (zi, j+1 + yi, j+1 + αi, j )

+zi, j
[
Fi, j (s̄i−1, s̄i, j+1) − β̇i, j

]

+zi, jCi, j (si, j )Di, j (z, S, t) (30)

By Assumption 2, Remark 1 and Lemma 2, one has

zi, jCi, j
(
si, j
)
�i, j (z, X, t)

≤ |zi, j |Ci, j
(
si, j
) (

ϕi, j (‖X‖) + φi, j (‖z‖)
)

≤ |zi, j |Ci, j
(
si, j
)
ϕi, j

×
(

N∑

m=1

nm∑

l=1

ρm,l
∣
∣zm,l

∣
∣+ D∗ + ϕ(Y )

)

+|zi, j |Ci, j
(
si, j
)
φi, j (‖z‖)

≤ 1

2
C2
i, j

(
si, j
)
z2i, j +

N∑

m=1

nm∑

l=1

z2m,l ϕ̄
2
i, j

+z2i, jC
2
i, j

(
si, j
)
ϕ2
i, j

(
p0D

∗)+ 3

4
+z2i, jC

2
i, j

(
si, j
)
ϕ2
i, j (p0ϕ(Y ))

+z2i, jC
2
i, j

(
si, j
)
φ2
i, j

(
ᾱ−1
1 (v(t) + D0)

)
(31)

where ϕ̄2
i, j = 1

2 p
2
0ρ

2
m,lq

2
i, j

(
p0ρm,l

∣
∣zm,l

∣
∣
)
. Substituting

(31) into (30) gives

V̇zi, j ≤ zi, j
(
zi, j+1 + yi, j+1 + αi, j

)

+zi, j

[

Fi, j
(
s̄i−1, s̄i, j+1

)

+1

2
C2
i, j

(
si, j
)
zi, j + zi, jC

2
i, j

(
si, j
)
ϕ2
i, j

(
p0D

∗)

+zi, jC
2
i, j

(
si, j
)
ϕ2
i, j (p0ϕ(Y ))

+zi, jC
2
i, j

(
si, j
)
φ2
i, j

(
ᾱ−1
1 (v(t) + D0)

) ]

+
N∑

m=1

nm∑

l=1

z2m,l ϕ̄
2
i, j − zi, j β̇i, j + 3

4

≤ zi, jαi, j + 1

4
z2i, j+1

+1

4
y2i, j+1 + zi, j

[

2zi, j − β̇i, j + Fi, j
(
s̄i−1, s̄i, j+1

)

+1

2
C2
i, j

(
si, j
)
zi, j + zi, jC

2
i, j

(
si, j
)
ϕ2
i, j

(
p0D

∗)

+zi, jC
2
i, j

(
si, j
)
ϕ2
i, j (p0ϕ(Y ))

+zi, jC
2
i, j

(
si, j
)
φ2
i, j

(
ᾱ−1
1 (v(t) + D0)

) ]

+
N∑

m=1

nm∑

l=1

z2m,l ϕ̄
2
i, j + 3

4
(32)

Define βi, j+1 as follows:

τi, j+1β̇i, j+1 + βi, j+1 = αi, j , βi, j+1(0) = αi, j (0)

(33)
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where τi, j+1 > 0 is a small time constant given by
designer.

From (33) and (14), we have |ẏi, j+1 + yi, j+1
τi, j+1

| =
| − α̇i, j | ≤ ηi, j+1(Z ,Y, λ̂, ydi , ẏdi , ÿdi , v(t)) with

−α̇i, j = 1
2a2i, j

żi, j λ̂‖ Si, j
(
Zi, j
)∥
∥2 + 1

2a2i, j
zi, j

˙̂
λ‖Si, j

(
Zi, j
)∥
∥2 + 1

2a2i, j
zi, j λ̂

d‖ Si, j(Zi, j)‖2

dt + ki, j żi, j , where

ηi, j+1 is a continuous function. Therefore, one can
obtain

yi, j+1 ẏi, j+1 ≤ − y2i, j+1

τi, j+1
+ y2i, j+1 + 1

4
η2i, j+1 (34)

Step ni : The actual control law ui will be proposed in
this step. Taking derivative of zi,ni in (13) along the last
equation in (10) yields

żi,ni = ṡi,ni − β̇i,ni

= Fi,ni (s̄i ) + Ci,ni

(
si,ni

)
gi,ni (s̄i ) ui

+Ci,ni

(
si,ni

)
Di,ni (z, S, t) − β̇i,ni (35)

The control law is given as

ui = N (ξi )

Ci,ni

(
si,ni

)

[

ki,ni zi,ni + 1

2a2i,ni
zi,ni λ̂S

T
i,ni

(
Zi,ni

)
Si,ni

(
Zi,ni

)
]

(36)

ξ̇i = ki,ni z
2
i,ni + 1

2a2i,ni
z2i,ni λ̂S

T
i,ni

(
Zi,ni

)
Si,ni

(
Zi,ni

)

(37)

Choosing the Lyapunov function candidate Vzi,ni =
1
2 z

2
i,ni

, the derivative ofVzi,ni is V̇zi,ni = zi,ni Ci,ni

(
si,ni

)

gi,ni (x̄i ) ui + zi,ni Ci,ni

(
si,ni

)
�i,ni (z, X, t) + zi,ni[

Fi,ni (s̄i ) − β̇i,ni

]
. For the uncertain disturbance with

respect to unmodeled dynamics zi,ni Ci,ni

(
si,ni

)
�i,ni

(z, X, t) similar to (31), Let j = ni in (31), and the
specific process is omitted for simplicity. Thus, apply-
ing (36) and (37) into V̇zi,ni yields

V̇zi,ni ≤ (gi,ni (x̄i ) N (ξi ) + 1
)
ξ̇i − ξ̇i

+zi,ni

[

zi,ni C
2
i,ni

(
si,ni

)
ϕ2
i,ni

(
p0D

∗)

+zi,ni C
2
i,ni

(
si,ni

)
ϕ2
i,ni (p0ϕ(Y ))

+1

2
C2
i,ni

(
si,ni

)
zi,ni − β̇i,ni

+zi,ni C
2
i,ni

(
si,ni

)
φ2
i,ni

(
ᾱ−1
1 (v(t) + D0)

)

+Fi,ni (s̄i )

]

+
N∑

m=1

nm∑

l=1

z2m,l ϕ̄
2
i,ni + 3

4
(38)

where ϕ̄2
i,ni

= 1
2 p

2
0ρ

2
m,lq

2
i,ni

(
p0ρm,l |zm,l |

)
.

To present the stability analysis, we choose the total
Lyapunov function candidate as follows:

Vn =
N∑

i=1

ni∑

j=1

Vzi, j +
N∑

i=1

ni−1∑

j=1

y2i, j+1 + λ̃2

2γ
(39)

where γ > 0 is a design parameter, and λ̃ = λ̂ − λ.
Since for p > 0 and Bi0 > 0, the set �n :=

{[Z ,Y, ˆλ]T , Vn ≤ p} and �di = {[ydi , ẏdi , ÿdi ]T :
y2di + ẏ2di + ÿ2di ≤ Bi0} ⊂ R3 are compact in Rpn

with pn = 2
∑N

i=1 ni − N + 1 and R3, respectively.
Therefore, we obtain zi, j , yi,l , λ̂ ∈ L∞, i = 1, . . . , N ,
j = 1, . . . , ni , l = 2, . . . , ni . Note that ydi ∈ L∞ and
zi,1 = si,1 − ŷdi , si,1 = zi,1 + ŷdi ∈ L∞, then it is
ensured that v(t) ∈ L∞. Thus, over the compact set
�n × �di , there exists a positive constant Mi,l such
that |ηi,l | ≤ Mi,l (i = 1, . . . , N , l = 2, . . . , ni ), and
|ϕ(Y )| ≤ Y ∗ on �n .

Theorem 1 Consider the uncertain MIMO nonlinear
systems (1) subject to symmetric full state constraints
controlled by the adaptive neural controllers (15), (36)
with adaptation law (17) under nonlinear mapping (7),
(8) and Assumptions 1-3. For bounded initial condi-
tions, satisfying Vn(0) < p, and xi, j (0) ∈ �xi, j , there
exist constants ki, j > 0, τi, j > 0, σ > 0 such that the
full state constraints never be violated, i.e., xi, j ∈ �xi, j ,
∀t ≥ 0, and all the closed-loop signals are SGUUB. In
addition, ki, j and τi, j satisfy

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ki,1 ≥ α0
2 + 1

ki, j ≥ α0
2 + 5

4 , j = 2, . . . , ni , i = 1, . . . , N
1

τi, j+1
≥ 5

4 + α0
2 , j = 1, . . . , ni − 1

α0 ≤ σ

(40)

Proof Consider the overall Lyapunov function candi-
date V = Vn , differentiating V (t) along (25), (32) and
(38) leads to
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V̇ ≤
N∑

i=1

ni−1∑

j=1

(

zi, jαi, j + 1

4
z2i, j+1 + 1

4
y2i, j+1

)

+
N∑

i=1

zi,ni
[
Fi,ni (s̄i ) − β̇i,ni

]

+
N∑

i=1

zi,1
[
Fi,1

(
s̄i−1, s̄i,2

)+ 2zi,1 − ˙̂ydi
]

+
N∑

i=1

[(
gi,ni (x̄i ) N (ξi ) + 1

)
ξ̇i − ξ̇i

]

+
N∑

i=1

ni−1∑

j=2

zi, j
[
Fi, j

(
s̄i−1, s̄i, j+1

)+ 2zi, j − β̇i, j
]

+
N∑

i=1

ni∑

j=1

zi, j

[
1

2
C2
i, j

(
si, j
)
zi, j

+zi, jC
2
i, j

(
si, j
)
ϕ2
i, j

(
p0D

∗)

+zi, jC
2
i, j

(
si, j
)
ϕ2
i, j

(
p0Y

∗)+ zi, jC
2
i, j

(
si, j
)
φ2
i, j

(
ᾱ−1
1 (v(t) + D0)

) ]

+
N∑

i=1

ni∑

j=1

N∑

m=1

nm∑

l=1

z2m,l ϕ̄
2
i, j

+
N∑

i=1

3

4
ni − λ̃

γ

˙̂
λ +

N∑

i=1

ni−1∑

j=1

yi, j+1 ẏi, j+1 (41)

Notice that by rearranging the sequence, we obtain

N∑

i=1

ni∑

j=1

N∑

m=1

nm∑

l=1

z2m,l ϕ̄
2
i, j

=
N∑

i=1

ni∑

j=1

z2i, j

N∑

m=1

nm∑

l=1

1

2
p20ρ

2
i, j q

2
m,l

(
p0ρi, j

∣
∣zi, j

∣
∣
)

(42)

Replacing (42) into (41), it follows that

V̇ ≤
N∑

i=1

ni−1∑

j=1

(

zi, jαi, j + 1

4
z2i, j+1 + 1

4
y2i, j+1

)

+
N∑

i=1

[(
gi,ni (x̄i ) N (ξi ) + 1

)
ξ̇i − ξ̇i

]

+
N∑

i=1

ni∑

j=1

zi, j hi, j
(
Zi, j
)

+
N∑

i=1

3

4
ni − λ̃

γ

˙̂
λ +

N∑

i=1

ni−1∑

j=1

yi, j+1 ẏi, j+1 (43)

where

hi,1
(
Zi,1
) = Fi,1

(
s̄i−1, s̄i,2

)

+2zi,1 − ˙̂ydi + zi,1

N∑

m=1

nm∑

l=1

1

2
p20ρ

2
i,1q

2
m,l

(
p0ρi,1

∣
∣zi,1

∣
∣
)

+1

2
zi,1C

2
i,1(si,1) + zi,1C

2
i,1

(
si,1
)
ϕ2
i,1

(
p0D

∗)

+zi,1C
2
i,1

(
si,1
)
ϕ2
i,1

(
p0Y

∗)

+zi,1C
2
i,1

(
si,1
)
φ2
i,1

(
ᾱ−1
1 (v(t) + D0)

)

Zi,1

=
[
s̄i−1, s̄i,2, zi,1, v(t), ˙̂ydi

]T ∈ R
∑i−1

l=1 nl+5 (44)

hi, j
(
Zi, j
) = Fi, j

(
s̄i−1, s̄i, j+1

)

+2zi, j − β̇i, j + zi, jC
2
i, j

(
si, j
)
ϕ2
i, j

(
p0Y

∗)

+1

2
zi, jC

2
i, j

(
si, j
)

+zi, jC
2
i, j

(
si, j
)
ϕ2
i, j

(
p0D

∗)

+zi, jC
2
i, j

(
si, j
)
φ2
i, j

(
ᾱ−1
1 (v(t) + D0)

)

+zi, j

N∑

m=1

nm∑

l=1

1

2
p20ρ

2
i, j q

2
m,l

(
p0ρi, j |zi, j |

)

Zi, j = [s̄i−1, s̄i, j+1, zi, j , v(t), β̇i, j
]T

∈ R
∑i−1

l=1 nl+ j+4, j = 2, . . . , ni − 1 (45)
hi,ni

(
Zi,ni

) = Fi,ni (s̄i ) − β̇i,ni

+zi,ni

N∑

m=1

nm∑

l=1

1

2
p20ρ

2
i,ni q

2
m,l

(
p0ρi,ni |zi,ni |

)

+1

2
zi,ni C

2
i,ni

(
si,ni

)

+zi,ni C
2
i,ni

(
si,ni

)
ϕ2
i,ni

(
p0D

∗)

+zi,ni C
2
i,ni

(
si,ni

)
ϕ2
i,ni

(
p0Y

∗)

+zi,ni C
2
i,ni

(
si,ni

)
φ2
i,ni

(
ᾱ−1
1 (v(t) + D0)

)

Zi,ni = [s̄i , zi,ni , v(t), β̇i,ni

]T ∈ R
∑i

l=1 nl+3 (46)

Then,we employRBFNN to approximate the unknown
function, i.e., hi, j (Zi, j ) = W ∗

i, j
T Si, j (Zi, j )+δi, j (Zi, j )

with
∣
∣δi, j

(
Zi, j
)∣
∣ ≤ εi, j

(
Z ,Y, λ̂, ydi , ẏdi , v(t)

)
,where

εi, j is a continuous function. Thus, for i = 1, . . . , N ,
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j = 1, . . . , ni

zi, j hi, j
(
Zi, j
)

= zi, jW
∗
i, j

T Si, j (Zi, j ) + zi, jδi, j (Zi, j )

≤ 1

2a2i, j
z2i, jλS

T
i, j

(
Zi, j
)
Si, j

(
Zi, j
)

+1

2
a2i, j + ∣∣zi, j

∣
∣ εi, j

≤ 1

2a2i, j
z2i, jλS

T
i, j

(
Zi, j
)
Si, j

(
Zi, j
)

+1

2
a2i, j + z2i, j + 1

4
ε2i, j (47)

In view of �n × �di is compact in Rpn+3, there
exists a constant Ni, j > 0 such that |εi, j | ≤
Ni, j (i = 1, . . . , N , j = 1, . . . , ni ) on�n ×�di . Sub-
stituting (28), (34), (37) and (47) into (43), and using
(15), (17), we arrive at

V̇ ≤
N∑

i=1

(−ki,1 + 1
)
z2i,1 +

N∑

i=1

ni∑

j=2

(

−ki, j + 5

4

)

z2i, j

+
N∑

i=1

ni−1∑

j=1

(

− 1

τi, j+1
+ 5

4

)

y2i, j+1

−σ

γ
λ̃λ̂ +

N∑

i=1

[
gi,ni (x̄i ) N (ξi ) + 1

]
ξ̇i

+
N∑

i=1

3

4
ni +

N∑

i=1

ni∑

j=1

(
1

2
a2i, j + 1

4
N 2
i, j

)

+
N∑

i=1

ni−1∑

j=1

1

4
M2

i, j+1 (48)

Applying the inequality −λ̃λ̂ = −λ̃(λ̃ + λ) ≤ −λ̃2 +
λ̃2

2 + λ2

2 = − λ̃2

2 + λ2

2 and (40) yields

V̇ (t) ≤ −α0V +
N∑

i=1

[
gi,ni (x̄i ) N (ξi ) + 1

]
ξ̇i + μ0

(49)

whereμ0 =∑N
i=1

3
4ni+

∑N
i=1
∑ni

j=1

(
1
2a

2
i, j + 1

4N
2
i, j

)
+

∑N
i=1
∑ni−1

j=1
1
4M

2
i, j+1 + σ

2γ λ2. Multiplying both sides

by eα0t and integrating it over [0, t], (49) can be further
expressed as

V (t) ≤ μ0

α0
+
[

V (0) − μ0

α0

]

e−α0t

+e−α0t
N∑

i=1

∫ t

0
[gi (x̄i ) N (ξi ) + 1] ξ̇i e

α0τdτ

(50)

As μ0
α0

+
[
V (0) − μ0

α0

]
e−α0t ≤ V (0) + μ0

α0
, then, in

view of Lemma 1, it is established that V (t), ξi and∑N
i=1

∫ t
0 [gi (x̄i ) N (ξi ) + 1] ξ̇i eα0τdτ remain bounded

on [0, t f ). From the discussion in [46], we can obtain
that the above conclusion is true for t f → ∞.
Let

∑N
i=1

∫ t
0 [gi (x̄i ) N (ξi ) + 1] ξ̇i eα0τdτ ≤ μ1, (50)

becomes

0 ≤ V (t) ≤ μ0

α0
+
[

V (0) − μ0

α0
+ μ1

]

e−α0t (51)

Therefore, the signals zi, j , yi, j and λ̂ are SGUUB.
Furthermore, it is ensured that αi, j and βi, j+1 also
remain SGUUB. Then, it follows from (13) and (14)
that si, j = zi, j + yi, j + αi, j−1 ∈ L∞, which implies
that xi, j ∈ �xi, j from (7), namely the full state con-
straints are not violated. Since x1,1 ∈ �xi, j , we obtain
v(t) ∈ L∞. According to definition 1, we known that
‖z‖ ≤ ᾱ−1

1 (V (t)), then based on Lemma 3, we have
‖z‖ ≤ ᾱ−1

1 (v(t) + D(t0, t)). Because of v(t) ∈ L∞
and D(t0, t) ∈ L∞, ‖z‖ ∈ L∞. From (51), one has

|zi,1| ≤
√

2
μ0

α0
+ 2

[

V (0) − μ0

α0
+ μ1

]

e−α0t (52)

Remark 6 It isworth noting that the size of zi,1 depends
on the design parameters γ , σ , ki, j , ai, j as well as the
initial conditions zi, j (0), λ̂(0). It is clear that decreas-
ing σ helps to reduce μ0, and increasing ki, j might
result in small α0; thus, it will help to reduce μ0

α0
. In

addition, decreasing initial values zi, j (0) will help to
reduce V (0). Therefore, zi,1 as t → ∞ can be made
arbitrarily small.

Recalling (8) and (11), we obtain

yi − ydi =
2kbi,1

(
esi,1 − eŷdi

)

(esi,1 + 1)
(
eŷdi + 1

)

= 2kbi,1e
si,1
(
1 − e−zi,1

)

(esi,1 + 1)
(
esi,1−zi,1 + 1

) (53)

Upon using mean value theorem, it is obviously that
1 − e−zi,1 = zi,1e

−λzi,1 zi,1 is established when λzi,1
varies in the interval (0, 1). Thus, we have
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|yi − ydi | ≤ 2kbi,1e
si,1e−λzi,1 zi,1 |zi,1| (54)

From the above analysis, we conclude that zi,1 can be
made small enough by selecting the design parameters
appropriately, in view of si,1 ∈ L∞, as a consequence,
the tracking error yi − ydi as t → ∞ can achieve arbi-
trarily small value. The proof of Theorem 1 is com-
pleted.

Remark 7 It is noted that Vn(0) < p can be ensured by
setting the bounded initial value. Moreover, the actual
value of p is not necessary, which is only required
for the purpose of analysis of closed-loop stability and
boundedness.

Remark 8 Although several full state-constrained con-
trol schemes based on DSC/command filter and trans-
formed function/nonlinear mapping have been devel-
oped in [18,47,48], these existing works did not con-
sider that the system appeared as MIMO and the effect
of unmodeled dynamics.Among the few exceptions are
[20,38,49]. In [20], via employing a novel transformed
function, the adaptive controller design was developed
for uncertain nonlinear MIMO state-constrained sys-
tems. However, the uncertainties considered in [20]
were bounded by known nonlinear functions, while
in [49], a one-to-one nonlinear mapping was applied
to deal with the symmetric full state constraints for
a class of MIMO strict-feedback nonlinear systems,
and the finite-time command filter control scheme
can compensate the filtering error with better con-
trol performance compared with DSC. In our study,
a more general uncertain MIMO pure-feedback non-
linear system with unknown functions is considered,
in which RBFNNs are used to model unknown func-
tions. In [38], an adaptive control strategy in combina-
tion of DSC and nonlinear mapping was proposed for
a class of SISO pure-feedback nonlinear systems with
unmodeled dynamics. However, the uncertain distur-
bance with respect to unmodeled dynamics has to sat-
isfy a triangular assumption, which is replaced by a
less restrictive condition in this study. Comparing with
[18,20,38,47–49], the proposed control scheme is the
first attempt for uncertain MIMO pure-feedback non-
linear systems subject to unmodeled dynamics and full
state constraints without involving the so-called feasi-
bility condition.

4 Simulation verification

In this section, the effectiveness of the developed con-
trol scheme is illustrated from a simulation. The fol-
lowing MIMO nonlinear system is written as

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ż = −z + 0.5x21,1 sin(x1,1)
ẋ1,1 = x1,1 + 1

5 x
3
1,2 + x1,2 + �1,1

ẋ1,2 = x1,1x1,2 + (1 + 0.1 sin(x1,1x1,2))u1 + �1,2

ẋ2,1 = x2,1e−0.5x2,1x1,1 + x22,1x2,2 + x2,2 + �2,1

ẋ2,2 = x2,1x22,2 + (3 − cos(x1,1x1,2x2,1x2,2))u2 + �2,2

(55)

where �1,1 = 2z sin(t), �1,2 = 0.2z cos(0.5x1,2) −
0.5x1,1, �2,1 = 0.2zx1,1x1,2x2,1 sin(x2,2), �2,2 =
0.1z cos(0.5x2,2). The reference signals are given as
yd1 = 0.5 sin(t) + sin(0.5t) and yd2 = sin(0.5t). In
order to copewith the unmodeled dynamics, we choose
v̇(t) = −v(t) + 2.5x41,1 + 0.625 as the dynamic sig-
nal. The state-constrained parameter values are set to
kb1,1 = 1, kb1,2 = 2, kb2,1 = 1.5, kb2,2 = 2. The initial
conditions are selected as x1(0) = x2(0) = [0.1, 0]T ,
λ̂(0) = 0.5, z(0) = 0.1, v(0) = 0.1, ξ1(0) = ξ2(0) =
0.2, β1,2(0) = 0.1,β2,2(0) = 0.5.

The adaptive neural controllers are designed as fol-
lows:

αi,1 = −ki,1zi,1 − 1

2a2i,1
zi,1λ̂S

T
i,1

(
Zi,1
)
Si,1
(
Zi,1
)

(56)

τi,2β̇i,2 + βi,2 = αi,1 (57)

ui = N (ξi )

Ci,2
(
si,2
)

[

ki,2zi,2

+ 1

2a2i,2
zi,2λ̂S

T
i,2

(
Zi,2
)
Si,2
(
Zi,2
)
]

(58)

˙̂
λ =

2∑

i=1

2∑

j=1

γ

2a2i, j
z2i, j S

T
i, j

(
Zi, j
)
Si, j

(
Zi, j
)− σ λ̂

(59)

where i = 1, 2. zi,1 = si,1− ˙̂ydi , zi,2 = si,2−βi,2. From
(7) and (11), si,1, si,2, ŷdi Ci,2

(
si,2
)
are readily calcu-

lated. The design parameters are chosen as k1,1 = 9,
k1,2 = 6, k2,1 = 10, k2,2 = 2.5, a1,1 = a1,2 = a2,1 =
a2,2 = 1, τ1,2 = τ2,2 = 0.01, σ = 0.01, and γ = 100.
We employ 4 RBFNNs having nine neural nodes to
estimate unknown continuous functions. The input vec-
tors are Z1,1 = [s1,1, s1,2, z1,1, ˙̂yd1, v(t)]T , Z1,2 =
[s1,1, s1,2, z1,1, β̇1,2, v(t)]T , Z2,1 = [s1,1, s1,2, s2,1,
s2,2, z2,1, ˙̂yd2, v(t)]T , and Z2,2 = [s1,1, s1,2, s2,1, s2,2,
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(a) (b)

Fig. 1 System outputs follow desired trajectories

(a) (b)

Fig. 2 System full state constraints

z2,2, β̇2,2, v(t)]T . Si, j (Zi, j ) = [si, j1(Zi, j ), . . . , si, jl
(Zi, j )]T ∈ Rl denotes the basis function vector
with si, jq being the Gaussian function, which can be
expressed as

si, jq(Zi, j ) = e
− (Zi, j−ci, jq )T ((Zi, j−ci, jq )

φ2i, jq (60)

where i = 1, 2, j = 1, 2, q = 1, . . . , l, and
l = 9, ci, jq = [ci, j1, . . . , ci, jqi, j ]T , and q1,1 =
q1,2 = 5, q2,1 = q2,2 = 7. c1,1q = (q −
5)[1, 1, 1, 1, 1]T , c1,2q = 0.5(q − 5)[1, 1, 1, 1, 1]T ,
c2,1q = (q − 5)[1, 1, 1, 1, 1, 1, 1]T , c2,2q = 0.5(q −
5)[1, 1, 1, 1, 1, 1, 1]T .

The simulation results are listed in Figures. 1-3. Fig-
ure. 1(a) and Figure. 1(b) show that the good tracking
performance is guaranteed, while the state trajectories

of MIMO systems are displayed in Figure. 2 which
demonstrate that all the states remain in their respective
constraint regions |x1,1| ≤ 1, |x1,2| ≤ 2, |x2,1| ≤ 1.5,
and |x2,2| ≤ 2 for all t ≥ 0. In addition, Figure. 3
displays that all the other closed-loop variables are
bounded.

Remark 9 Let V (z) = z2, there exist class K∞ func-
tions ᾱ1(|z|) = 0.5z2 and ᾱ2(|z|) = 2z2, such that
ᾱ1(|z|) ≤ V (z) ≤ ᾱ2(|z|). The time derivative of V (z)
is

V̇ (z) ≤ −2z2 + |z|x21,1
≤ −z2 + x41,1

≤ −z2 + 2.5x41,1 + 0.625

123



4018 X. Shi et al.

(a) (b)

(c) (d)

(e)

Fig. 3 Closed-loop signals

Therefore, it is easy to verify that the designed dynamic
signal v(t) in simulation 1 is reasonable.

5 Conclusions

In this research, the adaptive neural dynamic surface
control problem was addressed for a class of uncertain
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MIMO nonlinear systems with full state constraints
and unmodeled dynamics. RBFNN compensator has
played an important role to approximate the unknown
continuous package functions. The novelties of our
results are as follows: (i) for the first time, the nonlinear
symmetric mapping technique combining with DSC is
extended to full state-constrainedMIMOnonlinear sys-
tems, with which the piecewise BLF is prevented ; (ii)
by using variable splitting approach and the structure
consistency of virtual controllers, the triangularity con-
ditions on the uncertain disturbances caused by unmod-
eled dynamics are removed; and (iii) only one online
parameter is adjusted for the entire MIMO nonlinear
systems, the efficiency of computation can be largely
improved. We have shown that the SGUUB tracking
is achieved without violation of full state constraints,
and the boundedness of all closed-loop signals is guar-
anteed by both the theoretical analysis and simulation
verification. Further developments will concentrate on:
(i) how to solve the problem of output feedback con-
trol of full state-constrained MIMO nonlinear systems
with unmodeled dynamics; (ii) how to extend the adap-
tive neural dynamic surface control scheme to confirm
the good tracking performance of the uncertain MIMO
systems with both state and input constraints.
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