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Abstract This paper focuses on themodulation insta-
bility, conservation laws, and interaction solutions
of the generalized coupled Fokas–Lenells equation.
Based on the theory of linear stability analysis, dis-
tribution pattern of modulation instability gain G in
the (K , k) frequency plane is depicted, and the con-
straints for the existence of rogue waves are derived.
Subsequently, we construct the infinitely many con-
servation laws for the generalized coupled Fokas–
Lenells equation from the Riccati-type formulas of
the Lax pair. In addition, the compact determinant
expressions of the N -order localizedwave solutions are
given via generalized Darboux transformation, includ-
ing higher-order rogue waves and interaction solu-
tions among rogue waves with bright-dark solitons
or breathers. These solutions are parameter control-
lable: (mi , ni ) and (α, β) control the structure and ridge
deflection of solution, respectively, while the value of
|d| controls the strength of interaction to realize energy
exchange. Especially,when d = 0, the interaction solu-
tions degenerate into the corresponding order of rogue
waves.
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1 Introduction

There are extremely complex dynamical processes in
nature all the time, and many physical phenomena are
nonlinear in our daily life. Research on modulation
instability (MI) and dynamical behavior of the local-
ized wave solutions for the nonlinear systems is a fas-
cinating subject in the field of contemporary nonlin-
ear science, which has attracted widespread attention
from many experts and scholars. MI [1] is the instabil-
ity of a monochromatic wave or constant background
for disturbances. In experiments, MI is usually used to
generate typical nonlinear waves such as soliton, rogue
wave, and breather. Theoretically, MI is divided into
two stages. The first stage can be described by linear
theory, and the second stage is called nonlinear stage.
Linear MI analysis can only give the instability crite-
rion of small perturbation and the rate of change of
linear instability. The linear phase disturbance grows
exponentially with time and quickly reaches a scale
comparable to the background wave, thus entering the
nonlinear phase. As early as the 1960s, MI, known as
Benjamin–Feir instability [2], was discovered in deep
water wave theory. As is known to all, MI is a natu-
ral phenomenon that can be discovered in many fields,
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such as nonlinear optics [3], fluidmechanics [4], Bose–
Einstein condensation [5], plasma [6], and so on.

Localized wave is one of the main research hotspots
in contemporary nonlinear mathematical physics. Soli-
ton, breather, and rogue wave are localized waves with
obvious dynamical and physical characteristics in the
nonlinear systems. Soliton [7–9] has both locality and
particle properties, and all integrable equations have
soliton solutions that reflect the universal nonlinear
phenomena in nature. Breather and rogue wave are
two typical localized structures with obvious instabil-
ity on the plane-wave backgrounds. Breather [10] not
only has a periodic structure in a particular direction,
but also can be used to explain the phenomenon of
rogue wave. Rogue wave [11–14] is double localized
structures in both time evolution and spatial distribu-
tion directions, which comes nowhere and disappears
without a trace [15]. The mechanism of rogue wave
can be regarded as the high amplitude wave, which is
generated by the collision of soliton and breather [16].
The occurrence of ocean rogue waves is related to the
concentration of energy caused by one or more factors:
the effect of wave countercurrent, the influence of ter-
rain, wave instability, wave frequency focus or direc-
tion focus, etc. The study of rogue waves is of great
significance to the detection of large-wave events near
the ocean or coast, experimental observations, theoret-
ical mechanisms, and early warning. Since many opti-
cal systems contain interacting wave components of
different modes, frequencies, or polarizations, study-
ing localized wave solutions and interaction solutions
in the coupled systems has potential practical appli-
cation value, which would be useful for understanding
the correspondingdynamical phenomena inmanyother
relevant fields.

Among various nonlinear systems, one of the most
prominent integrable examples,which iswidely used to
model the propagation of nonlinear wave inmonomode
optical fibers, is the Fokas–Lenells (FL) equation

iut − νuxt + γ uxx + ρ|u|2(u + ivux ) = 0,

ρ = ±1, x ∈ R. (1)

It was proposed by Fokas [17] and Lenells [18], is a
completely integrable equation. In [17], Eq. (1) was
derived by means of the bi-Hamiltonian method. In
[18], the physical derivation of Eq. (1) was presented.
Eq. (1) is an integrable generalization of the nonlin-
ear Schrödinger (NLS) equation and relates to the first
negative flow of the derivative NLS equation hierar-

chy, which is similar with the relationship between the
Camassa–Holm equation and the first negative flow
of KdV hierarchy [19]. When ν = 0, Eq. (1) can
be reduced to the NLS equation [20], which is used
to describe the nonlinear deep water model, and it
occupies a particularly prominent position in nonlinear
physics. In [21], Lenells and Fokas not only derived
the conservation laws and Lax pair of Eq. (1) via its bi-
Hamiltonian structure, but also solved the initial value
problem via the inverse scattering transform. Subse-
quently, there are many results on the localized wave
solutions of the FL equation, such as soliton, breather,
and rogue wave have been constructed by the Dar-
boux transformation (DT) method [22,23], the dress-
ing method [24], the Hirota direct method [25], and the
complex envelope function method [26]. In [27], long-
time asymptotic behavior for the Cauchy problem of
the FL equation has been discussed by the Deift–Zhou
method [28]. General roguewaves and some new rogue
wave patterns for the generalized derivative NLS equa-
tions [29] have been constructed by the bilinear KP
reduction method. For some other models about the
extended formsof theNLSequation,we refer the reader
to recent work in [30–33].

Similar to the various extended forms of the NLS
equation, the FL equation also has some general-
ized forms. Due to the mutual influence of rela-
tive velocities between different component fields and
the common coupling effect of cross-phase modu-
lation, multi-component coupled nonlinear systems
can produce more abundant dynamic phenomena than
single-component systems. Therefore, it is necessary to
consider the two-component or multi-component FL
equation for describing the effects of polarization or
anisotropy, which can contribute to better understand-
ing the nonlinear localized wave and its dynamic phe-
nomena. The coupled FL equation [34] can be written
as

pxt + p + i(|p|2 + 1

2
σ |q|2)px + 1

2
iσ pq∗qx = 0,

qxt + q + i(σ |q|2 + 1

2
|p|2)qx + 1

2
iσqp∗ px = 0,

(2)

hereσ = ±1. The coupled FL equation shares the same
spatial part of the spectral problem with the coupled
derivative NLS equation [35], which is the first nontriv-
ial negative flow of the vector Kaup–Newell hierarchy
and relevant in the theory of polarized Alfvén waves
and the propagation of the ultra-short pulse. Many
effective methods, such as Riemann–Hilbert method
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[36], DT [37], non-recursive DT [38], and general-
ized DT [39], have been developed to study on the
coupled FL equation. As is known to all, the cou-
pled FL equation is one of the integrable systems
as shown in [40] and certainly admits other interest-
ing integrable properties including multi-Hamiltonian
structure, infinitely many conservation laws, the gen-
eral soliton solutions [41], and optical soliton solution
[42]. In addition, the baseband MI, rogue wave solu-
tions, and state transitions for a deformed FL equation
[43] and semi-rational solutions for the coupled deriva-
tive NLS equation [44] have been studied by the gen-
eralized DT method. Fundamental Peregrine solitons
with unprecedentedly ultrahigh peak amplitude have
been discovered for the vector derivative NLS equa-
tion [45]. In [46], the coupled FL equation (2) has been
extended to three-component coupled system, whose
corresponding dynamical behaviors of localized solu-
tions have been studied. In [47], some analytical frac-
tional solitons of the space-time fractional FL equa-
tion were studied by the improved Riemann–Liouville
fractional derivative rule and two different fractional
dual-function methods with Mittag–Leffler function.

In this paper, we will use the following generalized
coupled Fokas–Lenells (gc-FL) equation [48]

iuxt − iαuxx + 2γ ux − 2β(2|u|2 + |v|2)ux
− 2βuv∗vx + 4iβu = 0,

ivxt − iαvxx + 2γ vx − 2β(2|v|2 + |u|2)vx
− 2βvu∗ux + 4iβv = 0,

(3)

as the reference system, where α, β, and γ are real
parameters, and u, v are all complex functions with
respect to delay time x and propagation distance t . It
associates with two conserved quantities

I1[u, v] =
∫ ∞

−∞
(uxu

∗
x + vxv

∗
x )dx,

I2[u, v] =
∫ ∞

−∞

(
−(uxu

∗
x + vxv

∗
x )

2

+2i(uxu
∗
xx + vxv

∗
xx )

)
dx .

(4)

When α = 0, β = 1
4 , and γ = 0, Eq. (3) degenerates

to the coupled FL equation (2). When α = 2, γ = 2,
and β = 1

2 , the coupled FL equation studied in [37] is
equivalent to the coupled FL equation (2) by a gauge
transformation, in which particular case, soliton, first-
order breather, and rogue wave solutions have been
derived. In fact, Eq. (2) is the two-component integrable
generalization of the FL equation (1). As pointed out

by Lenells, the FL equation is the generalization of
the NLS equation, and describes the propagation of
femtosecond pulse in single mode optical silica fiber
when higher-order nonlinear optical effects are consid-
ered. Due to the inherent stability of solitons, which
can propagate over long distances without changing
and are ideal information carriers, the NLS equation
is a basic model to describe the propagation of light
pulses in nonlinear optical fibers. Owing to the prac-
tical significance of the FL equation, further study the
gc-FL equation (3), one of the generalized forms of the
FL equation,must have abundant research significance,
which will help us better understand the propagation
mechanism of nonlinear pluses in certain fibers.

Recently, the higher-order rogue waves of the gc-FL
equation (3) have been constructed in [48]. However,
there are still some topics worth studying, such as: (1)
Can the expression of its infinitely many conservation
laws be derived? (2) Does the semi-rational solutions
of gc-FL exist andwhat are its dynamic characteristics?
(3) Whether the conditions for the existence of rogue
waves obtained from the analysis of MI and character-
istic polynomials are consistent? In the present paper,
we will mainly focus on these aspects to study the gc-
FL equation (3). Based on the theory of linear stability
analysis, we depict the distribution pattern of the MI
gain G on the frequency plane (K , k) and derive the
constraint condition for the existence of rogue waves,
namely 0 < k < 2

C , which is consistent with the
constraint obtained from the analysis of the spectrum
parameters. According to Riccati-type formulas of the
spectral problem, infinitely many conservation laws,
and recursion relations for the conserved density and
associated flux of the gc-FL equation (3) are derived,
respectively. Furthermore, the concrete formula of the
higher-order localized wave solution is obtained by the
generalized DT method. By selecting different param-
eters, three kinds of localized wave solutions are dis-
cussed, including the first- to third-order rogue wave
solutions, and the interaction solutions between higher-
order roguewave andmulti-solitons ormulti-breathers.
Moreover, the dynamical behaviors and the effects of
arbitrary parameters on the structure of the localized
wave solutions, including higher-order rogue waves,
are discussed in detail.

The remainder of our paper is organized as follows.
In Sect. 2, we discuss MI distribution features of the
gc-FL equation according to the theory of MI analysis.
In Sect. 3, we construct infinitely many conservation
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laws and the generalizedDT of the gc-FL equation, and
give a concrete formula of the N -order localized wave
solution. Interactional localized waves are presented
and their dynamical behavior is analyzed in Sect. 4. In
the final section, some conclusions are given.

2 Modulation instability of continuous waves

The stability of the solution is modulated by both the
nonlinear term and dispersive term in the nonlinear
systems. In general, the nonlinear partial differential
equation satisfying the fiber communication model,
for the stable solution, under the interaction of the
nonlinear term and the dispersive term, there will be
instability, which is called MI. In nonlinear dispersive
media,MI is a nonlinear process, in which a continuous
plane wave generates amplitude and frequency self-
modulation through a nonlinear dispersive medium,
resulting in exponential growth of small perturbations
superimposed on a plane wave [20]. The study of MI
regions is crucial in many fields and is the basis for
interpreting or regulating various models or phenom-
ena in different fields.

In this section, we focus on the MI of continuous
waves in the gc-FL equation. The plane-wave solution
of Eq. (3) has the following form

ucw = c1e
iθ = c1e

i(kx+ωt),

vcw = c2e
iθ = c2e

i(kx+ωt),
(5)

where ci (i = 1, 2), k, and ω represent the amplitude,
frequency, and wavenumber of background, respec-
tively. Substituting Eq. (5) into Eq. (3), it yields the
dispersion relation

ω = −4c21βk + 4c22βk − αk2 − 2γ k − 4β

k
.

According to theMI theory, adding small perturbations
(p, q � 1) to the plane-wave solution, then a pertur-
bation solution can be given as

upert = (c1 + εp(x, t)) ei(kx+ωt),

vpert = (c2 + εq(x, t)) ei(kx+ωt),
(6)

with

p(z, t) = m1e
i(Kx+Ωt) + n1e

−i(Kx+Ωt),

q(z, t) = m2e
i(Kx+Ωt) + n2e

−i(Kx+Ωt),

where mi and ni (i = 1, 2) are small real parame-
ters, K and Ω represent the perturbed frequency and

wavenumber, respectively. Substituting the perturba-
tion solution (6) into system (3) generates a system of
linear homogeneous equations for mi and ni , that is⎛
⎜⎜⎝
D1,1 D1,2 D1,3 D1,4

D2,1 D2,2 D2,3 D2,4

D3,1 D3,2 D3,3 D3,4

D4,1 D4,2 D4,3 D4,4

⎞
⎟⎟⎠

⎛
⎜⎜⎝
m1

m2

n1
n2

⎞
⎟⎟⎠ = 0. (7)

with
D1,1 = (−4βc21 + Kα − Ω)k2

+ Kk(2βc22 + Kα − Ω) − 4Kβ,

D2,2 = (−4βc22 + Kα − Ω)k2

+ Kk(2βc21 + Kα − Ω) − 4Kβ,

D3,3 = (−4βc21 − Kα + Ω)k2

+ Kk(−2βc22 + Kα − Ω) + 4Kβ,

D4,4 = (−4βc22 − Kα + Ω)k2

+ Kk(−2βc21 + Kα − Ω) + 4Kβ,

D1,3 = D3,1 = −4k2c21β,

D2,4 = D4,2 = −4k2c22β,

D1,2 = D2,1 = −2βc1c2k(K + 2k),

D3,4 = D4,3 = 2βc1c2k(K − 2k),

D1,4 = D4,1 = D2,3 = D3,2 = −4c1c2βk
2.

Based on the existence condition for solutions of
linear homogeneous equations, and mi , ni (i = 1, 2)
are all nonzero real parameters, then the determinant
of coefficient matrix D for mi and ni is equal to 0,
namely

det(D) =

∣∣∣∣∣∣∣∣

D1,1 D1,2 D1,3 D1,4

D2,1 D2,2 D2,3 D2,4

D3,1 D3,2 D3,3 D3,4

D4,1 D4,2 D4,3 D4,4

∣∣∣∣∣∣∣∣
= 0, (8)

here D = (di j )4×4 with di j being the polynomials
about ci , α, β, γ, k, K ,Ω , which gives rise to a dis-
persion relation equation. By solving this equation, MI
gain can be obtained

G = |Im(Ω)| =
∣∣∣Im

(K |β|√(C2k4 − 2Ck3 + K 2)

(K 2 − k2)k

)∣∣∣,
C = c21 + c22. (9)

Below we analyze the above expressions of Eq. (9)
and discuss the MI distribution characteristics of the
gc-FL equation (3). Obviously, MI region occurs if and
only if the perturbed frequency K satisfies the follow-
ing inequality

|K | < |k|
√
2Ck − C2k2.
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Fig. 1 Left panel: condition for the existence of rogue wave at
the plane (k,C); Right panel: MI distribution of gain G on the
background frequency k and perturbation frequency K plane,
choosing free parameters C = 1 and β = 1

Moreover, based on the MI theory, when perturbed
frequency K = 0, we can obtain inequations{
2Ck − C2k2 > 0,

C �= 0, k �= 0,

namely

0 < k <
2

C
,

this parameter condition can give rise to rogue wave
solution, which is described as the left panel of Fig. 1.
Obviously, the gainG is only related to four parameters
β,C, K , and k, and has nothing to do with parameters
α and γ . When setting β = 0, Eq. (9) is reduced to
G = 0, which is MI. Since β �= 0 is mentioned in the
previous section, then setting C = 1 and β = 1, as
shown in Fig. 1, all the areas inside the red line are MI
region except K = 0. The red dashed line in MI region
is a stability region, namely, MI gain rate G = 0. In
addition, the red line is also stability. With the increase
in amplitude C , the area of MI region also decreases
gradually. According to the gain expression, it can be
seen that it is an even function with respect to K , so its
MI distribution pattern is symmetrical with respect to
K = 0, as shown in the right panel of Fig. 1.

3 Infinitely many conservation laws and Darboux
transformation for the gc-FL equation

In this section, our main aim is to construct infinitely
many conservation laws and N -fold Darboux transfor-
mation of the gc-FL equation (3) with the following
3 × 3 matrix spectral problem:

Ψx = U (λ; x, t)Ψ,

Ψt = V (λ; x, t)Ψ,
(10)

where

U (λ; x, t) = iλ−2 J + λ−1Qx ,

V (λ; x, t) = αiλ−2 J + αλ−1Qx + 2βi J Q2

− γ i J − 2iβλJ Q + iβλ2 J,

(11)

and

J =
⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠ , Q =

⎛
⎝ 0 u v

u∗ 0 0
v∗ 0 0

⎞
⎠ .

Here, Ψ = (φ(x, t), ψ(x, t), χ(x, t))T is the vector
eigenfunction, u and v are potential functions, i is the
imaginary unit, λ is the spectral parameter, α, β, γ

are real parameters. The upper corner symbols T and
∗ denote transposition and conjugation, respectively.
According to compatibility condition, Eq. (3) can be
easily deduced from the zero-curvature equation:Ut −
Vx + [U, V ] = 0.

3.1 Infinitely many conservation laws

For the gc-FL equation (3), u = u(t, x) and v = v(t, x)
are the solutions. If there exists a pair of continuously
differentiable functions ω(t, x, u, v) and J (t, x, u, v),
such that

∂tω(t, x, u, v) = ∂x J (t, x, u, v), (12)

the relationship is said to be a conservation law of
Eq. (3), ω(t, x, u, v) is called conserved density and
J (t, x, u, v) is called associated flux. If the conserved
density and associated flux approach zero sufficiently
fast as |x | goes to infinity, then by integrating the con-
servation law (12) with respect to the independent vari-
able x in the whole real domain, we can deduce that

I [u, v] = d

dt

∫ ∞

−∞
ω(t, x, u, v)dx = 0, (13)

which is a constant of motion.
So far, many classical equations, such as KdV equa-

tion [49], mKdV equation [50], and Sine-Gordon equa-
tion [51], have been proved to possess infinitely many
conservation laws. In 1975,Wadati, Sanuki, andKonno
[52] proved that the AKNS equation also has infinitely
many conservation laws from the linear problems cor-
responding to this family of equations. In 2018, Ling,
Feng, and Zhu [41] established infinitely many conser-
vation laws for the vector positive and negative orders
Kaup–Newell hierarchy, and pointed out that the first
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nontrivial negative flow was corresponding to the cou-
pled Fokas–Lenells equation.

Based on the Lax pair (10), now we will investi-
gate the infinitely many conservation laws of the gc-
FL equation (3). First, we introduce two quantities
Γ1 = Γ1(t, x) = ψ/φ and Γ2 = Γ2(t, x) = χ/φ.
Then, substituting them into the spectral problems (10),
two Riccati-type equations can be generated

Γ1x = 2iλ−2Γ1 + λ−1(u∗
x − uxΓ

2
1 − vxΓ1Γ2),

Γ2x = 2iλ−2Γ2 + λ−1(v∗
x − vxΓ

2
2 − uxΓ1Γ2).

(14)

Substituting the following suitable expansions

uxΓ1 =
∞∑
n=1

(
i

2
λ

)2n−1

Γ
(n)
1 ,

vxΓ2 =
∞∑
n=1

(
i

2
λ

)2n−1

Γ
(n)
2 ,

(15)

into the Riccati-type equations (14), we can obtain
the recursion formulas for Γ

(n)
1 and Γ

(n)
2 , (n =

1, 2, 3, · · · ), which means all the coefficients of the
orders O(λ−1), O(λ1), O(λ3), · · · , O(λ2k−1), (k =
0, 1, 2, · · · ) will be computed, respectively. It then fol-
lows

Γ
(1)
1 = uxu

∗
x , (16)

Γ
(2)
1 = −Γ

(1)
1 Γ

(1)
2 − Γ

(1)2
1 + 2i(Γ (1)

1x − uxx
ux

Γ
(1)
1 )

= −uxu
∗
xvxv

∗
x − (uxu

∗
x )

2 + 2iuxu
∗
xx , (17)

Γ
(3)
1 = −

2∑
j=1

Γ
( j)
1 (Γ

(3− j)
1 + Γ

(3− j)
2 )

+2i(Γ (2)
1x − uxx

ux
Γ

(2)
1 )

= 2uxu
∗
x (uxu

∗
x + vxv

∗
x )

2 − 4uxu
∗
xxx

−2iux [2u∗
xx (2uxu

∗
x + vxv

∗
x )

+u∗
x (uxxu

∗
x + 2vxv

∗
xx + vxxv

∗
x )], (18)

...

Γ
(k+1)
1 = −

k∑
j=1

Γ
( j)
1 (Γ

(k+1− j)
1 + Γ

(k+1− j)
2 )

+2i(Γ (k)
1x − uxx

ux
Γ

(k)
1 ) (k = 3, 4, 5, · · · ), (19)

and

Γ
(1)
2 = vxv

∗
x , (20)

Γ
(2)
2 = −Γ

(1)
1 Γ

(1)
2 − Γ

(1)2
2 + 2i(Γ (1)

2x − vxx

vx
Γ

(1)
2 )

= −uxu
∗
xvxv

∗
x − (vxv

∗
x )

2 + 2ivxv
∗
xx , (21)

Γ
(3)
2 = −

2∑
j=1

Γ
( j)
2 (Γ

(3− j)
1 + Γ

(3− j)
2 )

+2i(Γ (2)
2x − uxx

ux
Γ

(2)
2 )

= 2vxv
∗
x (uxu

∗
x + vxv

∗
x )

2 − 4vxv
∗
xxx

−2ivx [2v∗
xx (uxu

∗
x + 2vxv

∗
x )

+v∗
x (2uxu

∗
xx + uxxu

∗
x + vxxv

∗
x )], (22)

...

Γ
(k+1)
2 = −

k∑
j=1

Γ
( j)
2 (Γ

(k+1− j)
1 + Γ

(k+1− j)
2 )

+2i(Γ (k)
2x − vxx

vx
Γ

(k)
2 ) (k = 3, 4, 5, · · · ). (23)

From the first equation of the 3 × 3 matrix spectral
problem (10), we have

(ln φ)x = −iλ−2 + λ−1(uxΓ1 + vxΓ2),

(ln φ)t = −iαλ−2 + iγ − iβλ2 − 2iβ(uu∗ + vv∗)
+ αλ−1(uxΓ1 + vxΓ2) + 2iβλ(uΓ1 + vΓ2).

(24)

Through the compatibility condition of (24), it yields

λ−1(uxΓ1 + vxΓ2)t = −2iβ(uu∗ + vv∗)x
+αλ−1(uxΓ1 + vxΓ2)x + 2iβλ(uΓ1 + vΓ2)x . (25)

Letω(t, x, u, v) = ∑∞
k=1 λ2k−1ωk and J (t, x, u, v) =∑∞

k=1 λ2k−1 Jk . With the relations (16)–(23), it is nat-
ural to obtain the infinitely many conservation laws of
the gc-FL equation (3) as follows
∂ωk

∂t
= ∂ Jk

∂x
(k = 1, 2, 3, · · · ), (26)

here ωk and Jk represent conserved density and associ-
ated flux, respectively. So the first two conserved den-
sities and associated fluxes are
ω1 = uxu

∗
x + vxv

∗
x ,

J1 = −4β(uu∗ + vv∗) + α(uxu
∗
x + vxv

∗
x ),

(27)

and
ω2 = −(uxu

∗
x + vxv

∗
x )

2 + 2i(uxu
∗
xx + vxv

∗
xx ),

J2 = −α(uxu
∗
x + vxv

∗
x )

2 + 2iα(uxu
∗
xx + vxv

∗
xx )

− 8iβ(uu∗
x + vv∗

x ).

(28)

Finally, we can obtain the recursion relations for the
conserved densityωk and associated flux Jk with k ≥ 3,

ωk = Γ
(k)
1 + Γ

(k)
2 ,

Jk = α(Γ
(k)
1 + Γ

(k)
2 ) − 8iβ(Γ

(k−1)
1 + Γ

(k−1)
2 ),

(29)

hereΓ
(k)
1,2 andΓ

(k−1)
1,2 are provided in the relations (16)–

(23).
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3.2 Darboux transformation for the gc-FL equation

Here, we derive the N -fold Darboux transformation of
the gc-FL equation (3). Motivated by the results men-
tioned in [41], we can get the following symmetric rela-
tions

• U (λ) = JU (−λ)J, V (λ) = JV (−λ)J ,
U (λ) = −JU (λ∗)† J, V (λ) = −JV (λ∗)† J ,

• Ψ (−λ; x, t) = JΨ (λ; x, t)J , J [Ψ (λ; x, t)]† J =
[Ψ (λ∗; x, t)]−1,

• T (λ) = JT (−λ)J, [T (λ)]−1 = J [T (λ∗)]† J .
The above relationship equations can be deduced by

direct calculation, and the upper corner symbol † indi-
cates the Hermitian adjoint. Due to above symmetric
relations between {U (λ), V (λ)} and {U (λ∗), V (λ∗)},
it is easy to find that if Ψi is a nonzero solution of the
spectral problems (10) at spectral parameter λ = λi ,
then Ψ

†
i J is a nonzero solution of the conjugate form

of system (10)

Φx = −ΦU, Φt = −ΦV

at spectral parameter λ = λ∗
i , and here U, V have the

same forms as in system (10). ThroughDarbouxmatrix
T [1] (under above symmetric relations), we obtain a
new system in the same form as Eq. (10), which can be
written as follows

Ψ [1]x = U [1](λ; x, t)Ψ [1],
U [1](λ; x, t) = iλ−2 J + λ−1Q[1]x ,

Ψ [1]t = V [1](λ; x, t)Ψ [1],
V [1](λ; x, t) = αiλ−2 J + αλ−1Q[1]x + 2βi J Q[1]2

−γ i J − 2iβλJ Q[1] + iβλ2 J,

(30)

where
U [1] = T [1]x T [1]−1 + T [1]UT [1]−1,

V [1] = T [1]t T [1]−1 + T [1]VT [1]−1.
(31)

Based on the above Darbouxmatrix symmetric rela-
tions and the loop method, T [1], T [1]−1 can be con-
structed as

T [1] = E + A1

λ − λ∗
1

− J A1 J

λ + λ∗
1
,

T [1]−1 = E + J A†
1 J

λ − λ1
− A†

1

λ + λ1
,

(32)

with
A1 =|x1 >< y1|J, |x1 >= K1|y1 >,

K1 =diag(−Θ∗−1
1 ,Θ−1

1 ,Θ−1
1 ),

Θ1 =2[λ∗
1(|ψ1|2 + |χ1|2) − λ1|φ1|2]

λ∗2
1 − λ21

,

(33)

where E is the identify matrix, |y1 >= Ψ1 =
(φ1, ψ1, χ1)

T is a special solution with u = u[0], v =
v[0], which satisfies system (10) at spectral parame-
ter λ = λ1, and < y1| = (|y1 >)†. Substituting Eq.
(32) into Eq. (31) and collecting all the coefficients,
the relationship between Q1 and Q can be deduced as

Q[1] = Q + A1 − J A1 J. (34)

Furthermore, the concrete expressions of the relation-
ship between the old and the new solutions for the gc-
FL equation (3) can be rewritten as

u[1] = u[0] − 2φ1ψ
∗
1

Θ∗
1

, v[1] = v[0] − 2φ1χ
∗
1

Θ∗
1

. (35)

Proposition 1 The N-fold DT for the gc-FL equation
(3) has the following form

TN = T [N ]T [N − 1] · · · T [1]

= E +
N∑
i=1

(
Ci

λ − λ∗
i

− JCi J

λ + λ∗
i

)
, (36)

and

T−1
N = T [1]−1T [2]−1 · · · T [N ]−1

= E +
N∑
i=1

(
J D†

i J

λ − λi
− D†

i

λ + λi

)
, (37)

where

Ci = Res|λ=λ∗
i
(TN ), Di = Res|λ=λi (T

−1
N ),

Ai = |xi >< yi |J, |xi >= Ki |yi >,

Ki = diag(−Θ∗−1
i ,Θ−1

i ,Θ−1
i ),

|yi > = Ψi = (φi , ψi , χi )
T ,

Θi = 2[λ∗
i (|ψi |2 + |χi |2) − λi |φi |2]

λ∗2
i − λ2i

,

(i = 1, 2, . . . , N ).

Proof Taking the residue on both sides of Eq. (36), it
yields

Res|λ=λ∗
i
(TN ) =

(
E + AN

λ∗
i − λ∗

N
− J AN J

λ∗
i + λ∗

N

)

· · · Ai · · ·
(
E + A1

λ∗
i − λ∗

N

− J A1 J

λ∗
i + λ∗

N

)
= Ci ,

Res|λ=−λ∗
i
(TN ) = −

(
E + AN

−λ∗
i − λ∗

N
− J AN J

−λ∗
i + λ∗

N

)

· · · J Ai J · · ·
(
E + A1

−λ∗
i − λ∗

N

− J A1 J

−λ∗
i + λ∗

N

)
.

(38)
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Because of Res|λ=λ∗
i
(TN ) = −JRes|λ=−λ∗

i
(TN )J , Eq.

(36) is valid. Similarly, Eq. (37) can also be proved.
This completes the proof of Proposition 1. �	
According to the Darboux matrix T [N ], we can get

the transformations between seed solutions u[0], v[0]
and new potential functions u[N ], v[N ], which is
described as Theorem 1.

Theorem 1 The N-foldDarboux transformation of the
spectral problems (10) gives rise to the following com-
pact recurrence formulas

u[N ] =u[0] − 2

|P|
∣∣∣∣ P η

†
2

η1 0

∣∣∣∣ ,

v[N ] =v[0] − 2

|P|
∣∣∣∣ P η

†
3

η1 0

∣∣∣∣ ,
(39)

where

P = (pi j )N×N , pi j = Ψ
†
i JΨ j

λ∗
i − λ j

+ Ψ
†
i Ψ j

λ∗
i + λ j

,

Ψi = (φ∗
i , ψ

∗
i , χ∗

i ),

Ψ j = (φ∗
j , ψ

∗
j , χ

∗
j ) (1 ≤ i, j ≤ N ),

η1 = (φ1, φ2, ..., φN ), η2 = (ψ1, ψ2, ..., ψN ),

η3 = (χ1, χ2, ..., χN ).

Proof According to the derivation process of one-fold
Darboux transformation, there has the following rela-
tion after N -fold Darboux transformation, that is

TN ,x + TNU = U [N ]TN . (40)

SubstitutingEq. (36) into above equation,which results
into the following potential function relation

Q[N ] = Q +
N∑
i=1

(Ci − JCi J ). (41)

Then, according to the relative properties of matrix
rank, it is not difficult to deduce Rank(Ci )=1. So it
can be assumed that Ci = |xi >< yi | and |yi >=
Ψi = (φi , ψi , χi )

T . Since TNT
−1
N = E and Ψ

†
i J is a

nonzero solution of the conjugate form of system (10)
at λ = λ∗

i , thus

< yi |T−1
N |λ=λ∗

i
= 0, Ψ

†
i J T

−1
N |λ=λ∗

i
= 0.

Comparing the above two expressions, without loss of
generality, we can choose < yi | = Ψ

†
i J . Furthermore,

according to TN |λ=λ j Ψ j = 0 and Eq. (36), it holds

Ψ j +
N∑
i=1

( |xi > Ψ
†
i JΨ j

λ j − λ∗
i

− J |xi > Ψ
†
i Ψ j

λ j + λ∗
i

) = 0, (i = 1, 2, . . . N ). (42)

Solving Eq. (42), it yields

First row : (|x1,1 >, |x2,1 >, ..., |xN ,1 >)

= (|y1,1 >, |y2,1 >, ..., |yN ,1 >)P−1

= (φ1, φ2, ..., φN )P−1,

Other rows : (|x1,i >, |x2,i >, ..., |xN ,i >)

= (|y1,i >, |y2,i >, ..., |yN ,i >)S−1

= (φ1, φ2, ..., φN )S−1 (i = 2, 3), (43)

with

P = (pi j )N×N , pi j = Ψ
†
i JΨ j

λ∗
i − λ j

+ Ψ
†
i Ψ j

λ∗
i + λ j

,

S = (si j )N×N , si j = Ψ
†
i JΨ j

λ∗
i − λ j

− Ψ
†
i Ψ j

λ∗
i + λ j

(1 ≤ i, j ≤ N ).

(44)

Finally, substituting Eqs. (43)–(44), one gets {u[N ],
v[N ]} and {u[0], v[0]} has the following relations

u[N ] =u[0] +
(

N∑
i=1

Ci − JCi J

)

12

=u[0] + 2
N∑
i=1

(|xi,1 > ψ∗
i

) = u[0] − 2

|P|
∣∣∣∣ P η

†
2

η1 0

∣∣∣∣ ,

v[N ] =v[0] +
(

N∑
i=1

Ci − JCi J

)

13

=v[0] + 2
N∑
i=1

(|xi,1 > χ∗
i ) = v[0] − 2

|P|
∣∣∣∣ P η

†
3

η1 0

∣∣∣∣ .

(45)

This completes the proof of Theorem 1. �	

4 Interaction solutions between localized waves for
the gc-FL equation

In this section, we turn our attention to the construc-
tion of higher-order localized waves and their interac-
tion solutions for the gc-FL equation (3). On account
of a seed solution under the same spectral parameter λ

cannot realize the iterative process of classical DT, it
is necessary to introduce a limit process to avoid this
deficiency and obtain higher-order localizedwave solu-
tions of Eq. (3). To this end, assuming the seed solutions
as follows
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Fig. 2 The first- to
third-order rogue waves of
the gc-FL equation (3) with
parameters:(α, β, γ, c1, c2) =
(3, 1, 2,

√
3
3 ,

√
6
3 ); and

(mi , ni ) = (0, 0) in the first
column,
(m1, n1) = (100, 0) and
(m1,m2, n1, n2) =
(100, 0, 100, 0) in the
second column,
(m1,m2, n1, n2) =
(10, 10000, 0, 0) in the third
column

u[0] = c1 exp(iθ), v[0] = c2 exp(iθ), θ = ax + bt,

b = −4β(c21 + c22) + (aα + 2γ ) + 4β

a
, (a, c1, c2 ∈ R).

(46)

By substituting the seed solutions (46) into the Lax pair
(10) of the gc-FL equation (11), there appears a variable
coefficient differential system. Then, we can convert
this variable coefficient differential equations to con-
stant coefficient differential equations through a gauge

transformation L=diag(e− 2i
3 θ , e

i
3 θ , e

i
3 θ ). Finally, the

corresponding fundamental vector solution of the gc-
FL equation (3) is derived, that is

Ψ =
⎛
⎝φ

ψ

χ

⎞
⎠ =

⎛
⎜⎜⎝

(C1e
A − C2e

−A)e
i
2 θ

ρ1(C2e
A − C1e

−A)e− i
2 θ − dc2e

B

ρ2(C2e
A − C1e

−A)e− i
2 θ + dc1e

B

⎞
⎟⎟⎠ ,(47)

with

C1 =
(
aλ2 + 2 −

√
(aλ2 + 2)2 − 4a2λ2(c21 + c22)

) 1
2

√
(aλ2 + 2)2 − 4a2λ2(c21 + c22)

,

C2 =
(
aλ2 + 2 +

√
(aλ2 + 2)2 − 4a2λ2(c21 + c22)

) 1
2

√
(aλ2 + 2)2 − 4a2λ2(c21 + c22)

,

A =
i
√

(aλ2 + 2)2 − 4a2λ2(c21 + c22)

2aλ2

[
ax + (aα + 2βλ2)t +

N∑
i=1

κiξ
2i

]
,

B = i(x + (α − γ λ2 + βλ4)t)

λ2
,

ρ1 = c1√
c21 + c22

, ρ2 = c2√
c21 + c22

,

κi = mi + ini , (d,mi , ni ∈ R),

where ξ represents a small disturbanceparameter.Next,
we consider the double roots of the characteristic poly-
nomial of the time partial matrix U0, and then we
can get a constraint condition satisfied by the spectral
parameter as follows

(aλ2 + 2)2 − 4a2Cλ2 = 0,

where

C = c21 + c22.

By solving the above constraint condition, it follows

spectral parameter λ = ±(
√
C ±

√
aC−2

a ). It is not dif-
ficult to find that whether there is an imaginary part of
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Fig. 3 The first-order interaction solution between a soliton
and a rogue wave of the gc-FL equation (3) with parameters:
(α, β, γ, c1, c2) = (3, 1, 2, 1, 0). The first and second columns

show 3D separate structure and the corresponding contour map
with d = 1

10 , respectively; the third column shows collision pro-
cess over time with d = 1

the spectral parameterλdepends on the frequencya and
the amplitudeC , while the real part completely depends
on the amplitudeC . However, when the spectral param-
eter λ contains the imaginary part, namely 0 < a < 2

C ,
then there are rogue wave solutions of the gc-FL equa-
tion (3), which is consistent with the constraint con-
dition for the existence of rogue waves obtained from
the MI analysis in Sect. 2 of this article. To obtain the
rogue wave solutions, for convenience of calculation,
we choose a = 1 and C = 1, it thus transpires that
the corresponding spectral parameter λ = λ0 = 1 + i .
Applying limitation approach to construct the N -fold
generalizedDarboux transformation of the gc-FL equa-
tion, we can get the relations between the new solutions
u[N ], v[N ] and the seed solutions u[0], v[0], whose
detailed process is shown in Theorem 2.

Theorem 2 The N-fold generalized Darboux trans-
formation of the spectral problems (10) gives rise to
the following compact recurrence formulas

u[N ] =u[0] − 2

|P̂|

∣∣∣∣ P̂ η̂
†
2

η̂1 0

∣∣∣∣ ,

v[N ] =v[0] − 2

|P̂|

∣∣∣∣ P̂ η̂
†
3

η̂1 0

∣∣∣∣ ,
(48)

where

P̂ = ( p̂kl)N×N , 1 ≤ k, l ≤ N ,

η̂1 = (φ
[0]
1 , φ

[1]
1 , . . . , φ

[N−1]
1 ),

η̂2 = (ψ
[0]
1 , ψ

[1]
1 , . . . , ψ

[N−1]
1 ),

η̂3 = (χ
[0]
1 , χ

[1]
1 , . . . , χ

[N−1]
1 ).

(49)

Proof Let the spectral parameter λ = λ1 = 1+ i + ξ2

and put it into Eq. (46). By expanding Ψ1 at ξ = 0, it
arrives at

Ψ1(ξ) = Ψ |λ=λ1 =
N−1∑
k=0

Ψ
[k]
1 ξ2k + O(ξ2N ), (50)
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Fig. 4 The second-order interaction solution between two soli-
tons and second-order rogue wave of the gc-FL equation with
parameters:(α, β, γ, c1, c2) = (3, 1, 2, 1, 0); From the left col-
umn to the right column the parameters (d,m1, n1) are (1,0,0),

( 1
1000 , 0, 0), (1,1000,0), and ( 1

10000000 , 1000, 0), respectively.
The odd columns show merge structure; the even columns show
separate structure

with

Ψ
[k]
1 =

⎛
⎜⎝

φ
[k]
1

ψ
[k]
1

χ
[k]
1

⎞
⎟⎠ = 1

(2k)!
∂kΨ1

∂ξ k
|ξ=0. (51)

Additionally, when λi = λ j = λ1, through the same
limit processing technique, pi j in Eq. (44) can be
rewritten as

pi j = − 2[(1 + ξ2 + i)(|ψ1|2 + |χ1|2) − (1 + ξ∗2 − i)|φ1|2]
(2 + ξ2 + ξ∗2)(2i + ξ2 − ξ∗2)

=
N∑

k,l=1

p̂klξ
2(k−1)ξ2(l−1) + O(|ξ |4N ),

(52)

with

p̂kl = limξ,ξ∗→0
1

(2(k−1))!(2(l−1))!
∂2(k+l−2) pi j

∂ξ2(k−1)ξ∗2(l−1)

|(λi=λ1,λ j=λ1).

So N -order localized wave solutions of the gc-FL
equation (3), namely, the formulas (48) can be deduced.

This completes the proof of Theorem 2. �	
As k increases, the expression of vector function

Ψ
[k]
1 in Eq. (51) will be more complicated. Here, we

only give the explicit expressions for k = 0, 1, that is
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Fig. 5 The third-order interaction solution between three soli-
tons and third-order rogue wave of the gc-FL equation (3) with
the parameters (α, β, γ, c1, c2, d,m1,m2, n1, n2) from the left
column to the right column are (3, 1, 2, 1, 0, 1

1000 , 0, 0, 0, 0),
(3, 1, 2, 1, 0, 1

10000000 , 100, 0, 100, 0), and

(3, 1, 2, 1, 0, 1
10000000 , 10, 10000, 0, 0), respectively. Top line:

dark solitons interact with different structures of the third-order
rogue waves; Bottom line: bright solitons interact with different
structures of the third-order rogue waves

Ψ
[0]
1 =

⎛
⎜⎝

φ
[0]
1

ψ
[0]
1

χ
[0]
1

⎞
⎟⎠ =

⎛
⎜⎝

1
4 [(8iβ + 2α)t + 2x + i − 1]√2 + 2ie

i
2 θ

1
4c1[(8iβ + 2α)t + 2x − i + 1]√2 + 2ie− i

2 θ − dc2e
1
2 θ0

1
4c2[(8iβ + 2α)t + 2x − i + 1]√2 + 2ie− i

2 θ + dc1e
1
2 θ0

⎞
⎟⎠ ,

Ψ
[1]
1 =

⎛
⎜⎝

φ
[1]
1

ψ
[1]
1

χ
[1]
1

⎞
⎟⎠ =

⎛
⎜⎝

1
48Ω1

√
2 + 2ie

i
2 θ

1
48c1Ω2

√
2 + 2ie− i

2 θ + 1
2dc2[(1 − i) (α + 4β) t + (1 − i) x]e 1

2 θ0

1
48c2Ω2

√
2 + 2ie− i

2 θ − 1
2dc1[(1 − i) (α + 4β) t + (1 − i) x]e 1

2 θ0

⎞
⎟⎠ ,

(53)

with

θ0 = (−2iγ − 4β + α)t + x,

Ω1 = (2iα3 − 24iα2β − 96iαβ2

+128iβ3 − 2α3 − 24βα2 + 96β2α + 128β3)t3

+(6iα2 − 48iαβ − 96iβ2 − 6α2 − 48βα

+96β2)t2x + (−6iα2 + 96iβ2 + 48βα)t2

+(6iα − 24iβ − 6α − 24β)t x2

+(−12iα + 48β)t x

+(21iα + 36iβ − 15α + 12β)t

+(−2 + 2i)x3 − 6i x2 + (−15 + 21i)x

+24in1 + 24m1 + 3 − 6i,

Ω2 = (2iα3 − 24iα2β − 96iαβ2 + 128iβ3

−2α3 − 24βα2 + 96β2α + 128β3)t3

+(6iα2 − 48iαβ − 96iβ2 − 6α2

−48βα + 96β2)t2x

−(−6iα2 + 96iβ2 + 48βα)t2

+(6iα − 24iβ − 6α − 24β)t x2
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Fig. 6 The first-order interaction solution between a breather
and a rogue wave of the gc-FL equation (3) with parame-

ters: (α, β, γ, c1, c2) = (3, 1, 2,
√
3
3 ,

√
6
3 ). Top line: 3D separate

structure and corresponding contour pattern with d = 1
100 ; Bot-

tom line: 3D merge structure and corresponding contour pattern
with d = 1

Fig. 7 The second-order interaction solution between two
breathers and second-order rogue wave of the gc-FL equation

(3) with parameters: (α, β, γ, c1, c2) = (3, 1, 2,
√
3
3 ,

√
6
3 ); From

the left column to the right column the parameters (d,m1, n1) are
(1,0,0), ( 1

1000 , 0, 0), (1,1000,0), and ( 1
10000000 , 1000, 0), respec-

tively. The odd columns showmerge structure; the even columns
show separate structure
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Fig. 8 The corresponding contour patterns of Fig. 7

−(−12iα + 48β)t x

+(21iα + 36iβ − 15α + 12β)t

+(−2 + 2i)x3 + 6i x2 + (−15 + 21i)x

+24in1 + 24m1 − 3 + 6i. (54)

Therefore, utilizing the above formulas with differ-
ent parameters N = 1, 2, 3 in Theorem 2, the first-
order, second-order, and third-order semi-rational solu-
tions of the gc-FL equation (3) can be obtained. As N
becomes larger, the expression of the solution becomes
more complicated. For simplicity, here only the specific
expression for the first-order semi-rational solution is
given

u[1] =c1e
iθ + 2ic1Ξ1eiθ + 2i

√
1 + idc2Ξ2e

θ∗
0+iθ
2

√
(2)(1 + i)d2e

θ0+θ∗
0

2 + Ξ3

,

v[1] =c2e
iθ + 2ic2Ξ1eiθ − 2i

√
1 + idc1Ξ2e

θ∗
0+iθ
2

√
2(1 + i)d2e

θ0+θ∗
0

2 + Ξ3

,

(55)

with

θ =x + (α + 2γ )t, θ0 = (α − 2iγ − 4β)t + x,

Ξ1 =(2α2 + 32β2)t2 + 2x2 + 4αxt

+ 2i(1 + 4β)t + 2i x − 1,

Ξ2 =(8iβ + 2α)t + 2x − 1 + i,

Ξ3 =2i(16β2 + α2)t2 + 2i x2 + 4iαxt

+ 2(α − 4β)t + 2x + i.

Next, we will analyze the dynamical behavior char-
acteristics of the above-mentioned first- to third-order
solutions of the gc-FL equation (3). It is not difficult
to see that u[1] and v[1] in Eqs. (55) are controllable
with parameters α, β, γ , d, and ci (i = 1..2), the latter
two parameters play a leading role. According to the
selection of parameters d and ci , there are usually the
following three structural solutions.
Case 1. Rogue waves
Choosing the parameters d = 0 and ci �= 0 (i = 1..2),
then Eq. (55) can be rewritten as

u[1] =c1e
iθ

(
1 − 2iΞ1

Ξ3

)
,

v[1] =c2e
iθ

(
1 − 2iΞ1

Ξ3

)
,

(56)

which are all first-order rogue wave solution of the gc-
FL equation (3). From the above expression, it is obvi-
ous that these two components u[1], v[1] are propor-
tional, the ratio is c1

c2
and these maximum amplitudes

have nearly three times the amplitudes of the back-
ground wave. As N increases, there are two additional
parameters (mi , ni ), which can control the structure of
the higher-order rogue waves solution.

For N = 2, there are two structure patterns: a
second-order fundamental rogue wave and a second-
order triangular rogue wave composed of three stan-
dard first-order rogue waves (also known as the triplet
structure).When N = 3, in addition to above two struc-
tures: the third-order fundamental rogue wave and the
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Fig. 9 The third-order interaction solution between three
breathers and third-order rogue wave of the gc-FL equation (3)
with parameters: (α, β, γ, c1, c2, d,m1,m2, n1, n2) from the

left column to the right column are (3, 1, 2, 1, 0, 1
1000 , 0, 0, 0, 0),

(3, 1, 2, 1, 0, 1
10000000 , 100, 0, 100, 0), and

(3, 1, 2, 1, 0, 1
10000000 , 10, 10000, 0, 0), respectively

third-order triangle rogue waves, there is also an addi-
tional pentagon rogue waves pattern. The so-called tri-
angle and pentagon are both composed of six standard
first-order rogue waves, but they are distributed dif-
ferently. According to the above analysis, the number
of corresponding parameters mi , ni increase with N
increases, and then there are a variety of combination
forms about parametersmi , ni , which give rise tomore
abundant structures of higher-order rogue wave solu-
tions. In short, higher-order rogue wave solutions can
be roughly divided into three types: the N -order fun-
damental structure, the combination of N -triplet of the
standard first-order rogue wave, and the combination
structure of different order rogue waves, whose order
less than N (N+1)

2 . Since u and v components are sim-
ilar in structure, only the density distribution of rogue
waves for the u component is given here, as presented
in Fig. 2. From top to bottom, the first- to third-order
rogue waves are depicted, respectively. And from left
to right, the different structures of the same order rogue
waves are represented.
Case 2. Soliton+Rogue waves

When parameters (d, c1) �= (0, 0) and c2 = 0 in Eqs.
(55), the first-order semi-rational solution of the gc-FL
equation can be obtained. At this time, there are two
kinds of semi-rational solutions with different struc-
tures: bright soliton interacts with rogue wave and dark
soliton interactswith roguewave. The 3Ddiagrams and
contour maps of u and v components are depicted in
the first two columns in Fig. 3. The soliton propagates
below the background wave in the u component, while
the soliton in the v component propagates above the
background wave. Obviously, the background ampli-
tude of theu component is 1, and the background ampli-
tude of the v component is 0, which depends entirely
on their corresponding seed solutions. In addition, by
changing the value of |d| to adjust the strength of the
interactional structure of the solution, it results in the
variation of the distance between the soliton (dark or
bright) and the roguewave, that is, merge or separation.

The last column of Fig. 3 depicts the collision and
interaction process of the dark soliton in the u com-
ponent and the bright soliton in the v component with
rogue wave at different times, respectively. Obviously,
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Fig. 10 The corresponding contour maps of Fig. 9

both u and v components propagate along the positive
direction of the x-axis with time, and at the beginning,
only bright and dark soliton solutions located on the
negative half of the x-axis exist at t = −50. At t = 0,
a rogue wave suddenly appears and interacts with the
soliton, and causes the energy transfer between them,
which results in an increase in the amplitude of the
rogue wave and a decrease in the amplitude of the
soliton. Then, at t = 50, the rogue wave disappears,
and the soliton continues to propagate along the posi-
tive direction of the x-axis without changing its shape,
wavewidth, and amplitude. Since the backgroundwave
height of the rogue wave in the v component is 0, the
amplitude of the rogue wave relative to the bright soli-
ton is not obvious when it is close to the bright soli-
ton, but the amplitude of the rogue wave will increase
sharply when the complete collision occurs.

According to the formula (48) for N -order localized
wave solution of the gc-FL equation given in Theo-
rem 2, the second-order localized wave solution can
be obtained by setting the parameter N = 2. There
are two structures with parameters (α, β, γ, c1, c2) =
(3, 1, 2, 1, 0): a second-order fundamental rogue wave
interacts with two solitons and triplet rogue wave inter-

acts with two solitons. When d = 1, the two compo-
nents u2 and v2 show strong interaction as odd columns
(merge structure) in Fig. 4; while d = 1

1000 or
1

10000000 ,
the two components u2 and v2 show weak interaction
as even columns (separate structure) in Fig. 4. For the
v component, it is not difficult to find that the rogue
wave can be clearly seen in the case of strong interac-
tion, while the rogue wave is not obvious in the case
of weak interaction. The main reason is that the energy
surge of the rogue wave driven by soliton under the
strong interaction. However, during the weak interac-
tion, the soliton does not completely collide with the
rogue wave, so the soliton has more energy relative to
the backgroundwave than the roguewave relative to the
background wave, which is demonstrated as the even
columns in the last row of Fig. 4.

For N = 3 in Eq. (48), the third-order localized
wave solution of the gc-FL equation (3) can be naturally
deduced. In the case 1, we already know that the third-
order rogue wave solution has three kinds of struc-
tures, just see bottom patterns in Fig. 2. Similarly, when
parameters (d, c1) �= (0, 0) and c2 = 0, three types of
interaction solutions can be obtained, which are exhib-
ited in Fig. 5. Here, parameters (mi , ni ) control the

123



Generalized coupled Fokas–Lenells equation: modulation instability 2769

merging and splitting of higher-order rogue waves. The
parameter d can regulate the distance between the soli-
ton and the rogue wave to regulate the strength of the
interaction. These above interaction structures can be
degenerated into higher-order rogue wave solutions at
d = 0, namely, fundamental structure, triplet triangle
structure, and pentagon structure.
Case 3. Breather + Rogue waves
When parameters (d, ci ) �= (0, 0)(i = 1, 2) in Eq.
(55), it gives rise to the semi-rational solution of the
interaction between a breather and a rogue wave for the
gc-FL equation. Here, the parameter |d| plays the same
role as in Case 2, namely, merge or separation between
the breather and rogue wave during their interaction.
The above dynamical behavior of the two components
is shown in Fig. 6. Obviously, it can be seen from their
contour patterns that the breather in the u is differ-
ent from one in v component. The breather in the u
component has one peak and two valleys, while the v

component has two peaks and two valleys.When rogue
wave and the breather are close to each other during the
propagation process, it not only causes change in the
amplitude, but also causes a certain phase deflection of
the breather. When the interaction occurs, the energy
of the rogue wave and breather solution will change.
When variables x and t tend to infinity, it is not diffi-
cult to calculate the background amplitude ratio of the
two components u and v, which is c1

c2
.

In what follows, we consider the higher-order case
of Eq. (48) with N = 2, 3, and their separate struc-
ture forms. When N = 2, the interaction between the
second-order breather and the second-order fundamen-
tal rogue wave can be obtained, which are depicted in
the first two columns of Figs. 7 and 8. These two struc-
tures are controllable by parameters m1 and n1. When
d = 1, they interact with each other strongly, i.e., the
merge structure, as shown in the odd columns of Figs.
7 and 8. On the contrary, when d = 1

10000000 , they are
in a separate state, as shown in the even columns of
Figs. 7 and 8. Whether it is merge structure or separate
structure, the phase transition of the breather farther
away from the rogue wave changes seriously, while
breather closer to the rogue wave does not undergo
obvious phase transition. In addition, the phase change
caused by the fundamental structure is greater than
that caused by the triplet structure. When N = 3,
the interaction between the third-order breather and
third-order rogue wave can be obtained. Only param-
eters d,mi , ni (i = 1, 2) are adjusted here, and other

parameters are consistent with the above case. Similar
with case 1, there are also three different interaction
solutions, whose dynamical characteristics are demon-
strated in Figs. 9 and 10. With the increase in N , the
selection of parameters mi and ni has more combina-
tion forms, somore abundant higher-order roguewaves
and semi-rational solutions can be obtained.

5 Summary and discussion

This paper mainly studies three aspects of the gen-
eralized coupled Fokas–Lenells equation: modulation
instability analysis, infinitely many conservation laws,
and interaction solutions.

Based on the linear analysis theory, we obtain the
concrete expression ofMI gain for the generalized cou-
pled Fokas–Lenells equation. Through further analysis
of the expression, the MI and MS distribution regions
on frequency surface are depicted. Moreover, the con-
straint condition for the existence of rogue waves is
obtained, namely 0 < k < 2

C , which is consistent
with the constraint condition obtained in the process
of constructing the localized wave solution through the
generalized Darboux transformation.

According to the Riccati-type formulas of the spec-
tral problem, infinitely many conservation laws are
constructed to investigate the integrability of the gen-
eralized coupled Fokas–Lenells equation. In addition,
we construct the generalized Darboux transformation
and give the compact determinant expression of the N -
order localized wave solution. Under the MI analysis,
there are mainly three structures:

•
{
d = 0, ci �= 0 (i = 1, 2)

}
⇒ rogue wave

(fundamental, triangular, pentagon)

•
{
d �= 0, ci = 0, c j �= 0 (i �= j)

}
⇒ rogue

wave + bright-dark soliton

•
{
d �= 0, ci �= 0 (i = 1, 2)

}
⇒ rogue wave +

breather.

Here, parameters (mi , ni ) control the structure of the
rogue wave: separation or merge, which leads to the
generation of the triangular and pentagon structure,
while parameters (α, β) affect the phase deflection of
the roguewave.Owing to above diversity of roguewave
structures, the last two items can lead to the interac-
tion between rogue wave with different structures and
bright-dark solitons or breathers, where the value of |d|
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controls the collision distance, which results in strong
or weak interactions to realize their energy exchange.
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