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Abstract This study develops displacement- and

kinetic energy-based tuning methods for the design of

the tuned inerter dampers (TIDs) coupled to both

linear and nonlinear primary systems. For the linear

primary system, the design of the TID is obtained

analytically. The steady-state frequency–response

relationship of the nonlinear primary system with a

softening or hardening stiffness nonlinearity is

obtained using the harmonic balance (HB) method.

Analytical and numerical tuning approaches based on

HB results are proposed for optimal designs of the TID

to achieve equal peaks in the response curves of the

displacement and the kinetic energy of the primary

system. Via the developed approaches, the optimal

stiffness of the TID can be obtained according to the

stiffness nonlinearity of the primary system and the

inertance of the absorber. Unlike the linear primary

oscillator case, for a nonlinear primary oscillator the

shape of its resonant peaks is mainly affected by the

damping ratio of the TID, while the peak values

depend more on the stiffness ratio. The proposed

designs are shown to be effective in a wide range of

stiffness nonlinearities and inertances. This study

demonstrates the benefits of using inerters in vibration

suppression devices, and the adopted methods are

directly applicable for nonlinear systems with differ-

ent types of nonlinearities.

Keywords Tuned inerter damper � Dynamic

vibration absorber � Nonlinear stiffness � Equal-peak

method � Vibration power flow � Vibration suppression

1 Introduction

Tuned mass dampers (TMDs) or dynamic vibration

absorbers are widely used for suppressing the vibra-

tions of engineering structures subjected to external

loads. To reduce the peak dynamic response of a

primary vibrating system, a classical TMD comprising

a mass, spring and damper can be attached to the

system to achieve the desired frequency–response

behaviour of the integrated system. The response

curve of a harmonically excited single-degree-of-

freedom (DOF) primary system with a TMD was

shown to pass through two fixed points [1]. Thus, the

equal-peak method can be used to find approximate

optimal values of the stiffness and damping of an

absorber with a given mass. Recently, the exact

closed-form solutions of the optimal stiffness and

damping of a TMD were found [2, 3].
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While vibration absorbers have been widely used

for linear structures [4–7], high-performance vibration

suppression devices are required for nonlinear primary

systems. Some studies have included nonlinear pas-

sive elements in TMDs to achieve enhanced perfor-

mance. Silveira et al. [8] proposed the use of nonlinear

asymmetrical shock absorber to improve the passenger

comfort in vehicles. Casalotti et al. [9] studied the

vibration absorption capability and dynamic response

behaviour of a metamaterial beam with the embedded

array of nonlinear spring–mass absorbers. Potential

use of nonlinear vibration absorbers in rotor and

propulsion systems has also been investigated for

vibration attenuation purpose [10, 11]. Viguie and

Kerschen [12, 13] proposed a qualitative tuning

method to suppress vibrations using a nonlinear

dynamic absorber. They used a frequency–energy plot

based on the energy conservation law and obtained the

parameter values of the absorber by computational

iterations. Batou and Adhikari [14] investigated the

dynamic performance of a vibration absorber with

viscoelastic properties. Yang et al. [15] examined the

power flow characteristics of a nonlinear vibration

absorber coupled to a nonlinear primary system with

stiffness and damping nonlinearity. They found that a

softening stiffness absorber could effectively improve

the power absorption efficiency for the case of a

hardening stiffness primary system.

In addition to the inclusion of stiffness and damping

nonlinearities, the recently proposed inerter can be

used to improve the performance of dynamic vibration

absorbers. The inerter is a passive mechanical element

with two terminals whose relative acceleration is

proportional to the force applied [16]. This device can

be built using a flywheel-based (e.g. [16]) or fluid-

based (e.g. [17, 18]) mechanisms. The introduction of

inerter has fundamentally enlarged vibration absor-

bers’ performance that can be achieved passively, with

significant benefits identified for trains [19], building

structures [20–22], cables [23, 24] and aircraft landing

gear [25]. Another benefit of inerter in a vibration

suppression device is that it reduces the total physical

weight compared to the traditional TMD, while

maintaining similar performance. Based on these

benefits, a specific network connection of the inerter,

damper and spring elements, namely the tuned inerter

damper (TID), has attracted a lot of interest [26, 27].

Pietrosanti et al. [28] used a tuned mass damper inerter

(TMDI) to reduce dynamic vibrations excited by a

white noise. The corresponding optimisation was

carried out by minimising displacement and acceler-

ation and maximising of the ratio of the dissipated

energy to total input energy. Marian and Giaralis [29]

proposed a closed-form analytical expression for the

design of a linear TMDI attached to a linear system so

as to achieve vibration control and energy harvesting.

Brzeski et al. [30] examined a pendulum-based

absorber with an inerter attached to a nonlinear

Duffing oscillator and showed that it could eliminate

the unwanted bifurcations and the instabilities of the

primary system.

It is noted that many previous studies on vibration

suppression systems have been focused on the use of

individual displacement responses in quantifying the

vibration level. The power flow and energy transfer

information have been usually ignored. The power

flow analysis (PFA) is a widely accepted tool for

dynamic analysis and performance evaluation of

linear and nonlinear dynamical systems, including

inerter-based suppression systems [31]. Yang et al.

[32] explored the vibration power flow and energy

transmission behaviour of a proposed inerter-based

nonlinear vibration isolator. Zhu et al. [33] studied the

vibration suppression performance and energy transfer

path of laminated composite plates with different

inerter-based suppression devices. Zhuang et al. [34]

examined the vibration energy transmission behaviour

for performance analysis of coupled systems with a

nonlinear inerter-based joint. There has been much

recent research interest in developing nonlinear

energy sink (NES) acting essentially as passive

vibration absorbers without the linear restoring force

term [35]. Compared with conventional vibration

absorbers, NES has been shown to have a wide

effective frequency range. With an NES attached to a

primary vibrating system, targeted energy transfer

(TET) occurs from the vibrating source to a nonlinear

attachment in a one-way and irreversible manner,

which was also referred to as energy pumping [36, 37].

Zhang et al. [38] proposed a type of NES that replaced

the conventional mass in an attachment by an inerter.

The inerter-based NES was shown to have a better

vibration suppression performance compared with the

conventional NES. Javidialesaadi and Wierschem [39]

studied the optimal design of a novel structure with

NES and inerter. The use of inerter-based NES devices

in a number of vibration control applications including

fluid pipe [40], suspension system [41] and elastic
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beam [42] has been investigated. Ding and Chen [43]

presented a comprehensive review on the recent

development of NES in design, analysis and engi-

neering applications.

While there has been work reported on TID and its

applications, its optimum parameter tuning when

connected with a nonlinear primary system has not

yet been discussed. Some work has been reported to

present an explicit formula of the optimal nonlinear

stiffness of a TMD attached to a primary system

[44, 45]. In this study, a displacement- and kinetic

energy-based tuning method is developed for a TID

attached to linear and nonlinear primary systems. The

main novelties of this work are: (1) the closed-form

expressions of optimal stiffness and damping ratios of

tuned inerter dampers for nonlinear primary systems

are obtained; (2) optimal equal peaks of the response

amplitude or the kinetic energy of the nonlinear

primary system mass are achieved; and (3) systematic

tuning methods based on analytical and numerical

(semi-analytical) approaches are proposed. For the

linear primary system, the optimal stiffness and

damping ratios of the TID for achieving equal peaks

of the displacement response amplitude and kinetic

energy curves are obtained using the fixed-point

theory. For the nonlinear primary system with possible

softening or hardening stiffness nonlinearity, the

frequency–response relationship is obtained by using

the harmonic balance (HB) method. Expressions for

the optimal stiffness and damping ratios of the TID are

obtained analytically and numerically based on iter-

ations and regression fitting. It has been shown that

both methods can identify the optimum TID param-

eters with minor discrepancies and work for a large

range of nonlinearities and inertance values.

The rest of this paper is organised as follows.

Section 2 presents the displacement- and kinetic

energy-based equal-peak design of the TID for a

linear primary system. Section 3 derives the analytical

frequency–response relationship of the system with a

TID attached to a nonlinear primary system using the

HB method. In Sect. 4, the analytical and numerical

tuning methods are developed for the design of the

TID to achieve equal peaks in the displacement and in

the kinetic energy curves of the nonlinear primary

mass. The conclusions are presented in the final

section of the paper.

2 TID coupled to a linear primary system

2.1 Displacement-based equal-peak method

Figure 1a shows a dynamical system comprising a

harmonically forced linear single-DOF primary sys-

tem with mass m1, spring constant k1 and damping

factor c1. A TMD with mass m2, linear spring constant

k2 and viscous damping factor c2 is attached to a

single-DOF primary system, to reduce its response

amplitude at the original resonance. The displace-

ments of the primary system and absorber are denoted

by x1andx2, respectively.

Den Hartog [1] pointed out that, for a given

absorber mass, the steady-state response of the

harmonically excited primary system passes through

two fixed points, independently of the absorber

damping. Based on this property, the equal-peak

method was proposed to achieve the equal response

peaks of the primary system, by setting the optimal

stiffness and optimal damping of the TMD as

copt ¼
x2

x1

¼
ffiffiffiffiffiffiffiffiffiffi

k2m1

k1m2

r

� 1

1 þ km
; ð1aÞ

fopt ¼
c2

2
ffiffiffiffiffiffiffiffiffiffi

k2m2

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3km
8 1 þ kmð Þ

s

ð1bÞ

respectively, where x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

k1=m1

p

and x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

k2=m2

p

are the undamped natural frequencies for

the primary system and the TMD, respectively, and

km ¼ m2=m1 is the mass ratio, the maximum value of

which is often constrained in practical designs. If the

values ofm2 and km are set, the optimal spring stiffness

of the TMD can be obtained using Eq. (1a), and its

damping can then be determined using Eq. (1b). Note

that Eq. (1) only provides approximate solutions of the

TMD parameter values for the realisation of the equal

response peaks.

Figure 1b shows the application of the TID con-

sisting of an inerter with inertance b, spring constant k2

and damping factor c2 to the same harmonically

excited primary system. Many studies have been

reported using inerter-based devices with one terminal

grounded as a vibration absorber [26, 46–48], in

particular for vibration reduction of civil engineering
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structures subject to base excitation [49]. The dis-

placements of the inerter terminals are denoted by x1

and x2. The equations of motion of the system are

m1 €x1 þ c1 _x1 þ k1x1 � b €x2 � €x1ð Þ ¼ fe cosxt; ð2aÞ

b €x2 � €x1ð Þ þ k2x2 þ c2 _x2 ¼ 0: ð2bÞ

To facilitate the later derivation process, the

following parameters are introduced:

x1 ¼
ffiffiffiffiffi

k1

m

r

;x20 ¼
ffiffiffiffiffi

k2

b

r

; c ¼ x20

x1

; l0 ¼ m1g

k1

;

k ¼ b

m1

; f1 ¼ c1

2m1x1

; f2 ¼ c2

2bx20

;X1 ¼ x1

l0
;

X2 ¼ x2

l0
;Fe ¼

fe
k1l0

;X ¼ x
x1

; s ¼ x1t

where x1 and x20 are the natural frequencies of the

primary system and the TID, respectively; c is the ratio

of these two frequencies; l0 is a characteristic length

used for later non-dimensionalisation; k is the iner-

tance-to-mass ratio; f1 and f2 are the damping ratios of

the primary system and the TID, respectively; X1 and

X2 are the dimensionless displacements of the two

terminals of the inerter; Fe and X are the dimension-

less external force amplitude and frequency, respec-

tively; and s is the non-dimensional time. Then,

Eq. (2) can be transformed into a dimensionless

matrix form as follows:

1 þ k �k
�k k

� �

X00
1

X00
2

� �

þ 2f1 0

0 2f2kc

� �

X0
1

X0
2

� �

þ 1 0

0 kc2

� �

X1

X2

� �

¼ FeeiXs

0

� �

; ð3Þ

where the primes denote the differentiation operations

with respect to s. The steady-state solutions of Eq. (3)

can be written as

X1 ¼ R1eiXs;X2 ¼ R2eiXs; ð4a; bÞ

where R1 and R2 are the response amplitudes of the

primary mass and the absorber, respectively. By

inserting Eq. (4) and its first- and second-order

derivatives into Eq. (3), we obtain

�X2 1 þ kð Þ þ 2Xf1i þ 1 X2k

X2k �X2kþ 2Xf2kci þ kc2

" #

R1

R2

� �

¼
Fe

0

� �

:

ð5Þ

Equation (5) can be further transformed into

R1

R2

� �

¼ �X2 1 þ kð Þ þ 2Xf1i þ 1 X2k

X2k �X2kþ 2Xf2kci þ kc2

" #�1

Fe

0

� �

;

ð6Þ

where ½��1
denotes the operation of taking the inverse

matrix. Therefore, the nonlinear receptance function

of the primary mass is

TMD

m

TID

b

(a) (b)

k1 k2

c1 c2

k1

c1

k2

c2 

    

  

 
 

Primary oscillator Primary oscillatorFig. 1 Application of the

a TMD and b TID to a linear

primary system

R1

Fe
¼ �X2kþ kc2 þ 2Xf2kci

�X2 1 þ kð Þ þ 1
� �

�X2kþ kc2
� �

� 4X2f1f2kc� X4k2
� �

þ �X2kf1 þ kc2f1 þ f2kc� X2f2kc� X2f2k
2c

� �

2Xi
ð7Þ
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For an undamped primary system with f1 ¼ 0, the

square of R1=Fe can be expressed as

R1

Fe

	 
2

¼
c2�X2
� �2þ4f2

2X
2c2

X2 X2�1�c2�kc2
� �

þc2
� �2þ4f2

2X
2c2 1�X2�X2k
� �2

ð8Þ

For the TID, the displacement-based equal-peak

approach can also be applied to find the approximate

optimal stiffness and damping parameters [29], which

should be set as

copt �
1

1 þ k
; fopt �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3k
8 1 þ kð Þ

s

; ð9a; 9bÞ

where copt and fopt are the optimal stiffness and

damping ratios required for the TID system to achieve

equal resonant peaks of the response amplitude. The

optimal stiffness and damping ratios of the TMD and

TID (shown by Eqs. (9) and (1), respectively) share the

same expression just by changing km to k. If the

inertance-to-mass ratio k of the TID is set equal to the

mass ratio km of the TMD, their optimal stiffness and

damping coefficients will also be the same.

Figure 2a, b shows the application of the displace-

ment-based equal-peak approach to the TID with an

inertance-to-mass ratio k of 0.02 and 0.05, respec-

tively. The parameters are set as f1 ¼ 0:001 and Fe ¼
0:05: The optimal stiffness ratio is copt ¼ 0:9804 and

the optimal damping of the TID is fopt ¼ 0:0857 when

k equals 0.02, according to Eq. (9). When the damping

coefficient takes the other values of 0.1 or 0.05, the

two peaks in each curve of the displacement response

have different heights. Nevertheless, the frequency–

response curves of all three cases pass through the two

invariant points P and Q, see in Fig. 2a. When the

inertance-to-mass ratio increases from 0.02 to 0.05,

two equal-height peaks of displacement still can be

obtained with the optimal parameters copt ¼ 0:9524

and fopt ¼ 0:1336 based on Eq. (9). It is also noted

that the optimal equal peaks cam be further reduced as

the increase of inertance-to-mass ratio.

2.2 Kinetic energy-based equal-peak method

In some applications, the kinetic energy of the primary

system is important for vibration suppression. There-

fore, it is useful to develop the equal-peak method

based on the kinetic energy. The dimensionless kinetic

energy Kp of the primary mass is defined as

Kp Xð Þ ¼ 1

2
X0

1

�

�

�

�

max

� 
2

¼ 1

2
R2

1X
2; ð10Þ

where X0
1

�

�

�

�

max
represents the maximum dimensionless

velocity of the primary system. Figure 2 suggests that,

with set spring stiffness and mass ratios of the TID, the

kinetic energy curves of the primary system maintain

the invariant points at PjX¼X1
and QjX¼X2

regardless of

the changes in the damping of the absorber. Therefore,

for the absorber with zero or infinite damping,

Fig. 2 Displacement-based

equal-peak approach for the

TID coupled to a linear

primary system with a k ¼
0:02 and b k ¼ 0:05. The

parameters are set as f1 ¼
0:001 and Fe ¼ 0:05
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lim
f2!1

1

2
R2

1X
2 ¼ lim

f2!0

1

2
R2

1X
2; ð11Þ

have to be satisfied at X ¼ X1 and X ¼ X2. By using

Eq. (8) to replace R1 in Eq. (10), and further simpli-

fying the resultant equation, we have

X4 2 þ kð Þ � 2 kc2 þ c2 þ 1
� �

X2 þ 2c2 ¼ 0; ð12Þ

which is a quadratic equation of X2; the solutions are

X2
1 and X2

2, providing the corresponding frequencies of

the invariant points. Based on the property of the

quadratic equations, we have

X1X2 ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

2 þ kð Þ

s

: ð13Þ

To achieve two equal peaks in the kinetic energy

curve, two conditions have to be established. The first

one is that the two peaks in the kinetic energy curve are

of the same height at the frequencies associated with

the two fixed points. When the absorber damping tends

to infinity, the kinetic energy of the primary system at

the corresponding frequencies X1 and X2 should

remain the same:

lim
f2!1

1

2
X2

1 R1jX¼X1

� 
2

¼ lim
f2!1

1

2
X2

2 R1jX¼X2

� 
2

: ð14Þ

By inserting Eq. (8) into Eq. (14), we have.

X1X2 ¼ 1

kþ 1
: ð15Þ

Based on Eqs. (13) and (15), the optimal stiffness

ratio of the TID is found to be

copt ¼
ffiffiffiffiffiffiffiffiffiffiffi

2 þ k
p

kþ 1ð Þ
ffiffiffi

2
p : ð16Þ

The other condition for achieving equal peaks of

the kinetic energy is that the gradient of the kinetic

energy Kp at the frequencies of the invariant points is

zero [2, 29], i.e.

d 1
2
R2

1X
2

� �

dX

�

�

�

�

�

X¼X1

¼
d 1

2
R2

1X
2

� �

dX

�

�

�

�

�

X¼X2

¼
d

G2þ4f2
2H

2

P2þ4f2
2Q

2

� 


dX
¼ 0;

ð17Þ

where G ¼ c2 � X2
� �

X;H ¼ cX2;P ¼ X2 X2 � 1
�

�c2 � kc2Þ þ c2 and Q ¼ Xc 1 � X2 � X2k
� �

. Equa-

tion (17) is equivalent to

G2 þ 4f2
2H

2
� �0

P2 þ 4f2
2Q

2
� �

� G2 þ 4f2
2H

2
� �

P2 þ 4f2
2Q

2
� �0

¼ 0; ð18Þ

where the primes denote the first-order derivatives of

the function with respect to X, and

G2þ4f2
2H

2
� �0¼ 2X c2�X2

� �

c2�3X2
� �

þ16f2
2c

2X3
� �

;

ð19Þ

P2þ4f2
2Q

2
� �0¼4X X2 X2�1�c2�kc2

� �

þc2
� �

2X2�1�c2�kc2
� �

þ8Xf2
2c

2 1�3X2�3X2k
� �

1�X2�X2k
� �

:

ð20Þ

By substituting Eqs. (19) and (20) into Eq. (18), it

follows that

2X c2�X2
� �

c2�3X2
� �

þ16f2
2c

2X3
� �

X2 X2�1�c2�kc2
� �

þc2
� �2þ4f2

2X
2c2 1�X2�X2k
� �2

� 


� X2 c2�X2
� �2þ4f2

2c
2X4

� 


4X X2 X2�1�c2�kc2
� �

þc2
� �

2X2�1�c2�kc2
� ��

þ8Xf2
2c

2 1�3X2�3X2k
� �

1�X2�X2k
� ��

¼0:

ð21Þ

Equation (21) could be further simplified into

Aþ16f2
2c

2X3
� �

Bþ4f2
2X

2c2 1�X2 �X2k
� �2

� 


� Cþ4f2
2c

2X4
� �

Dþ8Xf2
2c

2 1�3X2 �3X2k
� �

1�X2 �X2k
� �� �

¼ 0;

ð22Þ

where

A ¼ 2X c2 � X2
� �

c2 � 3X2
� �

; ð23aÞ

B ¼ X2 X2 � 1 � c2 � kc2
� �

þ c2
� �2

; ð23bÞ

C ¼ X2 c2 � X2
� �2

; ð23cÞ

D¼4X X2 X2�1�c2�kc2
� �

þc2
� �

2X2�1�c2�kc2
� �

:

ð23dÞ

Using the notations in Eq. (23), Eq. (22) becomes
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32c4X5 1�X4 1þkð Þ2
� 
� 


f4
2þ 4X2c2 1�X2�X2k

� �2
Aþ16c2X3B�8Xc2

�

1�3X2�3X2k
� �

1�X2�X2k
� �

C�4c2X4D
�

f2
2þAB�CD¼0

ð24Þ

which is a quadratic equation of f2
2, and its solutions

are denoted as f2
2;X1

and f2
2;X2

, the squares of the

damping values at two invariant points. This single

algebraic equation can be solved either analytically or

numerically. The approximate mean of the two values

of the damping ratio can be used as the optimal

damping [2]:

fopt �
1

4 2 þ kð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k 24 þ 24kþ 5k2
� �

1 þ k

s

: ð25Þ

Equations (16) and (25) present the optimal stiff-

ness and damping ratios of the TID required to achieve

equal peaks of the kinetic energy curve for the primary

mass.

Figure 3a, b shows the use of the kinetic energy-

based equal-peak approach for the TID with an

inertance-to-mass ratio k of 0.02 and 0.05, respec-

tively,f1 ¼ 0:001; and Fe ¼ 0:05: Based on Eqs. (16)

and (25), the values of the optimal stiffness and

optimal damping coefficients of the TID in Fig. 3a are

calculated to be 0.9853 and 0.0857, respectively. The

kinetic energy curves associated with a lower damping

f2 ¼ 0:05 of the TID and a higher damping f2 ¼ 0:1

are also included for comparison. Figure 3a shows that

when the optimal parameter values of the TID are

used, equal peaks in the kinetic energy are achieved. It

is interesting to note that when the TID damping is set

as f2 ¼ 0:05, the peak values of Kp become much

larger, compared with the optimal case. However, for

the same case with f2 ¼ 0:05, the local minimum

value of Kp at the anti-peak near X � 0:99 is much

smaller than the other two cases. Figure 3b shows that

when a larger inertance-to-mass ratio of k ¼ 0:05 is

used for the TID, equal peaks in the curve of kinetic

energy can be achieved by setting c ¼ 0:9642 and

f2 ¼ 0:1336. A comparison of Fig. 3a, b shows that

the peaks of Kp for the optimal design cases become

lower when the inertance-to-mass ratio k of the TID

increases, suggesting the potential benefits of having a

larger inertance in the absorber.

3 TID coupled to a nonlinear primary system

3.1 Mathematical modelling

In certain applications, the primary structure, the

vibration response of which needs to be suppressed,

may behave nonlinearly. In this section, a nonlinear

primary system is considered; the TID is attached to

the system to obtain equal peaks in the displacement

and kinetic energy curves. As shown in Fig. 4, the

nonlinearity of the primary system is modelled with a

nonlinear spring with restoring force g x1ð Þ ¼ knx
3
1.

The excitation force and other system parameters are

defined as shown in Fig. 1b.

The equations of motion of the integrated system

can be written as

Fig. 3 Kinetic energy-

based equal-peak method

for the TID with an

inertance-to-mass ratio k of

a 0.02 and b 0.05.

Parameters are set as f1 ¼
0:001; and Fe ¼ 0:05
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m1 €x1 þ c _x1 þ k1x1 þ knx
3
1 � b €x2 � €x1ð Þ ¼ fe cosxt;

ð26aÞ

b €x2 � €x1ð Þ þ k2x2 þ c2 _x2 ¼ 0: ð26bÞ

By using parameters x1;x20; c; l0; k; f1; f2;X1;X2;

Fe;X and s defined in Sect. 2.1 and introducing a

nonlinear stiffness ratio e ¼ knl
2
0=k1 for the nonlinear

spring of the primary system, Eq. (26) is rewritten into

a dimensionless form as

X00
1 þ 2f1X

0
1 þ X1 þ eX3

1 � k X00
2 � X00

1

� �

¼ Fe cosXs;

ð27aÞ

k X00
2 � X00

1

� �

þ kc2X2 þ 2f2kcX
0
2 ¼ 0: ð27bÞ

These two differential equations can be transformed

into a set of first-order differential equations, which

may be solved using a time-marching method. Analyt-

ical approximations based on the HB method are made

to find the steady-state response of the system and to

determine the optimal parameters of the TID based on

the application of the equal-peak method.

3.2 Frequency–response relationship

Here, a first-order approximation of the steady-state

frequency–response relationship of the system is

derived using the HB method. The steady-state

dimensionless displacements, velocities and acceler-

ations for the periodic response of the system are

approximated as

X1 ¼ R1 cos Xsþ /ð Þ; ð28aÞ

X0
1 ¼ �R1X sin Xsþ /ð Þ; ð28bÞ

X00
1 ¼ �R1X

2 cos Xsþ /ð Þ; ð28cÞ

X2 ¼ R2 cos Xsþ hð Þ; ð28dÞ

X0
2 ¼ �R2X sin Xsþ hð Þ; ð28eÞ

X00
2 ¼ �R2X

2 cos Xsþ hð Þ; ð28fÞ

whereR1 andR2 represent the non-dimensional displace-

ment amplitudes of X1 and X2, respectively, and / and h
are the corresponding phase angles. By inserting Eq. (28)

into Eq. (27) and neglecting high-order terms, we have

R1 1 � X2 þ 3

4
eR2

1 � kX2

	 


cos Xsþ /ð Þ

� 2f1R1X sin Xsþ /ð Þ þ kX2R2 cos Xsþ hð Þ
¼ Fe cosXs;

ð29aÞ

kX2R1 cos Xsþ /ð Þ þ kR2 c2 � X2
� �

cos Xsþ hð Þ
� 2f2kcR2X sin Xsþ hð Þ
¼ 0:

ð29bÞ

By balancing the coefficients of the harmonic term

cos Xsþ /ð Þ in Eq. (29a), we have

R1 1 � X2 þ 3

4
eR2

1 � kX2

	 


þ kR2X
2 cos h� /ð Þ

¼ Fe cos/;

ð30Þ

where terms cos Xsþ hð Þ and cosXs in Eq. (29a) can

be rewritten as cos Xsþ /þ h� /ð Þ and

m

Nonlinear primary oscillator TID

Fig. 4 Schematic of a nonlinear primary system with an attached TID
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cos Xsþ /� /ð Þ for using the trigonometric identi-

ties cos aþ bð Þ ¼ cos a cos b� sin a sin b retaining

the terms with cos Xsþ /ð Þ and sin Xsþ /ð Þ. Simi-

larly, by equating the coefficients of the harmonic term

sin Xsþ /ð Þ in Eq. (29a), we obtain

�2f1R1X� kR2X
2 sin h� /ð Þ ¼ Fe sin/: ð31Þ

The term cos Xsþ /ð Þ in Eq. (29b) is equivalent to

cos Xsþ hþ /� hð Þ for using the trigonometric

identities cos aþ bð Þ ¼ cos a cos b� sin a sin b
retaining the terms with cos Xsþ hð Þ and

sin Xsþ hð Þ. By balancing the coefficients of the

harmonic term cos Xsþ hð Þ in Eq. (29b), it follows

that

kR2 c2 � X2
� �

þ kR1X
2 cos h� /ð Þ ¼ 0: ð32Þ

Equating the coefficients of the harmonic term

sin Xsþ hð Þ in Eq. (29b), we have

�2f2kcR2Xþ kR1X
2 sin h� /ð Þ ¼ 0: ð33Þ

By using Eqs. (32) and (33), the trigonometric

terms cos h� /ð Þ and sin h� /ð Þ are expressed as

cos h� /ð Þ ¼ �
R2 c2 � X2
� �

R1X
2

; ð34aÞ

sin h� /ð Þ ¼ 2f2cR2X

R1X
2

: ð34bÞ

The sum of the squares of Eqs. (34a) and Eq. (34b)

to remove the terms with cos h� /ð Þ and sin h� /ð Þ,
we have

R2
2 c2 � X2
� �2þR2

2 2f2cXð Þ2¼ R2
1X

4: ð35Þ

A replacement of the trigonometric term

cos h� /ð Þ in Eq. (30) with Eq. (34a) leads to

R1 1 � X2 þ 3

4
eR2

1 � kX2

	 


�
kR2

2 c2 � X2
� �

R1

¼ Fe cos/: ð36Þ

Similarly, the term sin h� /ð Þ in Eq. (31) can be

replaced by using Eq. (34b). In this way, Eq. (31)

becomes

�2f1R1X� 2f2ckXR
2
2

R1

¼ Fe sin/: ð37Þ

Based on Eqs. (36) and (37), the trigonometric

terms cos/ and sin/ can be cancelled out, and we

have

1 � X2 þ 3

4
eR2

1 � kX2

	 


R2
1 � k c2 � X2

� �

R2
2

	 
2

þ 2f1R
2
1Xþ 2f2kcXR

2
2

� �2¼ R2
1F

2
e :

ð38Þ

Note that Eqs. (35) and (38) are nonlinear algebraic

equations providing the frequency–response relation-

ship of the system. When the system and the excitation

parameter values are known, the displacement vari-

able R1 can be expressed as a function of R2, using

Eq. (35). By inserting the resultant expression of R1

into Eq. (38), we obtain a single nonlinear algebraic

equation of dimensionless displacement amplitude R2,

which can be subsequently solved by using a standard

bisection method [50]. Then, all the responses of the

system in terms of amplitudes R1 and R2 and phase

angles can be obtained. Alternatively, Eqs. (35) and

(38) can be solved using the Newton–Raphson algo-

rithm to find the steady-state response. It is then

possible to apply the equal-peak method to the

analysis and design of the TID for a nonlinear primary

system. For the validation of the frequency–response

relationship obtained by using the HB method, the

displacement and kinetic energy curves obtained

based on the solutions of FRFs and Eq. (27) using

HB and the fourth-order Runge–Kutta method are

plotted in Fig. 5a, b, respectively. Both the hardening

stiffness nonlinearity with a nonlinear stiffness ratio of

e ¼ 1 and the softening stiffness nonlinearity with e ¼
�0:05 are considered. The other parameters are set as

Fe ¼ 0:05; f1 ¼ f2 ¼ 0:001; k ¼ 0:1; and c ¼ 1. The

figure shows a good agreement between the analytical

approximations and the numerical integration results.

Therefore, Eqs. (35) and (38) are used in the subse-

quent section for determining the optimal parameter

values for the TID required to achieve equal peaks in

the displacement response and kinetic energy curves.
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4 Tuning approaches for TID coupled to nonlinear

systems

4.1 Displacement-based equal-peak method

4.1.1 Analytical tuning approach

Based on the frequency–response relationship in

Eqs. (35) and (38), Fig. 6a, b shows the effects of

the damping and stiffness of the attached TID on the

displacement response of the nonlinear primary sys-

tem, respectively. The parameters of the primary

system are set as e ¼ 0:08 and f1 ¼ 0:001, indicating

the presence of a hardening stiffness nonlinearity and a

light damping, respectively. The excitation magnitude

is Fe ¼ 0:05. For the TID, the inertance-to-mass ratio

is set as k ¼ 0:02. By using Eq. (9), the optimal

stiffness and damping of the TID designed for a

corresponding linear primary system are calculated to

be c ¼ 0:9804 and f2 ¼ 0:0857, respectively, and the

corresponding response curves are shown by the

dashed lines. Figure 6 shows that the use of linear

optimal values does not lead to equal peaks of the

displacement amplitude R1. Therefore, Eq. (9) cannot

be directly used for the design of TIDs when the

primary system is nonlinear. In Fig. 6a, the damping

coefficient f2 of the TID reduces from 0.11 to 0.07 at

intervals of 0.01 while fixing c ¼ 0:9804, and the

Fig. 5 Frequency–response relationship of the a displacement amplitude and b kinetic energy (f1 ¼ f2 ¼ 0:001; c ¼ 1;
k ¼ 0:1;Fe ¼ 0:05). Solid lines and squares for e ¼ 1; dashed lines and circles for e ¼ �0:05. Lines: HB results; Symbols: Runge–

Kutta results

Fig. 6 Effects of different a damping ratio f2 with c ¼ 0:9804 and b stiffness ratio c with f2 ¼ 0:0857 of the TID on the displacement

response of the primary mass (e ¼ 0:08; f1 ¼ 0:001;Fe ¼ 0:05; and k ¼ 0:02)
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results are represented by solid lines. The curve for the

correspondingly linear primary system attached with

an optimal TID based on Eq. (9) is shown by the dash

dotted line. The figure reveals that, regardless of the

variations of f2, the response curve of the nonlinear

primary system passes through two invariant points of

different heights. When the absorber damping is

f2 ¼ 0:11, there is only one peak in the curve of R1.

With the reduction in f2 from 0.11 to 0.07, firstly the

peak value reduces, and then two peaks appear. In

Fig. 6b, the stiffness ratio c of the TID decreases from

0.99 to 0.97 at intervals of 0.01, while the damping is

fixed at f2 ¼ 0:0857. The corresponding results are

denoted by solid lines. It can be seen that the variations

in c can effectively modify the peak values of the

displacement. It is also observed that the left resonant

peak is higher than the right with c ¼ 0:99, while the

right peak is higher than the left one with c ¼ 0:97. As

a result, there must exist an optimal stiffness value

between 0.97 and 0.99 to achieve equal resonant

peaks. The optimal value could be determined man-

ually with the relative difference of the two peaks

height meets the tolerance requirement of 0.1%.

Furthermore, the equal resonant peaks of R1 may be

achieved by setting copt ¼ 0:9560, as shown by the

dotted line. It also shows that the nonlinear optimal

results match well with those obtained from the

numerical RK method, which are denoted by the

square symbols.

Figure 6 shows that the damping ratio f2 of the TID

mainly affects the shape of the resonant peaks, while

its stiffness ratio c considerably affects the peak

values. Therefore, to achieve equal peaks of R1, the

value of the stiffness ratio c can be determined while

setting the damping ratio f2 at its linear optimal value

obtained by Eq. (9b). The frequency–response rela-

tionship in Eqs. (35) and (38) can be used to find the

optimal parameter values of the TID for the nonlinear

primary system. In Fig. 6b, the average peak value

RNP of the dotted line associated with the nonlinear

primary system with an optimally designed TID, is

0.4877. In comparison, in Fig. 6a, the average peak

value RLP of the dash dotted line, i.e. for the

corresponding linear primary system with an opti-

mally designed TID is 0.4942. It shows that these two

peak values are similar, i.e. RNP � RLP. The reason

may be that the nonlinear and the corresponding linear

primary systems are attached with optimally designed

TIDs, their vibrations of the primary systems are

suppressed with low peak response amplitudes. Cor-

respondingly, the nonlinear term in the governing

equation arising from the stiffness nonlinearity will be

small, such that the optimal peak values for the two

cases will be approximately the same. This property

will be used to develop an analytical tuning approach

of the TID coupled to nonlinear primary system.

Figure 6a shows that the frequency–response curves

corresponding to different values of the damping ratio

f2 in the TID pass through two fixed points. This

behaviour indicates that an analytical tuning approach

can be proposed and developed for the design of TID

coupled to a nonlinear primary oscillator. Note that

Eq. (35) can be further transformed into

R2
2 ¼ R2

1X
4

A
; ð39Þ

where A ¼ c2 � X2
� �2þ 2f2cXð Þ2: By substituting the

Eq. (39) into Eq. (38), we have

R1

Fe

	 
2

¼1= 1�X2þ3

4
eR2

1�kX2�k c2�X2
� �X4

A

	 
2

þ 2f1Xþ2f2kc
X5

A

	 
2
 !

:

ð40Þ

Here, to facilitate design of the TID, the value of R1

on the right-hand side of Eq. (40) may be approxi-

mated by using RLP, the peak value of the correspond-

ing linear primary system attached with an optimal

TID. When the response amplitudes associated with

the two fixed points do not change with damping ratio

f2 of the TID, we have

lim
f2!1

R1

Fe

	 
2

¼ lim
f2!0

R1

Fe

	 
2

: ð41Þ

Equation (41) is equivalent to

X4 2 þ kð Þ � 2 þ 3

2
eR2

LP þ 2c2 þ 2kc2

	 


X2

þ 2 þ 3

2
eR2

LP

	 


c2

¼ 0; ð42Þ

which is a quadratic equation of X2. Here the two

solutions to Eq. (42) are denoted as X2
1 and X2

2, the

sum of which should be

X2
1 þ X2

2 ¼ 4 þ 3eR2
LP þ 4c2 þ 4kc2

2 2 þ kð Þ : ð43Þ
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To achieve equal peaks in the curve of the steady-

state displacement response for the nonlinear primary

system at the two excitation frequenciesX1 andX2, we

also need

lim
f2!1

R1jX¼X1

Fe

	 
2

¼ lim
f2!1

R1jX¼X2

Fe

	 
2

: ð44Þ

Equation (44) can be further transformed into

X2
1 þ X2

2 ¼ 4 þ 3eR2
LP

2 kþ 1ð Þ : ð45Þ

By combining Eqs. (43) and (45), we obtain

cDA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 þ 3eR2
LP

p

2 1 þ kð Þ ; ð46Þ

where cDA is the optimal stiffness ratio for TID to

achieve equal peaks in the displacement response

curve based on the analytical tuning approach, e is the

nonlinear stiffness ratio of the primary system and k is

the inertance-to-mass ratio of the TID. When e ¼ 0,

i.e. when the primary oscillator is linear, Eq. (46)

becomes equivalent to Eq. (9a).

It is noted that to obtain more accurate results of the

optimal stiffness of the TID, the whole derivation

process can be iterative. The idea is that in the first

iteration, the linear optimal resonant peak value RLP is

used in Eq. (46) to obtain the stiffness of the absorber.

With the first set of parameter values of the TID, the

averaged peak values of R1 can be obtained using

Eqs. (35) and (38), and used to replace RLP in Eq. (46)

to obtain the updated stiffness ratio cDA. By following

this iterative process, the optimal stiffness of the TID

can be obtained with sufficient accuracy.

4.1.2 Numerical (semi-analytical) tuning approach

Apart from analytical tuning approach to obtain the

optimal design of the TID coupled to nonlinear

primary systems, numerical tuning is also carried out

as follows. It should be pointed out that the numerical

method in this paper refers to the numerical solution to

the frequency–response equations derived by the HB

method, not the direction numerical integration of the

system equations of motion. Therefore, it can also be

called as a semi-analytical approach. As Fig. 6

confirms that equal peaks in the response curve of a

nonlinear primary system can be achieved by design-

ing the stiffness ratio c of the TID while setting the

damping to the linear optimal value. Following this

procedure, the required optimal stiffness ratio c
required for the TID to achieve equal peaks in the

displacement response is plotted in Fig. 7 as a function

of the nonlinear stiffness ratio e of the primary system;

the system parameters are f1 ¼ 0:001 and Fe ¼ 0:05.

At set values of e and k, the damping coefficient f2 of

the TID is obtained using Eq. (9b), and the frequency–

response relationship in Eqs. (35) and (38) is used to

obtain the optimal stiffness ratio c. The results are

firstly shown in Fig. 7 and are then curve-fitted to

obtain the curves corresponding to specific values of

the inertance-to-mass ratio k from 0.01 to 0.1 at

intervals of 0.01. Figure 7 shows that at a fixed value

of the nonlinear stiffness ratio e, the optimal stiffness

ratio cDN generally decreases as the inertance-to-mass

ratio k increases. It also shows that at a set value of k,

cDN of the TID has an approximately linear relation-

ship with e between �0:1 and 0.1. This mathematical

relationship can be expressed as

cDN ¼ f1 kð Þeþ f2 kð Þ; ð47Þ

where cDN denotes the optimal stiffness ratio to

achieve equal peak in displacement obtained based

on the numerical tuning, while f1 kð Þ and f2 kð Þ are

functions of the inertance-to-mass ratio k; the function

values are denoted by the solid dots in Fig. 8. By curve

fitting the results, the following expressions are

obtained:
Fig. 7 Variations in the optimal stiffness ratio cDN of the TID

with respect to the nonlinear stiffness ratio e and the inertance-

to-mass ratio k for equal peaks in the displacement response

amplitude (Fe ¼ 0:05; and f1 ¼ 0:001)
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f1 kð Þ � 0:0017k�1:01; ð48aÞ

f2 kð Þ � �0:8986kþ 0:9976: ð48bÞ

Therefore, f1 kð Þ has an approximately negative power

relationship with the inertance-to-mass ratio k, and

f2 kð Þ has an approximately linear relationship with k.

By inserting Eq. (48) into Eq. (47), the optimal

stiffness ratio of the TID can be expressed as a

function of e and k:

cDN � 0:0017k�1:01e� 0:8986kþ 0:9976: ð49Þ

This ratio can be used when the primary system

exhibits either hardening stiffness (i.e. e[ 0) or

softening stiffness (i.e. e\0) nonlinearities. Accord-

ing to Eq. (49), for a fixed value of k, the value of cDN

increases with the nonlinear stiffness ratio e, in

accordance with the results shown in Fig. 7.

To validate the effectiveness Eq. (49) in the design

of the TID attached to a nonlinear primary system,

Fig. 9 shows the change in the relative differences

between the peak values of the displacement response

with respect to the nonlinear stiffness ratio e and the

inertance-to-mass ratio k when Fe ¼ 0:05. The rela-

tive difference is defined as D% ¼ H1 � H2ð Þ=H1,

where H1 and H2 (H1 �H2) are the peak values.

Figure 9 shows that for a relatively large range of

parameter values for nonlinear stiffness e and the

inertance k of the TID, the difference between the two

peaks is lower than 1% and therefore negligible.

Therefore, the proposed numerical tuning approach,

i.e. the use of Eqs. (9b) and (49) to design the damping

and stiffness of TIDs, can achieve the design target of

creating approximately equal peaks in the displace-

ment response of the nonlinear primary mass.

Figure 10a, b shows the vibration suppression of a

nonlinear hardening stiffness primary system with e ¼

Fig. 8 Curve fitting of

functions f1 kð Þ and f2 kð Þ of

the TID for a nonlinear

primary system using the

displacement-based equal-

peak method based on

numerical optimisation

(Fe ¼ 0:05; and f1 ¼ 0:001)

Fig. 9 Validation of the

proposed design of the TID

for a nonlinear system

following the displacement-

based equal-peak method

using numerical

optimisation. a 3-D and b 2-

D contour plots of the

relative percentage

difference
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0:1 and a softening stiffness primary system with e ¼
�0:1 using the proposed displacement-based equal-

peak method design of the TID, respectively. The solid

lines present the displacement amplitudes of the

primary mass by setting the damping value of the

TID to be non-optimal at f2 ¼ 0:001. The dashed lines

represent the cases in which the proposed optimal

parameters of the TID are used. Based on Eq. (49), the

values of the optimal stiffness ratio cDN are set as

1:0064 and 0.9708, and the results are shown in

Fig. 10a, b, respectively. Figure 10a reveals that, for

the non-optimal cases, there are two peaks of R1, both

twisting to the right due to the hardening stiffness

nonlinearity, while the proposed design of the TID

leads to two equal peaks of the displacement ampli-

tude. Figure 10b shows that for a softening stiffness

primary system, the displacement response curves of

the non-optimal cases extend towards the low-fre-

quency range. In comparison, the use of the proposed

optimal TID design can achieve equal peaks in the

displacement response R1. At the same time, multiple

solution branches are eliminated, which is beneficial

for vibration suppression. Figure 10c, d shows the

time histories of the dimensionless displacement of the

primary system for the non-optimal, the optimal and

the without TID cases. Figure 10c shows the responses

associated with point M with the excitation frequency

X ¼ 0:976 and while Fig. 10(d) is for point N with

X ¼ 1:009, as marked in Fig. 10a, b. Figure 10c, d

considers the presence of hardening and softening

stiffness nonlinearities with the nonlinear stiffness

ratio e being 0:1 and �0:1, respectively. The steady-

state dynamic responses are obtained by using the

fourth-order Runge–Kutta method and shown from

1000 T for a time span of 3 T, where T ¼ 2p=X is the

excitation period. The time step size is set as T/1024.

Figure 10c, d shows that the nonlinear optimal designs

of the TID can yield the lowest peaks in the

displacement amplitude of the primary systems among

the three cases. In contrast, Fig. 10c shows that the use

Fig. 10 Comparison

between nonlinear optimal,

without TID and non-

optimal TID cases for: a, c
hardening stiffness; b and d
softening stiffness nonlinear

primary system. a, b
Displacement response

amplitudes; c, d time

histories of the

dimensionless displacement

at X ¼ 0:976 and

X ¼ 1:009, respectively.

The parameters are set as

k ¼ 0:01; f1 ¼ 0:001; and

Fe ¼ 0:05
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of the TID with the non-optimal parameters can lead to

even larger amplitude in the displacement of the

primary system, compared to the without TID case, i.e.

for the primary system without attaching TID. The

behaviour demonstrates the importance of properly

setting the parameters of TID to achieve effective

vibration suppression.

Figure 11 presents the response curves of the

nonlinear primary mass attached to an optimal TID

designed based on Eqs. (49) and (9b). In Fig. 11a, the

nonlinear stiffness ratio e changes from 0.01 to 0.05

and then to 0.1 at the prescribed value k ¼ 0:03; in

Fig. 11b, the inertance-to-mass ratio k varies from

0.05 to 007 and then to 0.1 with a fixed nonlinear

stiffness parameter e ¼ 0:1 of the primary system. The

other parameters are set as Fe ¼ 0:05 and f1 ¼ 0:001:

Fig. 11a shows that with the increase in e, the peaks of

the displacement response amplitude reduce slightly.

The widths of the frequency band between the two

peak frequencies in the three cases considered are

almost the same. Figure 11b shows the influence of the

inertance-to-mass ratio k of the TID on the displace-

ment response amplitude R1. As shown in the figure,

when k increases from 0.05 to 0.07 and then to 0.1, the

peaks of the response amplitude reduce. As k
increases, the first peak shifts to the left (lower

frequencies) because the increase in inertance of the

system leads to smaller natural frequencies. In

Fig. 11 Effects of a
nonlinear stiffness ratio e
and b inertance-to-mass

ratio k on the displacement

response of the primary

mass with an attached

optimal TID. The

parameters are set as Fe ¼
0:05 and f1 ¼ 0:001

Table 1 Comparison of the optimal stiffness ratio (cDA; cDN ) and the averaged response peak values (RNP A;RNP N ) based on the

analytical and numerical tuning approaches

k
Inertance-

to-mass

ratio

RLP

Linear

optimal

peak

value

cDA
Optimal

stiffness

ratio using

analytical

tuning

cDN
Optimal

stiffness

ratio using

numerical

tuning

cDA � cDNj j=cDN
Relative error

(%)

RNP A

Averaged

peak value

using

analytical

tuning

RNP N

Averaged

peak value

using

numerical

tuning

RNP A � RNP Nj j=RNP N

Relative error (%)

0.02 0.503 0.9850 0.9840 0.100 0.4895 0.4897 0.041

0.03 0.411 0.9739 0.9736 0.031 0.4031 0.4033 0.050

0.04 0.357 0.9638 0.9639 0.010 0.3514 0.3514 0.000

0.05 0.320 0.9542 0.9544 0.021 0.3158 0.3158 0.000

0.06 0.293 0.9449 0.9451 0.021 0.2894 0.2894 0.000

0.07 0.272 0.9359 0.9359 0.000 0.2690 0.2690 0.000

0.08 0.255 0.9271 0.9268 0.032 0.2525 0.2525 0.000

0.09 0.241 0.9184 0.9177 0.076 0.2389 0.2388 0.041

0.1 0.229 0.9100 0.9086 0.150 0.2273 0.2272 0.044
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comparison, the second peak frequency does not

change significantly with different k. The figure shows

a larger value of the inertance-to-mass ratio of the TID

leads to improved vibration suppression of the

nonlinear primary system.

Table 1 shows the comparison between the values

of the optimal stiffness ratio of the TID obtained using

Eqs. (46) and (49), based on the analytical and

numerical (or semi-analytical) tuning approaches,

respectively. The system parameters are set as f1 ¼
0:001;Fe ¼ 0:05; e ¼ 0:05 and the inertance-to-mass

ratio k increases from 0.02 to 0.1. In the table, RNP A

and RNP N denote the averaged resonant peak values

of R1 obtained using analytical tuning with one

iteration and numerical tuning, respectively. The

table shows that the optimal stiffness ratios cDA and

cDN obtained to achieve equal peak in the displace-

ment response amplitudes are very close. The largest

relative difference cDA � cDNj j=cDN is approximately

0.15% when the inertance-to-mass ratio is 0.1. The

table shows that the response peak values RNP A and

RNP N obtained using the two tuning approaches are

similar with their relative difference

RNP A � RNP Nj j=RNP N being close to zero when k
increases from 0.04 to 0.08. The table shows that the

value of RLP used to obtain the 1st iteration of cDA
using Eq. (46) is generally close to RNP A. If not, the

current value of RNP A can be used to replace RLP in

Eq. (46) to find the next design iteration to achieve

improved designs. The table again shows that the

response amplitude peak value will reduce when k

increases. It also shows that the optimal stiffness ratio

decreases with the increase of the inertance-to-mass

ratio k.

4.2 Kinetic energy-based equal-peak method

4.2.1 Analytical tuning approach

Here, we analyse the design of a TID for a nonlinear

primary system using the kinetic energy-based equal-

peak tuning approach. Figure 12a, b shows the effects

of the damping ratio f2 and the stiffness ratio c of the

TID on the non-dimensional kinetic energy Kp,

respectively. The curves of Kp for the primary mass

are obtained from Eqs. (10), (35) and (38). The other

parameters are set as e ¼ 0:1; f1 ¼ 0:001;Fe ¼ 0:05;

and k ¼ 0:05. In Fig. 12a, the solid lines represent the

results of the TID with f2 decreasing from 0.18 to 0.13

at intervals of 0.01. Using Eqs. (16) and (25), the

optimal parameters of the TID designed for the

corresponding linear primary system ðe ¼ 0Þ are

copt ¼ 0:9642 and f2 ¼ 0:1336, and the curves are

represented by dashed lines; the stiffness ratio c is

obtained by Eq. (16) and thus is the same as that in

Fig. 12a. The figure reveals two invariant points of

different heights in each curve of Kp. This demon-

strates that the equations for the kinetic energy-based

design approach of the TID developed in Sect. 2.2 for

a linear primary system are not directly applicable

when there is stiffness nonlinearity. It also shows that

the heights of the two invariant points are not sensitive

Fig. 12 Effects of the a damping ratio f2 and b stiffness ratio c of the TID on the kinetic energy of the nonlinear primary system

(e ¼ 0:1; f1 ¼ 0:001;Fe ¼ 0:05; and k ¼ 0:05)
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to the changes in the damping level of the TID. In

Fig. 12b, the stiffness ratio c of the TID changes from

0.99 to 0.96 at intervals of 0.01, while its damping

ratio f2 is fixed at 0.1336, as determined using

Eq. (25). After several iterations, equal peaks of the

kinetic energy curve of the primary system can be

achieved by setting copt ¼ 0:9681, as shown by the

dotted lines. This suggests that the TID can be

designed by tailoring its spring stiffness while setting

its damping to the linear optimal value.

Figure 12a shows that the kinetic energy curves for

the different cases with various values of the damping

ratio f2 all pass through two fixed points. Therefore,

analytical tuning approach can be developed to obtain

the optimal stiffness ratio of the TID to achieve equal

peaks in the kinetic energy curves of the nonlinear

primary system. When the magnitude of the kinetic

energy Kp does not change with the damping ratio f2

of the TID, we have

lim
f2!1

1

2
R2

1X
2

	 


¼ lim
f2!0

1

2
R2

1X
2

	 


; ð50Þ

where the expression of the dimensionless kinetic

energy Kp ¼ X2R2
1=2 has been recalled. A conversion

of Eq. (50) leads to the same quadratic equation of X2

as Eq. (42), the two solutions of which are again

denoted as X2
1 and X2

2: Based on the property of

quadratic equations, we have

X1X2 ¼ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 þ 3eR2
LP

2 2 þ kð Þ

s

; ð51Þ

where RLP has been used to as a first approximation of

the peak value of R1 when the nonlinear primary

system is attached with an optimally designed TID. To

have equal peaks in the curve of Kp at X ¼ X1 and

X ¼ X2, we need

lim
f2!1

1

2
X2

1 R1jX¼X1

� 
2

¼ lim
f2!1

1

2
X2

2 R1jX¼X2

� 
2

: ð52Þ

Equation (52) can be further transformed into

X1X2 ¼ 4 þ 3eR2
LP

4 1 þ kð Þ ; ð53Þ

where again the approximation R1 � RLP has been

used. By equating the right-hand sides of Eqs. (51) and

(53), the optimal stiffness ratio cKA achieving equal

resonant peaks of kinetic energy is obtained as

cKA ¼ 4 þ 3eR2
LP

4 þ 4k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 2 þ kð Þ
4 þ 3eR2

LP

s

: ð54Þ

It is noted that the design can be made iterative by

using the current value of cKA to find the peak response

amplitude R1, the value of which is then assigned to

RLP in Eq. (54) for the next iteration of improved

design of the stiffness ratio for the TID.

4.2.2 Numerical (semi-analytical) tuning approach

It is noted that Eqs. (54) and (16) are the same when

nonlinear stiffness ratio e ¼ 0, i.e. TID attached to a

linear primary oscillator. Again, it is reiterated that the

numerical tuning approach refers to the numerical

solution of the frequency–response relationship

derived from the HB method, not the direction

numerical integration of the system governing equa-

tions. Figure 12 shows the results with set values of

the inertance-to-mass ratio k of the TID and the

nonlinear stiffness ratio e of the primary system. For

other sets of values of k and e, the optimal stiffness

ratio of the TID required to achieve equal peaks in the

kinetic energy Kp curve can be obtained by following

the same analysis procedure. Figure 13 shows plots of

the optimal stiffness cKN against the stiffness nonlin-

earity e at different values of inertance for the TID.

The optimal values are denoted by symbols and are

curve-fitted based on linear regression. The other

parameters are set as Fe ¼ 0:05 and f1 ¼ 0:001: The

figure shows a range of values for e from - 0.1 to 0.1,

considering both softening and hardening stiffness

Fig. 13 Variations in the optimal stiffness ratio cKN of the TID

with respect to the nonlinear stiffness ratio e and the inertance-

to-mass ratio k for equal peaks in the kinetic energy curve

(Fe ¼ 0:05 and f1 ¼ 0:001)
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nonlinearities. The figure shows that for a given value

of k, the optimal stiffness ratio cKN of the TID has an

approximately linear relationship with the nonlinear

stiffness coefficient e of the primary syste

cKN ¼ f3 kð Þeþ f4 kð Þ; ð55Þ

where cKN represents the optimal stiffness ratio of the

TID designed to achieve equal peaks in the kinetic

energy curve using numerical integrations; and f3 kð Þ
and f4 kð Þ are functions of k, the values of which shown

by solid dots in Fig. 14 for different values of k.

Figure 14a shows that the value of f3 kð Þ generally

decreases with k following a power function, while

f4 kð Þ has an approximately linear relationship with k.

By using a power function fitting for f3 kð Þ and a linear

regression curve fitting for f4 kð Þ, we have

f3 kð Þ � 0:002k�0:973; ð56aÞ

f4 kð Þ � �0:6716kþ 0:9981: ð56bÞ

Therefore, the optimal stiffness ratio cKN for

achieving equal peaks of the kinetic energy curve for

the nonlinear primary system can be approximated as

cKN � 0:002k�0:973e� 0:6716kþ 0:9981: ð57Þ

It is useful to investigate the accuracy of Eq. (57)

for the design of the optimal stiffness ratio of the TID

with the design target of achieving equal peaks in the

kinetic energy curve. In Fig. 15, the system parame-

ters are set as Fe ¼ 0:05 and f1 ¼ 0:001 while the

damping of the TID is set at the linear optimal value

expressed as Eq. (25). Both the nonlinear stiffness

ratio e of the primary system and the inertance-to-mass

ratio k of the TID change from 0.01 to 0.1. The first

Fig. 14 Curve fittings of a
f3 kð Þ and b f4 kð Þ for the

kinetic energy-based

optimal design of the TID

Fig. 15 Validation of the

optimal designs of the TID

for a nonlinear system. a 3D

surface plot and b 2D

contour of the relative

difference between the

kinetic energy peaks
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and second peak values of the kinetic energy of the

primary system are denoted by H3 and H4, respec-

tively. Figure 15a shows a plot of the relative differ-

ence D2 ¼ H3 � H4j j=H3 against e and k in terms of

percentage. From the figure, it can be seen that over a

large range of parameter values of k and e, the relative

difference between the peak heights is small. Fig-

ure 15b shows that by setting the inertance-to-mass

ratio k of the TID to more than 0.03, the relative

difference between the peaks of the kinetic energy

curves can be less than 1% for a large range for

stiffness nonlinearities e in the primary system. It can

also be seen that for a set stiffness nonlinearity e, the

difference between the peaks decreases with the

increase in the inertance k. When k ¼ 0:07, the

relative difference D2 can be lower than 0.75%.

Figure 15 confirms that Eq. (57) can be used to

achieve peaks with equal heights in the kinetic energy

curves for the primary mass.

Figure 16a, b shows the significant mitigation of

the maximum kinetic energy of the nonlinear primary

system with a hardening e ¼ 0:1 and a softening e ¼
�0:08 stiffness nonlinearity, respectively. The solid

lines represent the non-optimal cases by setting the

damping ratio of the TID with a small value

f2 ¼ 0:001. The nonlinear optimal cases are shown

by the dashed lines, and the corresponding optimal

stiffness ratios using the numerical tuning approach in

Eq. (57) are calculated to be cKN ¼ 1:0090 and 0.9773

in Fig. 16a, b, respectively. It shows that the maxi-

mum kinetic energy of the nonlinear primary oscillator

with hardening or softening stiffness nonlinearity can

be modified by adding the TID to achieve equal peaks,

and its values can be reduced around the resonance

region. The addition of the optimal TID can eliminate

multiple solution at a single frequency and undesirable

nonlinear behaviour such as the jump phenomenon.

Therefore, the proposed tuning approach is effective

for attenuation of vibration of nonlinear systems.

Fig. 16 Comparisons of the

kinetic energy of the

primary nonlinear system

between nonlinear optimal,

without TID and non-

optimal TID cases. Primary

systems with a and c
hardening stiffness; b and d
softening stiffness. a and b
Maximum kinetic energies;

c and d time histories of the

dimensionless kinetic

energy at X ¼ 0:976 and

X ¼ 1:009, respectively.

Other parameters are set as

k ¼ 0:01; f1 ¼ 0:001; and

Fe ¼ 0:05
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Figure 16c, d further shows the time history informa-

tion of points M0 and N0 at X ¼ 0:976 and X ¼ 1.009,

respectively. The dimensionless instantaneous kinetic

energy of the nonlinear primary oscillator is shown for

the optimal, non-optimal and without TID cases,

represented by the dashed, solid and dotted lines,

respectively. The results show that the use of the

developed numerical tuning approach leads to the

smallest value of the maximum kinetic energy by

using the optimal TID.

Figure 17 examines the effects of the nonlinear

stiffness ratio e and the inertance-to-mass ratio k on the

kinetic energy of the primary system when using

optimal design of the TID based on Eqs. (25) and (57).

In Fig. 17a, three cases are considered with e changing

from 0.01, to 0.05 and then to 0.1 with k fixed as 0.03.

The other parameters are set as Fe ¼ 0:05 and

f1 ¼ 0:001. The figure shows that as e increases, the

stiffness nonlinearity of the primary system becomes

stronger, and there are slight reductions in the peak

values of the kinetic energy Kp. It also shows that the

variations of the nonlinear stiffness ratio e has only

small effects on the bandwidth between the peak

frequencies of the kinetic energy. In Fig. 17b, the

inertance-to-mass ratio k of the TID varies from 0.05,

to 0.07 and then to 0.1 with a fixed nonlinear stiffness

ratio of e ¼ 0:1. The figure shows equal peaks of the

Fig. 17 Effects of a the

nonlinear coefficient e
(k ¼ 0:03Þ and b the

inertance-to-mass ratio k
(e ¼ 0:1Þ on the kinetic

energy of the primary mass

attached with optimal TIDs

Table 2 Comparison of the optimal stiffness ratios (cKA,cKN) and the averaged kinetic energy peak values (KNP A;KNP N ) based on

the analytical and numerical tuning approaches

k
Inertance-

to-mass

ratio

cKA
Optimal

stiffness

ratio using

analytical

tuning

cKN
Optimal

stiffness

ratio using

numerical

tuning

cKA � cKNj j=cKN
Relative error

(%)

KNP A

Averaged kinetic

energy peak

value using

analytical

tuning

KNP N

Averaged kinetic

energy peak

value using

numerical

tuning

KNP A � KNP Nj j=KNP N

Relative error (%)

0.02 0.9899 0.9892 0.071 0.1178 0.1180 0.170

0.03 0.9812 0.9810 0.071 0.0792 0.0792 0.000

0.04 0.9734 0.9735 0.010 0.0596 0.0596 0.000

0.05 0.9661 0.9664 0.031 0.0477 0.0478 0.209

0.06 0.9590 0.9593 0.031 0.0398 0.0397 0.251

0.07 0.9521 0.9524 0.031 0.0341 0.0340 0.294

0.08 0.9454 0.9455 0.011 0.0297 0.0297 0.000

0.09 0.9389 0.9387 0.021 0.0264 0.0264 0.000

0.1 0.9325 0.9319 0.064 0.0237 0.0237 0.000
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kinetic energy curves can be achieved by the proposed

design of the TID. It also shows that the increase of

inertance in the TID can lead to substantial reductions

in the peak values in the kinetic energy Kp of the

nonlinear primary system. There are also a wider

frequency band between the two peak frequencies of

Kp. These characteristics show that a larger value of

the inertance k for the TID provides benefits to

vibration suppression of the primary system.

Table 2 presents the optimal stiffness ratio c of the

TID to achieve equal peaks in the kinetic energy curve,

using Eqs. (54) and (57) based on the analytical and

numerical (semi-analytical) tuning approaches,

respectively. The parameters are set as f1 ¼ 0:001,

Fe ¼ 0:05; e ¼ 0:05 while k increases from 0.02 to

0.1. The value of cKA is obtained only after the 1st

design iteration. The variables KNP A and KNP N

represent averaged peak values of the kinetic energy

Kp of the primary system based on the 1st iteration of

the analytical tuning and numerical tuning approaches,

respectively. The table shows that for a set value of k,

the values of the optimal stiffness cKA and cKN of the

TID obtained using the two tuning approaches agree

very well. The largest relative difference

cKA � cKNj j=cKN is approximately 0.07% when the

inertance-to-mass ratio k ¼ 0:02. As the value of k
increases, the peak value of the kinetic energy reduces.

The optimal stiffness ratios cKN and cKA generally

decrease with the increase in the inertance k of the

TID. The figure also shows that for all the considered

cases, KNP A � KNP N with the largest relative

difference KNP A � KNP Nj j=KNP N being 0.294%

when k ¼ 0:07. The table demonstrates that both

analytical and numerical tuning approaches can be

used to find the optimal designs of the TID to achieve

equal peaks in the curve of kinetic energy KP:

5 Conclusions

This study presented displacement- and kinetic

energy-based equal-peak methods for the design of

the tuned inerter dampers (TIDs) coupled to linear and

nonlinear primary systems. For the linear primary

system, the analytical expressions of the optimal

damping and stiffness ratios of the TID achieving

equal resonant peaks of the response amplitude and

kinetic energy curves were obtained using the fixed-

point theory. For the application of the TID attached to

a nonlinear primary system with a cubic stiffness

nonlinearity, analytical and numerical tuning methods

based on the HB frequency–response relationship

were carried out to achieve equal peaks in the

displacement and kinetic energy responses. Unlike

the linear primary oscillator case, for a nonlinear

primary oscillator the shape of its resonant peaks is

mainly affected by the damping ratio of the TID, while

the peak values depend more on the stiffness ratio.

Analytical and numerical tuning approaches have

been developed to obtain the optimal stiffness and

damping ratios of the TID. It was shown that the use of

the two approaches can achieve equal peaks in the

displacement and kinetic energy curves with good

accuracy. It has also been demonstrated that the

proposed tunings are valid for a wide range of stiffness

nonlinearities and inertance values. The tuning

approaches have been developed considering nonlin-

ear cubic stiffness in the primary system; however,

they are also directly applicable and can be extended

for other types of nonlinearities.
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