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Abstract Gears are important mechanical parts with
various industrial applications. Many researchers have
investigated the complex nonlinear behavior of geared
systems by studying the effect of time-varying mesh
stiffness, clearance between the gears in mesh, radial
clearance in the bearings, and bending of the supporting
shafts. Most of these studies assume that the gear set
operates under lightly loaded operational conditions,
where the separation of the teeth in mesh occurs and
the nonlinearity caused by the clearance between the
gears in mesh has the major influence on the dynamic
response of the system. Alternatively, in this work it
is assumed that the transmitting load is great enough
that gears in mesh do not separate, and consequently
the clearance between the teeth does not participate
in the dynamic response of the system. Then analyt-
ical and numerical techniques are used specifically to
investigate the effect of the nonlinearity of the shafts on
the dynamic behavior of the system. The results show
that the nonlinear suspension has a significant influence
on the creation of nontrivial equilibria and limit cycle
within the parametrically unstable tongues which, for
the right range of the parameters, can affect the rate of
amplitude detonation and stabilization of the system.
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1 Introduction

Gear transmission systems are crucial componentswith
a wide range of applications and usually operate under
complex conditions like high speed, heavy load, and
variable torque. There have been several researches
on the dynamic analysis of the gears to identify the
parameters that ensure the stability of the system under
different operational conditions. The goal is mainly to
avoid severe vibration that lead to damage and break-
age of the machinery, resulting in catastrophic failure.
In many articles, different lumped parameter models
are proposed and analyzed to study the complex non-
linear dynamic behavior of geared systems.
In the most basic case, the deformation of the shafts
and bearings is neglected and a one-degree-of-freedom
(DOF) model with rigid supports is formulated. It
has been shown that in this model, the separation
of teeth occurs in the vicinity of the parametric
resonance tongues [34] where the presence of the
clearance-type nonlinearity dictates system behavior
[3]. Several works investigated the effect of differ-
ent parameters on the nonlinear behavior of the sys-
tem in this regime: Basins of attraction [23], bifurca-
tion diagrams, Poincaré sections [17,22], amplitude–
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frequency response, and largest Lyapunov exponent
[22] are used to identify chaotic behaviors. The effect
of logarithmic [21,39] and fractal [13] estimation for
backlash function are investigated.And the influence of
the load [4] and backlash [41] on the time-varyingmesh
stiffness and dynamic transmission error is established.
Some analytical methods are also employed to pro-
vide more comprehensive understanding of system’s
dynamic: The Melnikov method is used to analyze
[11] and control [28] homoclinic bifurcation. And the
incremental harmonic balance method is used to deter-
mine excitation amplitude on the frequency–response
curves [30].
Some research analyzed the performance of the geared
system by including the effect of the bending of the
shafts and the elasticity of the bearings [27], along with
nonlinearity due to the backlash. In these studies, the
coupled lateral–torsional vibration of gears is described
by a three-DOFdynamicmodel, where the resilient ele-
ments of the supports are described by Voigt–Kelvin
model: Phase trajectories, bifurcation diagram, and
basin of attraction are used to study and compare the
torsional vibration of gears with and without suspen-
sion [20]. The effects of internal and external excitation
[18,42] and gear eccentricity [19] on the jump discon-
tinuity phenomenon are investigated. Specifically, the
bifurcation diagram is plotted by choosing the stiffness
of the suspension as the control parameter to demon-
strate the importance of the deformation of the sus-
pension [17]. In other studies, the effect of the bear-
ing radial clearance is also included in the three-DOF
dynamic model: The frequency response diagram is
used to reveal the effect of the loading parameters on
the system’s dynamic behavior [33]. Analytical [26]
and numerical [14,35,36] methods are used to study
the influence of internal and external excitation on the
occurrence of bifurcation and chaotic motions. And
experimental data and theoretical analysis [16] are used
to study the effect of surface roughness [8] by using
fractal estimation for expressing the clearance of bear-
ings.
Other works analyzed the performance of geared sys-
tems by including the nonlinear effect of the sup-
porting shaft, along with the nonlinearity due to the
backlash. In these studies, phase plane, Poincaré map,
bifurcation diagram [6,7,40], power spectra, the Lya-
punov exponent [6,7], and fractal dimensions [7] are
used to provide an understanding of the operating
conditions under which periodic, quasi-periodic, and

chaotic motions occur. Specifically, the importance of
including the nonlinearity of the supporting shaft in
the lumped model is demonstrated by comparing the
dynamic response of a gear set with linear and nonlin-
ear suspensions [40].
In most of these studies (either with rigid, linear, or
nonlinear suspensions), the nonlinear characteristics of
the geared systems are analyzed by using the assump-
tion that the system operates under constant speed and
lightly loaded operational conditions, where the clear-
ance between the gears are considered as the main
source of the nonlinearity. Few attempts have been
made to investigate the effect of the nonlinear suspen-
sion on the performance of the gears under the assump-
tion that the gears in mesh do not separate [37], and the
nonlinearity due to free play mode and impact phases
does not participate in system’s response [32]. This
condition is acceptable under steady state operational
conditions of the constant speed and high load [10],
where the gears in mesh remain in permanent contact
regime [12].
In my previous work, the permanent contact condition
was imposed upon a system with linear suspension,
which reduced the governing differential equations of
the system to a system of linear, parametrically excited
coupled differential equations [2].Then the effect of the
suspension on the number and location of the paramet-
rically unstable tongues was investigated. In continu-
ation of the prior results, the goal of this paper is to
impose the permanent contact condition to the same
system but with nonlinear suspension and investigate
the effect of nonlinearity on the dynamic behavior of
the system around the parametrically unstable tongues.
To this end, the lumped parameter analysis method is
used to drive the dimensionless governing system of
equations for a one-stage spur gear pair with nonlinear
suspension. The Poincaré–Lindstedt method is used to
investigate the influence of the parameters on the sta-
bility and bifurcation, specifically around the unstable
tongues. The results reveal that with the change of the
control parameter, the meshing frequency, the system
undergoes both pitchfork and hopf bifurcations around
the primary and combination parametrically unstable
tongues, respectively. Finally, numerical integrations
are used to plot the Poincaré map and time response
of the nonlinear system in order to validate the ana-
lytical results. The analytical results are provided for
both hardening and softening cubic nonlinearity of
the suspension, but the numerical results are provided
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only for the softening case since the experimental data
reported mostly softening behavior for geared systems
[3,4,8,30,34].
The remainder of this paper is organized accordingly. In
Sect. 2, the dimensionless dynamicmodel of a spur gear
pair with nonlinear suspension is provided. In Sect. 3,
the Poincaré–Lindstedt method is used to demonstrate
the pitchfork and hopf bifurcation around the unstable
tongues by studying the eigenvalues of the Jacobian
matrix. In Sect. 4, the results fromnumerical simulation
are presented, demonstrating the behavior of the system
under different operational conditions. The conclusion
contains final remarks.

2 Generalized model of spur gear pairs in mesh

In this section, the lumped parameter technique is used
to formulate the dynamic model of a single-stage spur
gear in mesh with nonlinear suspension. As illustrated
in Fig. 1, the gears inmesh aremodeled as a pair of rigid
diskswith radii equal to the base circles (the circle from

Fig. 1 Schematic of pinion and gear in mesh with nonlinear
suspension

which the involute portion of the tooth profile is gener-
ated). For involute spur gear mesh, the mesh deforma-
tion ismeasured and themesh force is transmitted along
the line of action [5]. Therefore, the disks are connected
along this line by a set of spring–damper [14]. The
transmission shafts and the supportingmounts aremod-
eled by a set of nonlinear springs and linear dampers
[6,7,38,40]. The cubic nonlinearity of the suspension
in the rotor-bearing system is mainly caused by mid-
plane stretching of the shaft [9,15] or elasticity of the
bearings [29] and has been studied in many articles.
In the above-mentioned model, each disk has one rota-
tional and one translational DOF. Newton’s second law
is used to construct the torsional and translational dif-
ferential equations of motion for each disk.

Mpẍp + Cpẋ p + Kpxp + Kpox
3
p

+ C(ẋ p − ẋg + rp θ̇p − rg θ̇g − ė(t))

+ k(t) f (xp − xg + rpθp − rgθg − e(t)) = 0 (1)

Mgẍg + Cgẋg + Kgxg + Kgox
3
g

− C(ẋ p − ẋg + rp θ̇p − rg θ̇g − ė(t))

− k(t) f (xp − xg + rpθp − rgθg − e(t)) = 0 (2)

Ip θ̈p + rpC(ẋ p − ẋg + rp θ̇p − rg θ̇g − ė(t))

+ rpk(t) f (xp − xg + rpθp − rgθg − e(t))

= +T p + ˜Tp cos(ωpt) (3)

Ig θ̈g − rgC(ẋ p − ẋg + rp θ̇p − rg θ̇g − ė(t))

− rgk(t) f (xp − xg + rpθp − rgθg − e(t))

= −T g − ˜Tg cos(ωgt). (4)

In these equations, subscripts g and p designate the gear
and pinion, respectively. The total difference between
the translational displacement and rotational angle of
the gears in mesh along the line of action can be
expressed by the following equation, which is defined
as dynamic transmission error [33].

x = xp − xg + rpθp − rgθg − e(t), (5)

where e(t) is knownas the static transmission error, tak-
ing into account the effects ofmanufacturing errors and
gear faults, [20]. To consider the fluctuation of the exci-
tation torque and the applied load, both can be decom-
posed into averaging and fluctuating parts [11], so Eqs.
(1)–(4) can be written in the following form.
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Mpẍp + Cpẋ p + Kpxp + Kpox
3
p + Cẋ + k(t) f (x)

= 0 (6)

Mgẍg + Cgẋg + Kgxg + Kgox
3
g − Cẋ − k(t) f (x)

= 0 (7)

Ip θ̈p + rpCx + rpk(t) f (x) = +T p + ˜Tp cos(ωpt)
(8)

Ig θ̈g − rgCx − rgk(t) f (x) = −T g − ˜Tg cos(ωgt),
(9)

where T p and T g are the average torques and ˜Tp and
˜Tg are the fluctuating torques. The time-varying gear
mesh stiffness can be formulated as follows [16].

k(t) = K
(

1 + k0 cos(ωt)
)

, k0 = k

K
, (10)

where K and k are the average and amplitude of the
harmonic components of the gear meshing stiffness,
respectively. By subtracting Eq. (9) from Eq. (8), the
governing torsional equations of motion reduce to the
following equation [40].

−ẍ p + ẍg + ẍ + C

M
ẋ + K

M

(

1 + k0 cos(ωt)
)

f (x)

= K

M
F + K

M
Fp cos(ωpt) + K

M
Fg cos(ωgt) − ë(t),

(11)

where M is the equivalent mass, representing the total
inertia of the gear pair, F is the average static force
transmitted through the gear pair, and Fp and Fg are
the fluctuating forces applied to the pinion and gear,
expressed by the following equations.

M = Ip Ig
Ipr2g + Igr2p

, F = M

K

(

T prp
Ip

+ T grg
Ig

)

,

Fp = M

K

˜Tprp
Ip

, Fg = M

K

˜Tgrg
Ig

. (12)

By defining the following standard parameters

ωn =
√

K

M
, ζ = C

2
√
KM

, (13)

and the following static transmission error [28]

e(t) = E cos(ωt), (14)

one can write Eq. (11) in the following standard form.

− ẍ p + ẍg + ẍ + 2ζωn ẋ + ω2
n

(

1 + k0 sin(ωt)
)

f (x)

= ω2
n F + ω2

n Fp cos(ωpt) + ω2
n Fg cos(ωgt)

+ ω2E cos(ωt).

(15)

By defining the following dimensionless parameters
[16]

t̂ = ωnt,

u = x

b
, u p = xp

b
, ug = xg

b
,

Ω = ω

ωn
, Ωp = ωp

ωn
, Ωg = ωg

ωn
, (16)

Equations (6),(7), and (15) are written in the following
dimensionless form.

mp ˆ̈u p + 2ζp ˆ̇u p + 2ζ ˆ̇u + kpu p + αpu
3
p

+ (

1 + ko cos(Ω t̂)
)

f (u) = 0 (17)

mg ˆ̈ug + 2ζg ˆ̇ug − 2ζ ˆ̇u + kgug + αgu
3
g

− (

1 + ko cos(Ω t̂)
)

f (u) = 0 (18)

− ˆ̈u p + ˆ̈ug + ˆ̈u + 2ζ ˆ̇u + (

1 + ko cos(Ω t̂)
)

f (u)

= F + Fp cos(Ωpt̂) + Fg cos(Ωg t̂)

+ Ω2E cos(Ω t̂), (19)

where the ratio of the suspension system parameters
over the gear pairs in mesh parameters is expressed as
follows.

mp = Mp

M
, mg = Mg

M
,

kp = Kp

K
, kg = Kg

K
, (20)

αp = b2Kpo

K
, αg = b2Kgo

K
,

ζp = Cp

2
√
KM

, ζg = Cg

2
√
KM

. (21)

Finally, one can write Eqs. (18)–(19) in the following
matrix form.
⎡

⎣

mp 0 0
0 mg 0

−1 1 1

⎤

⎦

⎡

⎣

ˆ̈u p
ˆ̈ug
ˆ̈u

⎤

⎦ + 2

⎡

⎣

ζp 0 ζ

0 ζg −ζ

0 0 ζ

⎤

⎦

⎡

⎣

ˆ̇u p
ˆ̇ug
ˆ̇u

⎤

⎦

+
⎡

⎣

kp 0 +(

1 + k0 cos(Ω t̂)
)

0 kg −(

1 + k0 cos(Ω t̂)
)

0 0 +(

1 + k0 cos(Ω t̂)
)

⎤

⎦

⎡

⎣

u p

ug
f (u)

⎤

⎦

+
⎡

⎣

αp 0 0
0 αg 0
0 0 0

⎤

⎦

⎡

⎣

u3p
u3g
u3

⎤

⎦

=
⎡

⎣

0
0

F + Fp cos(Ωp t̂) + Fg cos(Ωg t̂) + Ω2E cos(Ω t̂)

⎤

⎦ ,

(22)

with the following dimensionless backlash function

f (u) =

⎧

⎪

⎨

⎪

⎩

u − 1 +1 < u

0 −1 ≤ u ≤ +1

u + 1 u < −1

(23)
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Equation (22) is a damped, conservative, parametri-
cally and externally excited nonlinear system of cou-
pled equations.

3 Analytical calculations

The goal of this section is to use Poincaré–Lindstedt
method to study the stability and bifurcation of the
equilibria around the parametric unstable tongues. This
is done under the assumption that the system operates
under constant speed and relatively high load, for a
symmetric system that both driving and driven shafts
have the same parameters.

m = mp = mg,

k = kp = kg,

α = αp = αg.

(24)

By imposing the permanent contact condition, Eq. (22)
becomes a system of damped nonlinear differential
equations with periodic time-varying coefficients.
⎡

⎣

m 0 0
0 m 0

−1 1 1

⎤

⎦

⎡

⎣

ˆ̈u p
ˆ̈ug
ˆ̈u

⎤

⎦ + 2

⎡

⎣

ζp 0 ζ

0 ζg −ζ

0 0 ζ

⎤

⎦

⎡

⎣

ˆ̇u p
ˆ̇ug
ˆ̇u

⎤

⎦

+
⎡

⎣

k 0 +(

1 + k0 cos(Ω t̂)
)

0 k −(

1 + k0 cos(Ω t̂)
)

0 0 +(

1 + k0 cos(Ω t̂)
)

⎤

⎦

⎡

⎣

u p
ug
u

⎤

⎦ +
⎡

⎣

α 0 0
0 α 0
0 0 0

⎤

⎦

⎡

⎢

⎣

u3p
u3g
u3

⎤

⎥

⎦

=
⎡

⎣

0
0

F + Fp cos(Ωp t̂) + Fg cos(Ωg t̂) + Ω2E cos(Ω t̂)

⎤

⎦

+
⎡

⎣

+(

1 + k0 cos(Ω t̂)
)

−(

1 + k0 cos(Ω t̂)
)

+(

1 + k0 cos(Ω t̂)
)

⎤

⎦ .

(25)

The following transformation of variables is used for
the Poincaré–Lindstedt method to study the stability of
the corresponding undamped homogenous system of
equations, while the time varying and nonlinear terms
are perturbed.

τ = Ω t̂, u′
p = du p

dτ
, u′

g = dug
dτ

, u′ = du

dτ
, (26)

which results in the following system of equations.

Ω2

⎡

⎣

m 0 0
0 m 0

−1 1 1

⎤

⎦

⎡

⎣

u′′
p

u′′
g

u′′

⎤

⎦ +
⎡

⎣

k 0 +(

1 + ε cos τ
)

0 k −(

1 + ε cos τ
)

0 0 +(

1 + ε cos τ
)

⎤

⎦

⎡

⎣

u p

ug
u

⎤

⎦

+ε

⎡

⎣

α 0 0
0 α 0
0 0 0

⎤

⎦

⎡

⎣

u3p
u3g
u3

⎤

⎦ = 0, (27)

where ε is a small parameter, and prime represents dif-
ferentiation with respect to the new variable τ . Now, by
expanding the variables in the following power series

u p = u0p + u1pε + u2pε
2 + u3pε

3 + ... (28)

ug = u0g + u1gε + u2gε
2 + u3gε

3 + ... (29)

u = u0 + u1ε + u2ε
2 + u3ε

3 + ... (30)

Ω = Ω0 + Ω1ε + Ω2ε
2 + Ω3ε

3 + ... (31)

substituting Eqs. (28)–(31) in Eq. (27), neglecting
terms of O(ε2), and collecting terms of the same power
the following systems of equations are obtained.

Ω2
0

⎡

⎣

m 0 0
0 m 0

−1 1 1

⎤

⎦

⎡

⎣

u′′
0p

u′′
0g
u′′
0

⎤

⎦ +
⎡

⎣

k 0 1
0 k −1
0 0 1

⎤

⎦

⎡

⎣

u0p
u0g
u0

⎤

⎦ = 0 (32)

Ω2
0

⎡

⎣

m 0 0
0 m 0

−1 1 1

⎤

⎦

⎡

⎣

u′′
1p

u′′
1g
u′′
1

⎤

⎦ +
⎡

⎣

k 0 1
0 k −1
0 0 1

⎤

⎦

⎡

⎣

u1p
u1g
u1

⎤

⎦

= −2Ω0Ω1

⎡

⎣

m 0 0
0 m 0

−1 1 1

⎤

⎦

⎡

⎣

u′′
0p

u′′
0g
u′′
0

⎤

⎦ −
⎡

⎣

1
−1
1

⎤

⎦ u0 cos τ

−
⎡

⎣

α 0 0
0 α 0
0 0 0

⎤

⎦

⎡

⎣

u3p
u3g
u3

⎤

⎦ . (33)

Equation (32) is a linear homogenous system of equa-
tions with the following solution.
⎡

⎣

u0p
u0g
u0

⎤

⎦ =
⎡

⎣

A
B
C

⎤

⎦ eλτ . (34)

By substituting Eq. (34) in Eq. (32), the following char-
acteristic equation is obtained.
⎡

⎣

mΩ2
0λ2 + k 0 +1
0 mΩ2

0λ2 + k −1
−Ω2

0λ2 +Ω2
0λ2 −Ω2

0λ2 + 1

⎤

⎦

⎡

⎣

A
B
C

⎤

⎦ eλτ

= 0, (35)

with the following eigenvalues and eigenvectors

λ21 = k

mΩ2
0

i2, λ22 = 2k − a

2mΩ2
0

i2, λ23 = 2k − b

2mΩ2
0

i2 (36)

v1 =
⎡

⎣

1
1
0

⎤

⎦ , v2 =
⎡

⎣

−2
+2
a

⎤

⎦ , v3 =
⎡

⎣

−2
+2
b

⎤

⎦ , (37)

where constantsa and b are a function of systemparam-
eters m and k, and i represents the imaginary unit, sat-
isfying i2 = −1.

a = −(m − k + 2) +
√

(m + k + 2)2 − 4km (38)

b = −(m − k + 2) −
√

(m + k + 2)2 − 4km, (39)
and the following relationship holds between a and b.

ab = −8k. (40)
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The eigenvectors of Eq. (32) are linearly independent,
but the second and third eigenvectors are not orthog-
onal, which causes the lateral–torsional vibration cou-
pling of the system. As shown below, in the special
case of k = 1, the second and third eigenvectors are
orthogonal and there is no coupling; however, in this
work, the general form of Eq. (32) is solved for every
value of k.

v1.v2 = 0, v1.v3 = 0, v2.v3 = 8(1 − k). (41)

For positive values of k andm, the following condition
is always satisfied.

(m + k + 2)2 − 4km > 0. (42)

Therefore, the values of a and b and all the eigenvec-
tors are real. Besides, the following terms are real and
positive for any value of k and m.

2k − a = (m + k + 2) −
√

(m + k + 2)2 − 4km

2k − b = (m + k + 2) +
√

(m + k + 2)2 − 4km.

(43)

Therefore, the three eigenvalues expressed by
Eq. (36) are always complex, and for any value of the
parameters, Eq. (32) has the following three natural
frequencies.

ω2
n1 = k

mΩ2
0

, ω2
n2 = 2k − a

2mΩ2
0

, ω2
n3 = 2k − b

2mΩ2
0

, (44)

such that the following relationships holds between
them.

ω2
n2 ω2

n3 = k

mΩ4
0

(45)

ω2
n1 = Ω2

0 ω2
n2 ω2

n3. (46)

By obtaining the eigenvalues and eigenvectors of Eq.
(32), one can write the solution to this equation in the
following form.

⎡

⎢

⎣

u0p

u0g

u0

⎤

⎥

⎦
=

⎡

⎢

⎣

1

1

0

⎤

⎥

⎦

(

A1 cos(ωn1τ) + A2 sin(ωn1τ)
)

+
⎡

⎢

⎣

−2

+2

a

⎤

⎥

⎦

(

B1 cos(ωn2τ) + B2 sin(ωn2τ)
)

+
⎡

⎢

⎣

−2

+2

b

⎤

⎥

⎦

(

C1 cos(ωn3τ) + C2 sin(ωn3τ)
)

.

(47)

Substituting Eq. (47) in Eq. (33) results in the following
equation.

Ω2
0

⎡

⎣

m 0 0
0 m 0

−1 1 1

⎤

⎦

⎡

⎣

u′′
1p

u′′
1g
u′′
1

⎤

⎦ +
⎡

⎣

k 0 1
0 k −1
0 0 1

⎤

⎦

⎡

⎣

u1p
u1g
u1

⎤

⎦

= +
⎡

⎣

+2mΩ0Ω1ω
2
n1A1 − 3

4αX2A1 −4mΩ0Ω1ω
2
n2B1 + 3αY 2B1 −4mΩ0Ω1ω

2
n3C1 + 3αZ2C1

+2mΩ0Ω1ω
2
n1A1 − 3

4αX2A1 +4mΩ0Ω1ω
2
n2B1 − 3αY 2B1 +4mΩ0Ω1ω

2
n3C1 − 3αZ2C1

0 +2Ω0Ω1(a + 4)ω2
n2B1 +2Ω0Ω1(b + 4)ω2

n3C1

⎤

⎦

⎡

⎣

cos(ωn1τ)

cos(ωn2τ)

cos(ωn3τ)

⎤

⎦

−
⎡

⎣

−2mΩ0Ω1ω
2
n1A2 + 3

4αX2A2 +4mΩ0Ω1ω
2
n2B2 − 3αY 2B2 +4mΩ0Ω1ω

2
n3C2 − 3αZ2C2

−2mΩ0Ω1ω
2
n1A2 + 3

4αX2A2 −4mΩ0Ω1ω
2
n2B2 + 3αY 2B2 −4mΩ0Ω1ω

2
n3C2 + 3αZ2C2

0 −2Ω0Ω1(a + 4)ω2
n2B2 −2Ω0Ω1(b + 4)ω2

n3C2

⎤

⎦

⎡

⎣

sin(ωn1τ)

sin(ωn2τ)

sin(ωn3τ)

⎤

⎦

+
⎡

⎣

−1
+1
−1

⎤

⎦

a

2

(

B1 cos(ωn2 − 1)τ + B2 sin(ωn2 − 1)τ
)

+
⎡

⎣

−1
+1
−1

⎤

⎦

a

2

(

B1 cos(ωn2 + 1)τ + B2 sin(ωn2 + 1)τ
)

+
⎡

⎣

−1
+1
−1

⎤

⎦

b

2

(

C1 cos(ωn3 − 1)τ + C2 sin(ωn3 − 1)τ
)

+
⎡

⎣

−1
+1
−1

⎤

⎦

b

2

(

C1 cos(ωn3 + 1)τ + C2 sin(ωn3 + 1)τ
)

+ (some other nonresonant terms).

(48)
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Equation (48) contains harmonic functions with fre-
quencies equal to

ωn1, ωn2, ωn3, ωn2 ± 1, ωn3 ± 1, ... (49)

and parameters X,Y and Z are defined as follows.

X2 = (A2
1 + A2

2) + 8(B2
1 + B2

2 ) + 8(C2
1 + C2

2 ),

Y 2 = (A2
1 + A2

2) + 2(B2
1 + B2

2 ) + 4(C2
1 + C2

2 ),

Z2 = (A2
1 + A2

2) + 4(B2
1 + B2

2 ) + 2(C2
1 + C2

2 ).

(50)

3.1 Primary parametric resonance caused by second
natural frequency

In general, all harmonic terms with frequencies equal
to the three natural frequencies in Eq. (48) are secular
and must be removed. But in the following special case
of the second natural frequency, more terms become
secular [25].

ωn2 − 1 = −ωn2 → ωn2 = 1

2
. (51)

Imposing this condition upon Eq. (44) provides the
emanating frequency of the first tongue related the sec-
ond natural frequency.

Ω2
0 = 2(2k − a)

m
. (52)

Inserting Eq. (52) into Eqs. (45) and (46) provides the
other two natural frequencies.

ω2
n1 = k

2(2k − a)
, ω2

n2 = 1

4
, ω2

n3 = km

(2k − a)2
.

(53)

By substituting Eq. (53) in Eq. (48), the following
matrix form of the secular terms is obtained.

⎡

⎣

+2mΩ0Ω1ω
2
n1A1 − 3

4αX
2A1 −4mΩ0Ω1ω

2
n2B1 + 3αY 2B1 − a

2 B1 −4mΩ0Ω1ω
2
n3C1 + 3αZ2C1

+2mΩ0Ω1ω
2
n1A1 − 3

4αX
2A1 +4mΩ0Ω1ω

2
n2B1 − 3αY 2B1 + a

2 B1 +4mΩ0Ω1ω
2
n3C1 − 3αZ2C1

0 +2Ω0Ω1(a + 4)ω2
n2B1 − a

2 B1 +2Ω0Ω1(b + 4)ω2
n3C1

⎤

⎦ (54)

⎡

⎣

−2mΩ0Ω1ω
2
n1A2 + 3

4αX
2A2 +4mΩ0Ω1ω

2
n2B2 − 3αY 2B2 − a

2 B2 +4mΩ0Ω1ω
2
n3C2 − 3αZ2C2

−2mΩ0Ω1ω
2
n1A2 + 3

4αX
2A2 −4mΩ0Ω1ω

2
n2B2 + 3αY 2B2 + a

2 B2 −4mΩ0Ω1ω
2
n3C2 + 3αZ2C2

0 −2Ω0Ω1(a + 4)ω2
n2B2 − a

2 B2 −2Ω0Ω1(b + 4)ω2
n3C2

⎤

⎦ . (55)

Imposing the zero determinant condition to these two
matrices, where α = 0, provides the two first-order
multipliers of Eq. (31) for the transition curves of the
unstable tongue. The negative and positive signs are
related to sine and cosine multipliers associated to the
left and right transition curves, respectively [2].

Ω1 = ±a(b + 2m + 4)

2mΩ0(a − b)
. (56)

The newborn nontrivial equilibria exist if and only if
the first, second, or third column of both Eqs. (54) and
(55) is in the column space of Eq. (35). For the column
vector [a1 j a2 j a3 j ]′ where j = 1, 2, or 3 Cramer’s
rule can be used to determine the solvability condition
as follows (page 399 of [25]).
⎡

⎣

a1 j 0 +1
a2 j mΩ2

0λ2 + k −1
a3 j +Ω2

0λ2 −Ω2
0λ2 + 1

⎤

⎦ = 0,

⎡

⎣

mΩ2
0λ2 + k a1 j +1
0 a2 j −1

−Ω2
0λ2 a3 j −Ω2

0λ2 + 1

⎤

⎦ = 0,

⎡

⎣

mΩ2
0λ2 + k 0 a1 j
0 mΩ2

0λ2 + k a2 j
−Ω2

0λ2 +Ω2
0λ2 a3 j

⎤

⎦ = 0.

(57)

For the special case expressed by Eq. (51), only the
second column in both Eqs. (54) and (55) is in the
column space of Eq. (35) and satisfies Eq. (57), for non-
trivial B1 and B2, which results in two equations. These
two equations can bewritten in the following simplified
form by using the relationship between parameters a
and b and the second natural frequency.
(

+ 6α(B2
1 + B2

2 ) − a(a − b)

2Ω0

(

Ω1 + a(b + 2m + 4)

2mΩ0(a − b)

))

B2 = 0

(58)
(

− 6α(B2
1 + B2

2 ) + a(a − b)

2Ω0

(

Ω1 − a(b + 2m + 4)

2mΩ0(a − b)

))

B1 = 0.

(59)

By defining the polar coordinates, B1 = RB cos θB and
B2 = RB sin θB , the alternate polar form of Eqs. (58)
and (59) is obtained.

(

+ 6αR2
B − a(a − b)

2Ω0

(

Ω1 + a(b + 2m + 4)

2mΩ0(a − b)

))

RB sin θB = 0

(60)
(

− 6αR2
B + a(a − b)

2Ω0

(

Ω1 − a(b + 2m + 4)

2mΩ0(a − b)

))

RB cos θB = 0.

(61)
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Solving Eqs. (60) and (61) results in the following five
equilibrium points.

RB1 = 0 (62)

R2
B2,3 = a(a − b)

12αΩ0

(

Ω1 + a(b + 2m + 4)

2mΩ0(a − b)

))

θB = π

2
,
3π

2
(63)

R2
B4,5 = a(a − b)

12αΩ0

(

Ω1 − a(b + 2m + 4)

2mΩ0(a − b)

))

θB = 0, π, (64)

such that R1 corresponds to the trivial equilibria at ori-
gin, and each of R2,3 and R4,5 corresponds to two non-
trivial equilibria located π (rad) apart from each other.
The local stability of these equilibrium points is deter-
mined by the eigenvalues of the Jacobian matrix corre-
sponding to Eqs. (58) and (59) [1,24].

J =
⎡

⎣

+12αB1B2 +6α(B2
1 + 3B2

2 ) − a(a−b)
2Ω0

(

Ω1 + a(b+2m+4)
2mΩ0(a−b)

)

−6α(3B2
1 + B2

2 ) + a(a−b)
2Ω0

(

Ω1 − a(b+2m+4)
2mΩ0(a−b)

)

−12αB1B2

⎤

⎦ . (65)

Alternatively, for a 2 × 2 matrix the Trace (Tr) and
Determinant (Det) of the Jacobian matrix can be used
to form the characteristic equation.

λ2 − Tr(J )λ + Det (J ) = 0. (66)

The Tr of Eq. (65) is equal to zero, and the value of
the Det is expressed by the following equation.

Det = 108α2(B2
1 + B2

2 )
2

− 6α
a(a − b)

2Ω0

(

4Ω1(B
2
1 + B2

2 )

+ a(b + 2m + 4)

mΩ0(a − b)
(B2

1 − B2
2 )

)

+ a2(a − b)2

4Ω2
0

(

Ω2
1 − a2(b + 2m + 4)2

4m2Ω2
0 (a − b)2

)

.

(67)

Since the value of Tr is equal to zero for every Ω1, the
eigenvalues of the Jacobian matrix have the same mag-
nitude with opposite signs. So for the positive values
of the Det , both eigenvalues are on the imaginary axis
and the equilibria is stable (center); and for the nega-
tive values of the Det , both eigenvalues are on the real
axis and the equilibria is unstable (saddle). Recall that a
pitchfork bifurcation generically occurs when the Det
of the Jacobean matrix become zero [31]. Transform-
ing Eq. (67) into the polar coordinate and substituting

Eqs. (62)–(64) in it yields the following expression for
Det at the equilibrium points.

At RB1, Det = +a2(a − b)2

4Ω2
0

(

Ω2
1 − a2(b + 2m + 4)2

4m2Ω2
0 (a − b)2

)

(68)

At RB2,3, Det = +a3(b + 2m + 4)(a − b)

2mΩ3
0

(

Ω1 + a(b + 2m + 4)

2mΩ0(a − b)

)

(69)

At RB4,5, Det = −a3(b + 2m + 4)(a − b)

2mΩ3
0

(

Ω1 − a(b + 2m + 4)

2mΩ0(a − b)

)

. (70)

The Det of the Jacobian matrix at the equilibrium
points, expressed byEqs. (68)–(70), for different values
of Ω1 are demonstrated in Fig. 2.

Additionally, Eqs. (63) and (64) provide the square
value of the equilibrium points which impose a con-
dition on the value of Ω1. Therefore, existence of the
real equilibria requires that for the case of hardening
cubic nonlinearity (α > 0)

RB1 Exist ∀ Ω1 (71)

RB2,3 Exist ∀ Ω1 > −a(b + 2m + 4)

2mΩ0(a − b)
(72)

RB4,5 Exist ∀ Ω1 > +a(b + 2m + 4)

2mΩ0(a − b)
, (73)

and for the case of softening cubic nonlinearity (α < 0)

RB1 Exist ∀ Ω1 (74)

RB2,3 Exist ∀ Ω1 < −a(b + 2m + 4)

2mΩ0(a − b)
(75)

RB4,5 Exist ∀ Ω1 < +a(b + 2m + 4)

2mΩ0(a − b)
. (76)

The corresponding bifurcation diagram for the harden-
ing and softening cases is plotted in Fig. 3.
This analysis shows that for both hardening and soften-
ing nonlinearities, as one crosses the transition curves
(for the constant value of ε) subcritical and supercritical
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Pitchfork and Hopf bifurcations of geared systems with nonlinear suspension 3347

Fig. 2 Det of the Jacobian matrix at the equilibrium points around the resonance tongue. The black stars mark the occurrence of
pitchfork bifurcations, and the value of ΩL and ΩR is associated with the value of Ω1 on the transition curves obtained in Eq. (56)

Fig. 3 Supercritical and subcritical pitchfork bifurcations around the resonance tongue due to the second natural frequency are marked
by green and yellow stars, respectively

pitchfork bifurcations (birth of new equilibria) occur.
As illustrated in Fig. 3, for the hardening nonlinearity
Eqs. (71)–(73) requires that the origin is the only equi-

libria at the left-hand side of the unstable tongue. Addi-
tionally, Fig. 2 shows that by quasi-statically increas-
ing the value of Ω1 and approaching the left transition
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curve, Det of Jacobian matrix at RB1 and RB2,3 merge
to zero. By crossing the left transition curve Det of the
Jacobian matrix at RB1 and RB2,3 cross Ω1 axis and a
supercritical pitchfork bifurcation occurs, so the equi-
libria at the origin becomes unstable (saddle) and two
new stable equilibria (centers) are born. Figure 2 shows
that as Ω1 increases more and crosses the right transi-
tion curve, Det of Jacobian matrix at RB1 and RB4,5

cross theΩ1 axis and a subcritical pitchfork bifurcation
occurs where the origin become stable (center) again
and two newunstable equilibria (saddles) are born. Fig-

ure 3 shows that the same sequence of events happens
in the case of softening nonlinearity.

The only difference is that Eqs. (74)–(76) require
that origin is the only equilibria on the right-hand sideof
the unstable tongue and by quasi-statically decreasing
Ω1 and approaching the right transition curve, Det of
RB1 and RB4,5 merge to zero and cause a supercritical
pitchfork bifurcation. Greater decreases in the value
of Ω1 cause a subcritical pitchfork bifurcation where
the left transition curve is crossed and Det of RB1 and
RB2,3 approach zero and cross the Ω1 axis.

3.2 Primary parametric resonance caused by third
natural frequency

Alternatively, in the following special case of the third
natural frequency, other terms in Eq. (48) become sec-
ular.

ωn3 − 1 = −ωn3 → ωn3 = 1

2
. (77)

Imposing this condition upon Eq. (44) provides the
emanating frequency of the unstable tongue related the

third natural frequency.

Ω2
0 = 2(2k − b)

m
. (78)

Inserting Eq. (78) into Eqs. (45) and (46) provides the
other two natural frequencies.

ω2
n1 = k

2(2k − b)
, ω2

n2 = km

(2k − b)2
, ω2

n3 = 1

4
.

(79)

By substituting Eq. (79) in Eq. (48), the following
matrix form of the secular terms is obtained.

⎡

⎣

+2mΩ0Ω1ω
2
n1A1 − 3

4αX
2A1 −4mΩ0Ω1ω

2
n2B1 + 3αY 2B1 −4mΩ0Ω1ω

2
n3C1 + 3αZ2C1 − b

2C1

+2mΩ0Ω1ω
2
n1A1 − 3

4αX
2A1 +4mΩ0Ω1ω

2
n2B1 − 3αY 2B1 +4mΩ0Ω1ω

2
n3C1 − 3αZ2C1 + b

2C1

0 +2Ω0Ω1(a + 4)ω2
n2B1 +2Ω0Ω1(b + 4)ω2

n3C1 − b
2C1

⎤

⎦ (80)

⎡

⎣

−2mΩ0Ω1ω
2
n1A2 + 3

4αX
2A2 +4mΩ0Ω1ω

2
n2B2 − 3αY 2B2 +4mΩ0Ω1ω

2
n3C2 − 3αZ2C2 − b

2C2

−2mΩ0Ω1ω
2
n1A2 + 3

4αX
2A2 −4mΩ0Ω1ω

2
n2B2 + 3αY 2B2 −4mΩ0Ω1ω

2
n3C2 + 3αZ2C2 + b

2C2

0 −2Ω0Ω1(a + 4)ω2
n2B2 −2Ω0Ω1(b + 4)ω2

n3C2 − b
2C2

⎤

⎦ . (81)

Similarly, imposing the zero determinant condition to
Eqs, (80) and (81), where α = 0, provides the two first-
order multipliers of Eq. (31) for the transition curves
of the unstable tongue. The negative and positive signs
are related to sine and cosine multipliers associated to
the left and right transition curves, respectively [2].

Ω1 = ±b(a + 2m + 4)

2mΩ0(b − a)
. (82)

For the special case expressed by Eq. (77), only the
third columns in Eqs. (80) and (81) are in the column
space of Eq. (35) and satisfy Eq. (57) for non-trivial
C1 and C2, which results in two equations. These two
equations can be simplified as follows by using the rela-
tionship between parameters a, b and the third natural
frequency.

(

+ 6α(C2
1 + C2

2 ) − b(b − a)

2Ω0

(

Ω1 + b(a + 2m + 4)

2mΩ0(b − a)

))

C2 = 0

(83)
(

− 6α(C2
1 + C2

2 ) + b(b − a)

2Ω0

(

Ω1 − b(a + 2m + 4)

2mΩ0(b − a)

))

C1 = 0.

(84)

By defining the polar coordinates,C1 = RC cos θC and
C2 = RC sin θC , the alternate polar form of Eqs. (83)
and (84) is obtained.
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Fig. 4 Det of the Jacobian matrix at the equilibrium points around the resonance tongue. The black stars mark the occurrence of
pitchfork bifurcations, and the value of ΩL and ΩR is associated with the value of Ω1 on the transition curves obtained in Eq. (82)

Fig. 5 Supercritical and subcritical pitchfork bifurcations around the resonance tongue due to the third natural frequency, marked by
green and yellow stars, respectively
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(

+ 6αR2
C − b(b − a)

2Ω0

(

Ω1 + b(a + 2m + 4)

2mΩ0(b − a)

))

RC sin θC = 0

(85)
(

− 6αR2
C + b(b − a)

2Ω0

(

Ω1 − b(a + 2m + 4)

2mΩ0(b − a)

))

RC cos θC = 0.

(86)

Solving Eqs. (85) and (86) results in the following five
equilibrium points.

RC1 = 0 (87)

R2
C2,3 = b(b − a)

12αΩ0

(

Ω1 + b(a + 2m + 4)

2mΩ0(b − a)

))

θC = π

2
,
3π

2
(88)

R2
C4,5 = b(b − a)

12αΩ0

(

Ω1 − b(a + 2m + 4)

2mΩ0(b − a)

))

θC = 0, π,

(89)

such that RC1 corresponds to the trivial equilibria at
origin, and each of RC2,3 and RC4,5 corresponds to two
nontrivial equilibria located π (rad) apart from each
other. The local stability of these equilibrium points is
determined by the eigenvalues of the Jacobian matrix
corresponding to Eqs. (83) and (84) [1,24].

J =
⎡

⎣

+12αC1C2 +6α(C2
1 + 3C2

2 ) − b(b−a)
2Ω0

(

Ω1 − b(a+2m+4)
2mΩ0(b−a)

)

−6α(3C2
1 + C2

2 ) + b(b−a)
2Ω0

(

Ω1 + b(a+2m+4)
2mΩ0(b−a)

)

−12αC1C2

⎤

⎦ . (90)

The Tr of Eq. (90) is equal to zero and the value of the
Det is expressed by the following equation.

Det = 108α2(C2
1 + C2

2 )
2

− 6α
b(b − a)

2Ω0

(

4Ω1(C
2
1 + C2

2 )

− b(a + 2m + 4)

mΩ0(b − a)
(C2

1 − C2
2 )

)

+ b2(b − a)2

4Ω2
0

(

Ω2
1 − b2(a + 2m + 4)2

4m2Ω2
0 (b − a)2

)

.

(91)

Transforming Eq. (91) into the polar coordinate and
substituting Eqs. (87)–(89) yields the following expres-
sion for Det at the equilibrium points.

At RC1, Det = +b2(b − a)2

4Ω2
0

(

Ω2
1 − b2(a + 2m + 4)2

4m2Ω2
0 (b − a)2

)

(92)

At RC2,3, Det

= +b3(a + 2m + 4)(b − a)

2mΩ3
0

(

Ω1 + b(a + 2m + 4)

2mΩ0(b − a)

)

(93)

At RC4,5, Det

= −b3(a + 2m + 4)(b − a)

2mΩ3
0

(

Ω1 − b(a + 2m + 4)

2mΩ0(b − a)

)

.

(94)

The Det of the Jacobian matrix at equilibrium points
for different values ofΩ1, expressed by Eqs. (92)–(94),
are demonstrated in Fig. 4.
Eqs. (88) and (89) provide the square value of the equi-
libriumpoints, imposing a condition on the value ofΩ1.
In the case of hardening cubic nonlinearity (α > 0),
the existence of the real equilibria requires that

RC1 Exist ∀ Ω1 (95)

RC2,3 Exist ∀ Ω1 > −b(a + 2m + 4)

2mΩ0(b − a)
(96)

RC4,5 Exist ∀ Ω1 > +b(a + 2m + 4)

2mΩ0(b − a)
, (97)

and for the case of softening cubic nonlinearity (α < 0)

RC1 Exist ∀ Ω1 (98)

RC2,3 Exist ∀ Ω1 < −b(a + 2m + 4)

2mΩ0(b − a)
(99)

RC4,5 Exist ∀ Ω1 < +b(a + 2m + 4)

2mΩ0(b − a)
. (100)

The corresponding bifurcation diagram for the harden-
ing and softening cases is plotted in Fig. 5.
This analysis show that, as one crosses the transition
curves of the unstable tongue (for the constant value
of ε), supercritical and subcritical pitchfork bifurca-
tion occurs. For hardening nonlinearity, the origin is
the only equilibria at the left-hand side of the unstable
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Fig. 6 Eigenvalues of the Jacobian matrix at the origin around the combination parametric resonance tongue, expressed by Eq. (111).
The black stars mark the occurrence of hopf bifurcations

Fig. 7 Supercritical and subcritical hopf bifurcations around the resonance tongue due to the summation of the second and third natural
frequencies, marked by green and yellow stars, respectively
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tongue, and by quasi-statically increasing the value of
the Ω1, Det of the Jacobian matrix at RC1 and RC2,3

cross the Ω1 axis and results in a supercritical pitch-
fork bifurcation. As Ω1 increases more, a subcritical
pitchfork bifurcation occurs when Det of the Jaco-
bian matrix at RC1 and RC4,5 cross the Ω1 axis. Sim-
ilarly, for the softening nonlinearity, the origin is the
only equilibria at the right-hand side of the unstable
tongue and by quasi-statically decreasing Ω1, Det of
RC1 and RC4,5 cross the Ω1 axis and causes a super-
critical pitchfork bifurcation. A subcritical pitchfork
bifurcation occurs when Det of the Jacobian matrix at
RC1 and RC2,3 cross the Ω1 axis.

3.3 Combination parametric resonance of the
summation type caused by second and third
natural frequencies

In the following special case of the second and third
natural frequencies, more terms in Eq. (48) become
secular.

ωn2 − 1 = −ωn3 → ωn2 + ωn3 = 1

ωn3 − 1 = −ωn2 → ωn2 + ωn3 = 1.
(101)

Imposing this condition upon Eq. (44) results in the
emanating frequency of the unstable tongue related to
the combination parametric resonance.

Ω2
0 = (m + k + 2)

m
+ 2

√

k

m
. (102)

By substituting Eq. (101) in Eq. (48), the following
matrix form of the secular terms is obtained.

⎡

⎣

+2mΩ0Ω1ω
2
n1A1 − 3

4αX
2A1 −4mΩ0Ω1ω

2
n2B1 + 3αY 2B1 − b

2C1 −4mΩ0Ω1ω
2
n3C1 + 3αZ2C1 − a

2 B1

+2mΩ0Ω1ω
2
n1A1 − 3

4αX
2A1 +4mΩ0Ω1ω

2
n2B1 − 3αY 2B1 + b

2C1 +4mΩ0Ω1ω
2
n3C1 − 3αZ2C1 + a

2 B1

0 +2Ω0Ω1(a + 4)ω2
n2B1 − b

2C1 +2Ω0Ω1(b + 4)ω2
n3C1 − a

2 B1

⎤

⎦

(103)
⎡

⎣

−2mΩ0Ω1ω
2
n1A2 + 3

4αX
2A2 +4mΩ0Ω1ω

2
n2B2 − 3αY 2B2 − b

2C2 +4mΩ0Ω1ω
2
n3C2 − 3αZ2C2 − a

2 B2

−2mΩ0Ω1ω
2
n1A2 + 3

4αX
2A2 −4mΩ0Ω1ω

2
n2B2 + 3αY 2B2 + b

2C2 −4mΩ0Ω1ω
2
n3C2 + 3αZ2C2 + a

2 B2

0 −2Ω0Ω1(a + 4)ω2
n2B2 − b

2C2 −2Ω0Ω1(b + 4)ω2
n3C2 − a

2 B2

⎤

⎦ .

(104)

Imposing the zero determinant condition to Eqs. (103)
and (104), where α = 0, results in two degenerate
conicswith a standard formof Ax21+Bx1x2+Cx22 = 0.

Imposing the AB +2AC + BC = 0 condition to these
equations provides the twofirst-ordermultipliers of Eq.
(31) for the transition curves of the unstable tongue.The
negative and positive signs are related to sine and cosine
multipliers associated to the left and right transition
curves, respectively [2].

Ω1 = ± 4kΩ0

(a − b)2
. (105)

For the special case expressed by Eq. (101), none of the
columns inEqs. (103) and (104) are in the column space
of Eq. (35), so no nontrivial equilibrium point is created
in the combination parametric resonance tongue. But
one can investigate the change of the stability of the
origin by imposing Eq. (57) to the second and third
columns of Eqs. (103) and (104), which results in four
equations. These four equations can be simplified by
using the relationship between parameters a, b and the
second and third natural frequencies.

(

+ 6α(B2
1 + B2

2 ) + 12α(C2
1 + C2

2 ) − a(a − b)Ω1

2Ω0

)

B2

+ kC2 = 0 (106)
(

− 6α(B2
1 + B2

2 ) − 12α(C2
1 + C2

2 ) + a(a − b)Ω1

2Ω0

)

B1

+ kC1 = 0 (107)
(

+ 12α(B2
1 + B2

2 ) + 6α(C2
1 + C2

2 ) + b(a − b)Ω1

2Ω0

)

C2

+ kB2 = 0 (108)
(

− 12α(B2
1 + B2

2 ) − 6α(C2
1 + C2

2 ) − b(a − b)Ω1

2Ω0

)

C1

+ kB1 = 0. (109)

The local stability of the origin is determined by the
eigenvalues of the Jacobian matrix, corresponding to
Eqs. (106)–(109).
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Fig. 8 The effect of increasing the value of the parametric frequency on the eigenvalues of the Jacobian matrix at the origin, for the
hardening nonlinearity
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Fig. 9 Global bifurcation diagram for the hardening nonlinearity. The green and yellow stars mark the occurrence of supercritical and
subcritical bifurcations, respectively
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Fig. 10 Global bifurcation diagram for the softening nonlinearity. The green and yellow stars mark the occurrence of supercritical and
subcritical bifurcations, respectively
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J =

⎡

⎢

⎢

⎢

⎣

0 − a(a−b)Ω1
2Ω0

0 k

+ a(a−b)Ω1
2Ω0

0 k 0

0 k 0 + b(a−b)Ω1
2Ω0

k 0 − b(a−b)Ω1
2Ω0

0

⎤

⎥

⎥

⎥

⎦

.

(110)

The four eigenvalues of Eq. (110) are obtained by the
following equation.

λ2 = ±a − b

2Ω0

√

√

√

√

( 4k2Ω2
0

(a − b)2
− (a2 − b2)

2
Ω2

1

)

±
√

( 4k2Ω2
0

(a − b)2
− (a2 − b2)

2
Ω2

1

)2 −
( 4k2Ω2

0

(a − b)2
+ abΩ2

1

)2
. (111)

As long as the following condition is satisfied, all the
four eigenvalues expressed by Eq. (111) are purely
imaginary with no real part, making the origin a center.

( 4k2Ω2
0

(a − b)2
− (a2 − b2)

2
Ω2

1

)2 −
( 4k2Ω2

0

(a − b)2
+ abΩ2

1

)2
> 0. (112)

But, in the following region, Eq. (112) is violated and
the eigenvalues have both real and imaginary parts, in
that two of the eigenvalues have negative real parts and
two have positive real parts. In this condition, the origin
is an unstable spiral [31].

− 4kΩ0

(a − b)2
< Ω1 < + 4kΩ0

(a − b)2
. (113)

The value of the four eigenvalues expressed by Eq.
(111) for different values of Ω1 is demonstrated in
Fig. 6.
The corresponding bifurcation diagrams for the hard-
ening and softening cases around the combination para-
metric resonance are plotted in Fig. 7.
This analysis shows that, as one crosses the transi-
tion curves of the unstable tongue (for the constant
value of ε), supercritical and subcritical hopf bifurca-
tion occurs. For the hardening nonlinearity, by quasi-
statically increasing the value of Ω1, and crossing the
left-hand side transition curve of the unstable tongue, a
supercritical hopf bifurcation occurs and a limit cycle
is created around the origin. By further quasi-statically
increasing the value of the Ω1, the radius of this limit
cycle increases, until by crossing the right hand-side
transition curve of the unstable tongue, a subcritical
hopf bifurcation occurs and the limit cycle is destroyed.
The same sequence of events happens for the soften-
ing nonlinearity, only by quasi-statically decreasing the
value of the Ω1.

3.4 Overall bifurcation diagram

Figure 8 demonstrates how the eigenvalues of the Jaco-
bian matrix at the origin change for the hardening case,
while the value of Ω is increased. Figure 8a shows
that starting from the primary unstable tongue, corre-
sponding to the second natural frequency, the origin is a

saddle as the eigenvalues have real values with positive
and negative signs. Figure 8a shows that by increasing
the value ofΩ , both of these real eigenvalues approach
the origin. By crossing the right-hand side transition
curve, the real eigenvalues cross the origin and become
purely complex; in this case the origin become a center.
Figure 8a shows that by further increasing the value of
Ω , the eigenvalues move further from the origin. By
increasing Ω and crossing the left transition curve of
the combination unstable tongue, corresponding to the
summation of second and third natural frequencies, the
eigenvalues leave the imaginary axis. At this point, the
eigenvalues have both real and imaginary parts; due to
the eigenvalues having positive real parts, the origin is
an unstable spiral. Figure 8a shows that by increasing
the value of Ω , the imaginary parts of the eigenvalues
get smaller while the real parts get larger. When reach-
ing the middle of the combination unstable tongue,
where Ω1 = 0, the imaginary parts of the eigenval-
ues get very close to zero, but as is shown in Fig. 8b, by
passing themiddle of the combination unstable tongue,
the imaginary part of the eigenvalues start to increase
again while the real parts get smaller. This continues
until by passing the right transition curve of the combi-
nation unstable tongue; the eigenvalues become purely
complex againwhichmakes the origin a center. Finally,
Fig 8b shows that, by more increase in the value of Ω

and crossing the left transition curve of the primary
unstable tongue, corresponding to the third natural fre-
quency, the origin become a saddle again; due to the
real eigenvalues with positive and negative signs.
Figures 9 and 10 demonstrate the global bifurcation
diagramof the hardening and softeningnonlinear cases,
respectively.
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Fig. 11 Poincaré map for the softening nonlinearity within the primary parametric resonance tongue, corresponding to the second
natural frequencies. The red dots mark the saddle at the origin, and the blue trajectory shows the location of the stable nontrivial
equilibria (nodes) around the origin
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Fig. 12 Poincaré map for the softening nonlinearity within the combination parametric resonance tongue, corresponding to the sum-
mation of the second and third natural frequencies. The orange dots mark the unstable spiral at the origin, and the blue trajectories show
the limit cycle around the origin
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Fig. 13 Poincaré map for the softening nonlinearity within the primary parametric resonance tongue, corresponding to the third natural
frequencies. The red dots mark the saddle at the origin, and the blue trajectory shows the location of the stable nontrivial equilibria
(nodes) around the origin
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Fig. 14 System’s time
response in linear (a) and
nonlinear (b) regimes for
the same parametric
frequency inside the
primary unstable tongue,
corresponding to the second
natural frequency. The light
red represents the dead zone
area where the separation of
the teeth occurs
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4 Numerical simulations

In this section, the foregoing analytical analysis is com-
pared with the results obtained from numerical integra-
tion, completed in MATLAB by using Runge–Kutta of
the fourth-fifth order.

4.1 Poincaré map

Figures 11, 12, and 13 exhibit the Poincaré map for the
homogeneous form of Eq. (25) for the softening non-
linearity, all for the surface of section at t = ωp/2π .
Figure 11 belongs to the system’s parameters inside the
primary unstable tongue corresponding to the second
natural frequency, showing that the origin is a saddle
and there are two stable nodes around it, π (rad) apart
from each other. This plot show that by increasing the
value ofΩ , the two stable nodes get closer to the origin,
consistent with the analytical results demonstrated by
Fig. 10. Figure 11 belongs to the system’s parameters
inside the combination unstable tongue corresponding
to summation of the second and third natural frequen-
cies, showing that the origin is an unstable spiral sur-
rounded by a limit cycle. These plots show that by
increasing the value of Ω , the size of the limit cycle
decreases. Figure 11 belongs to the system’s parame-
ters inside the primary unstable tongue corresponding
to the third natural frequency, showing that the ori-
gin is a saddle and there are two stable nodes around
it, π (rad) apart from each other. These plots show
that by increasing the value of Ω , the two stable nodes
move closer to the origin, consistent with the analytical
results demonstrated by Fig. 10.

4.2 Time response

Figure 14 demonstrates the effect of softening non-
linear terms on the dynamic response of the non-
homogeneous form of Eq. (25) inside the primary
unstable tongue, corresponding to the second natural
frequency. Comparing these two plots shows that, even
inside the unstable tongues, by applying enough load
on the system and choosing the right parameters for
the suspension, the system response remains bounded
and outside of the dead zone area, which is colored by
light red. In this condition, the separation of the teeth in
mesh and subsequent occurrence of the free play mode
and impact phases can be avoided.

5 Conclusion

In this work, Poincaré–Lindstedt method is used to
study the effect of nonlinear suspension on the dynamic
behavior of geared systems, where the transmitting
force is large enough for the gears in mesh to remain in
permanent contact. Under this condition, the govern-
ing equations reduce to a system of nonlinear, para-
metrically excited coupled differential equations. In
the absence of the nonlinear terms, the unbounded
response of the system occurs only within the primary
and combination parametric resonance tongues. The
large amplitude oscillation results in the separation of
the gears in mesh; subsequently the free play mode and
impact phases should be considered in the dynamic
response of the system. The analytical and numeri-
cal results in this paper show that, for the system with
cubic nonlinear terms, and with the correct range of the
parameters, the system’s response within the unstable
tongues can remain bounded. Further results show that
the bounded response of the systemwithin the unstable
tongues is due to the occurrence of the pitchfork bifur-
cation within the primary unstable tongues and hopf
bifurcation within the combination unstable tongue. It
is shown that the occurrence of the supercritical and
subcritical pitchfork bifurcations follows the same pat-
tern for both hardening and softening nonlinearity, only
with a π/2 (rad) difference on the location of the new-
born equilibria. The Poincaré map is presented only
for the softening case, as the experimental data shows
mostly softening nonlinear behaviors of the geared sys-
tem. The Poincaré map confirms creation of both new
equilibria within the primary unstable tongues and the
limit cycle within the combination unstable tongue,
which was predicted by Poincaré–Lindstedt method.
It is demonstrated that by changing the parametric fre-
quency the distance between the origin and nodes and
also the radius of the limit cycle varies. Finally, the
time response of the system for the parametric fre-
quency inside the primary unstable tongue, correspond-
ing to the second natural frequency, is provided. These
plots show that small amplitude oscillation is possible
even inside the unstable tongues by choosing the right
parameters for the suspension, which prevent the sep-
aration of the gears in mesh.
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