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Abstract Countries affected by the coronavirus

epidemic have reported many infected cases and

deaths based on world health statistics. The crowding

factor, which we named ‘‘crowding effects,’’ plays a

significant role in spreading the diseases. However, the

introduction of vaccines marks a turning point in the

rate of spread of coronavirus infections. Modeling

both effects is vastly essential as it directly impacts the

overall population of the studied region. To determine

the peak of the infection curve by considering the third

strain, we develop a mathematical model (susceptible–

infected–vaccinated–recovered) with reported cases

from August 01, 2021, till August 29, 2021. The

nonlinear incidence rate with the inclusion of both

effects is the best approach to analyze the dynamics.

The model’s positivity, boundedness, existence,

uniqueness, and stability (local and global) are

addressed with the help of a reproduction number. In

addition, the strength number and second derivative

Lyapunov analysis are examined, and the model was

found to be asymptotically stable. The suggested

parameters efficiently control the active cases of the

third strain in Pakistan. It was shown that a systematic

vaccination program regulates the infection rate.

However, the crowding effect reduces the impact of

vaccination. The present results show that the model

can be applied to other countries’ data to predict the

infection rate.
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1 Introduction

The acronym SARS stands for severe acute respiratory

syndrome. Initially, it was discovered in Asia in 2003.

From Asia, it spreads to North and South America, as

well as Europe. It was, however, contained in 2004.

High fever, headache, body pains, diarrhea, dry cough,

and pneumonia are symptoms of SARS caused by the

coronavirus. The word corona means ‘‘crown.’’ There

is a small crown of spike proteins visible. The spike

proteins bind to the ACE2 receptors on our respiratory

system’s cells. After the cells combine, the coron-

avirus injects its viral RNA into our cells, which is

coded to produce more proteins and more virus cells.

SARS cov2, also called COVID -19, is the cause of the

current pandemic. It began in December 2019 in

Wuhan, China. The virus was previously found in a

wild animal, most likely a bat, and it was discovered in

humans via tests conducted during a pneumonia

outbreak in Wuhan. It then traveled all over the world,

eventually reaching the USA on January 20, 2020.

They can also be transmitted via air droplets and are

capable of causing difficulties in breathing. Other

symptoms can be mild or severe. Everyone is vulner-

able, but it affects the elderly the most. People with

underlying medical issues, such as cancer or obesity,

are housed in senior living homes or rehab facilities.

The immunocompromised individuals and those of

similar nature are susceptible, and it is possible for

those who recovered from the first infection to be

infected again. The global death rate is low, yet there

are still a lot of people dying. The USA has one of the

highest infection rates in the world. On March 11,

2020, it was declared a pandemic with an R0

(reproduction number) of approximately 2.5. The

number of fatalities per 100,000 persons in most

countries affected by the pandemic is on the increase.

Brazil has the highest mortality rate of 264.6 per

100,000, while Vietnam has the lowest death rate of

2.15 per 100,000. With 187.15 deaths per 100,000, the

USA is in the lead. COVID -19 is a unique type of

virus. The strain is SARS COV2, and symptoms occur

two to fourteen days after exposure. As a result, it is

easier to spread. COVID -19 has a higher death rate

than the flu. It is more infectious. If it persists from

weeks to months, one may lose the sense of taste or

smell, resulting in long-term consequences such as

lung problems. A polymerase chain reaction (PCR)

test or an antigen test is available to figure out if one is

infected or not. Antigen tests and PCR tests are two of

the most common infection tests now available. The

antigen test is quick and inexpensive to carry out;

however, it is up to 20% inaccurate. The PCR test, on

the other hand, is highly potent in terms of detection. It

simply takes a few cells to detect the presence of

coronavirus. The results can be obtained in a matter of

hours. Depending on the type of PCR test one gets, a

good PCR test can be 100 percent accurate. A

nasopharyngeal swab is inserted into the nose and

used to clean the area leading to the throat. It does not

affect one’s brain regardless of how much it appears to

be. The swab is then rotated in each nostril for 15 s to

ensure enough germs or bacteria are picked up. An

antibody test can be used to determine if one has ever

been infected with the coronavirus. Antibodies indi-

cate that the immune system has successfully attacked

the virus. It can tell whether or not a vaccine is

effective. If, however, one is newly infected, a

quarantine or simple isolation (up to ten days) with

medical care is adequate for mild cases. For severe

cases leading to difficulties in breathing or organ

failure, treatment in the (intensive care unit of a)

hospital is recommended. Finally, we discuss the

prevention for which social distancing, uses of masks,

and sanitizers are vital components. We should also

wash our hands frequently and get vaccinated. A

distance of six feet from sick persons or other

individuals is recommended inside and out outside

buildings. The importance of masks cannot be over-

stated. Even in vaccinated areas, cases of old and new

strains (variants) have been recorded. But masks are

not required outside unless it is windy or crowded

places where the spread is likely to be faster.

Facemasks prevent the disease from spreading through

the air to other humans and objects we may contact.

After contacting any surface, we must wash our hands

for at least 20 s before touching our face, going to the

restroom, or preparing meals. Hand sanitizers con-

taining at least 60% alcohol can be used if we cannot

wash our hands. On COVID -19 vaccination, the spike

proteins on the virus hold on to ACE2 and force the

RNA into our cells, causing more COVID -19 virus to

be produced. This process causes other cells to be

infected. Our body’s genetic material (mRNA) directs

the secretion of the same proteins, the T-cells, and the

lymphocytes, to target viral RNA. As a result, our

bodies combat the virus. Pfizer vaccines are for people

aged 12 and up, while Johnson & Johnson, and
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Moderna are for people aged 18 and over. The

vaccines were released in phases, with phase 1A

targeting healthcare workers and elders living in

communities, followed by others with a lower priority

classification. We must be aware that some persons

may experience allergic responses to these immuniza-

tions. It is not common, but it can happen. According

to some conspiracy theorists, COVID does not exist.

They believe it is a government myth designed to keep

us under control. One theory has it that masks give us

COVID because of our inner COVID. Furthermore,

that the use of facemasks will kill us due to our CO2. If

this is true, the doctors who have been standing in a

surgery room for hours would have been long dead.

Some people speak of herd immunity. Vaccines, on

the other hand, provide herd immunity. Only the

immuned people can prevent the virus from spreading

[21].

1.1 Literature review

Ahmed et al. proposed the SEQIIR model in 2021 to

evaluate the evolution of COVID using ODEs and

FDEs [1]. In 2021, Hassan et al. interpreted their

investigation using the SIIR model to analyze the

trends of the coronavirus in Texas, USA [2]. Alqarni

et al. presented a DSIARB model to examine the

complexities of the coronavirus in the Kingdom of

Saudi Arabia in 2020 [3]. Savi et al. created a SEIRDC

model to test the interplay of coronavirus in Brazil in

2020 [4]. Tiwari et al. noted in a SEIRD forecasting,

COVID-19 outbreak dispersion under the influence of

quarantine in India in 2020 [5]. In 2021, Warbhe et al.

presented an S-I-R-M model to determine the COVID-

related losses [6].

In 2021, Daniel investigated the SEIQCRW model

on COVID diffusion with irregular factors of illness

and the need for safety practices in Nigeria [7]. For

estimation dynamics of the coronavirus disorder 2019

(COVID-19) outbreak, isolation security controls,

Prathumwan et al. proposed a SLIQHR model in

2020 [8]. In 2021, Balike investigated the SEIHQR

model for reducing the economic impacts of the

COVID in the Congo [9]. In 2021, Raslan examined a

SEHQIR model for COVID-19 infection projection in

Egypt [10]. In 2020, Chen et al. proposed a BHRP

model used to simulate the step in the process

propagation of a new coronavirus [11].

In 2021, Sinaga et al. suggested an SEIR model in

Indonesia and examined the coronavirus’s structural

analysis [12]. In 2020, Biswas et al. proposed using the

SEAIQHR model to explore the COVID-19 contagion

in India [13]. The use and misuse of mathematical

modeling for communicable diseases management

should be investigated, according to James et al. in

2021 [14]. In 2021, Ameen et al. proposed the use of

SSLLIPD model to examine the kinetics of COVID-19

by applying a partial computational formula [15]. In

estimating emerging coronavirus epidemiology,

Uddin et al. proposed the SUQC model in 2020 [16].

In another development, Jiang et al. in 2020 studied a

SEIIRMH model for determining the best SARS-

CoV-2 removal plan in China, South Korea, and Italy

[17]. In 2021, Kahn et al. used a model to guide

COVID vaccination programs and testing procedures

in nursing homes [18]. For the COVID -stability study

employing fast-slow breakdown, Chen et al. devel-

oped a subtype of the SIR epidemic model in 2020

[19]. Staying at home, keeping distances, and early

identification are the core points in controlling the

spread of COVID -19, according to Kim et al. in 2020

[20]. Machado et al. studied the pandemic of coron-

avirus via complex systems that have characteristics

that give rise to the emergence of rare and extreme

events [28]. Rajagopal et al. investigated the frac-

tional-order model to predict the dynamics of coron-

avirus outbreaks [29]. Quaranta et al. studied a multi-

scale territorial analysis of the pandemic using various

models and data-driven approaches in Italy [30].

Different types of dynamical analysis are studied to

model coronavirus-like diseases as presented in

[31–36]. Many mathematical models have been ana-

lyzed with the help of different strategies, as illustrated

by authors in [37–42]. The stability analysis of

COVID-19 model is studied under the properties of

fractional calculus in [44].

The design of our paper is as follows. In Sect. 2, we

discussed the mathematical model and performed its

analysis. Then, in the subsections, positivity, bound-

edness, existence, and uniqueness are examined. In

Sect. 3, parameter estimation is presented. Finally, in

Sect. 4, the numerical results are outlined to analyze

the dynamics of the virus graphically. We then

discussed the local and global stability of the model

and gave concluding remarks in the last section.
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2 Model formulation

By the theory of the population dynamics, the human

population N tð Þ is categorized into the four subpop-

ulations like SðtÞ: (Susceptible population), IðtÞ:
(Infected population), VðtÞ: (Vaccinated population),

and RðtÞ: (Recovered or immune population). A

dynamic of infection into the population is based on

the law of mass action (the rate of change of reacting

substance is directly proportional to the product of

interacting substances) and nonlinear complex ordi-

nary differential equations (ODEs). The transmission

map of the model is shown in Fig. 1.

The physical relevance of parameters of the model

is as follows: KN: (the recruitment rate of the

population), bI: (the force of infection of virus), 1
1þaI:

(the crowding effect of population on the virus), l:

(the rate of mortality due to virus or natural of each

subpopulation), d1: (the rate at which infected popu-

lation got vaccination during the period of quarantine,

or isolation, etc.), d2: (the rate at which susceptible

population got vaccination under the program

launched by World Health Organization (WHO)), c :
(the rate at which infected population may recover due

to its internal immunity and natural circumstances),

and r : (the rate of doses in the population who

recovered or got immune after vaccination). Deter-

ministic modeling based on the following assumptions

are as follows: Susceptible population directly vacci-

nated, considering the two types of immunity for an

infected population like vaccination, and isolation or

quarantine or natural immunity, and recovered popu-

lation may not be infected again. Other types of

interaction are ignored without loss of generality. The

system of equations obtained from the transmission

map of the virus is as follows:

dS

dt
¼ K� bS tð ÞI tð Þ

1 þ aI tð Þ � d2 þ lð ÞS tð Þ; t� 0;

dI

dt
¼ bS tð ÞI tð Þ

1 þ aI tð Þ � cþ d1 þ lð ÞI tð Þ; t� 0;

dV

dt
¼ d2S tð Þ þ d1I tð Þ � rþ lð ÞV tð Þ; t� 0;

dR

dt
¼ cI tð Þ þ rV tð Þ � lR tð Þ; t� 0:

ð1Þ

The total dynamics of the system (1) is obtained by

adding the four equations as follows:

dS

dt
þ dI

dt
þ dV

dt
þ dR

dt
¼ K� lN; ð2Þ

where Sþ I þ V þ R ¼ N.

We have

dN

dt
¼ K� lN ð3Þ

and hence,

N tð Þ� K
l
; whenever t ! 1: ð4Þ

The feasible region of the system (1) is defined in

the following way

X ¼ S tð Þ; I tð Þ;V tð Þ;R tð Þ 2 R4
þ : N tð Þ� K

l

� �
ð5Þ

2.1 Properties

Theorem 1 (Positivity) For any initial data

S 0ð Þ; I 0ð Þ;V 0ð Þ;R 0ð Þð Þ 2 R4
þ, then the solution

S tð Þ; I tð Þ;V tð Þ;R tð Þð Þ for the system (1) is positive

invariant set in R4
þ:

Proof Let us start from the class I tð Þ,

I tð Þ� I 0ð Þe� cþd1þlð Þt � 0; 8t� 0:

For the function V tð Þ; the following inequalities

hold:

V tð Þ�V 0ð Þe� rþlð Þt � 0; 8t� 0;

and

R tð Þ�R 0ð Þe�lt � 0; 8t� 0:

We shall define the norm

k1 ¼ sup
t2Dk

k tð Þj j;

Fig. 1 Flow map coronavirus model
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where Dk is the domain of k. Using the above norm,

the inequalities for the function S tð Þ are defined

dS

dt
¼ lN � bSI

1 þ aI
� ðd2 þ lÞS; 8t� 0;

dS

dt
� � d2 þ lþ b Ij j

1 þ a Ij j

� �
S;8t� 0;

dS

dt
� � d2 þ lþ

b supt2Dk
Ij j

1 þ a supt2Dk
Ij j

� �
S; 8t� 0;

dS

dt
� � d2 þ lþ bI1

1 þ aI1

� �
S; 8t� 0;

S tð Þ� S 0ð Þe� d2þlþ bI1
1þaI1ð Þt � 0;

as desired.

Theorem 2 (Boundedness) For any time t, the

system (1) is bounded and lies in the feasible region

X, if lim
t!1

SupN tð Þ� K
l :

Proof By letting the population function

N tð Þ ¼ S tð Þ þ I tð Þ þ V tð Þ þ R tð Þ,
dN

dt
¼ dS

dt
þ dI

dt
þ dV

dt
þ dR

dt
;
dN

dt
¼ K� lN ¼ 0;

N tð Þ ¼ N 0ð Þe�lt þ K
l
; lim
t!1

SupN tð Þ� K
l
;

as desired.

We shall define the norm k1 ¼ supt2Dk
k tð Þj j, and

we consider the Banach space [27]. We present here

the existence and uniqueness of the solution piece

wisely. To obtain such results, we need to verify

growth and Lipschitz condition properties. Let us

consider the four positive constants M1;M2;M3, and

M4\1 such that S1\M1, I1\M2;V1\M3; and

R1\M4. We have

S0 ¼ f1 S; I;V ;R; tð Þ
I0 ¼ f2 S; I;V ;R; tð Þ
V 0 ¼ f3 S; I;V;R; tð Þ
R0 ¼ f4 S; I;V;R; tð Þ

8><
>: ; 8t� 0 ð6Þ

8i ¼ 1; 2; 3; 4. We first verify that

fi S; tð Þj j2\ki Sij j2þ1
� �

; ð7Þ

fi S
1; t

� 	
� fi S

2; t
� 	

 

2\ki S

1 � S2


 

2: ð8Þ

For proof, we consider the function f1 S; I;V ;R; tð Þ,
and the following estimations hold

f1 S; I;V ;R; tð Þj j2¼ K� bSI
1 þ aI

� d2 þ lð ÞS











2

; ð9Þ

f1 S; I;V ;R; tð Þj j2 � 4 Kj j2þ4
bSI

1 þ aI











2

þ4 d2 þ lð ÞSj j2;

f1 S; I;V ;R; tð Þj j2 � 4 Kj j2þ sup
t2Dk

bSI
1 þ aI











2

þ sup
t2Dk

d2 þ lð ÞSj j2
 !

;

f1 S; I;V ;R; tð Þj j2 � 4 Kj j2þ bj j SI

1 þ aI1
þ d2 þ lð Þj j2S1

� �
;

f1 S; I;V ;R; tð Þj j2 � 4 Kj j2þ d2 þ lð Þj j2S1
� �

1 þ
bj j SI

1þaI1

Kj j2þ d2 þ lð Þj j2S1
� �

0
@

1
A:

The condition
bj j SI

1þaI1
Kj j2þ d2þlð Þj j2S1ð Þ\1, implies

f1 S; I;V ;R; tð Þj j2\k1 1 þ Sj j2
� �

: ð10Þ

By using the same methodology, we get

f2 S; I;V ;R; tð Þj j2¼ bSI
1 þ aI

� cþ d1 þ lð ÞI











2

; ð11Þ

f2 S; I;V ;R; tð Þj j2 � 3
bSI

1 þ aI











2

þ3 cþ d1 þ lð ÞIj j2;

f2 S; I;V ;R; tð Þj j2 � 3 sup
t2Dk

bSI
1 þ aI











2

þ sup
t2Dk

cþ d1 þ lð ÞIj j2
 !

;

f2 S; I;V ;R; tð Þj j2 � 3 bj j SI

1 þ aI1
þ cþ d1 þ lð Þj j2I1

� �
;

f2 S; I;V ;R; tð Þj j2 � 3 cþ d1 þ lð Þj j2I1
� �

1 þ
bj j SI

1þaI1

cþ d1 þ lð Þj j2I1
� �

0
@

1
A

Under the condition that
bj j SI

1þaI1
cþd1þlð Þj j2I1ð Þ\1, we

estimate

f2 S; I;V ;R; tð Þj j2\k2 1 þ Ij j2
� �

ð12Þ
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For the function f3;. We have

f3 S; I;V ;R; tð Þj j2¼ d2Sþ d1I � rþ lð ÞVj j2; ð13Þ

f3 S; I;V ;R; tð Þj j2 � 2 d2Sþ d1Ij j2þ2 rþ lð ÞVj j2;

f3 S; I;V ;R; tð Þj j2 � 2 sup
t2Dk

d2Sþ d1Ij j2þ sup
t2Dk

rþ lð ÞVj j2
� �

;

f3 S; I;V ;R; tð Þj j2 � 2 d2j j2S1 þ d1j j2I1 þ rþ lð Þj j2V1

� �
;

f3 S; I;V ;R; tð Þj j2 � 2 rþ lð Þj j2V1

� �

1 þ d2j j2S1 þ d1j j2I1
rþ lð Þj j2V1

� �
0
@

1
A:

The condition
d2j j2S1þ d1j j2I1

rþlð Þj j2V1ð Þ \1 yields

f3 S; I;V ;R; tð Þj j2\k3 1 þ Vj j2
� �

: ð14Þ

For the function f4; we have

f4 S; I;V ;R; tð Þj j2¼ cI þ dV � lRj j2; ð15Þ

f4 S; I;V ;R; tð Þj j2 � cI þ dVj j2þ lRj j2;

f4 S; I;V ;R; tð Þj j2 � sup
t2Dk

cI þ dVj j2þ sup
t2Dk

lRj j2
� �

;

f4 S; I;V ;R; tð Þj j2 � cj j2I1 þ dj j2V1 þ lj j2R1

� �
;

f4 S; I;V ;R; tð Þj j2 � lj j2R1 1 þ cj j2I1 þ dj j2V1

lj j2R1

 !
:

The condition
cj j2I1þ dj j2V1

lj j2R1
\1 implies that

f4 S; I;V ;R; tð Þj j2\k4 1 þ Rj j2
� �

ð16Þ

Therefore, the condition of linear growth is verified

if

max
bj j SI

1þaI1

Kj j2þ d2 þ lð Þj j2S1
� � ; bj j SI

1þaI1

cþ d1 þ lð Þj j2I1
� � ;

8<
:

d2j j2S1 þ d1j j2I1
rþ lð Þj j2V1

� � ;
cj j2I1 þ dj j2V1

lj j2R1

9=
;\1;

as desired.

2.2 Equilibria

We determine the equilibria of the system (1) by

assuming that the state variables are constant and by

putting the right side equal to zero. Equation (1)

admits two types of equilibria as follows:

(i) coronavirus-free equilibrium = C1 ¼ S1; I1;ð
V1;R1Þ ¼ K

d2

�
þl; 0; 0; 0Þ,

(ii) corona existing equilibrium = C2 ¼ S�; I�;ð
V�;R�Þ,

where: S� ¼ cþd1þl
b

� �
1 þ aI�ð Þ, B1I

�2 þ B2I
� þ B3 ¼

0; B1 ¼ cþ d1 þ lð Þ þ a d2 þ uð Þ cþ d1 þ lð Þ; B2 ¼

d2 þ uð Þ cþd1þl
b

� �
aþ d2ð

þlÞa cþd1þl
b

� �
þ b cþd1þl

b

� �
� Ka,

B3 ¼ d2 þ uð Þ cþd1þl
b

� �
� K, I� ¼ �B2þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2

2
�4B1B3

p
2B1

,

V� ¼ d2S
�þd1I

�

rþl , R� ¼ cI�þrV�

l .

2.3 Reproduction Number

We determine the reproduction number of the system

(1) by using the well-known results like the next-

generation matrix method after substituting the value

of coronavirus-free equilibrium. We get

I0

V 0

R0

2
4

3
5 ¼

bK
d2 þ lð Þ 0 0

0 0 0

0 0 0

2
664

3
775

I
V
R

2
4

3
5

�
cþ d1 þ lð Þ 0 0

�d1 rþ lð Þ 0 0

�r �r l

2
4

3
5 I

V
R

2
4

3
5;

where:

A ¼

bK
d2 þ lð Þ 0 0

0 0 0

0 0 0

2
664

3
775; B ¼

cþ d1 þ lð Þ 0 0

�d1 rþ lð Þ 0 0

�r �r l

2
4

3
5;
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AB�1 ¼

bK
d2 þ lð Þ cþ d1 þ lð Þ 0 0

0 0 0

0 0 0

2
664

3
775

The spectral radius of q AB�1ð Þ is denoted by

R0 ¼ bK
d2þlð Þ cþd1þlð Þ.

2.4 Strength number

The extension of the reproduction number is called the

strength number. No doubt, the reproduction number

has great significance in the field of epidemiology

regarding the spread and extinction of disease. The

reason behind different techniques used by the

epidemiologist is to obtain such numbers (i.e., viola-

tion of uniqueness of reproduction number and many

more). The primary outcome of this method relies on

the prediction of the waves of the spread of disease.

The critical thing is that the next-generation matrix

method is used to evaluate this number by assuming

the coronavirus-free equilibrium into the system (1) by

taking the second derivative of infectious classes.

Consequently, the transmission and transition matri-

ces are represented by F and G [25], where:

F ¼

bK
d2 þ lð Þ 0 0

0 0 0

0 0 0

2
664

3
775;G�1

¼

1

cþ d1 þ lð Þ 0 0

d1

cþ d1 þ lð Þ rþ lð Þ
1

rþ lð Þ 0

d1rþ c rþ lð Þ
l cþ d1 þ lð Þ rþ lð Þ

r
l rþ lð Þ

1

l

2
6666664

3
7777775
;

FG�1 ¼
� bK

d2 þ lð Þ 0 0

0 0 0

0 0 0

2
664

3
775:

Here, A0 ¼ � bK
d2þlð Þ\0 is called the strength

number of the system (1). The remarkable conclusion

includes the analysis of local maximum, local mini-

mum, and inflection points. Thus, having a negative

strength number is an indication that the system (1)

will have a single magnitude, either a maximum with

two infection points indicating a single wave or a rapid

decrease from the coronavirus-free equilibrium. Thus,

the infection will rise after a minimum point with the

renewal process and then be stabilized or stopped later

on, as desired.

2.5 Stability analysis

In this section, we test the local and global stability of

the system (1), considering the two defined equilibria.

Theorem 3 (Local stability at C1Þ The system (1) at

C1 ¼ S1; I1;V1;R1ð Þ ¼ K
d2þl ; 0; 0; 0
� �

is locally

asymptotically stable if R0\1. Otherwise, unsta-

ble when R0 [ 1.

Proof The Jacobian matrix obtained from the system

(1) is as follows.

J S; I;V ;Rð Þ ¼

� bI
1 þ aI

� d2 � l � bS

1 þ aIð Þ2
0 0

bI
1 þ aI

bS

1 þ aIð Þ2
� c� d1 � l 0 0

d2 d1 �r� l 0

0 c r �l

2
6666664

3
7777775
:
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The Jacobian matrix at C1 is as follows

Consider J � kIj j ¼ 0, and hence

k1 ¼ �l\0, k2 ¼ � rþ lð Þ\0,

k3 ¼ �ðd2 þ lÞ\0, and.

k4 ¼ bK
d2þl � c� d1 � l\0,

bK
d2þlð Þ cþd1þlð Þ\1;R0\1:

It is seen that C1 is locally asymptotically

stable (LAS), R0\1:

Theorem 4 (Local stability at C2Þ The system (1) at

C2 ¼ S�; I�;V�;R�ð Þ is locally asymptotically stable if

R0 [ 1.

Proof The Jacobian matrix at C2 of the system (1) is

as follows.
J S�; I�;V�;R�ð Þ

¼

� bI�

1 þ aI�
� d2 � l � bS�

1 þ aI�ð Þ2
0 0

bI�

1 þ aI�
bS�

1 þ aI�ð Þ2
� c� d1 � l 0 0

d2 d1 �r� l 0

0 c r �l

2
666666664

3
777777775

.

J
K

d2 þ l
; 0; 0; 0

� �
¼

�d2 � l � bK
d2 þ l

0 0

bI
1 þ aI

bK
d2 þ l

� c� d1 � l 0 0

d2 d1 �r� l 0

0 c r �l

2
666664

3
777775

�d2 � l� k � bK
d2 þ l

0 0

0
bK

d2 þ l
� c� d1 � l� k 0 0

d2 d1 �r� l� k 0

0 c r �l� k


























¼ 0;

� bI�

1 þ aI�
� d2 � l� k � bS�

1 þ aI�ð Þ2
0 0

bI�

1 þ aI�
bS�

1 þ aI�ð Þ2
� c� d1 � l� k 0 0

d2 d1 �r� l� k 0

0 c r �l� k




























¼ 0;
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Consider J � kIj j ¼ 0, which implies

k1 ¼ �l\0, k2 ¼ � rþ lð Þ\0;

k2 þ bI�

1 þ aI�
� bS�

1 þ aI�ð Þ2
þ d1 þ d2 þ cþ 2l

 !
k

þ cþ d1 þ lð Þ bI�

1 þ aI�
þ d2 þ l

� �
� d2 þ lð ÞbS�

1 þ aI�ð Þ2

¼ 0;

k2 þ A1kþ A0 ¼ 0;

where:

A1 ¼ bI�

1þaI� �
bS�

1þaI�ð Þ2 þ d1 þ d2 þ cþ 2l;,

A0 ¼ cþ d1 þ lð Þ bI�

1 þ aI�
þ d2 þ l

� �

� d2 þ lð ÞbS�

1 þ aI�ð Þ2
:

Since A0;A1 both are positive when R0 [ 1; by the

Routh–Hurwitz criterion for the second order, theC2 is

locally asymptotically stable.

Theorem 5 (Global stability at C1Þ The system (1) at

C1 ¼ S1; I1;V1;R1ð Þ ¼ K
d2þl ; 0; 0; 0
� �

is globally

asymptotically stable if R0\1.

Proof By letting the Lyapunov function U : X ! R

defined as.

U Ið Þ ¼ ln
I

I0

� �
;

dU Ið Þ
dt

¼ I0

I
� 1

I0
dI

dt
;

dU Ið Þ
dt

¼ 1

I

bSI
1 þ aI

� cþ d1 þ lð ÞI
� 


;

dU Ið Þ
dt

¼ bS
1 þ aI

� cþ d1 þ lð Þ;

dU

dt
¼ cþ d1 þ lð Þ bSI

1 þ aIð Þ cþ d1 þ lð Þ � 1

� 

;

dU

dt
� cþ d1 þ lð Þ bK

d2 þ lð Þ cþ d1 þ lð Þ � 1

� 

;

dU
dt � cþ d1 þ lð Þ R0 � 1ð Þ, dU

dt � 0, if R0\1:

Hence, the system is globally asymptotically

stable at C1.

Theorem 6 (Global stability at C2Þ The system (1) at

C2 ¼ S�; I�;V�;R�ð Þ is globally asymptotically

stable if R0 [ 1.

Proof By letting the Lyapunov function Z : X ! R

defined as.

Z ¼ K1 S� S� � S�
log S

S�

� �
þ K2 I � I� � I�

log I

I�

� �

þ K3 V � V� � V� logV

V�

� �
þ K4 R� R� � R� logR

R�

� �
;

where Ki i ¼ 1; 2; 3; 4ð Þ are positive constants to be

chosen later. We have

dZ

dt
¼ K1

s� s�

s

� �
K� bSI

1 þ aI
� d2S� lS

� �

þ K2

I � I�

I

� �
bSI

1 þ aI
� Ic� d1I � lI

� �

þ K3

V � V�

V

� �
d2Sþ d1I � rV � lVð Þ

þ K4

R� R�

R

� �
cI þ rV � lRð Þ;

dZ

dt
¼ K1 s� s�ð Þ K

s
� bI

1 þ aI
� d2 � l

� �

þ K2 I � I�ð Þ bS
1 þ aI

� c� d1 � l

� �

þ K3 V � V�ð Þ d2S

V
þ d1I

V
� r� l

� �

þ K4 R� R�ð Þ cI
R
þ rV

R
� l

� �
:

If we choose Ki ¼ 1; i ¼ 1; 2; 3; 4ð Þ, then.

dZ
dt ¼

K S�S�ð Þ2

ss� � bSI I�I�ð Þ2

I� 1þaIð Þ � d2S V�V�ð Þ2

VV� � d2I V�V�ð Þ2

VV� �
cI R�R�ð Þ2

RR� � rV R�R�ð Þ2

RR� ; dZ
dt � 0; for R0 [ 1, and dZ

dt ¼ 0

only if S ¼ S�; I ¼ I�;V ¼ V�;R ¼ R�.
Hence, by Lasalle’s invariance principle, C2 is

globally asymptotically stable (GAS) in X.

2.6 Second derivative theory of Lyapunov

stability

We present an analysis of the second derivative of the

associated Lyapunov function of the system (1) to

understand the variability of the process [26].
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Theorem 7 (Global stability at C1Þ The system (1) at

C1 ¼ S1; I1;V1;R1ð Þ ¼ K
d2þl ; 0; 0; 0
� �

is globally

asymptotically stable if R0\1.

Proof Consider,

U00 Ið Þ ¼ d

dt
ln

I

I0

� �� �
;

U00 Ið Þ ¼ � 1

I2

dI

dt

� �2

þ 1

I

d2I

dt2
;

U00 Ið Þ ¼ � 1

I2

bSI
1 þ aI

� cþ d1 þ lð ÞI
� �2

þ 1

I

bS
1 þ aI

� cþ d1 þ lð Þ bSI
1 þ aI

� cþ d1 þ lð ÞI
� �� �

;

U00 Ið Þ ¼ � bS
1 þ aI

� cþ d1 þ lð Þ
� �2

� cþ d1 þ lð Þ2
1 � bK

d2 þ lð Þ cþ d1 þ lð Þ

� �
;

U00 Ið Þ ¼ � bK
d2 þ lð Þ � cþ d1 þ lð Þ

� �2

� cþ d1 þ lð Þ2
1 � bK

d2 þ lð Þ cþ d1 þ lð Þ

� �
;

d2U

dt2
� � bK

d2 þ lð Þ � cþ d1 þ lð Þ
� �2

� cþ d1 þ lð Þ2
1 � R0ð Þ;

d2U
dt2

� 0, if R0\1. Hence, at C1, the system is

globally asymptotically stable.

Theorem 8 (Global stability at C2Þ The system (1) at

C2 ¼ S�; I�;V�;R�ð Þ is globally asymptotically

stable if R0 [ 1.

Proof Consider

Z 00 ¼ d
dt

S�S�

S

� 	
dS
dt

�
þ I�I�

I

� 	
dI
dt þ V�V�

V

� 	
dV
dt þ R�R�

R

� 	
dR
dt �,

Z 00 ¼ S�

S2

dS

dt

� �2

þ S� S�

s

� �
d2S

dt2

þ I�

I2

dI

dt

� �2

þ I � I�

I

� �
d2I

dt2

þ V�

V2

dV

dt

� �2

þ V � V�

V

� �
d2V

dt2

þ R�

R2

dR

dt

� �2

þ R� R�

R

� �
d2R

dt2
;

Here, d2S
dt2

¼ � bS
1þaI � K d2ð

þlÞ þ bSI
1þaI d2 þ lð Þ þ d2 þ lð Þ2S;,

d2I

dt2
¼ bS

1 þ aI
� cþ d1 þ lð Þ bSI

1 þ aI
þ cþ d1 þ lð Þ2I;

d2V

dt2
¼ d2 K� bSI

1 þ aI
� d2 þ lð ÞS

� �

þ d1

bSI
1 þ aI

� cþ d1 þ lð ÞI
� �

� d2 rþ lð ÞSþ d1I rþ lð Þ � rþ lð Þ2V
� �

;

Table 1 Number of cases with different aspects reported in

August 2021 [22]

Date Confirmed

cases

Active

cases

Death Recovered

1-Aug 4858 3457 40 1361

2-Aug 3582 2160 67 1355

3-Aug 4722 3222 46 1454

4-Aug 5661 1186 60 6787

5-Aug 4745 2583 67 2095

6-Aug 4720 155 95 4780

7-Aug 4455 2239 68 2148

8-Aug 4040 1222 53 2765

9-Aug 3884 1129 86 2669

10-Aug 4856 250 81 4525

11-Aug 4934 1456 102 3376

12-Aug 4619 603 79 3937

13-Aug 4786 370 73 4343

14-Aug 3711 603 67 3041

15-Aug 3669 1379 72 2218

16-Aug 3221 1165 95 4291

17-Aug 3974 786 66 3122

18-Aug 4373 1322 74 2977

19-Aug 3239 142 70 3027

20-Aug 3084 629 65 3648

21-Aug 3842 290 75 3477

22-Aug 3772 585 80 3107

23-Aug 4075 1127 91 2857

24-Aug 4199 158 126 3915

25-Aug 4467 954 100 3418

26-Aug 4056 726 95 3235

27-Aug 4191 223 120 3848

28-Aug 3909 397 69 3443

29-Aug 3800 186 66 3548
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d2R

dt2
¼ c

bSI
1 þ aI

� cþ d1 þ lð ÞI
� �

þ d d2Sþ d1I � rþ lð ÞVð Þ
� l cI þ dV � lRð Þ;

d2Z

dt2
¼ S�

S2
K� bSI

1 þ aI
� d2 þ lð ÞS

� �2

þ 1 � S�

S

� �
� bS

1 þ aI
� K d2 þ lð Þ þ bSI

1 þ aI
d2 þ lð Þ þ d2 þ lð Þ2S

� �

þ I�

I2

bSI
1 þ aI

� cþ d1 þ lð ÞI
� �

2 þ 1 � I�

I

� �
bS

1 þ aI
� cþ d1 þ lð Þ bSI

1 þ aI
þ cþ d1 þ lð Þ2I

� �

þ V�

V2
d2Sþ d1I � rþ lð ÞVð Þ2

þ 1 � V�

V

� �
d2 K� bSI

1 þ aI
� d2 þ lð ÞS

� ��

þd1

bSI
1 þ aI

� cþ d1 þ lð ÞI
� �

� d2 rþ lð ÞSþ d1I rþ lð Þ � rþ lð Þ2V
� ��

þ R�

R2
cI þ dV � lRð Þ2þ 1 � R�

R

� �
c

bSI
1 þ aI

� cþ d1 þ lð ÞI
� ��

þ d d2Sþ d1I � rþ lð ÞVð Þ � l cI þ dV � lRð ÞÞ:

For simplicity, we choose d2Z
dt2

¼ W1 �W2, where:

W2 ¼ 2KbSI
1 þ aI

þ 2K d2 þ lð ÞSþ bS
1 þ aI

þ K d2 þ lð Þ

þ S�

S

bSI
1 þ aI

d2 þ lð Þ þ d2 þ lð Þ2S

� �

þ I�

I2

2bSI
1 þ aI

� �
cþ d1 þ lð ÞI þ cþ d1 þ lð Þ

bSI
1 þ aI

þ I�

I

bS
1 þ aI

þ cþ d1 þ lð Þ2I

� �

þ 2
V�

V2
d2Sþ d1Ið Þ rþ lð ÞV

þ d2

bSI
1 þ aI

þ d2 þ lð ÞS
� �

þ d1 cþ d1 þ lð ÞIð Þ þ rþ lð Þ2V

þ V�

V
d2Kþ d1

bSI
1 þ aI

þ d1I rþ lð Þ
� �

þ 2R�

R
l cI þ dVð Þ þ cþ d1 þ lð ÞI

þ rþ lð ÞV þ l cI þ dVð Þ

þ R�

R
c

bSI
1 þ aI

� �
þ d d2Sþ d1Ið Þ þ l cI þ dVð Þ

� �
:

W1 ¼ S�

S2
K2 þ bSI

1 þ aI

� �2

þ d2 þ lð Þ2S2 þ 2bSI d2 þ lð ÞS
1 þ aI

 !
þ bSI

1 þ aI
d2 þ lð Þ þ d2 þ lð Þ2S

þ S�

S

bS
1 þ aI

K d2 þ lð Þ
� �

þ I�

I2

bSI
1 þ aI

� �2

þ cþ d1 þ lð ÞIð Þ2

 !
þ bS

1 þ aI
þ cþ d1 þ lð Þ2I

þ I�

I
cþ d1 þ lð Þ bSI

1 þ aI

� �
þ V�

V2
d2Sþ d1Ið Þ2þ rþ lð ÞVð Þ2

� �
þ d2Kþ d1

bSI
1 þ aI

þ d1I rþ lð Þ
� �

þ V�

V
d2

bSI
1 þ aI

þ d2 þ lð ÞS
� �

þ d1 cþ d1 þ lð ÞIð Þ þ rþ lð Þ2V

� �
þ R�

R2
cI þ dVð Þ2þ lRð Þ2

� �
cI þ dV � lRð Þ2

þ c
bSI

1 þ aI

� �
þ d d2Sþ d1Ið Þ þ l cI þ dVð Þ þ R�

R
cþ d1 þ lð ÞI þ rþ lð ÞV þ l cI þ dVð Þð Þ;
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It can be seen that

W1 [W2;
d2Z

dt2
[ 0;W1\W2;

d2Z

dt2
\0;W1 ¼ W2;

d2Z

dt2

¼ 0:

3 Parameter estimations

For the realistic analysis and to predict the peak of the

third strain of coronavirus in Pakistan, we need to use

the real cases reported from August 01, 2021, till

August 29, 2021, which is taken from the health

ministry of Pakistan (www. Covid19. gov. pk) and

presented in Table 1.

Before we parametrize the system (1), we need to

calculate the fundamental values of the parameters,

such as the population’s birth rate and death rate.

According to the world meter info, the total population

of Pakistan is N 0ð Þ ¼ 220,000,000 in 2021, while the

birth rate of susceptible humans represented by K, and

the death rate defined by l are shown to be K ’ 8903

per day and l ¼ 1=ð67:7 � 365Þ, with the number

lav ¼ 1
67:7 as the average life span in Pakistan [24].

Furthermore, the values of the remaining parameters

of the system (1) are presented in Table 2. Using the

least-square curve fitting technique, we show the

desired fitting in Fig. 2. The estimated value of the

reproduction number is R0 ¼ 1:3333. Hence, the

desired values of the transmission rates are instru-

mental in studying the system (1) graphically.

3.1 Numerical results

We consider the system (1) with newly reported

coronavirus cases in Pakistan to obtain the numerical

results. Time is defined in days, and parameters values

presented in Table 2 are fitted using the nonlinear

least-square curve technique. The initial conditions

Table 2 Estimated values

Symbols Value/per day Source

K l� Nð0Þ Estimated

l 1
67:7�365

[23]

c 0.5000 Fitted

b 0.4000 Fitted

a 0.00465 Fitted

d 0.5038 Fitted

d1 0.1000 Fitted

d2 5.32978 Fitted

r C 0 Fitted
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Fig. 2 Reported cases from

August 01, 2021, to August

29, 2021, versus model fit
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Fig. 3 Model prediction to determine the peak of active cases
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Fig. 4 Regular residue of active cases from August 01, 2021, to August 29, 2021
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Fig. 5 Frequency of confirmed cases from August 01, 2021, to August 29, 2021
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Fig. 6 Frequency of deaths from August 01, 2021, to August 29, 2021
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Fig. 7 Frequency of recovered cases from August 01, 2021, to August 29, 2021
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Fig. 8 Frequency of active cases from August 01, 2021, to August 29, 2021
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Fig. 9 Percentage of confirmed cases in the pie chart

Fig. 10 Impact of

vaccination on active cases
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used in the graphical results are S 0ð Þ ¼
2100000000; I 0ð Þ ¼ 9700000;

V 0ð Þ ¼ 300000;R 0ð Þ ¼ 0:

Figure 3 depicts the prediction to determine the

peak of active cases. Figure 4 illustrates the regular

residue of active cases. Figures 5, 6, 7, 8, and 9 outline

the frequency of confirmed cases, deaths, recovered

active cases, and percentage of the confirmed case in

the pie chart. Figure 10 shows that systematic uses of

vaccination may control the increase in the strain of

coronavirus. On the other hand, Fig. 11 indicates that

the crowding effect decreases the impact of vaccina-

tion on the population.

3.2 Nonstandard finite difference method

This section aims to provide a nonstandard finite

difference discretization of the mathematical model

(1). To this effect, we divide the interval [0, L] into

M [ N subintervals, respectively, and step sizes

h = L/M. The approximate solutions S; I;V ; andR of

(1) will be denoted as Sn; In;Vn; andRn, respectively,

for each n ¼ 0; 1; . . .;N: Under the rules, the dis-

cretization of a system (1) is presented in [43]. We

have

Snþ1 ¼ Sn þ hK

1 þ h bIn

1þaIn þ h d2 þ lð Þ
; ð17Þ

Inþ1 ¼
In þ h bSnIn

1þaIn

1 þ h cþ d1 þ lð Þ ; ð18Þ

Vnþ1 ¼ Vn þ hd2S
n þ hd1I

n

1 þ h rþ lð Þ ; ð19Þ

Rnþ1 ¼ Rn þ hcIn þ hrVn

1 þ hl
; ð20Þ

The simulation of the system (17)–(20) is done by

using objective data estimation. It reveals the beauty

of this method which is routed for long-term behav-

ioral analysis of the model. Also, the nonstandard

finite difference method commits the model’s dynam-

ical properties like positivity, boundedness, consis-

tency, and stability, as shown in Fig. 12.

4 Concluding remarks

A mathematical model has been developed to study

the third strain of coronavirus in Pakistan. The

infected cases were taken from August 01, 2021, till

August 29, 2021. The model is asymptotically

Fig. 11 Impact of crowding

effect on active cases
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stable in the sense of local (if R0\1Þ and global (if

R0 [ 1Þ at both equilibria. Moreover, we determine

the basic reproduction number, R0 using the reported

active cases during the stipulated time. The least-

square curve fitting method is used to obtain the

realistic parameters and the numerical results graph-

ically. The effect of crowding on the dynamics of

coronavirus is also shown. In the same way, due to the

development in vaccination programs worldwide, it is

one of the significant measures taken to overcome the

menace of the new strain, and its efficiency is shown

graphically using the developed model. Furthermore,

we analyzed the graphical results and found that the

increase in coronavirus cases of the third strain can

effectively be controlled if the SOPs designed by the

World Health Organization (WHO) are followed. We

also observed that the active cases could be reduced in

Pakistan as shown by the results from our model.

Knowing the peak of the third strain is vital for any

country and determines the maximum active cases on

a particular day. These results can be helpful for

planning and valuable to the Ministry of Health

(MOH) and the decision-making authority: National

Command and Operation Center (NCOC) in Pakistan.

This type of analysis can be applied to data from

neighboring countries such as India, Iran, and

Bangladesh.
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