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Abstract We present the results of the analytical as
well as numerical study of the stationary and nonsta-
tionary dynamics of the sine-lattice. The latter is the
discrete constitutive model used in various fields of
physics, in particular, for the description of flexible
polymers, quasi-one-dimensional spin chains, biopoly-
mers, etc. To analyze the sine-lattice dynamics, we
introduce the complex functions that allow us to deter-
mine the nonlinear normalmodes as the stationary solu-
tions to the equations in the wide range of the oscil-
lation amplitudes and the wavenumbers. We present
the dispersion relations in the analytical form. Anal-
ysis of the slow nonstationary processes allows us to
determine the conditions of energy localization in the
chain. We observe a good agreement between the ana-
lytical and numerical values of the localization thresh-
olds for the chains of different lengths. In the long-
wavelength approximation, the sine-lattice is equiva-
lent to the Frenkel–Kontorova model. We demonstrate
in the continuum limit that the equation is reduced to
the nonlinear Schrödinger equation instead of the well-
known sine-Gordon equation.We reveal the conditions
of the existence of a breather-like solution and reduce
the analytical representation for the small-amplitude
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approximation. We consider nonstationary dynamics
of the forced oscillations for the undamped system
in terms of the limiting phase trajectory; its bifurca-
tions determine the change of the oscillatory regimes.
We discuss the effect of damping on the slow system
dynamics.We also present the generalized equation for
the stationary amplitude of the forced oscillations in the
presence of the damping.
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1 Introduction

Finite periodicmotion reflects the functionality ofmost
physical, mechanical, biological, and other natural pro-
cesses. A pendulum is the most commonly known
object for demonstratingperiodicmotion (oscillations).
For decades, starting from the most straightforward
image of the home clock and based on the notion of
the elementarymathematical pendulum, this model has
been utilized by researchers in various fields of science.
The pendulumhelps illuminate the fundamental laws of
linear and nonlinear dynamics and supports the devel-
opment of models of various mechanical, physical, and
biological phenomena. Modern interest in pendulum
dynamics is associated with micro- and nanoscopic
approaches to the plastic deformation of solids (the
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Frenkel–Kontorovamodel), the dynamics of Josephson
junction arrays, the rotation mobility of flexible poly-
meric chains (in particular, the dynamics of DNA), and
many others (for completeness, see books [3,18,21,30]
and review papers [10,16]). Since the 1960s, when
the mechanical realization of the system of coupled
pendula was developed by A. Scott [20], many micro-
scopic processes have achieved macroscopic visualiza-
tion, and their features have facilitated the acquisition
of experimental evidence.

The model allowed to join the micro- and macro
scale phenomena. The latter are often realized in var-
ious mechanisms, and the pendulum-like behavior is
fundamental for the functionality of multiple machines
and devices. Moreover, in the realization of its contin-
uum via the sine-Gordon equation, the pendulum is one
of themost popular nonlinearwave-supportingmodels.
An essential property of this equation from a mathe-
matical viewpoint is its complete integrability, which
was studied in detail in the 1970s. This feature facil-
itated the development of the exact kink and breather
(envelope solitons) solutions as well as their multiple
analogs.

The study and discussion of a pendulum-like system
has been the subject of a large number of works; never-
theless, a considerable number of intriguing questions
remain. In particular, the discrete model of coupled
pendulums does not possess complete integrability, and
the successful development of an appropriate approx-
imate solution under different conditions (the effect
of boundary or initial conditions, the influence of the
external field, etc.) depends on the approach selected.
Nevertheless, discrete systems are the most realizable
in both micro- and macroscopic worlds, and specific
phenomena (like discrete breathers) exhibit discrete-
ness.

In this paper, we develop a self-consistent asymp-
totic approach to examine the essentially nonlinear
dynamics of the one-dimensional system of coupled
pendulums, which is known as the sine-lattice. This
model was proposed in the 1980s by Takeno and
Homma [26,27] to describe spin systems and the
dynamics of flexible polymers. The kink and discrete
breather solutions have been studied in [27–29], while
nonlinear normalmodes (NNMs) have been considered
in the small-amplitude quasi-linear approximation. In
the current paper, we address this gap in research and
analyze the change in oscillatory regimes from the

energy exchange between different parts of the system
to processes of energy localization.

The motivation for our research is as follows: (1)
having the same continuum (long-wavelength) limit
as the Frenkel–Kontorova model (sine-Gordon equa-
tion) the dynamics of sine-lattice can significantly dif-
fer from it for moderately long and short wavelengths;
therefore, analysis of the specific behavior of the con-
sidered model is essential; (2) to date, no research has
been made on an oscillating finite sine-lattice in both
stationary and nonstationary cases. A new approach to
nonstationary dynamics of finite-dimensional oscilla-
tory chains [13] facilitates a description of the Frenkel–
Kontorova model and sine-lattice for any finite number
of degrees of freedom. Preliminary results relating to
the latter are restricted mainly by the numerical data
[24]. We have already presented results on the anal-
ysis of the sine-lattice. We previously considered the
spectrum and the effects of interaction between modes
at the edges of the spectrum [22]. However, the work
remained incomplete, as the dependence of the spec-
trum on the amplitudes of the oscillations was not con-
sidered. This paper therefore completes a dynamical
analysis of the sine-lattice model. We summarize all
our results on the asymptotic analysis of the sine-lattice
and demonstrate how this approach overcomes the dif-
ficulty caused by admitting large amplitudes of oscil-
lation in the case of primary intermodal resonance. We
also consider the forced dynamics of the sine-lattice to
present a complete overview of its response.

The paper is organized as follows. Section 2 presents
the formulation of the model and the core princi-
ples of the asymptotic analysis; we introduce the slow
timescale and the asymptotic description of the reso-
nant dynamics. The NNMs of the system are described
in Sect. 2.1. Nonstationary resonant dynamics are
addressed in Sect. 2.2 using the concept of limiting
phase trajectories (LPTs) [11,14,23]. Section 2.3 con-
cerns the long-wavelength limit of the asymptotic equa-
tions and the main results of the phase-plane analysis.
Section 2.3 presents the long-wavelength limit of the
asymptotic equations and themain results of the phase-
plane analysis. The Schrödinger type nonlinear equa-
tion is obtained as the result of the transition to the infi-
nite system. Analysis of the phase trajectories indicates
that the amplitude of the breather solution increases
when it moves away from the spectrums lowest fre-
quency. In Sect. 3, we analyze forced oscillations and
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the effect of viscous damping. Concluding remarks are
presented in Sect. 4.

2 The model and the main asymptotic
approximation

The Hamilton function of the one-dimensional system
of coupled pendula (sine-lattice) is expressed as fol-
lows:

H0 =
N∑

j=1

[
1

2

(
du j

dt

)
2 + β

(
1 − cos

(
u j − u j+1

))

+σ
(
1 − cos

(
u j

)) ]
(1)

where u j = 0 ( j = 1, . . . , N ) for the equilibrium state.
We retain the parameter σ for the external field forming
the onsite potential and parameter β for the potential
describing the interaction between neighboring pendu-
lums. The equations of motion, corresponding to the
Hamilton function (1), can be written as follows:

d2u j

dt2
− β

(
sin

(
u j+1 − u j

) − sin
(
u j − u j−1

))

+σ sin
(
u j

) = 0. (2)

Our objective is to study the stationary and nonsta-
tionary dynamics (both extended and localized solu-
tions) of the discrete finite system (2) in the case of 1:1
intermodal resonance. To do this, we introduce com-
plex variables

Ψ j = 1√
2

(√
ωu j + i√

ω

du j

dt

)
, (3)

where ω is a still undefined resonance frequency. The
inverse transformation is formulated as follows

u j = 1√
2ω

(
Ψ j + Ψ ∗

j

)
,

du j

dt
= −i

√
ω

2

(
Ψ j − Ψ ∗

j

)
,

(4)

where the asterisk denotes the complex conjugation.
Substituting expressions (4) into Eq. (2) and expanding
the trigonometric functions into power series, yields:

i
dΨ j

dt
− ω

2

(
Ψ j − Ψ ∗

j

)
+ 1√

2ω

∑ (−1)k

(2k + 1)!
×

(
1√
2ω

)2k+1 (
β
( (

Ψ j+1 − Ψ j + cc
) 2k+1

− (
Ψ j − Ψ j−1 + cc

)2k+1
)

−σ
(
Ψ j + Ψ ∗

j

)2k+1 )
= 0, (5)

where c.c. replaces the complex conjugated terms.
Equation (5) describes the full dynamics of the

system under consideration, but they are not adapted
for the analysis in the present form. However, they
(5) allow the study of single-frequency steady-state
solutions (NNMs) as well as their interactions within
the framework of a so-called semi-inverse method
[12,15,31]. The semi-inverse method for analyzing
complex nonlinear systems was used to investigate
dynamics of the discrete nonlinear lattices [15,24],
the forced oscillations of the pendulum [15], and, in
a slightly simplified form was applied to study the car-
bon nanotube oscillations [25]. Thismethod is based on
a preliminary assumption regarding closeness to reso-
nance butwith further justification.An essential feature
ofmost dynamical problems is that the small parameter
required for the separation of slow and fast timescales
cannot be easily derived from the initial formulation
of the equations. In such cases, this parameter can be
revealedwhen deriving the solution to the problem.The
formulation of the stationary problemwithin the frame-
work of the semi-inverse method is somewhat simi-
lar to the harmonic balance method [5,9,17,19]. How-
ever, the presentation in terms of the complex variables,
means it simpler and clearer. An additional advantage
of the developed procedure, as the representation in
complex variables admits analogies to the quantum sys-
tems. In several cases, it may be useful for the compari-
sonof classical andquantummechanical problems.The
main results of the asymptotic procedure are presented
in [24]. However, for clarity, we present the extended
version of the asymptotic method and the equations of
the main approximation.

We assume the motion is close to resonance with
frequency ω. To evolve the resonance motion in the
equations, we assume the combination of all terms in
the brackets is small. This closeness to resonance is
denoted by small parameter ε, whileμ is a bookkeeping
parameter (εμ = 1).

i
d

dt
Ψ j − ωΨ j + εμ

[
ω

2

(
Ψ j + Ψ ∗

j

)

+ 1√
2ω

∑ (−1)k

(2k + 1)!
(

1√
2ω

)2k+1

(
β

((
Ψ j+1 − Ψ j + cc

) 2k+1 − (
Ψ j − Ψ j−1 + cc

)2k+1
)

−σ
(
Ψ j + Ψ ∗

j

)2k+1
)]

= 0. (6)
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Using a standard two-scale procedure, we separate
fast τ0 = t and slow τ1 = εt timescales. We then write
Ψ j in the form

Ψ j = (
ψ0, j (τ0, τ1) + εψ1, j (τ0, τ1)

)
e−iωτ0 (7)

Taking into account d
dt = ∂

∂τ0
+ ε ∂

∂τ1
we perform

a standard multi-scale expansion (see “Appendix A”).
The resulting equations for leading order functionsψ j,0

are written as follows:

i
∂ψ j

∂τ1
+ μωψ j

2
+ μ√

2ω

[
β

(
J1

(√
2

ω
|ψ j+1 − ψ j |

)

ψ j+1 − ψ j

|ψ j+1 − ψ j | − J1

(√
2

ω
|ψ j − ψ j−1|

)

ψ j − ψ j−1

|ψ j − ψ j−1|
)

− σ J1

(√
2

ω
|ψ j |

)
ψ j

|ψ j |
]

= 0, (8)

where J1 is the Bessel function of the first kind, and
index 0 has been omitted for brevity. The equations
obtained are analogous to those obtained for the system
of coupled pendulumswith few degrees of freedom [7].
We discussed the applicability of the system reduction
more thoroughly in our earlier works.

2.1 Nonlinear normal modes: stationary dynamics

In the following sections, we present the properties
associated with the stationary dynamics of the sine-
lattice. The results have been partially discussed before
in [22]. For clarity, we present the main features of the

stationary solutions and corresponding spectra of the
system. It is a simple task to demonstrate that the sim-
ple plane wave ψ j = χκeiκ j with a wavenumber κ is
the exact solution of Eq. (8) if the parameter ω (the
NNM frequency) satisfies the following relation:

ω

2
χκ − 1√

2ω

(
2β J1

(
2

√
2

ω
χκ sin

κ

2

)
sin

κ

2

+σ J1

(√
2

ω
χκ

))
= 0. (9)

Equation (9) determines the NNM frequency as a
function of the absolute value of the complex variable
|ψ j | = χκ and the wavenumber κ; it is sufficiently
intricate. However, we can greatly simplify the repre-
sentation using the relation between the χκ and oscilla-
tion amplitude Q, which follows from expression (3):

|ψ j | = χκ =
√

ω

2
Q (10)

Using Eq. (9) and the above relation, we can write
the dispersion relation as follows:

ω2 = 2

Q

(
2β J1

(
2Q sin

κ

2

)
sin

κ

2
+ σ J1 (Q)

)
. (11)

It is important to stress that no assumptions con-
cerning the values of the oscillation amplitude Q and
the wavenumber κ have been made in order to obtain
expression (11). It is clear that the long-wavelength
(κ � 1) and small-amplitude (Q � 1) limit of rela-
tion (11) should correspond to the dispersion relation of
the linear problem: ω =

√
σ + 4β sin2 κ/2. Figure 1a

(a) (b)

Fig. 1 a Dispersion relations (11) for the sine-lattice at differ-
ent oscillation amplitudes (the values are shown on the right of
the panel). b Dependence of the eigenvalues of the modes with
different wavenumbers κ (shown on the right of panel) on the

amplitude Q of the modes. The parameters of the lattice are:
β = 1.0, σ = 1.0. The dashed curves denote the corresponding
values for the Frenkel–Kontorova model. (Color figure online)
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presents the dispersion relation (11) for different val-
ues of the oscillation amplitudes, while Fig. 1b demon-
strates the amplitude dependence of the eigenvalues
with different wavenumbers κ .

The dispersion relations presented in Fig. 1 are
in good agreement with the known relations for the
Frenkel–Kontorova model and for the chain with lin-
ear potentials of interaction within the small-amplitude
limit. However, if the oscillation amplitudes are large
enough, the difference in our results from studies
of the above-mentioned models becomes extremely
marked.

Firstly, the gap frequencyω0 = ω(κ = 0) decreases
as the oscillation amplitude increases. This is because
the uniform oscillations of the chain are analogous
to the oscillations of the pendulum, the frequency of
which tends to zero as Q → π . We use the comparison
of the gap frequency ω0 = √

2σ J1(Q)/Q with exact
value π

√
σ/2K

(
sin2 (Q/2)

)
(K is a complete elliptic

integral of the first kind) for the frequency of the pen-
dulum oscillations as a criterion for the validity of our
approach and the boundaries of its applicability. The
estimation of the gap frequency indicates that it is in
good agreement with the exact value up to amplitude
Q ≈ 7π/10 (the discrepancies do not exceed 10%);
however, the value of ω0 is not equal to zero at Q = π .
The observed divergence becomes clear ifwe pay atten-
tion to the fact that the single-frequency solution (7) is
inadequate near the separatrix in the phase space (see
below), which passes through Q = π .

The second essential feature of the dispersion rela-
tion (11) is that the frequency of the antiphase oscil-
lations (π -mode, u j+1 = −u j ) disappears for large
oscillation amplitude Q. This results in the appearance
of a bandgap in the spectrum. The source of such a
behavior is that the force between the nearest pendu-
lums becomes repulsivewhen the difference in the rota-
tion angles exceeds π . This can lead to the onset of
rotation mobility in the conservative system similar to
(1). However, the presence of a weak dissipation may
be a reason for the stabilization of the oscillations. The
value of the amplitude of antiphase oscillations with
frequency ω(κ = π) = 0 can be estimated as the root
of the equation:

2β J1(2Q) + σ J1(Q) = 0

Determining the amplitude dependence of the NNM
frequencies is therefore of great interest. These demon-
strate the unexpected phenomenon of frequency inver-

sion when the frequency of the NNM with the high-
est wavenumber becomes less than that of the NNM
with the lowest wavenumber, provided the amplitude
becomes large enough (Fig. 1b). This phenomenon can
result in the appearance of multiple additional reso-
nances.

2.2 Nonstationary dynamics

The steady-state solutions discussed above are asso-
ciated with the stationary regimes of the oscillations
when the parameters of the latter remain unchanged.
In linear dynamical systems, the nonstationary oscilla-
tions can be represented as a combination of the normal
modes due to the superposition principle. Nonlinear
systems do conform to this principle, but if the frequen-
cies of the NNMs differ significantly from one another,
we can assume that the modes interact weakly (exclud-
ing cases of multiple resonances). However, if the fre-
quencies of the NNMs become closer, we can expect
additional interactions between them, which results in
the special nonstationary dynamics of the system. This
section presents an analysis of the nonstationary reso-
nance dynamics of the system. We consider the low-
frequency edge of the spectrum (i.e., the modes with
the smallest wavenumbers) because its crowding in this
range leads to effective resonance of the NNMs, even
for short chains. Under suitable resonance conditions,
the evolution of the oscillations becomes non-trivial
and depends on their amplitude. In the following sec-
tion, we explain that the processes of energy migra-
tion along the chain undergo significant transforma-
tions when the excitation of the system changes. As
the chain length increases, resonant interactions can
also be expected for oscillations with large amplitudes
and very different wavenumbers (see, for example, the
dispersion relation for oscillations with the amplitude
Q = π/2 in Fig. 1b). However, the most intriguing are
the combinations of neighboring NNMs, because they
result in the essentially non-uniform distribution of the
energy along the chain [13,24]. It has been shown that
the description of the resonant dynamics of the chain
in terms of the normal modes is ineffective [13] in the
case of strong resonance characterized by instability of
theNNM. Instead of theNNMs,we introduce newvari-
ables that describe the energy distribution rather than
the particles or NNM motion.
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The energy of the nonlinear normal mode with
wavenumber κ can be written as follows:

Hr =
N∑

j=1

[
−ω

2
|ψ j |2 + β

(
1 − J0

(√
2

ω
|ψ j+1 − ψ j |

))

+σ

(
1 − J0

(√
2

ω
|ψ j |

))]
, (12)

where frequency ω satisfies Eq. (11), and ψ j is the
plane wave with constant amplitude χk (here J0 is the
Bessel function of the zeroth kind).

The equations of motion (8) can be obtained from
expression (12) as follows:

i
∂ψ j

∂τ
= ∂Hr

∂ψ∗
j
. (13)

It is a simple process to check whether (besides
energy invariant (12)) Eq. (8) possesses the additional
integral ofmotion,which characterizes the total level of
the excitation of the system. This quantity is analogous
to the occupation number in the quantum system:

X =
∑

j

|ψ j |2. (14)

As demonstrated in the following section, this inte-
gral allows simplification of the analysis.

2.3 Long-wavelength limit

Near the long-wavelength edge of the spectrum, the
frequencies of the NNMs with small wavenumber κ

can be approximately represented as:

ω ∼ ω0

(
1 + βκ2

2ω2
0

)
, (15)

where ω0 = √
2σ J1(Q)/Q is the gap frequency

at amplitude Q. If the chain is large enough, the
wavenumber of the NNM nearest to the gap mode
(κ = 2π/N ) is small, and these NNMs are under reso-
nant conditions. The combination of these modes leads
to the non-uniform distribution of energy along the
chain. Therefore, as demonstrated earlier, the descrip-
tion of the resonant dynamics of the chain in terms
of the normal modes is ineffective [13]. Instead of the
NNMs, we introduce new variables that describe the
energy distribution rather than the pendulum or NNM
motion. Each corresponds to a domain of the chain
inside which the pendulums move coherently, while

their behavior in the various domains essentially dif-
fers. Therefore, these new variables have been called
“the coordinates of the coherent domains,” and the
interaction between them can be described by LPTs
(see below for details) [11,13]. Therefore, we define
the coordinates of the coherent domains as the projec-
tion of the particles’ displacements ψ j on the afore-
mentioned combination of NNMs:

χ1(τ ) = 1√
2N

∑

j

ψ j (τ )
(
1 + √

2 cos
(
κ j + π

4

))

χ2(τ ) = 1√
2N

∑

j

ψ j (τ )
(
1 − √

2 cos
(
κ j + π

4

))
,

(16)

where κ = 2π
N . It can be demonstrated that for the

limiting case N = 2, the domain coordinates are trans-
formed to the coordinates of the particles. The inverse
transformation to the functionψ j is defined as follows:

ψ j (τ ) = 1√
2N

((χ1(τ ) + χ2(τ ))

+√
2 (!χ1(τ ) − χ2(τ )) cos

(
κ j + π

4

))
. (17)

(Phase shift π/4 is introduced in order to locate the
domains in the left and right parts of the chain. Here
and below, we apply periodic boundary conditions.)

Transformation (16) retains both integrals of the
motion. In particular, the integral of occupation num-
ber takes the following form (see “Appendix B” for
details):

X = |χ1|2 + |χ2|2. (18)

This enables us to study the nonstationary dynamics
more effectively.

Taking into account integral (18), it is possible to
estimate the energy distribution for different values of
χ1 and χ2. Assuming that χ1 or χ2 is equal to

√
X at

certain time-point, we obtain the concentration of the
energy in the left or right part (domain) of the chain,
while the choice χ1 = χ2 = ±√

X/2 leads to the uni-
form or periodic energy distribution. Figure 2 presents
the energy distribution along the chain for different
magnitudes of χ j .

Taking into account relation (18), the domain coor-
dinates can be written in the following polar represen-
tation:

χ1 = √
X cos θeiδ1; χ2 = √

X sin θeiδ2 . (19)

Parameter X determines the excitation of the sys-
tem as a whole, while the value θ demonstrates the dif-
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Fig. 2 Energy distribution along the chain with 32 pendulums
for different values of domain coordinates: solid black and red
lines correspond to domains with {χ1 = √

X , χ2 = 0} and
{χ1 = 0, χ2 = √

X}, respectively. Blue and green dashed curves
denote the modal energy distribution with {χ1 = √

X/2, χ2 =
±√

X/2}. System parameters: σ = 1, β = 1 and Q = π/5.
(Color figure online)

ference in the domain occupations. θ equal to 0 corre-
sponds to the concentration of all energy in one domain,
while θ equal to π/2 denotes all the energy placed in
another domain.

Substituting expressions (17), and (19) into equa-
tions of motion (8) and the Hamilton function (12), we
obtain equations of motion and energy of the system
as a function of the relative amplitude θ and the phase
difference Δ = δ1 − δ2.

Hl = −ω2
0Q

2

4

+
N∑

j=1

[β (1 − J0 (q1)) + σ (1 − J0 (q2))], (20)

where

q1 = 2Q
√
1 − cos(Δ) sin(2θ) sin

(κ

2

)
sin

(
( j + 1

2
)κ + π

4

)
,

q2 = Q

√
1 + 1

2
(1 − cos(Δ) sin(2θ)) sin(2κ j) + √

2 cos(2θ) sin
(
κ j − π

4

)
.

Quantities cos 2θ and Δ form the set of canonical
variables for Hamilton function (20), and the equations
ofmotion can be obtained using the following relations:

∂ cos 2θ

∂τ
= −∂Hr

∂Δ
,

∂Δ

∂τ
= ∂Hr

∂ cos 2θ
. (21)

The system is adequately represented on the phase
plane (Δ, θ ). The phase portraits of the system (20) at
various values of occupation number X are presented
in Fig. 3.

We now consider more precisely the structure of the
phase portrait and its evolution while the excitation
level grows. At a small value of occupation number
X (Fig. 3a) two immobile points at {θ = π/4, Δ = 0}
and {θ = π/4, Δ = π} correspond to the stable steady
states—the NNMs with wavenumbers κ = 0 and
κ = 2π/N , respectively. The realization of everymode
leads to equipartition of the excitation energy between
two coherent domains χ1 and χ2. The “domain states”
with the energy, predominantly concentrated in one of
the domains, are associated with θ = 0 or θ = π/2.
These are not stationary states but rather dynamical
ones. The migration of the energy from one domain
to another occurs when the phase trajectory follows
any trajectory surrounding the stationary states. How-
ever, complete energy transfer takes place if we pro-
ceed along the trajectory,which connects the stateswith
θ = 0 and θ = π . This trajectory is called the limiting
phase trajectory (LPT) because it separates two sets of
the trajectories, each of which encircles one or other
stationary states. The light green dashed lines depict
the LPTs in Fig. 3. Variables θ(τ ) and Δ(τ) demon-
strate non-smooth behavior when following the LPT.
This is because the equation contains singularities in
the intervals Δ ∈ (−π/2, π/2) and Δ ∈ (π/2, 3π/2),
when θ = 0 or θ = π/2. Therefore, the phase variable
Δ undergoes a jump with a value of π if variable θ

reaches magnitude 0 or π/2. Examples of such behav-
ior are presented in Fig. 4.

For small occupation numbers, the NNMs interact
weakly; and the time taken for energy to migrate from

one domain to another is determined by the difference
between frequencies of the modes (see Fig. 3a and blue
curves in Fig. 4). Similarly, the interaction occurs in
the pair of weakly coupled linear oscillators. In our
system, as excitation grows, the interaction between
NNMs increases, resulting in the instability of the zone-
bounding mode (κ = 0). In the phase portrait, the
immobile point (θ = π/4, Δ = 0) has a pitchfork
bifurcation and transforms to the saddle point. How-
ever, this does not affect the intensive energy trans-
fer if the evolution proceeds along the LPT. Further
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1826 V. V. Smirnov et al.

Fig. 3 Phase portraits of the system (20) for the sine-lattice at
different oscillation amplitudes: a Q = 0.1966, b Q = 0.23,
c Q = 0.262611, d Q = 0.28. The parameters of the lattice

are: β = 1.0, σ = 1.0, N = 64. The light blue and red curves
show the limiting phase trajectory and the separatrix, respec-
tively. (Color figure online)

Fig. 4 Evolution of
variables θ (a) and Δ (b) at
various values of X . Blue,
red, and black curves
correspond to Q = 0.15,
0.262610, and 0.2800,
respectively. System
parameters: N = 64,
σ = 1, beta = 1,
Qloc = 0.262611. (Color
figure online)
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growth of the excitation is accompanied by the enlarg-
ing of the separatrix; its different branches cross at the
unstable immobile point. The next critical value occu-
pation number is associated with the excitation level
when the separatrix reaches the boundary of the cell
- θ = 0 and θ = π/2. The correspondent phase por-
trait is presented in Fig. 3c. This indicates that at this
value of the occupation number, the separatrix and the
LPT coincide. The time evolution of variables θ and
Δ immediately prior to this moment is depicted by red
lines in Fig. 4. It is essential that the separatrix also
undergoes a heteroclinic transformation. This means
that no trajectory starting with a value of θ < π/4 and
Δ ∈ (−π/2, π/2) can reach the value of θ = π/2. In
such cases, the process of full energy transfer from one
domain to another is blocked. The phase portrait corre-
sponding to the occupation number above the second
critical threshold is depicted in Fig. 3d and the corre-
sponding time evolution of variables θ and Δ is repre-
sented in Fig. 4 by the black lines. These indicate that
the amplitude of variable θ does not exceed the value of
π/4; however, the existence of some oscillationsmeans
that partial energy exchange takes place if we proceed
along the LPT.

We now estimate the thresholds. The first bifur-
cation is associated with the instability of the zone-
bounding mode, which corresponds to the inversion
of the curvature of the energy surface at the point
{θ = π/4,Δ = 0}. This leads to the following equa-
tion:

σ J2 (Q) − 2β sin2 (π/N ) = 0. (22)

The approximate solution to this equation can be
represented as

Qinst ≈ 4π
√

β√
σN

(23)

for large N .
The second bifurcation, which results in the capture

of the energy inside one of the domains, occurs when
the energy of the system on the LPT becomes equal to
the energy of the unstable stationary state. This require-
ment can be formulated as the following equation

N (β + σ J0(Q)) =
N∑

j=1

[
β J0

(
2Q sin

( π

N

)

sin

(
2π j

N
+ π

N
+ π

4

))
+ σ J0

(
2Q sin

(
jπ

N

)

sin

((
j

N
+ 1

4

)
π

))]
. (24)

Fig. 5 The thresholds of instability (solid curve) and energy
localization (dashed curve) versus length of the chain. Red points
indicate the localization threshold, measured in the numerical
simulation of the original system (1). System parameters: σ =
1.0, β = 1.0. (Color figure online)

This equation must be solved numerically.
Figure 5 presents the numerical solutions for Eqs.

(23) and (24). Solid and dashed lines correspond to
the instability and localization thresholds, respectively.
The red dots indicate the thresholds of the energy local-
ization, which are measured during direct numerical
simulation of the original system (1). These show that
their values decrease rapidly while the length of the
chain grows.The approximate dependence isQ ∼ 1/N
for the instability and localization thresholds with1. As
the length of the chain’s length grows, the number of
resonantly interacting modes increases. In such cases,
the validity of the two-mode approximation becomes
questionable. Nevertheless, Eqs. (23–24) show good
compliance with the numerical simulation data. This
is because the instability and the localization thresh-
olds are determined by the bifurcations of the zone-
bounding mode. These result from the resonant inter-
action of thismodewith those nearest to it. FromFig. 5,
we conclude that the number of resonantly interacting
modes is a second-order effect, while the main param-
eter defining the transition is the occupation number
X , which represents the excitation of the system as a
whole.

Figure 6 presents the results of the numerical sim-
ulation of the original system with 64 pendula under
different initial conditions. Panels (a) and (c) of Fig. 6
depict the evolution of the energy distribution along the

1 It is in the contrast with the dependence, which has been
obtained in the previous paper [22]. This discrepancy is caused by
the difference in the normalizing occupation number X . There-
fore, the dependences obtained in [22] should be associated with
the amplitude of complex function ψ j rather than the amplitude
of the pendulums’ oscillations.
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Fig. 6 Evolution of the
initially excited coherent
domain (16) for the
sine-lattice at different
oscillation amplitudes.
Panels a and b depict the
energy distribution along
the chain for the initial
amplitudes Q = 0.23 and
Q = 0.26, respectively.
Panels c and d depict the
evolution of domain
coordinates χ j for the same
values of Q: black, red, and
blue lines correspond to χ1,
χ2, and occupation number
X . The parameters of the
lattice are:
β = 1.0, σ = 1.0, N = 64.
(Color figure online)

chain and the domain coordinates when the amplitude
of the initial excitation does not exceed the localization
threshold Qloc. In this simulation, the energy, which
was initially located mostly between the 50-th and 60-
th pendulums, migrates unevenly over the chain, while
the domain’s coordinates oscillate in thewhole allowed
interval. If the initial amplitude exceeds the localization
threshold, the energy is located in the initially excited
domain (see panel (b) of Fig. 6). Simultaneously, the
domain coordinates experience small oscillations near
their initial values. It is important to note that the numer-
ically measured values of the localization threshold in
the initial system are approximately 10 percent lower
than the analytically estimated values.

2.4 Continuum limit

As demonstrated by the analysis performed previously,
both instability and localization thresholds diminish
when the length of the chain increases infinitely. More-
over, the frequency gap between the lowest modes also
diminishes, and the domain variables become inade-
quate for the description of the problem. However, the
formulation of the chain dynamics in terms of the com-
plex variables ψ(x, t) does not diminish its applicabil-
ity. We now introduce the continuum field φ(x, t) as
follows:

ψ j±1(t) ≈ φ(x, t) ± ∂φ

∂x
h + 1

2

∂2φ

∂x2
h2,

where h is the lattice constant. Further, we assume the
renormalized spatial variable x/h → x . The contin-
uum limit of evolution Eq. (8) leads to a nonlinear
partial differential equation similar to the well-known
nonlinear Schrödinger equation:

i
∂φ

∂τ
+ ω

2
φ + β

2ω

∂2φ

∂x2
− σ√

2ω
J1

(√
2

ω
|φ|

)
φ

|φ| = 0

(25)

Even though Eq. (25) has a specific nonlinearity, it
can be analyzed using the framework of the standard
approach (see, for example, [21]).

φ(x, τ ) = ϕ(x, τ )eiδ(x,τ )

ϕ(x, τ ) = ϕ(x − vaτ); δ(x, τ ) = δ(x − vpτ),

(26)

where va and vp are the velocities of the amplitude and
phase of function φ.

Substituting expression (26) into Eq. (25), and sep-
arating the real and imaginary parts, we obtain

va
∂ϕ

∂x
− β

2ω

(
ϕ

∂2δ

∂x2
+ 2

∂ϕ

∂x

∂δ

∂x

)
= 0

vpϕ
∂δ

∂x
+ ω

2
ϕ − β

2ω

(
ϕ

(
∂δ

∂x

)2

− ∂2ϕ

∂x2

)
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− σ√
2ω

J1

(√
2

ω
ϕ

)
= 0, (27)

where the derivatives were represented as follows:

∂ϕ(x − vaτ)

∂τ
= −va

∂ϕ(x − vaτ)

∂x
,

∂δ(x − vpτ)

∂τ
= −vp

∂δ(x − vaτ)

∂x
.

Multiplying the first equation of (27) by ϕ(x−vaτ),
we can integrate it once:

ϕ2
(

β
∂δ

∂x
− vaω

)
= const (28)

Assuming const = 0, we determine the value
∂δ/∂x = vaω/β.

Substituting the latter into the second equation of
(25), we can multiply the resulting equation by ∂ϕ/∂x
and integrate it once. Thus, we obtain the first integral
in the form:

β

2ω

(
∂ϕ

∂x

)2

+ ω
(
β − v2a + 2vavp

)

2β
ϕ2

+σ J0

(√
2

ω
ϕ

)
= const. (29)

The localized solutions (the breathers) require const
= σ . Following the idea of analysis in [18], we repre-
sent the relation (29) in the form

1

2

(
∂ϕ

∂x

)2

+ Veff = 0, (30)

where the following notation is used:

Veff = 2ω
(
1 − (v2a − 2vavp)/β

)

β
ϕ2

+σ
4ω

β

(
J0

(√
2

ω
ϕ

)
− 1

)
. (31)

It is not unreasonable to inquire as to what range
of oscillation frequencies and velocities ω and va , vp

correspond to the localized solutions. The necessary
condition for the presence of the breather solution is
the existence of the homoclinic orbit, similar to the
nonlinear Schrödinger equation [4,6]. Thus, the natural
requirement for the existence of a localized solution is
that the steady-state (ϕ, ϕx ) = (0, 0) has to be a saddle.
Equation (30) describes the energy of the system. If
the stationary point on the phase plane corresponds to
the saddle, the curvatures of the energy surface in the
different directionsmust be of opposite signs. Thevalue

β
ω

> 0, the second derivative of the function depending
on ϕ must be negative at ϕ = 0. This condition leads
to the relation, which can be obtained from the (30):

β
ω2 − σ

ω2 < v2a − 2vavp. (32)

Thus, the well-understood requirement ω <
√

σ

arises for the static (va = vp = 0) breather. Figure 7a
depicts the domain of the admissible speeds va and vp

at different values of frequency ω.
Taking this into account, we can draw the phase

trajectories corresponding to the localized solutions
(breathers) (Fig. 7b).

The amplitude of the breather solution can be esti-
mated numerically using Eq. (29), basing on the knowl-
edge that the maximum displacement is reached when
ϕx = 0. Therefore, the breather’s amplitude is the solu-
tion of the equation:

ω
(
β − v2a + 2vavp

)

2β
ϕ2 + σ J0

(√
2

ω
ϕ

)
= σ. (33)

Figure 8 presents the comparison of the amplitude–
frequency relation, which has been obtained numeri-
cally as a solution for Eq. (33), with the exact amplitude
values (see Eq. (35)) and the small-amplitude approx-
imation (34).

For the small-amplitude approximation, the nonlin-
ear term in Eq. (29) should be expanded into series. In
such a case, the localized solution can be determined
exactly:

q(x, τ ) =
4
√

βσ + ω2
(−β + v2a − 2vavp

)

√
βσ ch

(
(x−τva)

√
βσ+ω2(−β+v2a−2vavp)

β

) .

(34)

where q = √
2/ω ϕ is the envelope of the oscillations.

This approximate solutionmust then be compared with
the exact breather solution for the sine-Gordon equa-
tion, which can be written as follows [2]:

q(x, t) = 4 arctan

⎛

⎝
√
1 − Ω2

Ω

sin(Ω �)

cosh
(√

1 − Ω2 Z
)

⎞

⎠

(35)

where Ω—breather intrinsic frequency;

� = t − vx√
1 − v2

; Z = x − vt√
1 − v2

.
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Fig. 7 a The acceptable values of the amplitude (va) and phase
(vp) speeds for localized oscillations (breathers) are under the
curves: solid black (ω = 0.99

√
σ ), red dashed (ω = 0.95

√
σ ),

and blue dot-dashed (ω = 0.9
√

σ ). b Phase trajectories cor-
responding to the static breathers with frequencies 0.9

√
σ ≤

ω ≤ √
σ . The loop size drops while the difference between the

breather frequency and the gap frequency decreases. The ampli-
tude of the breather becomes zero exactly at the gap frequency√

σ . (Color figure online)

Fig. 8 Amplitude versus frequency of the breather. The solid
curve denotes the exact value (35). Black and red dashed curves
correspond to Eq. (29) and ϕ4 approximation (34). (Color figure
online)

Figure 9a presents the breather envelop (34) for
different values of frequency ω. The envelop func-
tion of the exact solution (35) is also represented. The
small-amplitude approximation provides an apprecia-
ble accuracy for the frequencies close to the gap fre-
quency.

Figure 9b presents the fragment of the direct numeri-
cal integration of Eq. (2)with initial conditions (34) and
the periodic boundary conditions; the form of the solu-
tion is retained after passing through the lattice three
times. Figure 9c compares the analytical (right) and
numerical (left) solutions for the traveling breather (34)
in the initial discrete system (2) with free-ends.

3 Forced oscillations and effect of viscous damping

The previous sections dealt with the conservative limit
case. However, forced oscillations with and without
damping are of great interest from variety of view-
points. In this section, we consider stationary and non-
stationary lattice dynamics under the action of the
external field and viscous damping within the frame-
work of the single-mode approximation. We therefore
rewrite equations of motion (2) as follows

d2u j

dt2
− β

(
sin

(
u j+1 − u j

) − sin
(
u j − u j−1

))

+σ sin
(
u j

) + ν
du j

dt
= F( j, t), (36)

where ν is the damping coefficient. To determine the
amplitude–frequency relation of the stationary oscilla-
tions, we will assume that external force F( j, t) can be
represented as a single-frequency oscillation:

F( j, t) = Fj cosωt .

To obtain the equations for the stationary oscilla-
tions, we use the complex functions (3), where fre-
quencyω nowmeans the frequency of the external field.
Substituting expressions (4) into Eq. (36), we obtain:

i
dΨ j

dt
− ω

2

(
Ψ j − Ψ ∗

j

)
+ 1√

2ω

∑ (−1)k

(2k + 1)!
×

(
1√
2ω

)2k+1 (
β
( (

Ψ j+1 − Ψ j + cc
) 2k+1
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Fig. 9 a Comparison of the small-amplitude ϕ4 approximation
(34) (solid lines) and exact breather solution (35) (dashed lines)
for different frequencies: ω = 0.9 (black), ω = 0.95 (red),
ω = 0.99 (blue); va = vp = 0. b Fragment of the numerical
simulation of the breather solution to Eq. (2). Direct numerical

integration with the periodic boundary conditions. c Compari-
son of the results of the direct numerical simulation of (2) (left
fragment) with analytical solution (35) evolution with time. Sys-
tem parameters: σ = 1.0, β = 1.0, ω = 0.97

√
σ , va = 0.1,

vp = 0.025. (Color figure online)

− (
Ψ j − Ψ j−1 + cc

)2k+1
)

−σ
(
Ψ j + Ψ ∗

j

)2k+1 )
+ i

ν

2

(
Ψ j − Ψ ∗

j

)

= − Fj

2
√
2ω

(
eiωt + e−iωt

)
. (37)

Following the procedure described in “AppendixA,”
for the main approximation amplitude we obtain:

i
∂ψ j

∂τ
+ ω

2
ψ j + β√

2ω

(
J1

(√
2

ω

∣∣ψ j+1 − ψ j
∣∣
)

ψ j+1 − ψ j∣∣ψ j+1 − ψ j
∣∣ − J1

(√
2

ω

∣∣ψ j − ψ j−1
∣∣
)

ψ j − ψ j−1∣∣ψ j − ψ j−1
∣∣

)
− σ√

2ω
J1

(√
2

ω

∣∣ψ j
∣∣
)

ψ j∣∣ψ j
∣∣

+ i

2
νψ j + Fj

2
√
2ω

= 0. (38)

First, we need to determine the characteristics of
stationary oscillations. They occur when functions ψ j

do not depend on the time (∂ψ j/∂τ = 0) and can be
represented in the form:

ψ j = χκe
iκ j ; χκ = const

Substituting this form into Eq. (38) and performing
the summation over the chain, we obtain the equation
for the amplitude of the stationary oscillations:

ω

2
χκ − 2

β√
2ω

J1

(
2

√
2

ω
|χκ | sin κ

2

)
χκ

|χκ | sin
κ

2

− σ√
2ω

J1

(√
2

ω
|χκ |

)
χκ

|χκ | + iν

2
χκ + f√

2ω

= ω2 − Ω2
κ

2ω
χκ + iν

2
χκ + f√

2ω
= 0, (39)

where we have introduced the quantity

Ω2
κ =

√
2ω

|χκ |

(
2β J1

(
2

√
2

ω
|χκ | sin

(κ

2

))
sin

(κ

2

)
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+σ J1

(√
2

ω
|χκ |

))
, (40)

which depends on the modulus of amplitude |χκ | and
looks similar to the frequency of free oscillations with
amplitude Q = √

2/ω|χκ | (see Eq. (11)). The forcing
amplitude f

f = 1

2N

N∑

j=1

Fj e
−iκ j (41)

represents the Fourier component of the external force
with the wavenumber κ .

If the damping is absent (ν = 0), the amplitude–
frequency relation for the forced oscillations can be
immediately obtained from Eq. (39):

ω2 = Ω2
κ − 2

Q
f, (42)

where we utilize relation (10) for the oscillation ampli-
tude and frequency Ωκ is determined by Eq. (11).

However, if friction occurs, the oscillation amplitude
χκ is not real-valued. Therefore, in order to find the
amplitude–frequency relationwemust separate the real
and imaginary parts of χκ in the form:

χκ = r + i p.

SeparatingEq. (39) into the real and imaginary parts,
we obtain the modulus of amplitude χκ and phase shift
Δ in the form:

|χκ | =
√
r2 + p2 =

√
2ω f√

ν2ω2 + (
ω2 − Ω2

κ

)2 ,

tan−1 Δ = r

p
= νω

ω2 − Ω2
κ

. (43)

Notably, that the amplitude–frequency relation (43)
is similar in appearance to the Lorentz resonant curve
for the linear oscillator with frequency Ωκ . How-
ever, unlike the linear system, the first of the expres-
sions (43) is the transcendental equation with respect
to |χκ | (see Eq. (40)). Based on the relation (10),
we can estimate the stationary amplitudes of the
forced and damped oscillations. Figure 10 presents the
amplitude–frequency relations for the normal modes
with wavenumbers κ = 0 and κ = π under the action
of the external force and weak damping. It is natural
for the presence of weak damping to block the infi-
nite growth of the amplitude in the region of small fre-
quencies, but it does not have any notable effect in the
high-frequency range. In Fig. 10, it is clear that the

Fig. 10 Amplitude–frequency relationship for the normal
modes with wavenumbers κ = 0 (left curves) and κ = π (right
curves). The lattice parameters: σ = 1.0, β = 0.25, the force
amplitude is f = 0.025, and the friction coefficient is ν = 0.035.
The backbone and damped curves are shown in red, and blue,
respectively. The black dashed curves correspond to the damped
oscillations. (Color figure online)

stationary nonlinear oscillations, namely the NNMs,
of the forced–damped sine-lattice in a similar way to
classical nonlinear oscillators. Equation (43) is general-
izations of the classical asymptotic expressions for the
amplitude–frequency relation [1,8], andmaybe helpful
for different types of nonlinear oscillators.

We now return to the nonstationary dynamics,
assuming that χκ 
= const. In such a case, this has
to be a solution to the equation

i
∂χκ

∂τ
+ ω

2
χκ − 2

β√
2ω

J1

(
2

√
2

ω
|χκ | sin κ

2

)

χκ

|χκ | sin
κ

2
− σ√

2ω
J1

(√
2

ω
|χκ |

)
χκ

|χκ | + i
ν

2
χκ

= − f√
2ω

. (44)

We now consider the undamped chain (ν = 0). It
is useful to introduce the polar representation of the
wave’s amplitude:χκ = aeiδ . The corresponding equa-
tions for modulus a and phase δ are as follows:

∂a

∂τ
− f√

2ω
sin δ = 0 (45)
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Fig. 11 Evolution of the phase portrait with the carrier fre-
quency ω for the oscillations with wavenumber κ = π . The
panels a–d correspond toω = 1.5, 1.33489, 1.31389, and 1.30,

respectively. The red and light blue lines show the limiting phase
trajectory and the separatrix, respectively. System parameters:
σ = 1, β = 0.25, f = 0.025, κ = π . (Color figure online)

a
∂δ

∂τ
− ω

2
a + σ√

2ω
J1

(√
2

ω
a

)

+2
β√
2ω

J1

(
2

√
2

ω
a sin

(κ

2

))
sin

(κ

2

)

− f√
2ω

cos δ = 0 (46)

These equations contain the integral, which can be
interpreted as the energy

E = −
(

ω

2
a2 +

√
2

ω
f a cos δ + σ

(
J0

(√
2

ω
a

)
− 1

)

+β

(
J0

(
2

√
2

ω
a sin

κ

2

)
− 1

))
. (47)

Taking into account integral (47), we analyze the
phase portrait on the {δ, a} plane. Fixing the param-
eter ω we can draw the phase portrait of the system.
Typical phase portraits are presented in Fig. 11a–d for
different values of frequency ω. It is important to note
that the considered phase plane corresponds to the sys-
tem’s evolution in the slow timescale, where the sta-
tionary regimes of the oscillations are represented as
immobile points, and their positions depend on the
carrier frequency ω. Each trajectory corresponds to a
slow modulation of the carrier wave (normal mode)
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with wavenumber κ . The necessary condition for the
validity of our analysis is the slowness of modula-
tion, while variation in the amplitude of the does not
appear to be essential. Therefore, large amplitudes and
small amplitudes a are presented in the same phase
portrait in Fig. 11. There are two typical trajectories
on the phase plane. The infinite growth of phase vari-
able δ characterizes the transiting trajectories, while
the phase of the closed trajectories is limited by a cer-
tain range. The regions of transiting and closed tra-
jectories are separated by the limiting phase trajectory
(LPT), which is presented in Fig. 11a–d in red. It is
important to note that the LPT includes zero amplitude:
a = 0. This means that any nonstationary oscillations
starting from the resting state evolve along the LPT.
Figure 11a presents the “high-frequency” phase por-
trait, which corresponds to the single stationary state
on the amplitude–frequency relation (for reference, see
Fig. 10 on the right of the backbone curve). By decreas-
ing the driving force frequency, we can observe the
saddle-node bifurcation, which results in the creation
of two additional stationary states—stable and unsta-
ble. The frequency of this bifurcation can be found as
the root of the equation:

dω

dQ
= 0.

It is equal to ω = 1.33489 for the presented set of
system parameters. At this frequency, a new trajectory
(the separatrix), which passes through an unstable sta-
tionary point, arises. The separatrix is presented in Fig.
11b–d by the dashed light blue curve. Decreasing fre-
quency ω we observe that the lower loop of the separa-
trix expands. It reaches zero value of amplitude a at the
frequency, which can be determined when the energy
of the unstable stationary state is equal to zero. The
corresponding values of frequency ω and amplitude a
are the solutions to the equations:

∂E

∂a |δ=0
= 0,

E|δ=0 = 0.

For the given set of system parameters, the roots of
the above equations are ω = 1.33489, a = 0.448601.
The phase portrait corresponding to this bifurcation is
presented in Fig. 11c. This indicates that the separa-
trix coincides with the LPT. The separatrix transforms
from homoclinic to heteroclinic, which is clearly seen
in Fig. 11d. Thus, because the separatrix surrounds the
large-amplitude stationary state at phase δ = π , no

nonstationary oscillations with a small initial ampli-
tude a can reach the vicinity of this point. Therefore,
the separatrix divides the phase plane into regions with
low-amplitude and high-amplitude responses.

Figure 12a presents the transformation of the LPT
with changing frequencyω. The large LPTs at frequen-
cies above ω = 1.31389 are colored in blue. They are
centered around the stationary point with phase δ = π .
The small-amplitude LPTs occur at frequencies lower
than the bifurcation value. They encircle the stationary
point with phase δ = 0 and are depicted by red lines.
Panel (b) of Fig. 12 shows the period during which the
LPT is passed for different values of driving frequency
ω. Due to the coincidence of the separatrix with the
LPT at bifurcation frequency ω = 1.31389, the time of
passage along the LPT increases infinitely.

Based on the above, we can conclude that any non-
stationary oscillations, starting from zero initial con-
ditions, pass along the large LPT with the center at
δ = π before the coincidence of LPT and separatrix,
after which they move along the small LPT with center
at δ = 0.

In the presence of viscous damping, Eq. (45) can be
rewritten as follows:
∂a

∂τ
+ ν

2
a − f√

2ω
sin δ = 0 (48)

As indicated in Fig. 13, weak damping transforms
the structure of the systems’ phase space; the centers
turn into stable focuses. However, the trajectory, cor-
responding to LPT in the dissipative case, can serve
as boundary between the areas of attraction of the
neighboring stable focuses. We integrated Eqs. (46,
48) with wavenumber κ = π numerically to compare
the bifurcation behavior of the system with and with-
out damping. The results are shown in panels (a) and
(b) of Fig. 13 for the damping coefficient ν = 0.035
(this value was chosen for clarity of presentation).
Firstly, it is important to note that some increase in
the bifurcation frequencies occurs. This means that
the frequency range of the large-amplitude LPT and
oscillations with large amplitudes in the nonstationary
regimes decreases. In Fig. 13a, the same color depicts
the trajectories corresponding to equal frequencies in
damped and un- damped systems. Trajectories corre-
sponding to frequencies ω = 1.3139 and 1.31385 in
the systemwithout dampingdepict the large- and small-
amplitude LPTs, respectively (see red and blue solid
curves in panel (a)). By contrast, the similar trajectories
for the systemwith damping are visually indistinguish-
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Fig. 12 a The LPTs at the
various frequencies of the
driving force: ω =
1.35, 1.33489, 1.31389,
and 1.30 are shown in blue
dashed, blue, red, and red
dashed, respectively. b The
period of motion along the
LPT versus frequency of
driving force. (Color figure
online)

Fig. 13 aComparison of the forcedLPTwith (dashed) andwith-
out (solid) damping. The curves of the same colors correspond to
equal frequencies. The red and blue dashed curves, correspond-
ing to frequencies ω = 1.3139 and1.31385 coincide with great
accuracy. b) The LPTs in the vicinity of the bifurcation [“large

LPT–small LPT.” The frequencies corresponding to the blue and
red curves are 1.33207 and 1.33208. The black solid curve shows
the non-dissipative LPT at frequency ω = 1.33208. The friction
parameter ν = 0.035

able, and are both situated in the attraction area of the
small-amplitude stationary point. There is also a slight
change in the phase δ value at the stationary points.

Two trajectories extremely close to the bifurcation
frequencyω = 1.33208 in the systemwith damping are
depicted in panel (b) of Fig. 13. The solid black line
depicts the trajectory of the undamped system with a
frequency that corresponds to the bifurcation point in
the system with damping.

4 Conclusion

This paper summarized our results for the finite sine-
lattice in both conservative and forced cases.We exam-
ined and discussed the properties of spectra on dif-

ferent amplitudes of oscillations. We emphasized the
frequency inversion phenomenon when the frequency
with the highest number becomes lower than that with
the lowest number following growth in the amplitude of
the oscillations as a new feature of the sine-lattice. We
also considered nonstationary dynamics of the finite
sine-lattice and proposed an approach of studying the
intermodal resonance when non-uniform energy distri-
bution appears along the lattice. Using the LPT con-
cept, we represented the periodic energy redistribution
between the two parts of the chain—two “coherent
domains” or its localization on one domain. We pro-
posed an analytical tool for predicting the transition
from energy localization to periodic energy redistribu-
tion along the chain. The results were in strong accor-
dance with the results of direct numerical integrations
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of the initial system for chains of different lengths. We
also addressed the limiting case of continuum approx-
imation and found breather solutions, the properties of
which were then compared with well-known results for
the ϕ4 equation. We also considered the forced oscil-
lations of the sine- lattice.
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Appendix A: Multi-scale expansion

Substituting expression (7) into Eq. (6) andmultiplying
the latter by factor eiωτ0 , we should keep the terms of
lower orders of a small parameter. In such a case, we
obtain:

i
∂ψ j,0

∂τ0
+ iε

∂ψ j,0

∂τ1
+ iε

∂ψ j,1

∂τ0
+ εμeiωτ0

(
ω

2

(
ψ j,0e

−iωτ0 + cc
)

+
∞∑

k=0

(2ω)−(k+1)

(2k + 1)!
[
β

(((
ψ j+1,0 − ψ j,0

)
e−iωτ0 + cc

)2k+1

−
((

ψ j,0 − ψ j−1,0
)
e−iωτ0 + cc

)2k+1
)

−σ
(
ψ j,0e

−iωτ0 + cc
)2k+1

])
= 0. (A.1)

Separating the terms with different orders of ε, we
can write in zeroth order:

ε0 : i
∂ψ j,0

∂τ0
= 0. (A.2)

Thus, functionψ j,0 does not depend on the fast time
τ0.
ε1 :

i
∂ψ j,1

∂τ0
+ i

∂ψ j,0

∂τ1
+ μ

ω

2
ψ j,0 + μ

∞∑

k=0

(2ω)−(k+1)

k!(k + 1)!
(

β

(
|ψ j+1,0 − ψ j,0|2k

(
ψ j+1,0 − ψ j,0

)

−|ψ j,0 − ψ j−1,0|2k
(
ψ j,0 − ψ j−1,0

))

−σ |ψ j,0|2kψ j,0

)

+μ
ω

2
ψ∗

j,0e
2iτ0ω + μ

∞∑

k=0

2k+1∑

m 
=k

(2ω)−(k+1)

m!(2k − m + 1)!
(

β
((

ψ∗
j+1,0 − ψ∗

j,0

)m (
ψ j+1,0 − ψ j,0

)2k−m+1

−
(
ψ∗

j,0 − ψ∗
j−1,0

)
m (

ψ j,0 − ψ j−1,0
) 2k−m+1

)

−σψ2k+1
j,0 ψ∗m

j,0

)
e−i2τ0ω(k−m+1) = 0. (A.3)

After integrating over fast time τ0, the fast oscil-
lating terms vanish. The terms that contain the main
order function ψ j,0 do not depend on the fast time, and
integrating leads to the secular term. Performing the
summation, we get Eq. (8). So, we conclude that

i
∂ψ j,1

∂τ0
= 0. (A.4)

Appendix B: Integral of the occupation numbers

Using Eq. (13), we can receive evidence that the occu-
pation number X is the integral of motion in the slow
timescale:

i
∂X

∂τ
= i

∑

j

(
ψ∗

j
∂ψ j

∂τ
+ ψ j

∂ψ∗
j

∂τ

)

=
∑

j

(
ψ∗

j
∂H

∂ψ∗
j

− ψ j
∂H

∂ψ j

)

=
∑

j

(
ψ∗

j
∂H

∂X

∂X

∂ψ∗
j

− ψ j
∂H

∂X

∂X

∂ψ j

)

=
∑

j

∂H

∂X

(
ψ∗

j ψ j − ψ jψ
∗
j

)
= 0. (B.1)

It is easy to show that transformation (16) preserves
the occupation number in the form (18):

X =
∑

j

|ψ j |2 = 1

N

∑

j

(1
2
|χ1 + χ2|2

+|χ1 − χ2|2 cos2
(
κ j + π

4

)

+ (cos κ j − sin κ j) |χ1 − χ2|2
)

= 1

2

(
|χ1 + χ2|2 + |χ1 − χ2|2

)

= |χ1|2 + |χ2|2 . (B.2)
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