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Abstract In this paper, we propose a mathemati-
cal model on the oncolytic virotherapy incorporating
virus-specific cytotoxic T lymphocyte (CTL) response,
which contribute to killing infected tumor cells. In
order to improve the understanding of the dynamic
interactions between tumor cells and virus-specific
CTLs, stochastic differential equation models are con-
structed. We obtain sufficient conditions for existence,
persistence and extinction of the stochastic system. In
relation to the therapy control, we also analyze the
stochasticity role of equilibrium point stabilities. The
Monte Carlo algorithm is used to estimate the mean
extinction time and the extinction probability of cancer
cells or viruses-specific CTLs. Our simulations high-
lighted the switch of the system leaving the attrac-
tor basin of the three species co-existence equilibrium
toward that of cancer cell extinction or that of virus-
specific CTLs depletion. This allowed us to character-
ize the spaces of cancer control parameters. Finally, we
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determine the model solution robustness by analyzing
the sensitivity of the model characteristic parameters.
Our results demonstrate the high dependence of the
virotherapy success or failure on the combination of
stochastic diffusion parameters with the maximum per
capita growth rate of uninfected tumor cells, the trans-
mission rate, the viral cytotoxicity and the strength of
the CTL response.
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1 Introduction

The search for new effective treatments with fewer side
effects has led oncology to develop a targeted strat-
egy based on oncolytic virotherapy. In fact, oncolytic
viruses (OVs) represent a promising immunotherapeu-
tic approach for the treatment of cancer due to their abil-
ity to create a microenvironment favorable to the action
of the immune system against unique determinants of
cancer cells [20,43]. However, the antiviral immunity
elicited against the viral antigens of the resulting infec-
tion is considered to be detrimental to OVs as acti-
vation of the immune system against the virus itself is
expected to restrict viral replication and spread, leading
to decreased therapeutic efficacy [31,36]. It is impor-
tant for cancer control to find a balance between anti-
tumor and anti-viral immunity. Somuch effort has been
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devoted to mathematical studies on oncolytic virother-
apy [4,7,12,24,43].

Mathematical models formulated in terms of ordi-
nary differential equations (ODEs) have been proposed
by Wodarz [44,45] to understand spreading dynamics
of oncolytic viruses through tumors by including an
immune response to the virus. Komarova and Wodarz
[24] formulated a general computational framework
dependingon types of virus spread slowand fast spread.
To understand how immune system reacts to the emer-
gence of tumors and their growth, Khajanchi et al. [21]
investigated a tumor–immune interaction model that
consists of three nonlinear differential equations with
a single time-delayed interaction.
In [7],Camara et al. extended theworkofZurakowski et
al. [47] to study the consequences for the spatial struc-
ture of the tumor by analyzing a mathematical model
that describes interaction between two types of tumor
cells: the cells that are infected by the virus and the cells
that are not infected but are susceptible to the virus.

But the process of the onset and then development
of cancer is well known to be complex and stochastic
[3,5,38]. Indeed, the acquisition of mutation somatic
properties and metastatic capacity by cells involve
stochastic events [32,35]. Moreover, in real-life situ-
ations, cell population systems are always affected by
various sources of noise in which the functional roles
in biological processes can vary greatly [14,39]. Thus,
various mathematical models have been developed to
integrate this stochastic dimension of the appearance
and development of cancer cells [11,17,22,25,26].
Recently, Phan and Tian [33] proposed a stochas-
tic model to represent interaction among tumor cells,
infected tumor cells and oncolytic viruses. But in [33]
the infection term does not satisfy the assumption of
the fast virus spreading given in [24].

Therefore, there is a considerable need to under-
stand the cancer cell extinction dynamics induced by
oncolytic virus.
In the present article, we propose to examine the effects
of the stochastic process solution of the mathematical
model investigated by Choudhury and Nasipuri [8]. In
their paper [8], they presented an ordinary differential
equation to study the efficacy of cancer therapy using
oncolytic viruses in the presence of immune response.
The immune response triggered by the infection is a
complex set of pathways consisting of the innate and
the adaptive immune response. In our case, only do we

focus on the clearing of infected cells by cytotoxic T
lymphocytes (CTLs).
To provide a quantitative study of the relapse or fail-
ure of cancer control, we analyze the persistence or
extinction conditions of the stochastic oncolytic virus
and cancer cell system. The stability analysis of our
stochastic model equilibria is also treated in terms of
the first- and second-order moments. The cancer cell
extinction or virus-specific CTL disappearance will be
studied by estimating the First Passage Time (FPT)
[9,16,37]. Therefore,wewill use theMonteCarlo algo-
rithm to determine the mean extinction time and the
associate extinction probabilities in cases of oncolytic
therapy success or failure. Finally, we will determine
themodel solution robustness by analyzing the sensitiv-
ity of themodel characteristic parameters.We have also
characterized the spaces of the cancer control param-
eters taking into account the system stochasticity. The
sensitivity analysis results will allow us to correlate
the effects of the control parameter variations on the
values of the mean extinction times or the extinction
probabilities.

2 Mathematical model

2.1 Formulation of models

In this paper, a stochastic term is added to the ODE
model introduced by Choudhury and Nasipuri [8] in
the context of fast-spreading virus [24]. The determin-
istic part of which the stability study and the modeling
assumptions have been declined in [8] is described as
follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dx

dt
= r x

(

1 − x + y

k

)

− β
xy

x + y + α
dy

dt
= β

xy

x + y + α
− δy − pyz,

dz

dt
= γ yz − qz

(1)

where x = x(t) stands for the uninfected tumor cell
population, y = y(t) represents the infected tumor
cell population and z = z(t) is the population of the
virus-specific CTLs, with initial populations x(0) ≥ 0,
y(0) ≥ 0 and z(0) ≥ 0.
All parameters involved with model (1) are fixed pos-
itive constants, and their interpretations are presented
in Table 1.
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Table 1 Parameter values used in the model simulations

Parameter Description Unit Source

r The intrinsic growth rate of uninfected tumor cells day−1 [4]

k The maximum carrying capacity mm3 [4]

β The viral replication rate mm−3 day−1 [10]

α The viral spreading rate mm3 [30]

δ The viral cytotoxicity day−1 [10]

p Immune killing rate mm−3 day−1 [42]

γ The strength of virus-specific CTL response mm−3 day−1 [42]

q The virus clearance rate day−1 [42]

The tumor cells are assumed to grow logistically
with intrinsic growth rate r . The maximum size of
space which the tumor is allowed to occupy is given
by its carrying capacity k. The viruses spread to tumor
cells at a rate β. The deaths of virus infected cells
occur at a rate δy, δ is called the viral cytotoxicity.
Infected cells are destroyed by the CTL response at a
rate pyz, corresponding to lytic effector mechanisms
of CTL response, where the coefficient p represents
the strength of the lytic component. In the absence of
antigenic stimulation [2], virus-specific CTLs decay at

rate q. γ yz describes the rate of immune response due
to virus activation, where γ stands for the strength of
the CTL response.
In [8], the authors mainly focused on the total tumor
load by analyzing each equilibrium of model (1). In the
absence of the virus-specific CTL response, they found

• A trivial equilibrium state E1 = (0, 0, 0),
• An equilibrium state corresponding to only healthy
tumor cells E2 = (k, 0, 0),

• A coexistence equilibrium with both infected and
uninfected tumor cells E3 := (E31, E32 , 0), with

E31 = (k + α)δr − (β − δ)δk + δ
√

M

2βr
,

E32 = (β−δ)(kr+δk−βk)−(β+δ)αr+(β−δ)
√

M

2βr
,

M =
(
(k + α)r − (β − δ)k

)2 + 4αβkr.

In the presence of the virus-specific CTL response,
they found a coexistence equilibriumwith both infected
and uninfected cells E4 := (E41, E42 , E43),

E41 =
(k − α)γ − 2q + γ

√
(k − α)2 − 4k(

βq
rγ

− α)

2γ
,

E42 = q

γ
,

E43 =
2(β − δ)kq − r(q + αγ )(k + α) + r(q + αγ )

√

(k − α)2 − 4k
(

βq
rγ

− α
)

2kpq
.

To take into account the influence of environmental
fluctuations, the deterministic model system (1) can be
extended to a stochastic model system by introducing
multiplicative noise terms into the intrinsic growth rate
parameters for three populations. In this study, we have
chosen an Itô formulation of the stochastic model (2).
Thus, the resulting stochastic process has the very prac-
tical mathematical property of martingale. This math-
ematical property of martingale is very useful when
computing the conditional expectation of an Itô pro-
cess, or in general, for analyzing and proving theorems
on the Itô integral, [6].
The resulting stochastic model is as follows:
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dx(t)

=
[
r x(t)

(

1− x(t)+y(t)

k

)
−β

x(t)y(t)

x(t) + y(t)+α

]

dt

+σ1x(t) dB1(t),

dy(t) =
[
β

x(t)y(t)

x(t) + y(t) + α
− δy(t) − py(t)z(t)

]
dt

+σ2y(t) dB2(t),

dz(t) =
[
γ y(t)z(t) − qz(t)

]
dt + σ3z(t) dB3(t),

(2)

where σi > 0, (i = 1, 2, 3) are the intensities of envi-
ronmental driving forces, and Bi (t), (i = 1, 2, 3) are
three standard one-dimensional independent Wiener
processes defined over the complete probability space
(�,Ft , P) having a filtration F0 which satisfy the
usual condition (i.e., it is right continuous and F0 con-
tains all P-null sets) [29]. The solution of (2) subjected
to the positive initial condition is an Ito process.

2.2 Preliminaries

In this section, we introduce the following definitions
and lemmas as in [28,40], which will be used in the
following sections.

Definition 2.1 The system is said to be strongly per-
sistent in the mean if 〈x(t)〉∗ > 0, where 〈x(t)〉∗ :=
limt→+∞ 1

t

∫ t
0 x(s)ds and 〈x(t)〉∗ is defined by 〈x(t)〉∗

:= limt→+∞ 1
t

∫ t
0 x(s)ds.

In aforementioned definition, 〈x(t)〉 stands for the
time average of x(t) and is defined by 〈x(t)〉∗ :=
1
t

∫ t
0 x(s)ds

To prove the persistence of populations, we need the
following Lemma (2.1).

Lemma 2.1 Suppose that x(t) ∈ C[� × R+,R0+],
where R

0+ = {a|a > 0, a ∈ R}.
(i) If there exist positive constants μ, T, and λ ≥ 0

such that

ln x(t) ≤ λt − μ

∫ t

0
x(s)ds +

n∑

i=1

βi Bi (t)

for t ≥ T , where βi ’s are constants, 1 ≤ i ≤ n,
then 〈x(t)〉∗ ≤ λ

μ
, a.s.

(ii) If there exist positive constants μ, T, and λ ≥ 0
such that

ln x(t) ≥ λt − μ

∫ t

0
x(s)ds +

n∑

i=1

βi Bi (t)

for t ≥ T , where βi ’s are constants, 1 ≤ i ≤ n,
then 〈x(t)〉∗ ≥ λ

μ
, a.s.

The following lemma will be used to demonstrate the
solution existence.

Lemma 2.2 Consider one-dimensional stochastic dif-
ferential equation

dX (t) = X (t) [(α − β X (t))dt + σdB(t)] (3)

where parameters α, β and σ are positive, B(t) is a
standard Brownian motion.
Suppose α > σ 2

2 , and X (t) is the solution of equation
(3) with any initial value X0 > 0, then we have:

lim
t �−→+∞

ln X (t)

t
= 0

and

lim
t �−→+∞

1

t

∫ t

0
X (s)ds = α − σ 2

2

β

almost surely (a.s.).

Consider the following stochastic differential equation.

dX (t) = μ(X (t), t)dt + σ(X (t), t)dB(t) (4)

Then, we have:

Lemma 2.3 Let S(u) = ∫ t
0 e

− ∫ s
0

2μ(v)

σ2(v)
dv
dt and assume

that X (t) is the solution of (4). If S(−∞) > −∞ and
S(+∞) = +∞, then

lim
t �−→+∞ X (t) = −∞.

Lemma 2.4 Consider the system of stochastic differ-
ential equations (2). Given an arbitrarily large but
finite time T , there exists a constant C dependent only
on T and the initial data, such that the following esti-
mates hold uniformly for t ≤ T

∫ t

0
E[u2

i (s)]ds < +∞ (5)
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Lemma 2.5 Let (Bt )t≥o a Brownian motion, then we
have:

lim
t→+∞

Bt

t
= 0 as.

3 Main results

3.1 Existence and uniqueness of positive global
solution

As the coefficient of equations (2) does not satisfy the
local Lipschitz condition and linear growth condition,
the solution of the system (2)may explode at finite time.
So, we prove first the local existence of the positive
solution of system (2), and thenglobal solution byusing
the comparison theorem of stochastic equations.

Theorem 3.1 Given positive initial value (x0, y0, z0),
system (2) has a unique positive global solution
(x(t), y(t), z(t)) on t ≥ 0.

Proof Let us introduce new variables u(t) = ln(x(t)),
v(t) = ln(y(t)) and w(t) = ln(z(t)) in the system
(2). By applying the Itô’s formula [1], we obtain the
following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

du(t) =
[
r
(
1 − eu(t) + ev(t)

k

)
dt

−β ev(t)

eu(t)+ev(t)+α
− σ 2

1
2

]
dt + σ1dB1(t),

dv(t) =
[
β

eu(t)

eu(t) + ev(t) + α
− δ − pew(t) − σ 2

2

2

]
dt

+σ2dB2(t),

dw(t) =
[
γ ev(t) − q − σ 2

3

2

]
dt + σ3dB3(t),

(6)

It is obvious that the coefficients of system (6) satisfy
the local Lipschitz condition, then there is a unique
local solution (u(t), v(t), w(t)) on t ∈ [0, τ ), τ ∈ R

0+,
with initial value u0 = ln x(0), v0 = ln y(0) and
w0 = ln z(0) [28,46]. Thus, we conclude that (x(t) =
eu(t), y(t) = ev(t), z(t) = ew(t)) is the unique posi-
tive local solution of system (6) with positive initial
conditions.

Now, in order to show that the unique positive solution
is not only local solutions but also global solution, we
need to prove that τ = ∞.
Consider the following set of equations of stochastic
system

dX2(t) = r X2(t)
(
1 − X2(t)

k

)
dt + σ1X2(t)dB1(t),

(7a)

dY2(t)=Y2(t)

(

β−δ−βY2(t)

k+α

)

dt+σ2Y2(t)dB2(t),

(7b)

dZ2(t) = Z2(t)
(
γ Y2(t) − q

)
dt + σ3Z2(t)dB3(t),

(7c)

with positive initial conditions X2(0) = x0, Y2(0) =
y0, Z2(0) = z0.
As x(t) and y(t) are always positive, we can write from
the first equation of model (6):

dx(t) ≤ r x(t)

(

1 − x(t)

k

)

dt + σ1x(t)dB1(t) (8)

By applying the comparison theorem of stochastic
differential equations, we obtain x(t) ≤ X2(t), ∀t ∈
[0, τ ), with

X2(t) = e

[

(r− σ21
2 )t+σ1B1(t)

]

1
x0

+ r
k

∫ t
0 e

[

(r− σ21
2 )s+σ1B1(s)

]

ds

.

Let X1(t) be the solution of the following equation

dX1(t) = X1(t)
(

r − β − r

k
X1(t) − r

k
X2(t)

)
dt

+σ1X1(t)dB1(t), X1(0) = x0. (9)

As
βy(t)

x(t) + y(t) + α
≤ β, we canwrite from the first

equation of model (6):

dx(t) ≥ x(t)

[

r − β − r x(t)

k
− r

k
Y2(t)

]

dt

+σ1x(t)dB1(t)

Therefore, we have x(t) ≥ X1(t), ∀t ∈ [0, τ ),
where
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X1(t) = e

⎡

⎣(r−β− σ21
2 )t− r

k

∫ t

0
X2(s)ds + σ1B1(t)

⎤

⎦

1

x0
+ r

k

∫ t

0
e

⎡

⎣(r−β−
σ 2
1

2
)s − r

k

∫ s

0
X2(m)dm + σ1B1(s)

⎤

⎦

ds

.

Thus, we obtain

X1(t) ≤ x(t) ≤ X2(t), ∀t ∈ [0, τ ). (10)

We are going now to construct an upper bound of the
dynamics of infected cancer cells y(t).
We have

dy =
[

βy

(

1 − α

x + y + α
− y

x + y + α

)

− δy − pyz] dt + σ2ydB2(t)

dy(t) ≤
[

y(t)

(

β − δ − βy(t)

k + α

)]
dt

+ σ2y(t)dB2(t). (11)

By applying the comparison theorem of stochastic
differential equations, we obtain y(t) ≤ Y2(t), ∀t ∈
[0, τ ), with

Y2(t) = e

[(
β−δ− σ22

2

)
t+σ2B2(t)

]

1

y0
+ β

k + α

∫ t

0
e

[(
β−δ− σ22

2

)
s+σ2B2(s)

]

ds

.

As y(t) ≤ Y2(t), we can deduce that

dz(t) ≤ z(t)
[
γ Y2(t) − q

]
dt + σ3z(t)dB3(t). (12)

So, by applying again the comparison theorem of
stochastic differential equations, we obtain z(t) ≤
Z2(t), ∀t ∈ [0, τ ), with

Z2(t) = z0e

⎡

⎢
⎣γ

∫ t

0
Y2(s)ds−

(

q+σ 2
3

2

)

t+σ3B3(t)

⎤

⎥
⎦

.

(13)

We are going now to construct a lower bound of the
infected cancer cell dynamics y(t). We have

dy(t) =
[

βy(t)

(

1 − α

x(t) + y(t) + α

−δy(t) − py(t)z(t)] dt + σ2y(t)dB2(t)

≥ y(t)

[

β − αβ

x(t) + α

βy(t)

x(t) + α
− δ − pZ2(t)

]

dt

+ σ2y(t)dB2(t). (14)

From the inequality (11) and using Lemma 2.1, we get

〈y(t)〉∗ ≤ β − δ − σ 2
2
2

β
(k + α).

On the other hand, we have,

dx ≥
[
r x
(
1 − x

k

)
− r

k
xy − βx

]
dt + σ1xdB1(t)

dx ≥

⎡

⎢
⎢
⎣r x

(
1− x

k

)
−

r

(

β−δ−σ 2
2
2

)

kβ
(k+α)x−βx

⎤

⎥
⎥
⎦ dt

+ σ1xdB1(t)

≥ x

⎡

⎢
⎢
⎣r − β −

r

(

β − δ − σ 2
2
2

)

kβ
(k + α) − r x

k

⎤

⎥
⎥
⎦ dt

+ σ1xdB1(t)

ByLemma 2.1, from the previous inequalitywe deduce
this estimate of x(t)

〈x(t)〉∗ ≥ xin f , where xin f =

⎡

⎢
⎢
⎣r − β − σ 2

1

2

−
r

(

β − δ − σ 2
2
2

)

kβ
(k + α)

⎤

⎥
⎥
⎦

k

r
(15)
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Using the inequality (15) below in inequality (14), we
obtain:

dy ≥ y

[

β − δ − αβ

xin f + α
− βy

xin f + α
− pZ2(t)

]

dt

+σ2ydB2(t)

Denote by Y1(t) the solution of the equation below,
with Y1(0) = y0,

dY1 = Y1

[

β − δ − αβ

xin f + α

− βY1

xin f + α
− pZ2(t)

]

dt + σ2Y1dB2(t)

So, by applying again the comparison theorem of
stochastic differential equations, we get y(t) ≥ Y1(t),
∀t ∈ [0, τ ), with

Y1(t) = e

⎡

⎣

⎛

⎝β−δ− αβ

xin f + α
− σ 2

2

2

⎞

⎠t−p
∫ t
0 Z2(s)ds+σ2B1(t)

⎤

⎦

1

y0
+ β

xin f + α

∫ t

0
e

⎡

⎣

⎛

⎝β−δ− αβ

xin f + α
− σ 2

2

2

⎞

⎠s−p
∫ s
0 Z2(m)dm+σ2B2(s)

⎤

⎦

ds

. (16)

Thus, we obtain

Y1(t) ≤ y(t) ≤ Y2(t), ∀t ∈ [0, τ ). (17)

Let Z1(t) be the solution of stochastic differential
equation

dZ1(t) = Z1(t)
[
γ Y1(t) − q

]
dt

+σ3Z1(t)dB3(t), Z1(0) = z0.

β <

−
(

rα + σ 2
1
2 k

)

+
√
(

rα + σ 2
1
2 k

)2

+ 4rk (k + α)

(

δ + σ 2
2
2

)

2k
,

then x(t) is strongly persistent in mean.

2. If β >

−
(

k

(

r − q − σ 2
3
2

)

+ αr

)

+
√
(

k

(

r − q − σ 2
3
2

)

+ αr

)2

+ 4rk

(

δ + σ 2
2
2

)

2k

Using similar arguments as earlier, we obtain z(t) ≥
Z1(t), ∀t ∈ [0, τ ), with

Z1(t) = z0e

⎡

⎣γ
∫ t
0 Y1(s)ds−

⎛

⎝q+
σ 2
3

2

⎞

⎠t+σ3B3(t)

⎤

⎦

. (18)

Thus, we obtain

Z1(t) ≤ z(t) ≤ Z2(t), ∀t ∈ [0, τ ). (19)

As the functions X1, X2, Y1, Y2, Z1 and Z2 are well
defined for all t ∈ [0, τ ), for an arbitrarily large mag-
nitude of τ , this implies that τ = ∞. �

3.2 Persistence and extinction

In this section, we will establish the persistent condi-
tions for system (2) under certain parametric restric-
tions. Later, we will investigate the conditions for
which system (2) goes to be extinct.

Theorem 3.2 1. 1. If
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2826 B. I. Camara et al.

and γ <
r

k
+ 2β

α
, then y(t) is strongly persistent

in mean.
3. If

β >

k

(

δ + σ 2
2
2

)

+
√(

k

(

δ + σ 2
2
2

))2

+ 4rk

(

δ + σ 2
2
2

)

(k + α)

2k

and
(

q + σ 2
3
2

)(
r
k + 2β

α

)

rk(k + α)
< γ <

r

k
+ 2β

α

and q < r (r + α) − σ 2
3
2 , then z(t) is strongly per-

sistent in mean.

Proof By using the previous equation (15),

〈x(t)〉∗ ≥ xin f , where xin f

=

⎡

⎢
⎢
⎣r − β − σ 2

1

2
−

r

(

β − δ − σ 2
2
2

)

kβ
(k + α)

⎤

⎥
⎥
⎦

k

r

and by reformulating xin f , we have

xin f =
[

kβ − k

r
β2 − k

r
β

σ 2
1

2
−
(

β − δ − σ 2
2

2

)

(k + α)

]
1

β

=
[

− k

r
β2 + β

(

k − kσ 2
1

2r
− k − α

)

+
(

δ + σ 2
2

2

)

(k + α)

]
1

β

=
[

− k

r
β2 − β

(
kσ 2

1

2r
+ α

)

+
(

δ + σ 2
2

2

)

(k + α)

]
1

β
.

So xin f is a quadratic equation in β. Thus, xin f > 0
whenever β satisfy

0<β <

−
(

rα+ σ 2
1
2 k

)

+
√(

rα+ σ 2
1
2 k

)2

+4rk (k+α)

(

δ+ σ 2
2
2

)

2k
(20)

As 〈x(t)〉∗ ≥ xin f > 0, then x(t) is strongly persistent
in mean.

Applying Itô’s formula and integrating both sides from
0 to t on the following expression

ln

(
x(t)

x0

)

+ ln

(
y(t)

y0

)

+ ln

(
z(t)

z0

)

=
∫ t

0

[

r − r

k
(x(s) + y(s)) − β

y(s)

x(s) + y(s) + α
− σ 2

1

2

]

ds

+ σ1B1(t) +
∫ t

0

[

β
x(s)

x(s) + y(s) + α
ds

−
(

δ + σ 2
2

2

)

− pz(s)

]

ds + σ2B2(t)

+
∫ t

0

[

γ y(s) − q − σ 2
3

2

]

ds + σ3B3(t).

Using the following equality,

x(s)

x(s) + y(s) + α
= 1 − α

x(s) + y(s) + α

− y(s)

x(s) + y(s) + α
,

we get

ln

(
x(t)

x0

)

+ ln

(
y(t)

y0

)

+ ln

(
z(t)

z0

)

=
(

r + β − δ − q − σ 2
1

2
− σ 2

2

2
− σ 2

3

2

)

t

−
[

r

k

∫ t

0
x(s)ds +

( r

k
− γ

) ∫ t

0
y(s)ds + p

∫ t

0
z(s)ds

]

−
[∫ t

0

2βy(s)

x(s) + y(s) + α
ds +

∫ t

0

αβ

x(s) + y(s) + α
ds

]

+ σ1B1(t) + σ2B2(t) + σ3B3(t)

≥
(

r + β − δ − q − σ 2
1

2

σ 2
2

2
− σ 2

3

2

)

t

−
[

r

k

∫ t

0
x(s)ds +

( r

k
− γ

) ∫ t

0
y(s)ds + p

∫ t

0
z(s)ds

]

−
[∫ t

0

2βy(s)

α
ds +

∫ t

0

αβ

xin f + α
ds

]

+ σ1B1(t) + σ2B2(t) + σ3B3(t)
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ln

(
x(t)

x0

)

+ ln

(
y(t)

y0

)

+ ln

(
z(t)

z0

)

≥
(

r + β − δ − αβ

xin f + α
− q − σ 2

1

2
− σ 2

2

2
− σ 2

3

2

)

t

−
[

r

k

∫ t

0
x(s)ds +

(
r

k
+ 2β

α
− γ

)∫ t

0
y(s)ds

+p
∫ t

0
z(s)ds

]

+ σ1B1(t) + σ2B2(t) + σ3B3(t) (21)

According to Lemma 2.5, we obtain

lim
t→+∞

B1(t)

t
= 0, lim

t→+∞
B2(t)

t
= 0, lim

t→+∞
B3(t)

t
= 0.

(22)

According to Lemma 2.2 and equations (8), (11) and
(12), we have

lim
t→∞

1

t
ln

(
x(t)

x0

)

= lim
t→∞

1

t
ln

(
y(t)

y0

)

= lim
t→∞

1

t
ln

(
z(t)

z0

)

= 0 (23)

By using Itô’s formula to dy in system (2), we get

ln

(
y(t)

y0

)

= −
(

δ + σ 2
2

2

)

t

+ σ2B2(t) − p
∫ t

0
zsds + β

∫ t

0

xs

xs + ys + α
ds

= −
(

δ + σ 2
2

2

)

t + σ2B2(t) − p
∫ t

0
zsds

+ β

∫ t

0

[

1 − α

xs + ys + α
− ys

xs + ys + α

]

ds

≤
(

β − δ − βα

xin f + α
− σ 2

2

2

)

t

+ σ2B2(t) − β

α

∫ t

0
y(s)ds − p

∫ t

0
zsds (24)

γ <
r

k
+ 2β

α
and

β >

−
(

k

(

r − q − σ 2
3
2

)

+ αr

)

+
√
(

k

(

r − q − σ 2
3
2

)

+ αr

)2

+ 4rk

(

δ + σ 2
2
2

)

2k
. (25)

From equation (21), we have

− p
∫ t

0
zsds ≤ ln

(
x(t)

x0

)

+ ln

(
y(t)

y0

)

+ ln

(
z(t)

z0

)

−
(

r + β − δ − αβ

xin f + α
− q − σ 2

1

2
− σ 2

2

2
− σ 2

3

2

)

t

+
[

r

k

∫ t

0
x(s)ds +

(
r

k
+ 2β

α
− γ

)∫ t

0
y(s)ds

]

− σ1B1(t) + σ2B2(t) + σ3B3(t) (26)

Using the inequalities (21) and (26) with the properties
(22) and (23), we obtain

(
r

k
+ 2β

α
− γ

)

〈y(t)〉∗

≥
(

r + β − q − αβ

xin f + α
− σ 2

1

2
− σ 2

3

2

)

− r

k
〈x(t)〉∗

≥
(

r + β − q − αβ

xin f + α
− σ 2

1

2
− σ 2

3

2

)

−

⎛

⎜
⎜
⎝r − β − σ 2

1

2
−

r

(

β − δ − σ 2
2
2

)

kβ
(k + α)

⎞

⎟
⎟
⎠

≥ 2β +
r

(

β − δ − σ 2
2
2

)

kβ
(k + α)

− q − αβ

xin f + α
− ∗σ 2

3

2

(
r

k
+ 2β

α
− γ

)

〈y(t)〉∗

≥
kβ2 +

[

k

(

r − q − σ 2
3
2

)

+ αr

]

− r

(

δ + σ 2
2
2

)

kβ
(27)

Thus, y(t) is strongly persistent in mean if
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We deduce from the equation (21) that

(
r

k
+ 2β

α
− γ

)∫ t

0
y(s)ds

≥ −
[

ln

(
x(t)

x0

)

+ ln

(
y(t)

y0

)

+ ln

(
z(t)

z0

)]

+
(

r + β − δ − αβ

xin f + α
− q − σ 2

1

2
− σ 2

2

2
− σ 2

3

2

)

t

−
[

r

k

∫ t

0
x(s)ds + p

∫ t

0
z(s)ds

]

+ σ1B1(t) + σ2B2(t) + σ3B3(t) (28)

and by applying Itô’s formula to dz in system (2), we
have

ln

(
z(t)

z0

)

=
∫ t

0

[

γ y(s) − q − σ 2
3

2

]

ds + σ3B3(t)

= γ
(

r
k + 2β

α
− γ

)

∫ t

0

[(
r

k
+ 2β

α
− γ

)

y(s)

−
(

q + σ 2
3

2

)
(

r
k + 2β

α
− γ

)

γ

⎤

⎦ ds

+
(

r
k + 2β

α
− γ

)

γ
σ3B3(t) (29)

Let us use the inequality (28) in equation (29), then
multiply the resulting inequality by 1

t and let us tend t
toward +∞, then we get:

p〈z(t)〉∗ ≥ 2β − δ

− αβ

xin f + α
− q +

r

(

β − δ − σ 2
2
2

)

(k + α)

kβ

−

(

q + σ 2
3
2

)(
r
k + 2β

α
− γ

)

γ
− σ 2

2

2
− σ 2

3

2

≥ β − δ + r (k + α)

k
−

r

(

δ + σ 2
2
2

)

(k + α)

kβ

−

(

q + σ 2
3
2

)(
r
k + 2β

α

)

γ
− σ 2

2

2

≥
kβ2 −

(

δ + σ 2
2
2

)

kβ − r

(

δ + σ 2
2
2

)

(k + α)

kβ

+ r (k + α)

k
−

(

q + σ 2
3
2

)(
r
k + 2β

α

)

γ
(30)

Therefore, z(t) is strongly persistent in mean if

(

q + σ 2
3
2

)(
r
k + 2β

α

)

rk(k + α)
< γ <

r

k
+ 2β

α
and

q < r (r + α) − σ 2
3

2
and

β >

k

(

δ + σ 2
2
2

)

+
√
(

k

(

δ + σ 2
2
2

))2

+ 4rk

(

δ + σ 2
2
2

)

(k + α)

2k
(31)

�

Theorem 3.3 If r − σ 2
1
2 < 0 and β − δ − σ 2

2
2 < 0

and γ
(k+α)

(

β−δ− σ22
2

)

β
− q − σ 2

3
2 < 0 Then, for any ini-

tial condition (x0, y0, z0) ≥ 0, the stochastic model
system (2) goes to extinction exponentially with prob-
ability one.

Proof From Itô’s formula, it follows that

ln(x(t)) ≤ ln(x0) +
(

r − σ 2
1

2

)

t + σ1B1
t ,

and

ln(y(t)) ≤ ln (y0) +
(

β − δ − σ 2
2

2

)

t + σ2B2
t

ln(z(t)) ≤ ln(z0) +

⎛

⎜
⎜
⎝γ

(k + α)

(

β − δ − σ 2
2
2

)

β
− q − σ 2

3

2

⎞

⎟
⎟
⎠ t

+ σ3B3
t

According to Lemmas 2.2 and 2.5, we note that

lim
t→+∞

[
σi Bi

t

t
+ ln (H0)

t

]

= 0, for

H0 = x0, y0, z0, i = 1, 2, 3.
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According to Lemma 2.3, we have

lim sup
t→+∞

x(t)

t
≤
(

r − σ 2
1

2

)

< 0 a.s.,

lim sup
t→+∞

y(t)

t
≤
(

β − δ − σ 2
2

2

)

< 0 a.s.,

lim sup
t→+∞

z(t)

t
≤

⎛

⎜
⎜
⎝γ

(k+α)

(

β−δ− σ 2
2
2

)

β
− q − σ 2

3

2

⎞

⎟
⎟
⎠

< 0 a.s.

Therefore, the stochastic model system goes to extinc-
tion exponentially. �

3.3 Stochastic effects on model equilibrium stability

In this section, we will establish the condition of local
asymptotic stability of the equilibria E1 = (0, 0, 0),
E2 = (k, 0, 0), E3 = (E31, E32 , 0) and E4 =
(E41 , E42 , E43), for stochastic system (2).We note that
in [8], the authors provide the local stability of equilib-
ria mentioned above:

• E1 is always unstable for system (1),
• E2 is locally asymptotically stable for system (1) if

βk

δ (k + α)
< 1,

• E3 is locally asymptotically unstable for system (1)
if

γ

(
k (β − δ) (r + δ − β) − (β + δ) αr + (β − δ) M M

2βr

)

> q,

where M M =
√

(r (k + α)−(β−δ) k)2 + 4αβkr ,

• E4 is locally asymptotically stable for system (1) if

rγ

(

k + α

√

(k + α)2 − 4βq

rγ

)2

> 4βkq.

Therefore, we will highlight the consequence of
introducing multiplicative noise in a loss of regularity
in the cancer cells population and virus-specific CTL
dynamics. We will show how a stable equilibrium for
system (1) becomes unstable for system (2). We intro-
duce small perturbations in the vicinity of these equi-
libria; then, we study the dynamic stability of the first-
and second-order moments which result from them.
Let (x∗, y∗, z∗) denote the equilibrium point of the
deterministic system (1) whose components are given

explicitly in earlier section. The change of variables
consists of setting:

x(t) = x∗ + x1(t)

y(t) = y∗ + y1(t)

z(t) = z∗ + z1(t)

where |x1(t)|, |y1(t)|, |z1(t)| � 1.
Substituting this transformation in the stochasticmodel
(2), we obtain the following linearized version by
neglecting the second- and higher order terms of small
quantities:

dx1(t) = (a11x1 + a12y1) dt + σ1(x∗ + x1(t))dB1
t

(32)

dy1(t) = (a21x1 + a22y1 + a23z1) dt

+σ2(y∗ + y1(t))dB2
t (33)

dz1(t) = (a32y1 + a33z1) dt + σ3(z∗ + z1(t))dB3
t ,

(34)

where ai j = ∂ Fi

∂ X j

∣
∣
∣
∣
(x∗,y∗,z∗)

, i, j = 1, 2, 3 and

F(X) = (F1(X), F2(X), F3(X)), X = (x1, x2, x3).
The expressions of ai j and Fi are given in the
“Appendix A”.
By integrating both sides of the equations (32) to (34)
from 0 to t , and by using the mean zero property of
Ito’s integral [1,28], we can write the system of ordi-
nary differential equations for first-order moments as
follows:

dE[x1(t)]
dt

= a11E[x1(t)] + a12E[y1(t)] (35)

dE[y1(t)]
dt

= a21E[x1(t)] + a22E[y1(t)] + a23E[z1(t)]
(36)

dE[z1(t)]
dt

= a32E[y1(t)] + a33E[z1(t)] (37)

Once we have the equations of the first-order moments,
we use Ito’s formula to obtain:

dx21 (t) = [(2a11 + σ 2
1 )x21 + 2a12x1y1 + 2σ 2

1 x1x∗
+ σ 2

1 x2∗]dt + 2σ1x1xdB1
t (38)

dy21 (t) = [2a21x1y1 + (2a22 + σ 2
2 )y21 + 2a23y1z1

+ 2σ 2
2 y1y∗ + σ 2

2 y2∗]dt + 2σ2y1ydB2
t (39)

dz21(t) = [2a32y1z1 + (2a33 + σ 2
3 )z21 + 2σ 2

3 z1z∗
+ σ 2

3 z2∗]dt + 2σ3z1zdB3
t (40)

dx1(t)y1(t) = [(a11 + a22)x1y1 + a12y21 + a21x21
+ a23x1z1]dt + σ1y1xdB1

t + σ2x1ydB2
t (41)

123



2830 B. I. Camara et al.

dy1(t)z1(t) = [a21x1z1 + (a22 + a33)y1z1 + a23z21
+ a32y21 ]dt + σ2z1ydB2

t + σ3y1zdB3
t (42)

dx1(t)z1(t) = [(a11 + a33)x1z1 + a12y1z1

+ a32x1y1]dt + σ1z1xdB1
t

+σ3x1zdB3
t (43)

Integrating the aforementioned equations from 0 to t ,
then takingmathematical expectation of both sideswith
the help of Fubini’s theorem as explained in [19,23,28,
41], and finally differentiating with respect to t , we
obtain the system of differential equations for second-
order moments as follows:

dE[x21 (t)]
dt

= (2a11 + σ 2
1 )E[x21 ] + 2a12E[x1y1]

+ 2σ 2
1 x∗E[x1] + σ 2

1 x2∗ (44)

dE[y21 (t)]
dt

= 2a21E[x1y1] + (2a22 + σ 2
2 )E[y21 ]

+ 2a23E[y1z1]
+ 2σ 2

2 y∗E[y1] + σ 2
2 y2∗ (45)

dE[z21(t)]
dt

= 2a32E[y1z1] + (2a33 + σ 2
3 )E[z21]

+2σ 2
3 z∗E[z1] + σ 2

3 z2∗ (46)

M =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a11 a12 0 0 0 0 0 0 0
a21 a22 a23 0 0 0 0 0 0
0 a32 a33 0 0 0 0 0 0

2σ 2
1 x∗ 0 0 (2a11 + σ 2

1 ) 0 0 2a12 0 0
0 2σ 2

2 y∗ 0 0 (2a22 + σ 2
2 ) 0 2a21 2a23 0

0 0 2σ 2
3 z∗ 0 0 (2a33 + σ 2

3 ) 0 2a32 0
0 0 0 a21 a12 0 (a11 + a22) 0 a23
0 0 0 0 a32 a23 0 (a22 + a33) a21
0 0 0 0 0 0 a32 a12 (a11 + a33)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

dE[x1(t)y1(t)]
dt

= (a11 + a22)E[x1y1] + a12E[y21 ]
+ a21E[x21 ] + a23E[x1z1] (47)

dE[y1(t)z1(t)]
dt

= a21E[x1z1] + (a22 + a33)E[y1z1]
+a23E[z21] + a32E[y21 ] (48)

dE[x1(t)z1(t)]
dt

= (a11 + a33)E[x1z1]
+ a12E[y1z1] + a32E[x1y1]. (49)

Steady-states of the first- and second-ordermoments
are obtained by solving following system of equations:

a11E[x1] + a12E[y1] = 0 (50)

a21E[x1] + a22E[y1] + a23E[z1] = 0 (51)

a32E[y1] + a33E[z1] = 0 (52)

(2a11 + σ 2
1 )E[x21 ] + 2a12E[x1y1]

+ 2σ 2
1 x∗E[x1] = −σ 2

1 x2∗ (53)

2a21E[x1y1] + (2a22 + σ 2
2 )E[y21 ]

+ 2a23E[y1z1] + 2σ 2
2 y∗E[y1] = −σ 2

2 y2∗ (54)

2a32E[y1z1] + (2a33 + σ 2
3 )E[z21] + 2σ 2

3 z∗E[z1]
= −σ 2

3 z2∗ (55)

(a11 + a22)E[x1y1] + a12E[y21 ]
+ a21E[x21 ] + a23E[x1z1] = 0 (56)

a21E[x1z1] + (a22 + a33)E[y1z1]
+ a23E[z21] + a32E[y21 ] = 0 (57)

(a11 + a33)E[x1z1] + a12E[y1z1] + a32E[x1y1] = 0,

(58)

For notational convenience, we assume that the
steady-state for the first- and second-order moments
is denoted by E[x1]∗, E[y1]∗, E[z1]∗, E[x21 ]∗, E[y21 ]∗,
E[z21]∗, E[x1y1]∗, E[y1z1]∗, E[x1z1]∗.
Thus, the stability of these steady states depends upon
the sign of real parts of the eigenvalues of the matrix
M defined by

Applying the Routh–Hurwitz criteria, one can find
the conditions for the negative real parts of all eigen-
values of the matrix M, but the obtained conditions
cannot be put into explicit conditions. So all details of
stochastical stability analysis are given in “Appendix
(A1)–(A2)”.

Theorem 3.4 1. The trivial equilibrium E1=(0, 0, 0)
is unstable in terms of first- and second-order
moments.

2. The first- and second-order moments associated
with the cancer infected cells dynamics around zero

are stable if δ ≥ σ 2
2
2 .
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3. The first- and second-order moments associated
with the virus-specific CTL dynamics around zero

are stable if q ≥ σ 2
3
2 and q ≥ r .

Proof Around the trivial equilibrium point E1 =
(0, 0, 0), the eigenvalues of the matrix M associated
with the first- and second-order moments are given as
follows

λ1 = r, λ2 = −δ λ3 = −q,

λ4 = 2r + σ 2
1 , λ5 = −2δ + σ 2

2 , λ6 = −2q + σ 2
3 ,

λ7 = r − δ, λ8 = −(δ + q) λ9 = r − q.

1. Note that the first-order moment λ1 = r and the
second-order moment λ4 = 2r + σ 2

1 are always
positive. Thus, the cancer uninfected cells dynam-
ics around 0 are unstable and therefore, E1 is also
unstable.

2. In the vicinity of 0, the cancer infected cells dynam-
ics are stable if the first-order moment λ2 = −δ

and the second-order moments λ5 = −2δ + σ 2
2

and λ8 = −(δ + q)) are negative.
3. In the vicinity of 0, the dynamics of virus-specific

CTLs are stable if the first-order moment λ3 = −q
and the second-order moments λ6 = −2q +σ 2

3 and
λ9 = r − q are negative. �

Theorem 3.5 Under the Assumption 1, the stochastic
model around the interior equilibrium point E3 is stable
in terms of second-order moments.

Proof According to the calculations made in the
“Appendix (A1)–(A2)” on miners using the Routh–
Hurwitz theorem, we have from (A10):

�1 = a1 = τ6 = −(m1 + m4), �2 = a2�1,

�3 = a3�2, �4 = a4�3

�5 = a5�4, �6 = a6�5

Assumption 1: All terms (�i )i=1,...,6 must be positive.
�

Theorem 3.6 Under Assumption 3, the stochastic
model around the interior equilibrium point E4 is
unstable in terms of first- and second-order moments.

Proof According to the calculations made in the
“Appendix (A1)–(A2)”, it is shown from (A9) that

�1 = a1 = ρ6 = −(m1 + m4)

= −
(
4(a11 + a22 + a33) + σ 2

1 + σ 2
2 + σ 2

3

)

So two possible cases arise:
Assumption 2: �1 < 0 if a11 + a22 + a33 ≥ 0.

Assumption 3: �1 > 0 if
(

a11 + a22 + a33 <

0 and 4(a11 + a22 + a33) ≤ σ 2
1 + σ 2

2 + σ 2
3

)
. �

3.4 Numerical simulations of population dynamics,
probabilities of extinction and mean extinction
time

This sectionwill thus illustrate themathematical results
obtained in the previous section. We use Milstein’s
Higher Order Method to obtain the system (59) which
is a discretization transformation of system (2). Mil-
stein’s numerical scheme is a first-order method which
can be weakly or strongly convergent [18]. Due to the
Lipschitzian characteristics of the deterministic and
stochastic parts of our model, we have here a strong
convergence of the Milstein scheme [27]. The conver-
gence of this numerical method has been validated in
for many models having an explicit expression of their
exact solution, [15,18,34].
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x j+1 = x j +
[

r x j

(

1 − x j + y j

k

)

−β
x j y j

x j + y j + α

]

�t + σ1x j B1, j
√

�t

+σ 2
1 x j

(
B2
1, j −1

)

2 �t,

y j+1 = y j +
[

β
x j y j

x j + y j + α
− δy j − py j z j

]

�t

+σ2y j B2, j
√

�t + σ 2
2 y j

(
B2
2, j −1

)

2 �t,

z j+1 = z j + [γ y j z j − qz j
]
�t

+σ3z j B3, j
√

�t + σ 2
3 z j

(
B2
3, j −1

)

2 �t,

(59)

where the time increment �t > 0. For a fixed obser-
vation period [0, T ], n is estimated as follows n =
1 + round

( T
�t

)
and the time discretization is t j =

j�t, for j = 1, . . . , n. σi > 0, for i = 1, 2, 3, are
the noise intensities. B1, j , B1, j and B3, j denote inde-
pendent Gaussian random variables which follow the
normal distribution N (0, 1) for j = 1, . . . , n.
We also use the Monte Carlo algorithm to estimate
the extinction probabilities (Px, j , Py, j , Pz, j ) as well
as the mean extinction times (Ex, j , Ey, j , Ez, j ) asso-
ciated with the extinction of each of the populations.
This algorithm works as follows: for each discretiza-
tion interval (t j , t j+1), we perform RN simulation runs
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whose outcome is to increment by one unit the count-
ing variable (Lx, j , L y, j , Lz, j ), when x j+1 ≤ 0 or
y j+1 ≤ 0 or z j+1 ≤ 0. The extinction probabilities
(Px, j , Py, j , Pz, j ) are approximated by the relative fre-

quencies
(

Lx, j
RN

L y, j
RN

Lz, j
RN

)
. The complexity and con-

vergence of this estimation algorithm for extinction
probabilities andmean extinction times have been stud-
ied in [13]. The detailed code of this algorithm is pre-
sented in “Appendix B”.
Numerical simulations will be able to show how the
combination of the effects of the parameters of the
deterministic model (1) with the stochastic diffusion
parameters affects the stochastic population dynamics
of cancer cells and viruses given by system (2). For
example, we will show how a stable equilibrium for
system (1) becomes unstable for system (2), thus lead-
ing to the extinction of one or all of the populations.
Finally, with this first passage estimation algorithm, we
analyzed the parameter variation effects of model (2)
on the mean first passage time, in the case of species
extinction.

3.4.1 Simulations of cancer cells and virus-specific
CTLs stochastic dynamics

This section is devoted to demonstrating our main
analytical results in previous subsections. During the
numerical resolution of stochastic system (2), the ini-
tial density of the populations of cancer cells and virus-
specific CTLs is close to the equilibrium E4 of coexis-
tence of the three populations:

x0 = E41 − 0.01, y0 = E42 − 0.001,

z0 = E43 − 0.001

To investigate the dynamical behavior of cancer cells
and virus-specific CTLs, we choose a set of parameter
values:

r = 0.15, k = 12.0, α = 0.001, β = 0.35,

γ = 0.1, δ = 0.12, p = 0.3, q = 0.1

σ1 = 0.08, σ2 = 0.1, σ3 = 0.105 (60a)

r = 0.15, k = 12.0, α = 0.001, β = 0.35,

γ = 0.1, δ = 0.12, p = 0.3, q = 0.1

σ1 = 0.21, σ2 = 0.1, σ3 = 0.105 (60b)

r = 0.27, k = 12.0, α = 0.001, β = 0.35,

γ = 0.1, δ = 0.12, p = 0.3, q = 0.1

σ1 = 0.02, σ2 = 0.02, σ3 = 0.22 (60c)

r = 0.27, k = 12.0, α = 0.001, β = 0.35,

γ = 0.1, δ = 0.12, p = 0.3, q = 0.1

σ1 = 0.02, σ2 = 0.02, σ3 = 0.5 (60d)

Figure1A corresponds to the parameter values
of stochastic system (2) given in equation (60a),
while Fig. 1B results from the parameter values set
in equation (60b), where the intensity of stochastic
noise was increased for the three populations. Notice
that in equations (60a) and (60b), the parameters
(r, k, α, β, γ, δ, p, q) have been fixed so that for
deterministic system (1), the equilibrium E4 is locally
stable and the equilibrium E1 is unstable. The popula-
tion of cancer cells and virus-specific CTLs gradually
decrease and fluctuating in the neighborhood of E4 in
Fig. 1A, it indicates weak persistence. Thus, the diffu-
sion and mutation of cancer cells can be controlled by
varying the strength of noise. Further, Fig. 1B indicates
that fluctuation of the same population tends to zero
after 100 days. This implies that the increase in noise
intensity leads the stochastic system (2) from popula-
tion coexistence dynamics to an extinction of the three
populations. Figure1C and D corresponds to the out-
puts of stochastic system (2) with the parameter values,
respectively, given in equations (60c) and (60d). Note
that in (60d), the stochastic noise intensity is greater
than that in (60c), for only the virus-specific CTLs and
the parameters (r, k, α, β, γ, δ, p, q) have beenfixed
so that the equilibrium E4 is locally stable and the equi-
librium E3 is unstable for system (2). Figure1C shows
weak persistence of the three populations in the neigh-
borhood of E4. However, we show in Fig. 1D the virus-
specific CTL depletion induced by the increase in the
noise intensity σ3. The stochastic system is therefore
switched from endemic equilibrium E4 to the equilib-
rium E3. It is an evidence that the parameter value com-
bination and the intensity of environmental noise play
pivotal role in determining the success of virotherapy.

3.4.2 Estimation of species extinction probabilities
and mean extinction time

In our numerical resolutions based on the Monte Carlo
algorithm, we set the increment time at �t = 0.001
and the repetition number RN of the simulations at
RN = 6000, with the fixed parameter values in (60b)
and (60d). The graphs in Fig. 2 represent the distribu-
tion of all first pass times over RN = 6000 simulations.
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Fig. 1 Noise intensity
effects of the cancer cells
and virus-specific CTL
dynamics, when the initial
population densities are
close to the equilibrium E4.
A Represents weak
persistence of the three
populations for the system
(2) for parameters given in
(60a). B Represents
extinction of the three
populations for the system
(2) after 100 days for
parameters given in (60b).
C Represents weak
persistence of the three
populations for the system
(2) for parameters given in
(60c). D Represents the
virus-specific CTL
depletion induced by the
increase in the noise
intensity σ3 for parameters
given in (60d)

Fig. 2 Distribution of
frequencies of first
extinction time using Monte
Carlo simulation. The
parameters of models are
fixed as: in (60b) for the
three populations extinction
(A); in (60d) for
virus-specific depletion (B)

Figure2A corresponds to the extinction time frequen-
cies for the three populations, whereas Fig. 2B corre-
sponds to the extinction time frequencies for only virus
population. This algorithm estimates the frequencies
and the mean time of extinctions. It also computes the
associate probability of extinction of the three species
in the case of therapy success (extinction of cancer
cells and viruses-specific CTLs) as well as in the case
of failure (depletion of the virus-specific CTLs only).
In the event of successful virotherapy, the extinction
probabilities are lx

RN = 0.891 for extinction of unin-

fected cells, ly
RN = 0.797 for extinction of infected

cells and lz
RN = 0.876 for virus-specific CTLs. In this

success therapy situation, the mean extinction times
are 171.5032, 207.2255 and 195.8487 days for, respec-
tively, uninfected cells, infected cells and virus specific
CTLs (see Fig. 2A). However, under the conditions of
failure (given parameter values in 60d), the probabil-
ity of extinction and the mean extinction time for the
virus-specific CTLs were estimated to lz

RN = 0.897
and 142.9962 days, respectively (see Fig. 2B).
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Fig. 3 Effects of the variation of the viral replication rate, β, and
the viral cytotoxicity, δ, on mean extinction time and extinction
probability for cancer cells and virus-specific CTLs. Red zone

corresponds to higher values of extinction probabilities or mean
extinction times, while blue zone is for their low values

3.4.3 Model parameter sensibility on extinction
probabilities and mean extinction time

In this part of the analysis, wewent further to determine
the effects of parameter variations on the model out-

puts. Therefore, we determined the spaces of parameter
values leading to the success or failure of the virother-
apy.We also determined the associatedmean extinction
times and probabilities of extinction.
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Fig. 4 Effects of the variation of the strength of CTL responses,
γ , and the maximum per capita growth rate of uninfected tumor
cells, r , on mean extinction time and extinction probability for

virus-specific CTLs. Red zone corresponds to higher values of
extinction probabilities ormean extinction times,while blue zone
is for their low values

To determine the parameter sensitivities and the
robustness of the therapy success characterized by the
extinction of cancer cells and the disappearance of
virus-specific CTLs, we vary the parameters β (β ∈
[0.14 0.45]) and δ (δ ∈ [0.01 0.35]). For the rest of
the stochastic model parameters, the values are fixed
as in equation (60b). The estimation robustness of the
mean extinction times and extinction probabilities as
well as the parameter sensitivities of the stochastic
model are presented in Fig. 3. For cancer cells as well
as for virus-specific CTLs, the high extinction proba-
bilities correspond to the low mean extinction times.
Due to the model nonlinearity, the extinction estima-
tion, when β and δ vary, show the existence of a portion
of a parabolic curve separating two zones. Above this
portion of the parabolic curve, the uninfected cancer
cells persist (Fig. 3A, B). However, below this portion
of the parabolic curve, there is an extinction of unin-
fected cancer cells. In this situation, the extinctionprob-
abilities (Fig. 3B) of uninfected cancer cells increase
with the simultaneous variations of β and δ (increase in
β and decrease in δ). The extinction of infected cancer
cells is observed for the parameter values on either side
of this nonlinear separation (Fig. 3C, D). The highest
probabilities of extinctions are observed for high values
of δ with δ > 0.2 (Fig. 3D), part above the separation
or for high values of β with β > 0.4 (Fig. 3D), part
below the separation. The mean disappearance times
of virus-specific CTLs are also separated into two parts
by a portion of a parabolic curve (Fig. 3E). Above this

curve, themean disappearance time is lower than above
it. Conversely, the probabilities of disappearance of
virus-specific CTLs are higher above this portion of
curve than below (Fig. 3F). Under the depletion con-
dition of virus-specific CTLs without extinction of the
cancer cells, the sensitivity analysis was carried out
by varying the parameters r ∈ [0.264 0.2934] and
γ ∈ [0.087 0.133]. The rest of the other model param-
eters are fixed as in (60d). The simulations in Fig. 4
show that the low γ values (γ < 0.1) lead to a high
extinction probability, greater than 0.9 (Fig. 4B) with
lowmean extinction times, less than 120days (Fig. 4A).
If γ is in [0.10 0.12], the disappearance probability of
virus specific CTLs will decrease around 0.7 and 0.8,
while the mean disappearance time of virus-specific
CTLs increases to be around 130 and 140 days. Then,
for large values of r (r > 0.275) and γ (γ > 0.12),
the disappearance probability of virus-specific CTLs
decreases below 0.6.

4 Conclusion

In this paper, a stochastic mathematical model is ana-
lyzed in order to improve the cancer oncolytic virother-
apy incorporating virus-specific CTL responses. We
established the conditions of the model solution exis-
tence, persistence and extinction. In relation to the
success or failure of the therapy, we investigated the
equilibrium point stabilities by calculating the first-
and second-order moments of the associated linearized
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system. Using Monte Carlo algorithm, we estimated
the mean first extinction time and the probability of
extinction, under the conditions of success of therapy
(corresponding to the extinction of cancer cells and
viruses) or failure of therapy (depletion of the virus-
specific CTLs without cancer cell extinction). Further-
more, by using this algorithm,wewere able to establish
the robustness of estimations and also the sensibility
effects or our parameter variations on the extinction
probabilities or the mean extinction times. This ana-
lytical process allows to estimate, on the one hand,
the probability of the therapy success and the nec-
essary remission duration necessary. Our results also
allow to determine the therapy failure probability and
so to adjust the control parameters before the disappear-
ance period of the virus-specific CTLs. Our numerical
simulations allow us to characterize the spaces of the

M ′ − λI =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

(2a11+σ 2
1 − λ) 0 0 2a12 0 0

0 (2a22+σ 2
2 − λ) 0 2a21 2a23 0

0 0 (2a33+σ 2
3 − λ) 0 2a32 0

a21 a12 0 (a11+a22 − λ) 0 a23
0 a32 a23 0 (a22+a33 − λ) a21
0 0 0 a32 a12 (a11+a33 − λ)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

cancer control parameters in this stochastic dynamical
system. In both success or failure therapy, the popu-
lation fluctuated for a long period around the attractor
of the co-existence equilibrium E4 before switching to
the attractor of the equilibrium E1 (success) or E3 (fail-
ure). Finally, our simulations highlighted the decisive
effects of the combination of the stochastic diffusion
parameters with the viral replication rate, β, the viral
cytotoxicity, δ, the strength ofCTL responses,γ and the
maximum per capita growth rate of uninfected tumors
cells, r , on the success or failure of virotherapy.
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Appendix A: Stability conditions analysis

1. Stability analysis around E4

To find the eigenvalues of the matrix M, it is necessary
to solve the auxiliary equation det(M ′−λI ) = 0,where
M ′ is the square matrix defined by retaining only the
second-order moments. Let

β1 = (2a11 + σ 2
1 − λ) (A1)

β2 = (2a22 + σ 2
2 − λ) (A2)

β3 = (2a33 + σ 2
3 − λ) (A3)

β4 = (a11 + a22 − λ) (A4)

β5 = (a22 + a33 − λ) (A5)

β6 = (a11 + a33 − λ). (A6)

Since,

then,

det(M ′ − λI ) = β1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

β2 0 2a21 2a23 0
0 β3 0 2a32 0

a12 0 β4 0 a23
a32 a23 0 β5 a21
0 0 a32 a12 β6

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

− 2a12

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

0 β2 0 2a23 0
0 0 β3 2a32 0

a21 a12 0 0 a23
0 a32 a23 β5 a21
0 0 0 a12 β6

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= β1D1 − 2a12D2,

with

D1 = β3

∣
∣
∣
∣
∣
∣
∣
∣

β2 2a21 2a23 0
a12 β4 0 a23
a32 0 β5 a21
0 a32 a12 β6

∣
∣
∣
∣
∣
∣
∣
∣

+ 2a32

∣
∣
∣
∣
∣
∣
∣
∣

β2 0 2a21 0
a12 0 β4 a23
a32 a23 0 a21
0 0 a32 β6

∣
∣
∣
∣
∣
∣
∣
∣

,

(A7)
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D2 = a21

∣
∣
∣
∣
∣
∣
∣
∣

β2 0 2a23 0
0 β3 0 a23

a32 a23 β5 a21
0 0 a12 β6

∣
∣
∣
∣
∣
∣
∣
∣

= a21β2

∣
∣
∣
∣
∣
∣

β3 0 a23
a23 β5 a21
0 a12 β6

∣
∣
∣
∣
∣
∣

+a21a32

∣
∣
∣
∣
∣
∣

0 2a23 0
β3 0 a23
0 a12 β6

∣
∣
∣
∣
∣
∣

(A8)

In order to calculate D1, let F1 = β2

∣
∣
∣
∣
∣
∣

β4 0 a23
0 β5 a21

a32 a12 β6

∣
∣
∣
∣
∣
∣
−

2a21

∣
∣
∣
∣
∣
∣

a12 0 a23
a32 β5 a21
0 a12 β6

∣
∣
∣
∣
∣
∣
+ 2a23

∣
∣
∣
∣
∣
∣

a12 β4 a23
a32 0 a21
0 a32 β6

∣
∣
∣
∣
∣
∣
,

and F2 = β2

∣
∣
∣
∣
∣
∣

0 β4 a23
a23 0 a21
0 a32 β6

∣
∣
∣
∣
∣
∣
+ 2a21

∣
∣
∣
∣
∣
∣

a12 0 a23
a32 a23 a21
0 0 β6

∣
∣
∣
∣
∣
∣

So,

F1 = β2(β4β5β6 − a32β5a23 − β4a12a21)

− 2a21(a12β5β6 − a23a32a12 − a2
12a21)

+ 2a23(a23a2
32 − β4a32β6 − a12a32a21),

F2 = β2(a
2
23a32 − β6β4a23) + 2a12a21a23β6.

Then,

D1 = β3F1 + 2a32F2 = β2β3β4β5β6

− a32a23β2β3β5 − 2a21a12β3β5β6

−2a21a12a23a32β3

− 2a2
21a2

12β3 + 2a2
23a2

32β3

− 2a23a32β3β4β6 − 2a23a12a32a21β3

− a12a21β2β3β4 + 2a2
32a2

23β2

− 2a32a23β2β4β6 + 4a32a21a12a23β6

β1D1 = β1β2β3β4β5β6︸ ︷︷ ︸
M1

− a32a23β1β2β3β5︸ ︷︷ ︸
M2

− 2a12a21β1β3β5β6︸ ︷︷ ︸
M3

− 2a21a23a32a12β1β3︸ ︷︷ ︸
M4

− 2a2
12a2

21β1β3
︸ ︷︷ ︸

M5

+ 2a2
32a2

23β1β3
︸ ︷︷ ︸

M6

− 2a32a23β1β3β4β6︸ ︷︷ ︸
M7

− 2a32a23a12a21β1β3︸ ︷︷ ︸
M8

− a12a21β1β2β3β4︸ ︷︷ ︸
M9

+ a2
32a2

23β1β2
︸ ︷︷ ︸

M10

− 2a32a23β1β2β4β6︸ ︷︷ ︸
M11

+ 4a12a21a32a23β1β6︸ ︷︷ ︸
M12

We set

M1 =β1β2β3β4β5β6

=
⎛

⎜
⎝2a11 + σ 2

1︸ ︷︷ ︸
N1

−λ

⎞

⎟
⎠

⎛

⎜
⎝2a22 + σ 2

2︸ ︷︷ ︸
N2

−λ

⎞

⎟
⎠

⎛

⎜
⎝2a33 + σ 2

3︸ ︷︷ ︸
N3

−λ

⎞

⎟
⎠

⎛

⎜
⎝a22 + a11︸ ︷︷ ︸

N4

−λ

⎞

⎟
⎠

⎛

⎜
⎝a22 + a33︸ ︷︷ ︸

N5

−λ

⎞

⎟
⎠

⎛

⎜
⎝a33 + a11︸ ︷︷ ︸

N6

−λ

⎞

⎟
⎠

=
⎡

⎣λ3 −
⎛

⎝N1 + N2 + N3︸ ︷︷ ︸
m1

⎞

⎠ λ2

+
⎛

⎝N1N2 + N1N3 + N2N3︸ ︷︷ ︸
m2

⎞

⎠ λ − N1N2N3︸ ︷︷ ︸
m3

⎤

⎦

×
⎡

⎣λ3 −
⎛

⎝N4 + N5 + N6︸ ︷︷ ︸
m4

⎞

⎠ λ2

+
⎛

⎜
⎝N4N5 + N4N6 + N5N6︸ ︷︷ ︸

m5

⎞

⎟
⎠ λ − N4N5N6︸ ︷︷ ︸

m6

⎤

⎥
⎦

= λ6 − (m1 + m4) λ5 +
⎛

⎜
⎝m2 + m5 + m1m4︸ ︷︷ ︸

μ1

⎞

⎟
⎠ λ4

−
⎛

⎜
⎝m3 + m6 + m1m5 + m2m4︸ ︷︷ ︸

μ2

⎞

⎟
⎠ λ3

+
⎛

⎜
⎝m1m6 + m5m2 + m3m4︸ ︷︷ ︸

μ3

⎞

⎟
⎠ λ2

−
⎛

⎜
⎝m2m6 + m3m5︸ ︷︷ ︸

μ4

⎞

⎟
⎠ λ + m3m6

M2 = (N1 − λ) (N2 − λ) (N3 − λ) (N5 − λ) a32a23

= (λ3 − m1λ
2 + m2λ − m3

)
(N5 − λ) a32a23

= a23a32
︸ ︷︷ ︸

μ5

λ4 − a23a32 (m1 + N5)
︸ ︷︷ ︸

μ6

λ3 + a23a32 (m2 + m1N5)
︸ ︷︷ ︸

μ7

λ2

− a23a32 (m3 + m2N5)
︸ ︷︷ ︸

μ8

λ + a32a23m3N5

M3 = 2a12a21β1β3β5β6

= 2a12a21 (N1 − λ) (N3 − λ) (N5 − λ) (N6 − λ)

= a12a21
︸ ︷︷ ︸

μ9

λ4 − 2a12a21 (N6 + N5 + N3 + N1)
︸ ︷︷ ︸

μ10

λ3

+ 2a12a21 (N1N6+N3N6+N5N6+N3N1+N1N5+N3N5)
︸ ︷︷ ︸

μ11

λ2
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− 2a12a21 (N1N3N6 + N1N5N6 + N1N3N5 + N5N3N6)
︸ ︷︷ ︸

μ12

λ

+2a12a21N5N1N3N6

M4 = 2a21a12a32a23β1β3 = 2a21a12a32a23 (N1 − λ) (N3 − λ)

= 2 a21a12a32a23
︸ ︷︷ ︸

μ25

λ2 − 2 a21a12a32a23 (N1 + N3)
︸ ︷︷ ︸

μ26

λ

+2a21a12a32a23N1N3

M5 = 2a2
21a2

12β1β3

= 2a2
21a2

12 (N1 − λ) (N3 − λ)

= 2 a2
21a2

12
︸ ︷︷ ︸

μ27

λ2 − 2 a2
21a2

12 (N1 + N3)
︸ ︷︷ ︸

μ28

λ + 2a2
21a2

12N1N3

M6 = 2a2
32a2

23β1β3 = 2a2
32a2

23 (N1 − λ) (N3 − λ)

= 2 a2
32a2

23
︸ ︷︷ ︸

μ29

λ2 − 2 a2
32a2

23 (N1 + N3)
︸ ︷︷ ︸

μ30

λ + 2a2
32a2

23N1N3

M7 = 2a32a23β1β3β4β6

= 2a32a23 (N1 − λ) (N3 − λ) (N4 − λ) (N6 − λ)

= 2 a32a23
︸ ︷︷ ︸

μ13

λ4 − 2 a32a23 (N1 + N3 + N4 + N6)
︸ ︷︷ ︸

μ14

λ3

+ 2 a32a23 (N1N3+N1N4+N1N6+N3N4+N3N6+N4N6)
︸ ︷︷ ︸

μ15

λ2

− 2 a32a23 (N1N3N4 + N1N3N6 + N1N6N4 + N6N3N4)
︸ ︷︷ ︸

μ16

λ

+ 2a32a23N1N3N4N6

M8 = 2a12a32a21a23β1β3

= 2a12a32a21a23(N1 − λ)(N3 − λ)

= 2a12a32a21a23λ
2 − 2a12a32a21a23(N1 + N3)λ

+ 2a12a32a21a23N1N3

M9 = a12a21β1β2β3β4

= a12a21 (N1 − λ) (N2 − λ) (N3 − λ) (N4 − λ)

= a12a21︸ ︷︷ ︸
μ17

λ4 − a12a21 (m1 + N4)︸ ︷︷ ︸
μ18

λ3

+ a12a21 (m2 + m1N4)︸ ︷︷ ︸
μ19

λ2

− a12a21 (m3 + m2N4)︸ ︷︷ ︸
μ20

λ + a12a21m3N4

M10 = a2
32a2

23β1β2 = a2
32a2

23(N1 − λ)(N2 − λ)

= a2
32a2

23λ
2 − a2

32a2
23(N1 + N2)λ

+ a2
32a2

23N1N2

M11 = 2a32a23β1β2β4β6

= 2a32a23 (N1 − λ) (N2 − λ) (N4 − λ) (N6 − λ)

= 2 a32a23
︸ ︷︷ ︸

μ21

λ4 − 2 a32a23 (N1 + N2 + N4 + N6)
︸ ︷︷ ︸

μ22

λ3

+ 2 a32a23 (N1N2+N1N4+N1N6+N2N4+N2N6+N4N6)
︸ ︷︷ ︸

μ23

λ2

−2 a32a23 (N1N3N4 + N1N3N6 + N1N6N4 + N6N3N4)
︸ ︷︷ ︸

μ24

λ

+2a32a23N1N2N4N6

M12 = 4a12a32a21a23β1β6

= 4a12a32a21a23(N1 − λ)(N6 − λ)

= 4a12a32a21a23︸ ︷︷ ︸
2μ31

λ2−4a12a32a21a23(N1+N6)︸ ︷︷ ︸
2μ32

λ

+ 4a12a32a21a23N1N6.

From (A7), we have

D2 = a21β2(β3β5β6 + a2
23a12 − β3a12a21)

−a12a32a23β3β6

Then,

−2a12D2 = −2a12a21β2β3β5β6 − 2a2
12a2

23a21β2

+2a2
12a2

21β2β3 + 4a12a21a23a32β3β6.

We set

M13 = 2a12a21β2β3β5β6

= 2a12a21λ
4 − 2a12a21(N3 + N2 + N5 + N6)λ

3

+ 2a12a21(N3N2 + N2N5 + N6N2

+ N6N3 + N3N5 + N5N6)λ
2

− 2a12a21(N2N3N5 + N2N3N6 + N2N5N6

+ N3N5N6)λ + 2a12a21N2N3N5N6,

M14 = 2a2
12a2

23a21β2 = 2a2
12a2

23a21(N2 − λ)

M15 = 2a2
12a2

21β2β3 = 2a2
12a2

21λ
2

− 2a2
12a2

21(N2 + N3)λ + 2a2
12a2

21N2N3,

M16 = 4a12a21a23a32β3β6 = 4a12a21a23a32λ
2

− 4a12a21a23a32(N3 + N6)λ

+ 4a12a21a23a32N3N6.

So,

−2a12D2 = −2a12a21λ
4 + 2a12a21(N3 + N2 + N5

+N6)λ
3 + [4a12a21a23a32 + 2a2

12a2
21 − 2a12a21(N3N2

+N2N5 + N6N2 + N6N3 + N3N5 + N5N6)]λ2
+[2a12a21(N2N3N5 + N2N3N6 + N2N5N6 + N3N5N6)

+2a2
12a2

23a21 − 4a12a21a23a32(N3 + N6)
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−2a2
12a2

21(N2 + N3)]λ + 4a12a21a23a32N3N6

+2a2
12a2

21N2N3

−2a12a21N2N3N5N6 − 2a2
12a2

23a21N2

−2a12D2 = ρ1λ
4 + ρ2λ

3 + ρ3λ
2 + ρ4λ + ρ5,

with,

ρ1 = −2a12a21,

ρ2 = 2a12a21(N3 + N2 + N5 + N6),

ρ3 = 4a12a21a23a32 + 2a2
12a2

21 − 2a12a21(N3N2

+N2N5 + N6N2 + N6N3 + N3N5 + N5N6),

ρ4 = 2a12a21(N2N3N5 + N2N3N6

+N2N5N6 + N3N5N6)

+2a2
12a2

23a21 − 4a12a21a23a32(N3 + N6)

−2a2
12a2

21(N2 + N3),

ρ5 = 4a12a21a23a32N3N6 + 2a2
12a2

21N2N3

−2a12a21N2N3N5N6 − 2a2
12a2

23a21N2.

We will have

det(M ′ − λI ) = λ6 + ρ6λ
5

+(ρ1 + ρ7)λ
4 + (ρ2 + ρ8)λ

3

+(ρ3 + ρ9)λ
2 + (ρ4 + ρ10)λ + ρ5 + ρ11,

where

ρ6 = m1 + m4,

ρ7 = μ1 − μ5 − μ9 − μ13 − μ17 − μ21,

ρ8 = μ3 + μ6 + μ10 + μ14 + μ18 + μ22,

ρ9 = μ3 − μ7 − μ11 − μ15 − μ19 − μ23

−μ25 − μ27 + μ29 − μ31 + μ33 + μ35,

ρ10 = μ12 − μ4 + μ16 + μ20 + μ24 + μ26

+μ28 − μ30 + μ32 − μ34 − μ36,

ρ11 = m3m6 − 2a12a21N1N3N5N6

− 2a32a23N1N3N4N6

− 2a32a23N1N2N4N6

− 4a12a21a23a32N1N3 − 2a2
23a2

32N1N3

− 2a2
12a2

21N1N3 + a2
23a2

32N1N2

+ 4a12a21a23a32N1N6,

with

a0 = 1, a1 = ρ6, a2 = ρ1 + ρ7,

a3 = ρ2 + ρ8, a4 = ρ3 + ρ9, a5 = ρ4 + ρ10,

a6 = ρ5 + ρ11.

R =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

a1 a0 0 0 0 0
a3 a2 a1 a0 0 0
a5 a4 a3 a2 a1 a0
0 0 0 a4 a3 a2
0 0 0 0 a5 a4
0 0 0 0 0 a6

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

Sign of �1 = a1:
�1 = a1 = ρ6 = −(m1 + m4), with m1 = N1 + N2 +
N3, m4 = N4 + N5 + N6,

N1 = 2a11 + σ 2
1 , N4 = a11 + a22

N2 = 2a22 + σ 2
2 , N5 = a22 + a33

N3 = 2a33 + σ 2
3 , N6 = a11 + a33

Then,

�1 = a1 = ρ6 = −(m1 + m4)

= −
(
4(a11 + a22 + a33) + σ 2

1 + σ 2
2 + σ 2

3

)

= −
(
4T r(J ) + σ 2

1 + σ 2
2 + σ 2

3

)
. (A9)

Therefore, two possible case arise:

• �1 < 0 if T r(J ) > 0,
• �1 < 0 if T r(J ) < 0 and 4T r(J ) < σ 2

1 +σ 2
2 +σ 2

3 .

2. Stability analysis around E3

The characteristic polynomial of a matrix M ′ evaluated
at the equilibrium point E3 is written as

P(λ) = λ6 + τ6λ
5 + (τ1 + τ7)λ

4 + (τ2 + τ8)λ
3

+(τ3 + τ9)λ
2 + (τ4 + τ10)λ + (τ5 + τ11),

where
τ1 = −2a12a21,
τ2 = 2a12a21(N2 + N3 + N5 + N6),
τ3 = ������

4a12a21a23a32 + 2a2
12a2

21 − 2a12a21(N2N3 +
N2N5 + N2N6 + N3N5 + N3N6 + N5N6),
τ4 = 2a12a21(N2N3N5 + N2N3N6 + N2N5N6 +
N3N5N6) + 2a2

12a2
23a21 − 2a2

12a2
21(N2 + N3)

−cancel4a12a21a23a32(N3 + N6),
τ5 = ���������

4a12a21a23a32N3N6 + 2a2
12a2

21N2N3

−2a12a21N2N3N5N6 − 2a2
12a2

23a21N2,
τ6 = −(m1 + m4),
τ7 = μ1 −��μ5 − μ9 −��μ13 − μ17 −��μ21,
τ8 = μ3 +��μ6 + μ10 +��μ14 + μ18 +��μ22,
τ9 = μ3 −��μ7 −μ11 −��μ15 −μ19 −��μ23 −��μ25 −μ27 +
��μ29 −��μ31 +��μ33 +��μ35,
τ10 = μ12 − μ4 +��μ16 + μ20 +��μ24 +��μ26 + μ28 −
��μ30 +��μ32 −��μ34 −��μ36,
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τ11 = m3m6 − 2a12a21N1N3N5N6 − 2a2
12a2

21N1N3.
The minor of matrix is written as follows:

�1 = a1 = τ6 = −(m1 + m4), �2 = a2�1,

�3 = a3�2,�4 = a4�3,

�5 = a5�4, �6 = a6�5. (A10)

Sign of �2 = a2�1:
a2 = −5a12a21 + m5 + m1m4 + m2

a2 = 3T r(J )2 − 2(σ 2
1 + σ 2

2 + σ 2
3 )T r(J ) + K ,

with K = a11a22+a11a33+a22a33−5a12a21+(a11+
σ 2
1 )(a22 + σ 2

2 ).
Thediscriminant of 3T r(J )2−2(σ 2

1 +σ 2
2 +σ 2

3 )T r(J )+
K = 0 is given by �′ = (σ 2

1 + σ 2
2 + σ 2

3 )2 − 3K .
If �′ = 0, then T r(J )∗ = 1

3 (σ
2
1 + σ 2

2 + σ 2
3 ). So,

T r(J ) −∞ T r(J )∗ +∞
sign of a2 + 0 +

If �′ > 0, then (T r(J ))1 = 1
3 (σ

2
1 + σ 2

2 + σ 2
3 − √

�′)
and (T r(J ))2 = 1

3 (σ
2
1 + σ 2

2 + σ 2
3 + √

�′).
Therefore,

T r(J ) −∞ (T r(J ))1 (T r(J ))2 +∞
sign ofa2 + 0 − 0 +

Sign of �3 = a3�2:
We have a3 = τ2 + τ8, with
τ2 = 2a12a21(N2 + N3 + N5 + N6) and τ8 = μ3 +
μ10 + μ18,
μ3 = m1m6 + m2m5 + m3m4,
μ10 = 2a12a21(N1 + N3 + N5 + N6),
μ18 = a12a21(N4 + m1),
m1 = N1 + N2 + N3, m4 = N4 + N5 + N6,
m2 = N1N2+N1N3+N2N3, m5 = N4N5+N4N6+
N5N6,
m3 = N1N2N3, m6 = N4N5N6,
m1m6 = N1N4N5N6 + N2N4N5N6 + N3N4N5N6,
m2m5 = N1N2N4N5 + N1N2N4N6 + N1N2N5N6 +
N1N3N4N5 + N1N3N4N6 + N1N3N5N6

+ N2N3N4N5 + N2N3N4N6 + N2N3N5N6,
m3m4 = N1N2N3N4 + N1N2N3N4 + N1N2N3N6,
N1N4N5N6 = a33N1T r2(J ) + (a11a22N1 − a2

33N1)

T r(J ) − a11a22a33N1,
N2N4N5N6 = a33N2T r2(J ) + (a11a22N2 − a2

33N2)

T r(J ) − a11a22a33N2,
N3N4N5N6 = a33N3T r2(J ) + (a11a22N3 − a2

33N3)

T r(J ) − a11a22a33N3,
N1N2N4N5 = N1N2(a22T r(J ) + a11a33),
N1N2N4N6 = N1N2(a11T r(J ) + a22a33),

N1N2N5N6 = N1N2(a33T r(J ) + a11a22),
N1N3N4N5 = N1N3(a22T r(J ) + a11a33),
N1N3N4N6 = N1N3(a11T r(J ) + a22a33),
N1N3N5N6 = N1N3(a33T r(J ) + a11a22),
N2N3N4N5 = N2N3(a22T r(J ) + a11a33),
N2N3N4N6 = N2N3(a11T r(J ) + a22a33),
N2N3N5N6 = N2N3(a33T r(J ) + a11a22),
N1N2N3N4 = N1N2N3(T r(J ) − a33),
N1N2N3N5 = N1N2N3(T r(J ) − a11),
N1N2N3N6 = N1N2N3(T r(J ) − a22). So

a3 = τ2 + τ8

= 9a12a21T r(J ) + a12a21(2a11 + 2a22

+9a33 + 3σ 2
1 + 3σ 2

2 + 5σ 2
3 ) + m1m6

+m2m5 + m3m4

= (N1 + N2 + N3)a33T r2(J ) +
(
9a12a21

+a11a22N1 − a2
33N1 + a11a22N2 − a2

33N2

+a11a22N3 − a2
33N3 + N1N2a22 + N1N2a11

+N1N2a33 + N1N3a22 + N1N3a11

+N1N3a33 + N2N3a22 + N2N3a11

+N2N3a33 + 3N1N2N3

)
T r(J )

+a12a21(2a11 + 2a22 + 9a33 + 3σ 2
1

+3σ 2
2 + 5σ 2

3 ) − a11a22a33(N1 + N2 + N3)

+N1N2(a11a33 + a22a33 + a11a22)

+N1N3(a11a33 + a22a33 + a11a22)

+N2N3(a11a33 + a22a33 + a11a22)

We pose A = (N1 + N2 + N3)a33,

B =
(
9a12a21 + a11a22N1 − a2

33N1 + a11a22N2 −
a2
33N2 + a11a22N3 − a2

33N3 + N1N2a22 + N1N2a11 +
N1N2a33+N1N3a22+N1N3a11+N1N3a33+N2N3a22
+ N2N3a11 + N2N3a33 + 3N1N2N3

)
,

and C = a12a21(2a11 + 2a22 + 9a33 + 3σ 2
1 + 3σ 2

2 +
5σ 2

3 ) − a11a22a33(N1 + N2 + N3) + N1N2(a11a33 +
a22a33+a11a22)+ N1N3(a11a33+a22a33+a11a22)+
N2N3(a11a33 + a22a33 + a11a22).
So we can rewrite a3 as a3 = AT r(J )2+ BT r(J )+C .
The discriminant of the equation a3 = 0 is � = B2 −
4AC .
If � = 0, then T r(J )∗ = − B

2A . Therefore,

T r(J ) −∞ T r(J )∗ +∞
sign of a3 sign of A 0 sign of A
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If � > 0, then T r1(J ) = (−B−√
�

2A ) and T r2(J ) =
(−B+√

�
2A ). So

T r(J ) −∞ T r1(J ) T r2(J ) +∞
sign of a3 sign of A 0 −sign of A 0 sign of A

Sign of �4 = a4�3:
We have a4 = τ3 + τ9, with
τ3 = 2a2

12a2
21 − 2a12a21(N2N3 + N2N5 + N2N6 +

N3N5 + N3N6 + N5N6),
τ9 = μ3 − μ11 −��μ15 − μ19 − μ27 +��μ33,
μ3 = m1m6 + m2m5 + m3m4,
μ11 = 2a12a21(N1N6 + N3N6 + N5N6 + N1N3 +
N1N5 + N3N5),
μ19 = a12a21(m2 + m1N4),
μ27 = 2a2

12a2
21

So we can rewrite a3 as

a4 = τ3 + τ9

= −a12a21
[
2N2N3 + 2N2N5 + 2N2N6

+ 4(N3N5 + N5N6 + N3N6)

+ 2N1N6 + 2N1N3 + 2N1N5 + m2 + m1N4

]

+ m1m6 + m2m5 + m3m4,

with
N1N4 = N1(T r(J )−a33); N1N5 = N1(T r(J )−a11);
N1N6 = N1(T r(J )−a22), N2N4 = N2(T r(J )−a33);
N2N5 = N2(T r(J )−a11); N2N6 = N2(T r(J )−a22),
N3N4 = N3(T r(J ) − a33), N3N5 = N3(T r(J ) −
a11); N3N6 = N3(T r(J )−a22); N5N6 = a33T r(J )+
a11a22; m1m6 = N1N4N5N6 + N2N4N5N6

+ N3N4N5N6

m2m5 = N1N2N4N5 + N1N2N4N6 + N1N2N5N6 +
N1N3N4N5+N1N3N4N6+N1N3N5N6+N2N3N4N5

+ N2N3N4N6 + N2N3N5N6

m3m4 = N1N2N3N4 + N1N2N3N4 + N1N2N3N6

N1N4N5N6 = a33N1T r2(J ) + (a11a22N1 − a2
33N1)

T r(J ) − a11a22a33N1

N2N4N5N6 = a33N2T r2(J ) + (a11a22N2 − a2
33N2)

T r(J ) − a11a22a33N2

N3N4N5N6 = a33N3T r2(J ) + (a11a22N3 − a2
33N3)

T r(J ) − a11a22a33N3

N1N2N4N5 = N1N2(a22T r(J ) + a11a33)
N1N2N4N6 = N1N2(a11T r(J ) + a22a33)
N1N2N5N6 = N1N2(a33T r(J ) + a11a22)
N1N3N4N5 = N1N3(a22T r(J ) + a11a33)
N1N3N4N6 = N1N3(a11T r(J ) + a22a33)
N1N3N5N6 = N1N3(a33T r(J ) + a11a22)
N2N3N4N5 = N2N3(a22T r(J ) + a11a33)

N2N3N4N6 = N2N3(a11T r(J ) + a22a33)
N2N3N5N6 = N2N3(a33T r(J ) + a11a22)
N1N2N3N4 = N1N2N3(T r(J ) − a33)
N1N2N3N5 = N1N2N3(T r(J ) − a11)
N1N2N3N6 = N1N2N3(T r(J ) − a22) From where,
we have:
a4 = −a12a21

[
2N2N3 + 2(N2(T r(J ) − a11)) +

2(N2(T r(J )−a22))+4(N3(T r(J )−a11)+a33T r(J )+
a11a22 + N3(T r(J ) − a22)) +2N1(T r(J ) − a22) +
2N1N3+2N1(T r(J )−a11)+m2+m1N4

]
+m1m6+

m2m5 + m3m4,
a4 = (N1 + N2 + N3)a33T r2(J ) + (3N1N2N3 +
a11N1N2+a22N1N2 +a33N1N2+a22N1N3+a11N1N3

+a33N1N3 + a22N2N3 + a11N2N3 + a33N2N3 −
5a12a21N2− 9a12a21N3 − 5a12a21N1 − 4a12a21a33 +
a11a22N1 − a2

33N1+ a11a22N2 − a2
33N2+ a11a22N3 −

a2
33N3)T r(J ) + a11a33N1N2 + a22a33N1N2 + a11a22

N1N2 + a11a33N1N3 + a22a33N1N3 + a11a22N1N3 +
a11a33N2N3+a22a33N2N3 +a11a22N2N3−a11a22a33
(N1+N2+N3)−(a11+a22+a33)N1N2N3 −a12a21(2N2N3−
2a11N2 − 2a22N2 − 4a11N3 + 4a11a22 − 4a22N3 −
2a22N1+ 2N1N3−2a11N1+ N1N2+ N1N3+ N2N3−
a33N1 − a33N2 − a33N3).
By setting new changes to variables, we have:
A = (N1 + N2 + N3)a33,
B = (3N1N2N3 +a11N1N2 +a22N1N2 +a33N1N2 +
a22N1N3 +a11N1N3

+ a33N1N3 +a22N2N3 + a11N2N3 + a33N2N3 −
5a12a21N2 − 9a12a21N3 −5a12a21N1 − 4a12a21a33 +
a11a22N1 − a2

33N1 + a11a22N2 −a2
33N2 + a11a22N3 −

a2
33N3),

C = a11a33N1N2 + a22a33N1N2 + a11a22N1N2 +
a11a33N1N3 + a22a33N1N3 +a11a22N1N3 + a11a33
N2N3+a22a33N2N3 +a11a22N2N3−a11a22a33(N1+
N2+N3)−(a11+a22+a33)N1N2N3 −a12a21(2N2N3−
2a11N2 − 2a22N2 − 4a11N3 + 4a11a22 −4a22N3 −
2a22N1+2N1N3−2a11N1+ N1N2+ N1N3+ N2N3−
a33N1 − a33N2 − a33N3).
As a4 = AT r2(J ) + BT r(J ) + C , the associate dis-
criminant is given by � = B2 − 4A × C . So,
If � = 0, then T r(J )∗ = − B

2A . Therefore,

T r(J ) −∞ T r(J )∗ +∞
sign of a4 sign of A 0 sign of A

If�>0, then (T r(J ))1 = (−B−√
�

2A ) and (T r(J ))2 =
(−B+√

�
2A ). Therefore,

T r(J ) −∞ (T r(J ))1 (T r(J ))2 +∞
sign of a4 sign of A 0 −sign of A 0 sign of A
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Sign of �5 = a5�4:
We will now study the sign of the coefficient a5. To
do this, we transform a5 in the form of a quadratic
equation. We have a5 = τ10 + τ4, with

τ4 = 2a12a21 (N2N3N5 + N2N3N6

+N2N6N5 + N6N3N5)

+2a2
12a2

23a21 − 2a2
12a2

21 (N2 + N3) ,

τ10 = μ12 − μ4 + μ20 + μ28,

μ12 = N1N3N6 + N1N6N5 + N1N3N5 + N6N3N5,

μ20 = −a12a21 (m3 + m2N4) ,

μ28 = −2a2
12a2

21 (N1 + N3) ,

μ4 = − (m2m6 + m3m5) ,

m2 = N1N2 + N1N3 + N3N2,

m5 = N4N5 + N4N6 + N5N6,

m3 = N1N2N3,

m6 = −N4N5N6.

N2N6N5 + N6N3N5 = N6N5 (N2 + N3)

= (N2 + N3) (a22 + a33 + a11 − a11)

(a11 + a33 + a22 − a22)

= (N2 + N3) (T r(J ) − a11) (T r(J ) − a22)

= (N2 + N3) a33T r(J ) + (N2 + N3) a11a22,

N2N3N5 + N2N3N6 = N2N3 (N5 + N6)

= N2N3 (a22 + a33 + a11 + a33)

= N2N3 (T r(J ) + a33)

= N2N3T r(J ) + N2N3a33,

N2 + N3 = N1 + N2 + N3 − N1

= 2a11 + 2a22 + 2a33 − 2a11 − σ 2
1

+ σ 2
1 + σ 2

2 + σ 2
3

= 2T r(J ) + σ 2
2 + σ 2

3 − 2a11
︸ ︷︷ ︸

∧
.

Therefore, we have

N2N6N5 + N6N3N5 = (N2 + N3) a33T r(J )

+ (N2 + N3) a11a22. (A11)

After using (A11), we have

N2N6N5 + N6N3N5 = 2a33T r(J )2

+ (2a11a22 + a33∧) T r(J )

Finally, we get

τ4 = 4a12a21a33
︸ ︷︷ ︸

H1

T r(J )2

+
⎛

⎜
⎝2a12a21N2N3+4a12a21a11a22+2 ∧ a12a21a33−4a2

12a2
21

︸ ︷︷ ︸
H2

⎞

⎟
⎠

T r(J ) + 2a2
12a21a2

23 + 2a12a21a33N2N3
︸ ︷︷ ︸

H3

= H1T r(J )2 + H2T r(J ) + H3.

We transformed μ12 as follows

N1N3N6 + N1N3N5 = N1N3 (N5 + N6)

= N1N3 (a22 + a33 + a11 + a33)

= N2N3 (T r(J ) + a33)

= N1N3T r(J ) + N1N3a33,

N1N6N5 + N6N3N5 = (N1 + N3) N5N6

= (N1 + N3)

(a22 + a33 + a11 − a11) (a11 + a33 + a22 − a22)

= (N1 + N3) (T r(J ) − a11) (T r(J ) − a22)

= (N1 + N3) a33T r(J ) + (N1 + N3) a11a22,
(A12)

N1 + N3 = 2a11 + 2a22 + 2a33 − 2a22 + σ 2
1 + σ 2

3

= 2T r(J ) + σ 2
1 + σ 2

3 − 2a22
︸ ︷︷ ︸

∧1

. (A13)

Taking into account (A13) and (A12), we have

μ12 = 2a33T r(J )2 +
⎛

⎜
⎝a33 ∧1 +N1N3 + 2a11a22︸ ︷︷ ︸

H4

⎞

⎟
⎠ T r(J )

+ a11a22 ∧1 +N1N3a33︸ ︷︷ ︸
H5

. (A14)

N4m2 = N1 (N2 + N3) N4 + N1N2N4

= N1 (2T r(J ) + ∧) (T r(J ) − a33)

+ N2N3 (T r(J ) − a33)

= 2N1T r(J )2 + (N1 ∧ +N2N3 − a33N1)

T r(J ) − a33(∧ + N2N3).

μ20 = −2N1a12a21︸ ︷︷ ︸
H6

T r(J )2

+ a12a21 (a33N1 − N1 ∧ +N2N3)︸ ︷︷ ︸
H7

T r(J )

+ a12a21 (a33(∧ − N2N3)︸ ︷︷ ︸
H8

. (A15)

m5 = N4N5 + N4N6 + N6N5

= N4 (N5 + N6) + N6N5

= T r(J )2 + a33T r(J ) + a11a22 − a2
33,
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m6 = −N4N5N6

= −a33T r(J )2 +
(

a2
33 − a11a22

)
T r(J )

+ a33a11a22,

m2 = N1N2 + N1N3 + N2N3

= N1N2 + N3 (N1 + N2)

= N1N2 + N3

⎛

⎜
⎝2T r(J ) + σ 2

1 + σ 2
2 − 2a33

︸ ︷︷ ︸
∧2

⎞

⎟
⎠

= 2N3T r(J ) + N1N2 + N3 ∧2 .

m2m6 = −a33m2T r(J )2 + m2

(
a2
33 − a11a22

)
T r(J )

+m2a33a11a22, (A16)

m3m5 = m3T r(J )2 + m3a33T r(J ) + m3a33a11a22.

(A17)

From (A16) and (A17), we have

μ4 =
⎛

⎜
⎝a33m2 − m3︸ ︷︷ ︸

H9

⎞

⎟
⎠ T r(J )2

+
⎛

⎜
⎝m2(a11a22 − a2

33) − a33m3
︸ ︷︷ ︸

H10

⎞

⎟
⎠ T r(J )

+ a2
33 − m3a11a22 − m2a33a11a22
︸ ︷︷ ︸

H11

, (A18)

μ28 = −2a2
12a2

21 (N1 + N2)

= −4a2
12a2

21︸ ︷︷ ︸
H12

T r(J ) + 2a2
12a2

21

(
2a22 − σ 2

1 + σ 2
3

)

︸ ︷︷ ︸
H13

.

(A19)

Finaly we get from (A19), (A18), (A15) and (A14),

a5 = (H1 + 2a33 − H9 + H6)︸ ︷︷ ︸
A

T r(J )2

+
⎛

⎝H2 + H4 − H10 + H7 + H12︸ ︷︷ ︸
B

⎞

⎠ T r(J )

+ H3 + H5 + H11 + H13 + H8︸ ︷︷ ︸
C

a5 = AT r(J )2 + BT r(J ) + C. (A20)

The associate discriminant is given by� = B2−4AC .
So,

If � = 0, then T r(J )∗ = − B
2A . Thus,

T r(J ) −∞ T r(J )∗ +∞
sign of a5 sign of A 0 sign of A

.

If�>0, then (T r(J ))1 = (−B−√
�

2A ) and (T r(J ))2 =
(−B+√

�
2A ). Thus,

T r(J ) −∞ (T r(J ))1 (T r(J ))2 +∞
sign of a5 sign of A 0 −sign of A 0 sign of A

Sign of �6 = a6�5:
We have a6 = τ5 + τ11, with

τ5 = 2a2
12a2

21N2N3 − 2a12a21N2N3N5N6

− 2a2
12a2

23a21N2,

τ11 = m3m6 − 2a12a21N1N3N5N6 − 2a2
12a2

21N1N3,

On other hand, we have m3 = N1N2N3 and m6 =
N4N5N6. So, N2N3N5N6 = N2N3(a33T r(J ) +
a11a22)
m6 = N4N5N6 = (a11+a22)(a22+a33)(a11+a33) =
a22T r(J )2 + (a11a33 − a2

22)T r(J ) − a11a22a33 So,

τ11 = a22m3T r(J )2 + (a11a33m3

− a2
22m3 − 2a11a21a33N1N3)T r(J )

− a11a22a33m3 − 2a12a21a11a22N1N3

− 2a2
12a2

21N1N3

orm3m6 = a22m3T r(J )2+(a11a33−a2
22)m3T r(J )−

a11a22a33m3,

τ5 = −2a12a21a33N2N3T r(J ) + 2a2
12a2

21N2N3

− 2a2
12a2

23N2 − 2a11a12a22a21N2N2N3

Moreover,

a6 = a22m3T r(J )2 +
(

a11a33m3 − a2
22m3

−2a11a21a33N1N3 − 2a12a21a33N2N3) T r(J )

−a11a22a33m3 − 2a12a21a11a22N1N3

−2a2
12a2

21N1N3 + 2a2
12a2

21N2N3 − 2a2
12a2

23N2

−2a11a12a22a21N2N2N3

We pose A = a22m3, B = a11a33m3 − a2
22m3 −

2a11a21a33N1N3 − 2a12a21a33N2N3, and C = −a11
a22a33m3 − 2a12a21a11a22N1N3 − 2a2

12a2
21N1N3 +

2a2
12a2

21N2N3 − 2a2
12a2

23N2 − 2a11a12a22a21N2N2N3.
So, a6 = AT r(J )2+ BT r(J )+C . Then, the associate
discriminant � = B2 − 4AC .
If � = 0, then T r(J )∗ = − B

2A . So,

T r(J ) −∞ T r(J )∗ +∞
sign of a6 sign of A 0 sign of A
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If� > 0, then (T r(J ))1 = (−B−√
�

2A ) and (T r(J ))2 =
(−B+√

�
2A ). Thus,

T r(J ) −∞ (T r(J ))1 (T r(J ))2 +∞
sign ofa6 sign of A 0 −sign of A 0 sign ofA

Appendix B: Algorithm for estimation of extinction
probabilities and mean extinction times

-
Algorithm 1 Algorithm for estimation of
extinction probabilities and mean extinction
times
Require: Initialization of model parameters
Require: Initialization of F PTx , F PTy , F PTz matrix of 0 of size

n × RN : First passage Time matrix
Require: Initialization of Cx , Cy , Cz matrix of 10−10 of size n × RN
: count of first passage Time matrix
for i = 1, 2, · · · , RN do

Require: Start with the initial values x0 , y0 and z0
for j = 0, 1, · · · , n − 1 do

Require: Generate three random numbers B1, j , B1, j and B3, j
normally distributed over N(0,1)

x j+1 = x j +
[

r x j

(

1 − x j + y j

k

)

− β
x j y j

x j + y j + α

]

�t +

σ1x j B1, j
√

�t +
σ 2
1 x j

(
B2
1, j − 1

)

2
�t

y j+1 = y j +
[

β
x j y j

x j + y j + α
− δy j − py j z j

]

�t +

σ2y j B2, j
√

�t +
σ 2
2 y j

(
B2
2, j − 1

)

2
�t

z j+1 = z j + [
γ y j z j − qz j

]
�t + σ3z j B3, j

√
�t +

σ 2
3 z j

(
B2
3, j − 1

)

2
�t

if x j+1 ≤ 0 then

F PTx,i, j = x j+1, Cx,i, j = 1

end if
if y j+1 ≤ 0 then

F PTy,i, j = y j+1 Cy,i, j = 1
end if
if z j+1 ≤ 0 then

F PTz,i, j = x j+1 Cz,i, j = 1
end if

end for
end for
for j = 1, 2, · · · , n do

Lx, j = Sum
(
Cx,1:RN , j

)
Px, j = Lx, j

RN Ex, j = Sum(F PTx,1:RN , j )
Lx, j

L y, j = Sum
(
Cy,1:RN , j

)
Py, j = L y, j

RN Ey, j = Sum(F PTy,1:RN , j )
L y, j

Lz, j = Sum
(
Cz,1:RN , j

)
Pz, j = Lz, j

RN Ez, j = Sum(F PTz,1:RN , j )
Lz, j

end for
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