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Abstract In this study, a low-frequency multiple-

layer metastructure is proposed for broadband vibra-

tion control. The effects of the time-delayed vibration

absorbers (TDVAs) on the dynamic characteristics of

a nonlinear metastructure are explored. First, the effect

of using a single TDVA on the metastructure for

vibration suppression is studied. The results show that

the introduction of time-delayed feedback control is

beneficial to improve the vibration suppression of the

metastructure in the anti-resonance range. Then, the

relationship between the dynamic response of the

metastructure and the control parameters of the

multiple TDVAs which are evenly distributed is

explored. The relationship between the effective

vibration suppression frequency band and the control

parameters is given. From the results in this study, it is

found that the introduction of equivalent damping by

time-delayed control can achieve a significant broad-

ening of the effective vibration suppression frequency

band. The band gap can be expanded to more than

twice its original width. Although the vibration

suppression effect in the effective frequency band is

slightly deteriorated, the widening of the bandwidth

still has important significance. This study gives the

method of parameter selection of TDVAs in the multi-

degree-of-freedom nonlinear system.

Keywords Time-delayed vibration absorber �
Vibration control � Metastructure � Wide band

1 Introduction

In recent decades, vibration suppression techniques

have attracted broad research attention to solve

problems like the failure of engineering structures,

errors in manufacturing process, discomforts of trans-

portation, etc. It is considered that the dynamic

vibration absorbers have significant vibration sup-

pression effect [1]. A traditional vibration absorber is

designed to match the resonance frequency of the

primary structure by designing the values of the mass,

stiffness of the spring, and the damping coefficient of

the damper, which make up a tuned-mass-damper

(TMD). TMD is reported to be effective in the

vibration suppression at its resonance frequency. For

the case where excitation frequency varies, semi-/

active control methods to improve the performances of

vibration absorbers are proposed.

In active control loop, time delay is unavoidable

due to data acquisition, signal transmission, mathe-

matical calculation and force actuation. Time delay is
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treated as an unexpected factor since it may lead to the

errors in control results, destabilization of systems,

chaotic phenomenon, etc., and compensation methods

[2, 3] are proposed to avoid the effect of time delay.

Recently, researchers find that time delay is effective

in the control of chaotic dynamic systems [4, 5],

balancing of wheeled inverted pendulums [6, 7],

vibration reduction of flexible beams [8, 9], chatter

and flapping [10, 11], parametrically excited system

[12], Jeffcott-rotor [13, 14], etc. Therefore, time delay

is introduced intentionally into many vibration control

problems. In vibration suppression problem, Sun et al.

[15–17] proposed vibration isolators with multi-

directional quasi-zero-stiffness adopting multiple time

delays. The results show that time-delayed control

(TDC) is able to tune the stiffness and damping

properties of isolators, especially for low-frequency

range. Cao et al. [18, 19] explored the effects of TDC

on the vibration of a smooth and discontinuous (SD)

oscillator, and established the relationship between the

control parameters and vibration characteristics of the

SD oscillator. The results show that the equivalent

stiffness and damping characteristics are adjusted by

the TDC which improves the vibration control effects.

Due to the advantages of TDC, it has been

introduced to vibration absorber to improve it effi-

ciency. Olgac et al. [20] proposed the delayed-

resonator (DR) for vibration control. The time-delayed

displacement signal is utilized to provide feedback

control force for the improvement of vibration

suppression of a linear dynamic system. The results

show that the DR can tune the equivalent stiffness and

damping properties of the primary system to realize

the adjustment of vibration responses. And the vibra-

tion of the primary system can be totally eliminated

when the control parameters is well designed. For

multi-frequency external excitations, Olgac et al. [21]

proposed two design methods of DR and focused on

the design of the dual frequency fixed delayed

resonator (DFFDR). The results show that the DFFDR

is able to match the external excitation frequencies and

anti-resonance frequencies of the main system when

control gain and time delay are selected properly. At

the resonance frequency, with absorber, the vibration

of the primary system can be completely absorbed.

Then, multiple DRs are applied for the multi-degree-

of-freedom primary systems to suppress the vibration

[22, 23]. In these study, multiple identical DRs are

mounted on the multi-degree-of-freedom system to

enhance the vibration suppression performances when

the system is subjected to a primary resonance case.

Also, centrifugal resonator with time delay is applied

in the vibration suppression for the torsional systems.

The proportional angular displacement is utilized in

the feedback control with variable time-delay to

achieve full absorption of torsional vibration of the

structure [23–25]. Sun et al. [26, 27] design a time-

delayed vibration absorber (TDVA) for the vibration

of a linear system using acceleration signal to achieve

anti-resonance phenomenon. The results show that the

vibration of the primary system can be suppressed by

about 80% with the proposed TDVA. Wang et al.

[28, 29] proposed the parameter design criterions for

TDVAs based on anti-resonance frequency analysis

for linear and nonlinear systems. The research results

show that the proposed TDVA is able to provide full

elimination of vibrations for both linear and nonlinear

primary systems. Zhao et al. [30] discuss the vibration

suppression effects of TDC for nonlinear systems. The

results show that TDVA can eliminate the torsional

vibrating and parametrically excited systems. The

study of TDVA with friction is carried out by Zhang

et al. [31]. The authors reported that the stability

boundaries of the control parameters depend on the

excitation frequency due to the existence of non-

smooth friction model. Based on the equal-peak

phenomenon, Meng et al. [32, 33] proposed TDC

method which utilized nonlinear TDVAs to design the

control parameters for wide band vibration suppres-

sion. This method gives the design principle that the

resonance peaks of the primary system should be

equalized andminimized. Ji et al. [34, 35] analyzed the

vibration suppression effects based on primary and

super-harmonic resonances of the nonlinear primary

system, and clarified the effectiveness of the vibration

absorber on the above vibration suppression.

Multiple-layer structures have been found to be

effective in vibration suppression. Deng et al. [36]

proposed a bio-inspired multi-layer quasi-zero stiff-

ness isolation system for suppression of micro-vibra-

tions of low frequency and ultra-low frequency. Sun

et al. [37] proposed a multi-layer structure with

nonlinearity, which is bio-inspired by an avian neck

structure, to realize dynamic stability and vibration

isolation. For wide band vibration suppression, vibra-

tion absorbers have been adopted as inner resonators

to form quasi-periodic structure. The band gap is

determined by the physical parameters of the
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resonators in the units [38, 39]. Researcher have found

the availability for the band gap achievement for

systems with nonlinear stiffness [40, 41] and/or

nonlinearity caused by rotation of pendulums

[42, 43]. However, the position and width of the band

gap are not adjustable after the decision of system

parameters. To break this limitation, control mecha-

nisms are needed to achieve adjustable band gaps for

applications in various external environments. Practi-

cally, TDVA has been proven to be able to provide

adjustable stiffness and damping simultaneously.

Therefore, it is expected that TDVA can be adopted

to realize vibration suppression within a wide low-

frequency range.

In this study, a low-frequency multiple-layer

metastructure is proposed for broadband vibration

control and the effects of the TDVAs on the dynamic

characteristics of a nonlinear metastructure are

explored. First, in Sect. 2, the mathematical model is

established. The response of the structure and stability

of the system are studied. Then, in Sect. 3, the case

with one TDVA is proposed. The optimum control

parameters are given, and the vibration suppression

effects are present. In Sect. 4, the effects of multiple

TDVAs for vibration suppression are investigated.

The relationship between the effective vibration

control frequency band and the control parameters is

given. In Sect. 5, conclusions are drawn and discus-

sions are made. This study provides theoretical

guidance for the application of TDVAs for nonlinear

multiple degree of freedom systems.

2 Mathematical model

2.1 Equations of motion

Figure 1 is a mechanical model proposed in this study

that uses time-delay feedback control elements to

achieve vibration suppression of multilayer nonlinear

structures in the low-frequency range. As shown in

Fig. 1a, the model consists of a multi-layer chain

nonlinear structure coupled with the time-delayed

vibration absorbers (TDVAs). In this study, the

multilayer chain structure we studied is assumed to

share the same physical parameters. The structure is

arranged in the x direction, and the displacement of the

n-th degree of freedom is defined as un. In practice, the

corresponding TDVA of the n-th degree of freedom

may or may not exist. Here for the simplicity of the

symbol, the displacement of the corresponding TDVA

of un is defined as vn. Figure 1b shows the coupling

mechanism between the last concentrated mass and

the TDVA of the multi-layer chain structure, including

the primary system with massm1, a linear spring in the

vertical direction kv and a linear spring in the

horizontal direction kh, and a rigid body with mass

m2; and a TDVA composed of a spring k2 and active

time-delayed control elements. The spring kv provides

the linear restoring force of the system, and the spring

kh provides the nonlinear restoring force. The defor-

mation of the horizontal spring and vertical spring in

Fig. 1b is shown in Fig. 1c. The original length of the

horizontal spring is l, and it is preloaded to the length

l0. Assuming the displacement ofm1 is u, the restoring

force provided by the horizontal spring and the vertical

spring can be expressed as:

f ¼ kvu� khu
l
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l20 þ u2
p � 1

 !

: ð1Þ

The restoring force in Eq. (1) can be expanded in

Taylor series as

~f ¼ k1uþ k3u
3 þ � � � : ð2Þ

Assuming that the nonlinear structure has N layers,

the dynamic equation of the first layer structure of the

time-delay coupled system shown in Fig. 1 can be

written as:

m1 €u1 þ k1 2u1 � u2ð Þ þ n1 2 _u1 � _u2ð Þ þ k3u
3
1

þ k3 u1 � u2ð Þ3þf v1; sð Þ
¼ F cosxt: ð3Þ

The dynamic equation of the nth layer (1\n\N)

structure can be written as:

m1 €un þ k1 2un � un�1 � unþ1ð Þ þ n1 2 _un � _un�1 � _unþ1ð Þ
þ k3 un � un�1ð Þ3þk3 un � unþ1ð Þ3þf vn; sð Þ ¼ 0:

ð4Þ

The dynamic equation of the last layer is

m1 €uN þ k1 uN � uN�1ð Þ þ n1 _uN � _uN�1ð Þ
þ k3 uN � uN�1ð Þ3þf vN ; sð Þ
¼ 0: ð5Þ

The dynamic equation of the n-th TDVA is
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m2 €vn � f vn; sð Þ ¼ 0: ð6Þ

In Eqs. (3)–(6), if vn exists, then

f vn; sð Þ ¼ k2 un � vnð Þ þ n2 _un � _vnð Þ
þ gk2 uns � vnsð Þ; ð7Þ

where uns ¼ un t � sð Þ, vns ¼ vn t � sð Þ, g is the control
gain, and s is the time delay. If vn does not exist, then

f vn; sð Þ ¼ 0: ð8Þ

2.2 Response of the system

Suppose the response of the n-th layer structure is

un ¼ an cosxt þ bn sinxt; for n ¼ 1; 2; . . .;N; ð9Þ

and the response of the corresponding TDVA is

vn ¼ cn cosxt þ dn sinxt: ð10Þ

Substituting Eqs. (9) and (10) in Eqs. (3)–(6), one has

and if vn exists, then, respectively, for n ¼ 1; 2; . . .;N

�m2x
2cn � fcn ¼ 0;

�m2x
2dn � fsn ¼ 0;

(

ð14Þ

In Eqs. (11)–(14), the fcn and fsn can be solved as:

fcn ¼ k2 an � cnð Þ þ n2 bn � dnð Þ
þ an � cnð Þgk2 cos xs� bn � dnð Þgk2 sin xs;

fsn ¼ bn � dnð Þk2 � n2 an � cnð Þ
þ bn � dnð Þgk2 cos xsþ an � cnð Þgk2 sin xs:

8

>

>

>

<

>

>

>

:

ð15Þ

If vn does not exist, then Eq. (14) becomes

fcn ¼ fsn ¼ 0: ð16Þ

It can be seen from Eqs. (11)–(16) that one can

obtain 2 N þ Pð Þ equations about the unknown vibra-

tion amplitudes an; bn; cp; dp, and control parameters g

and s, and external excitation amplitude F, and

frequency x. By solving these equations, the response
of the system can be obtained. Thus, the relationship

between the response of any mass and the physical

parameters, external excitation frequency and control

parameters can be obtained. In this study, we define the

frequency response curve (FRC) of the n-th mass as:

FRC ¼ 20 log ðjunðtÞj=ju1ðtÞjÞ: ð17Þ

�m1x2a1 þ k1 2a1 � a2ð Þ þ n1x 2b1 � b2ð Þ þ fc1

þ 3

4
k3 a31 þ a1b

2
1 þ a1 � a2ð Þ3þ a1 � a2ð Þ b1 � b2ð Þ2

� �

¼ F;

�m1x2b1 þ k1 2b1 � b2ð Þ � n1x 2a1 � a2ð Þ þ fs1

þ 3

4
k3 b31 þ a21b1 þ b1 � b2ð Þ3þ b1 � b2ð Þ a1 � a2ð Þ2
� �

¼ 0;

8

>

>

>

>

>

<

>

>

>

>

>

:

ð11Þ

�m1x2an þ k1 2an � an�1 � anþ1ð Þ þ n1x 2bn � bn�1 � bnþ1ð Þ þ fcn þ
3

4
k3½ an � an�1ð Þ3

þ an � an�1ð Þ bn�1 � bnð Þ2þ an � anþ1ð Þ3þ an � anþ1ð Þ bn � bnþ1ð Þ2� ¼ 0;

�m1x2b1 þ k1 2bn � bn�1 � bnþ1ð Þ � n1x 2an � an�1 � anþ1ð Þ þ fs1 þ
3

4
k3½ bn � bn�1ð Þ3

þ bn � bn�1ð Þ an�1 � anð Þ2þ bn � bnþ1ð Þ3þ bn � bnþ1ð Þ an � anþ1ð Þ2� ¼ 0;

8

>

>

>

>

>

<

>

>

>

>

>

:

ð12Þ

�m1x2aN þ k1 aN � an�1ð Þ þ n1x bN � bN�1ð Þ þ fcN

þ 3

4
k3½ aN � aN�1ð Þ3þ aN � aN�1ð Þ bN�1 � bNð Þ2� ¼ 0;

�m1x2bN þ k1 bN � bn�1ð Þ � n1x aN � an�1ð Þ þ fsN

þ 3

4
k3½ bN � bN�1ð Þ3þ bN � bN�1ð Þ aN�1 � aNð Þ2� ¼ 0;

8

>

>

>

>

>

<

>

>

>

>

>

:

ð13Þ

123

1906 F. Wang et al.



2.3 Stability analysis

Consider the linearized autonomous system of

Eqs. (3)–(6), the dynamic equation can be written as:

M €Uþ N _UþKUþGUs ¼ 0; ð18Þ

where U ¼ ½ u1 u2 � � � uN v1 � � � vN
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

TotalNumberP
�T is

the displacement vector, M, N, K, G are the matrix

of mass, damping, stiffness and control gain, respec-

tively. P is the total number of TDVAs. It can be easily

found that

M ¼ M1 0
0 M2

� �

ðNþPÞ�ðNþPÞ
; ð19Þ

where

M1 ¼ m1

1 0

. .
.

0 1

2

4

3

5

N�N

; M2

¼ m2

1 0

. .
.

0 1

2

4

3

5

P�P

:

K ¼ K1 Kc

KT
c K2

� �

NþPð Þ� NþPð Þ
; ð20Þ

where

K1 ¼ k1

2 �1 0 � � � 0

�1 2 �1 . .
. ..

.

0 �1 . .
. . .

.
0

..

. . .
. . .

.
2 �1

0 � � � 0 �1 1

2

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

5

N�N

þ k2

d v1ð Þ 0

. .
.

0 d vNð Þ

2

6

6

4

3

7

7

5

N�N

;

K2 ¼ k2

1 0

. .
.

0 1

2

6

4

3

7

5

P�P

:

in which dðvnÞ ¼
1; if vn exists,
0; if vn doesn’t exist.

�

Assum-

ing the corresponding mass of the p-th TDVA is

numbered as np. Thus, for p ¼ 1; 2; . . .;P, the element

at the position of the np-th row and p-th column of the

matrix inKc is�k2, and the rest elements are zero. The

matrix N shares the same form withK, one can get the

final expression of N by replacing the coefficients k1
and k2 with n1 and n2.

G ¼ G1 0
0 G2

� �

NþPð Þ� NþPð Þ
; ð21Þ

where G2 ¼ gk2

1 0

. .
.

0 1

2

4

3

5

P�P

. In G1, the element

Fig. 1 Mechanical model of the multiple-layer metastructure with TDVAs
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at the position of the np-th row and np-th column of the

matrix is �g, and the rest elements are zero.

Then, the characteristic equation of the system can

be written as:

k2Mþ kNþKþGe�ks
	

	

	

	 ¼ 0; ð22Þ

which can be expanded as:

k2M1 þ kN1 þ K1 þG1e
�ks kNc þKc

kNT
c þKT

c k2M2 þ kN2 þK2 þG2e
�ks

" #
	

	

	

	

	

	

	

	

	

	

¼ 0:

ð23Þ

Equation (23) contains the polynomial function of

the 2ðN þ PÞ degrees and the transcendental equation

of e�ks, and it is difficult to obtain the accurate

expression of the control parameters of the system for

Hopf bifurcation. Instead, through the numerical

method, the stability of the system can be obtained.

3 Vibration suppression effects of single TDVA

3.1 Model description

In this subsection, the total number of TDVA is

assumed to be one and its position is located at the end

of the multiple-layer metastructure. In this case, fcn
and fsn in Eqs. (11)–(14) satisfy

fcn ¼ fsn ¼ 0; for n ¼ 1; 2; . . .;N � 1

fcN ¼ k2 aN � cNð Þ þ n2 bN � dNð Þ
þ aN � cNð Þgk2 cos xs� bN � dNð Þgk2 sin xs;

fsN ¼ k2 bN � dNð Þ � n2 aN � cNð Þ
þ bN � dNð Þgk2 cos xsþ an � cNð Þgk2 sin xs:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

ð24Þ

The FRC of the n-th mass is the same as in Eq. (17).

Without loss of generality, the parameters of the

proposed system are selected as m1 ¼ 1; k1 ¼
1; m2 ¼ 0:1; k2 ¼ 0:1; n1 ¼ n2 ¼ 0:01 according to

Ref. [33]. The mass and stiffness of the primary

system are assumed to be unit. As a common practice,

the mass and stiffness of the absorber are selected to be

10% of the values of the primary system. The stability

boundary of the system is shown in Fig. 2. According

to Eq. (24), the Hopf bifurcation occurs as the

condition fcn = fsn = 0. In Fig. 2, the red, green and

blue lines represent the critical values of time-delayed

parameters as the positive real part of the eigenvalue

occurs. In the area marked ‘‘Stable,’’ the real part of

each eigenvalue of the system is negative, and the zero

equilibrium point of the system is stable. In the shaded

area, one or more pairs of characteristic roots

containing positive real parts appear in the system,

and the response of the system diverges with time. To

verify the stability analysis and the stability partition,

the vibration response of the primary system for

different time-delayed parameters is shown in Fig. 3.

In Fig. 3, the control gain g and time delay s are

selected such that {g, s} = {- 0.5, 1.5}, {- 0.5, 3.0},

and {0.5, 1.5}, respectively. It can be obtained from

Fig. 2 that for the case {g, s} = {- 0.5, 1.5}, the zero

equilibrium is unstable; and for the cases {g,

s} = {- 0.5, 3.0}, and {0.5, 1.5}, the zero equilibrium

is stable. In Fig. 3a, the displacement of the mass

gradually attenuates and eventually tends to zero,

which means that the zero equilibrium point of the

system is stable. In Fig. 3b, c, the displacementFig. 2 Stability boundary of the system

Fig. 3 Displacement response of the first mass for a g = - 0.5

and s = 1.5, b g = - 0.5 and s = 3.0 and c g = 0.5 and s = 1.5
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response of the mass increases exponentially with

time, and the zero equilibrium point of the system

becomes unstable. The results in Fig. 3 confirm the

accuracy of the obtained bifurcation diagram given in

Fig. 2.

3.2 Vibration suppression effect

According to Eq. (17), the suppression effect of a

single TDVA on the vibration of the multiple-layer

metastructure is obtained. First, when the time delay is

zero, the control in this study becomes to proportional

control. In Fig. 4, the FRCs of the last mass when the

control gain is 0.5, 0 and - 0.5 are shown. As shown

in Fig. 4, for different control gains g, the locations of

anti-resonance point are different. For the three cases

in Fig. 4, the anti-resonance points occur as the

dimensionless frequency equals 1.22, 1 and 0.707.

From the results in Fig. 4, it is found that as the gain

decreases, the coupling stiffness between the vibration

absorber and the mass decreases. Thus, the anti-

resonance frequency point of the system gradually

decreased. In fact, one can find that the frequency of

the anti-resonance point is very close to the natural

frequency of the vibration absorber. Therefore, chang-

ing the natural frequency of the vibration absorber

through time-delayed feedback control is effective in

suppressing the vibration of the multi-degree-of-

freedom nonlinear system [33]. For different time-

delayed parameters, the equivalent properties (includ-

ing the equivalent stiffness and damping properties) of

the local resonators and the coupling strength are

adjusted. With positive control gain, the equivalent

stiffness of the local resonators increases, while it

decreases for negative control gain. Then, when the

equivalent stiffness of the local resonators is close to

one modal of the primary system, the anti-resonance

frequency point would occur there. As shown in

Fig. 4a, the anti-resonance point is located between

the fourth- and fifth-order resonance frequencies; in

Fig. 4b, the anti-resonance point is within the third-

and fourth-order resonance frequencies; while in

Fig. 4c, the anti-resonance frequency is moved

between the second- and third-order resonance fre-

quencies. It can be seen that the TDVA proposed in

this study can realize the adjustment of cross-modal

anti-resonance and vibration suppression in a wide

frequency band.

From Fig. 4, one can see that the response of this

mass is very small near the anti-resonance area.

Similar to the previous study [29], the comparison

between the dynamic responses of the system with or

without nonlinearity is shown in Fig. 5. It can be seen

that there is a big difference between the two FRCs

where the response amplitude is large. The existence

of nonlinearity leads to multiple steady-state solutions

for the system. When the response amplitude is small,

the difference between the two FRCs is very small,

and the nonlinear behavior is not obvious. At the anti-

resonance, the two FRCs are almost in the same

position, which is induced by the fact that the

nonlinearity on the system is very weak for low

Fig. 4 FRCs of the last mass with single TDVA when the

control gain g is a 0.5, b 0 and c - 0.5 (solid lines correspond to

stable responses and dashed black lines correspond to

unstable ones)

Fig. 5 Comparison between the dynamic responses of the

system with single TDVA with or without nonlinearity (solid

lines correspond to stable responses and dashed black lines

correspond to unstable ones)
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vibration amplitude. Based on this finding, adopting

the optimal control parameters in the linear case to

realize the vibration control of the nonlinear system at

the anti-resonance is worth studying.

For a linear system, the optimal time-delayed

control parameter of the last mass at a given frequency

satisfies

�m2x
2 þ k2 þ if2xþ gk2e

�ixs ¼ 0: ð25Þ

From Eq. (25), one has

gopt ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

f2xð Þ2þ m2x2 � k2ð Þ2
q




k2; ð26Þ

and

sopt ¼
arcsin

f2x
goptk2

� �

þ 2rp

� �


x;

� arcsin
f2x
goptk2

� �

þ 2r þ 1ð Þp
� �


x;

8

>

>

>

<

>

>

>

:

r ¼ 1; 2; . . .

ð27Þ

For a linear multi-degree-of-freedom system, when

the control parameters satisfying Eqs. (26) and (27) are

used, the response at the corresponding frequency is

exactly zero. Figure 6 shows the relationship between

the optimal control parameters and the external

excitation frequency.

Figure 7 shows the FRCs of the last mass when the

optimal control parameters for the external excitation

frequency are 0.9 and 1.1. It can be seen from Fig. 7

that when the above optimal control parameters are

used, the corresponding external excitation frequency

becomes the anti-resonance frequency, and the

response at this frequency is very small. In this study,

when the above optimal control parameters are

selected, the response magnitude of the end mass at

the anti-resonance point is below 10�10. It is shown

that the optimal control parameters satisfying the

conditions as Eqs. (26) and (27) are effective on the

vibration suppression of a nonlinear multiple-degrees-

of-freedom system.

In this subsection, the influence of a single TDVA

on the dynamic response of a multi-degree-of-freedom

nonlinear system is explored. The stability distribution

of the delay-coupled system is proven by numerical

calculations to verify the correctness of the stability

partition. The FRCs of the system under linear and

nonlinear conditions are compared, and it is found that

the nonlinear performance is very weak in the anti-

resonance region. Taking the last mass as an example,

the relationship between the anti-resonance point in

the FRC and the time-delayed control parameter is

Fig. 6 Relationship between the optimal a control gain and

b time delay with the external excitation frequency

Fig. 7 FRCs of the last mass with single TDVA for cases where

the external excitation frequencies are 0.9 and 1.1 (solid lines

correspond to stable responses and dashed black lines corre-

spond to unstable ones)

Fig. 8 Simplified model of the quasi-periodic structure with

TDVAs
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obtained. The relationship satisfied by the optimal

control parameters is obtained. It is found that the

response at the anti-resonance point is close to zero

when the optimal parameters are used. Therefore, the

time-delay feedback control can greatly improve the

effect of the vibration absorber on the dynamic

response of the multi-degree-of-freedom nonlinear

system.

4 Vibration suppression effects of multiple TDVAs

4.1 Model description

In this section, the case where corresponding TDVAs

for all un exist will be explored. The simplified

structure is shown in Fig. 8. From Fig. 8, the metas-

tructure can be expressed as a mechanical model

consisting of a chain with a two-degree-of-freedom

units made up of a mass and a TDVA. In practice, any

position can contain a vibration absorber, and its

parameters can be arbitrarily selected. In this section,

the effect of TDVAs with the same parameters on the

response of a multi-degree-of-freedom system is

studied.

4.2 Effective band

Considering the structure shown in Fig. 8, which can

be approximated as a periodic structure, the band gap

problem of the corresponding infinite long chain linear

structure can be analyzed through wave conduction

theory [44]. Therefore, the harmonic solution is set as:

ujþn ¼ U exp i qxj þ nqlc

 �

þ kt
� �

;

vjþn ¼ V exp i qxj þ nqlc

 �

þ kt
� �

;

(

ð28Þ

where q is the wave vector and lc is the length of the

unit.

Substituting Eq. (28) in Eqs. (4) and (6), and

ignoring the nonlinear and damping terms, one has

Fig. 9 a Start and cut-off frequencies and b normalized bandwidth of the band gap of the last mass with respect to k2

Fig. 10 a Start and cut-off frequencies and b normalized bandwidth of the band gap of the last mass with the change of control gain
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k2m1 þ 2k1ð1� cos qlcÞ þ k2 þ gk2e
�ks �k2 � gk2e

�ks

�k2 � gk2e
�ks k2m2 þ k2 þ gk2e

�ks

" #

U

V

� �

¼
0

0

� �

:

ð29Þ

The characteristic equation of Eq. (29) is

A4k
4 þ A2k

2 þ A0 þ ðB2k
2 þ B0Þe�ks ¼ 0; ð30Þ

where

A4 ¼ m1m2;

A2 ¼ 2k1m2ð1� cosðqlcÞÞ þ k2ðm1 þ m2Þ;
A0 ¼ 2k1k2ð1� cosðqlcÞÞ;
B2 ¼ gk2ðm1 þ m2Þ;
B0 ¼ 2k1gk2ð1� cosðqlcÞÞ:

For the case without control, the analytical expression

of the characteristic frequency obtained from Eq. (30)

is

k1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2

2A4

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
2

4A2
4

� A0

A4

s

v

u

u

t : ð31Þ

The real parts of the Bloch wave vector ReðqÞ
corresponding to the start and cut-off frequencies of

the band gap are p=lc and 0, respectively. Substituting
qlc ¼ p and qlc ¼ 0 in Eq. (31), the analytical

Fig. 11 Band structure and

FRCs of the last mass for

control gain g as a - 0.5,

b 0, and c 0.5

Fig. 12 FRCs of the last mass with multiple TDVAs when the

control gain is a 0.5, b 0 and c - 0.5 (solid lines correspond to

stable responses and dashed black lines correspond to

unstable ones)
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expressions of the band gap’s start and cut-off

frequencies are

Xstart ¼ x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
x2

1

x2
2

þ 1

2
1þ lð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2
x2

1

x2
2

þ 1

2
1þ lð Þ

� �2

�4
x2

1

x2
2

s

v

u

u

t

;

Xcut�off ¼ x2

ffiffiffiffiffiffiffiffiffiffiffi

1þ l
p

;

8

>

>

>

<

>

>

>

:

ð32Þ

where x1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

k1=m1

p

, x2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

k2=m2

p

, and

l ¼ m2=m1.

Figure 9a shows the relationship between the start

and cut-off frequencies of the band gap of the last mass

with different parameters. It can be seen that when the

mass of the vibration absorber is fixed, for decreasing

the stiffness of the vibration absorber, the start and cut-

off frequencies of the band gap gradually decrease,

and the width of the band gap also gradually narrows.

When the stiffness of the absorber is the same, the

larger absorber brings a lower band gap frequency.

Therefore, suitable vibration absorber parameters can

be selected to achieve vibration suppression within a

specific frequency band. Figure 9b presents the nor-

malized bandwidth which is defined as NW ¼
2 Xcut�off � Xstartð Þ= Xcut�off þ Xstartð Þ according to

Ref. [45, 46]. Form2 ¼ 0:1, the normalized bandwidth

varies from 5 to 20% with the increase in k2. The

changing rate of the normalized bandwidth for m2 ¼
0:2 is less than that for m2 ¼ 0:1.

Considering the case when the time delay is small,

in Eq. (30), e�ks � 1. Then, Eq. (30) becomes

A4k
4 þ A2 þ B2ð Þk2 þ A0 þ B0ð Þ ¼ 0: ð33Þ

The analytical expression of the characteristic

frequency obtained from Eq. (33) is

k1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2ð Þ
2A4

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2ð Þ2

4A2
4

� A0 þ B0

A4

s

v

u

u

t

:

ð34Þ

Similar to the derivation of Eq. (32), substituting qlc ¼
p and qlc ¼ 0 in Eq. (34) and considering the

expressions of the coefficients in Eq. (30), the start

and cut-off frequencies correspond to k1 and k2 for the
controlled case are

Xstart ¼ x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2x2
1

x2
2

þ 1

2
1þ gð Þ 1þ lð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2x2
1

x2
2

þ 1

2
1þ gð Þ 1þ lð Þ

� �2

� 1þ gð Þ 4x
2
1

x2
2

s

v

u

u

t

;

Xcut�off ¼ x2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ gð Þ 1þ lð Þ
p

;

8

>

>

>

<

>

>

>

:

ð35Þ

Figure 10 shows the curve of the start and cut-off

frequencies and normalized bandwidth of the band gap

for the last mass with the control gain under different

parameters for m2 ¼ 0:1. It can be seen that as the

control gain decreases, the start and cut-off frequen-

cies of the band gap gradually decrease, and the width

of the band gap gradually narrows. Therefore, the

conclusion that the position of the band gap in the FRC

can be changed by adjusting the control gain is drawn.

However, for vibration in the low-frequency range,

although a low-frequency band gap can be achieved,

its width gradually narrows and the normalized

bandwidth gets smaller. It should be considered

whether the resonance peak near the band gap can be

reduced through the damping effect of the time delay

to achieve broadband vibration suppression.

Without considering the nonlinearity, the FRCs of

the last mass under several sets of parameters are

shown in Fig. 11. When the time delay is zero,

according to Eq. (35), when the corresponding gains

are - 0.5, 0 and 0.5, the frequency range of the band

gap is [0.7021, 0.7416], [0.9839, 1.0488] and [1.1907,

1.2845]. As shown in Fig. 11, under the above

parameters, the band gap position of the amplitude

and frequency agrees very well with the theoretical

value. After introducing the time delay, it is found that

the band gap position of the amplitude frequency

moves only slightly, and the resonance peak near the

band gap was weakened. However, the frequency band

for effective vibration suppression can be broadened.

Although the effect of vibration suppression in the

effective control band will be reduced, the substantial

broadening of the vibration suppression frequency

Fig. 13 Comparison between the dynamic responses of the

systemwith multiple TDVAs with or without nonlinearity (solid

lines correspond to stable responses and dashed black lines

correspond to unstable ones)
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band brought about by the time delay is very

worthwhile.

4.3 Vibration suppression effect

The discussion on the effective bandwidth position

and width in the previous subsection is based on the

linearized system. Next, we will discuss the effective

bandwidth position and width of the nonlinear system.

In Fig. 12, the FRCs of the last mass when the control

gain is 0.5, 0 and - 0.5 are shown. In Fig. 12a, the

response of the last mass is lower than 0 dB in the

frequency band of approximately [1.1907, 1.2845]; in

Fig. 12b, the frequency band is [0.9839, 1.0488]; in

Fig. 12c, the frequency band is [0.7021, 0.7416]. From

the results in Fig. 12, it can be seen that as the gain

decreases, the coupling stiffness between the vibration

absorber and the mass gradually decreases; the band

gap position of the system response also gradually

decreases, and its width gradually narrows. These

results are consistent with the analysis of the band gap

position and width of the linearized system in the

Fig. 14 FRCs of the last

mass with multiple TDVAs,

a–c density plots and d–
f with different gains for

time delay as 0, 0.1 and 0.2,

respectively (solid lines

correspond to

stable responses and dashed

black lines correspond to

unstable ones)

Fig. 15 Changing trend of FRCs of the last mass with respect to

time delay for control gain as a, c - 0.25 and b, d - 0.50

Fig. 16 Change trend of the effective vibration suppression

bandwidth ratio with respect to time delay
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previous subsection. In fact, the band gap position and

width can be adjusted by changing the strength of the

time-delayed feedback control. This adjustment is still

effective in suppressing the vibration of the multi-

degree-of-freedom nonlinear system. Therefore, the

parameter selection method for the band gap position

control of the nonlinear multi-degree-of-freedom

system is similar to the linear case.

Similar to the previous subsection, in Fig. 12a, the

band gap is located between the fourth- and fifth-order

resonance frequencies; in Fig. 12b, the band gap is

within the third- and fourth-order resonance frequen-

cies; in Fig. 12c, the band gap has moved between the

second and third resonant frequencies. Therefore, the

TDVAs can also achieve cross-modal band gap

position adjustment, which provides a basis for

achieving vibration suppression in a large frequency

band.

From Fig. 12, one can find that within the band gap,

the response of the last mass is very small. Therefore,

the nonlinearity has a very small effect on the system’s

FRC and the band gap position. In Fig. 13, FRCs of the

last mass considering linearity and nonlinearity are

compared. In fact, similar to the above study, there is a

big difference between the two FRCs at the peaks of

the response, while in the band gap the two curves

almost overlap where the response is small.

As known that the existence of time delay will bring

equivalent damping, in order to clarify the influence of

the parameters of TDVAs on the system response, in

Fig. 14, the FRCs of the last mass under different time

delays are present. In Fig. 14, the time delays are

s ¼ 0, 0.1, and 0.2, respectively, and the gains

corresponding to the blue, orange, green, and red lines

in Fig. 14d–f are 0, - 0.25, - 0.5, and - 0.75,

respectively. It can be seen that when the gain

gradually becomes smaller, the position of the effec-

tive vibration control frequency band gradually moves

to the low frequency. Comparing Fig. 14d–f, it is

found that as the time delay increases, the position of

the effective vibration suppression band does not

change much, but its width has been greatly widened.

As mentioned earlier, although the effect of vibration

suppression in the band gap has deteriorated, the

vibration suppression frequency band has been greatly

broadened.

From Fig. 14, it is known that time delay can

greatly broaden the width of the effective vibration

suppression frequency band. In Fig. 15, the changing

trend of FRCs of the last mass with respect to time

delay is present. In Fig. 15, the control gains are g ¼
�0:25 and 0.50, respectively. The time delays corre-

sponding to the blue, orange, green and red lines in

Fig. 15c, d are 0, 0.02, 0.1, and 0.2, respectively. In

Fig. 15a, it can be seen that when the time delay is

small, the FRCs in two frequency bands inside the

band gap are greater than 0 dB, corresponding to the

FRC in Fig. 15c where the time delay is zero. It can be

seen that there is a resonance peak in each of these two

frequency bands. As the time delay increases to 0.02,

the resonance peak at about 0.92 is gradually lower

than 0 dB. Compared with the case without time

delay, the effective frequency band is significantly

broadened. As the time delay continues to increase, the

resonance peak at the frequency of about 0.83

gradually disappears, and the effective bandwidth is

further expanded to more than twice the original

width. Similarly, in Fig. 15d, as the time delay

gradually increases, the resonance peak near the

frequency of 0.75 also gradually disappears, and the

effective bandwidth can also be expanded to about

twice the original width. Although the response in the

effective frequency band has been increased, the

effective bandwidth can be broadened to about twice

the original width, which makes this attempt very

worthwhile.

In Fig. 16, the effective vibration suppression

bandwidth ratio with respect to time delay is shown.

The width ratio is defined as the ratio of the continuous

effective bandwidth to the bandwidth without time-

delayed control, so that the ratio is 1 when there is no

time delay. In Fig. 16, for g ¼ �0:25, it can be seen

that the effective bandwidth width ratio suddenly

increases when the time delay is around 0.01 and 0.03.

This is because the values of the two resonance peaks

are equal to zero under these two conditions. After the

time delay exceeds these values, the original effective

frequency band is connected to the band outside the

peak and forms a wider one. It can be seen that the

effective vibration suppression frequency band can be

broadened to more than 2.2 times of its original width.

In Fig. 16, for g ¼ �0:50, it can be seen that the

effective bandwidth width ratio also suddenly

increases when the time delay is around 0.02. As the

time delay increases, the width of the effective

bandwidth does not increase all the time. In addition,

as mentioned above, the increase in time delay will

weaken the vibration suppression effect in the
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effective vibration suppression band. Therefore, it is

necessary to consider both the width of the effective

bandwidth and the quality of vibration suppression

when choosing the control parameters.

5 Conclusions and discussions

In this study, the effects of the TDVAs on the dynamic

characteristics of a nonlinear metastructure are

explored. First, the effect of using a single TDVA on

the metastructure for vibration suppression is studied.

The results show that the introduction of time-delayed

feedback control is beneficial to improve the vibration

suppression of the metastructure in the anti-resonance

range. Then, the relationship between the dynamic

response of the metastructure and the control param-

eters of the multiple TDVAs which are evenly

distributed is explored, and the relationship between

the effective vibration suppression frequency band and

the control parameters is given.

The research results in this study show that the

TDVA can be used to suppress the vibration of the

proposed metastructure. Anti-resonance phenomenon

at a specific external excitation frequency can be

achieved by using a single TDVA, and the vibration

suppression effect can be greatly improved when the

optimal time-delay control parameters are selected.

For vibration suppression of the metastructure within a

broad band, multiple TDVAs are found to be effective.

In addition, the selection of appropriate time-delay

control parameters is available in the adjustment of the

position and width of the band gap in which the

vibration can be suppressed to low level. This study

presents a novel exploration on the wide band

vibration suppression of TDVAs and provides guid-

ance of applications of time-delayed control in the

multi-degree-of-freedom nonlinear system and the

parameter selection method.
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