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Abstract In this paper, we study the Turing–Hopf
bifurcation in the predator–prey model with cross-
diffusion considering the individual behaviour and
herd behaviour transition of prey population subject to
homogeneous Neumann boundary condition. Firstly,
we study the non-negativity and boundedness of solu-
tions corresponding to the temporal model, spatiotem-
poral model and the existence and priori boundedness
of solutions corresponding to the spatiotemporal model
without cross-diffusion. Then by analysing the eigen-
values of characteristic equation associated with the
linearized system at the positive constant equilibrium
point, we investigate the stability and instability of
the corresponding spatiotemporal model.Moreover, by
calculating and analysing the normal form on the cen-
tre manifold associated with the Turing–Hopf bifurca-
tion, we investigate the dynamical classification near
the Turing–Hopf bifurcation point in detail. At last,
some numerical simulations results are given to sup-
port our analytic results.
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1 Introduction

Since the groundbreaking works of Lotka [1] and
Volterra [2], the predator–prey model is used to
describe the dynamical interaction between two species
and has been widely researched by many scholars in
the fields of biology and mathematics [3,4]. It is well
known that there are many functional response func-
tions which are used to describe the interactional effect
between the prey and predator species. For instance, the
Holling I–III types [5,6], ratio-dependent type [7,8],
Beddington–DeAngelis type [9], the different types
with Allee effect [10–12] and so on.

Notice the fact that in natural ecosystem, many
species may gather together and form herds to search
for food resources or to defend the predators, which
means that all members of a group do not interact
at a time. This behaviour is often called as the herd
behaviour. Recently, the authors in [13] have proposed
a more realistic predator–prey model to describe this
behaviour which can be written as
⎧
⎪⎨

⎪⎩

du

dt
= u(1 − u) − √

uv,

dv

dt
= γ̃ v(−β̃ + √

u),

(1)
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where u(t) and v(t) stand for the prey and predator
densities at time t , respectively. Furthermore, β̃γ̃ is
the death rate of the predator in the absence of prey,
and γ̃ is the conversion or consumption rate of prey
to predator. The basic idea is that the prey population
often gather together in huge herds with the strongest
individuals on the border and the weakest will stay in
the middle region of the enclosed region. Therefore,
the prey which gathers together in the boundary region
will be hunted by the predator. That is to say that, the
prey population that occupies the outermost positions
in the herds will be hunted by the predator.

In recent years, many predator–prey models with
herd behaviour without diffusion term have been stud-
ied. Saha et al. [14] have studied a predator–preymodel
with herd behaviour and disease in prey incorporating
prey refuge, which is an eco-epidemiological model
of an infected predator–prey system. They assume that
the susceptible prey shows the herd behaviour. The con-
ditions for which the equilibrium point changes their
stability and also the conditions for occurring Hopf
bifurcation have been analysed. Manna et al. [15] have
studied the dynamics of a predator–prey model with
Allee effect and herd behaviour, where both predator
and prey show herd behaviour. Here, the authors used
the linear functional response function. A steady-state
analysis has been performed, and some conditions for
Hopf bifurcation are derived.Maiti et al. [16] have stud-
ied the dynamical behaviours of a predator–prey system
with herd behaviour and the Holling type II functional
response function, where both the predator and prey
show herd behaviours. The positivity, boundedness and
stability of equilibrium point are discussed.

From[17–20],we see that various reaction–diffusion
predator–prey models have been extensively studied
in the last decades. By considering the fact that in
real natural environment, apart from the natural dis-
persive force of movement of an individual which is
usually referred as the self-diffusion, there exists a
mutual interference between individuals and is usu-
ally referred as the cross-diffusion, see [21–23] for
details. Recently, cross-diffusion term has appeared in
different fields, such as the population dynamics and
ecology [24–27] and chemical reactions [28–31]. Fur-
thermore, cross-diffusion is taken into consideration
in predator–prey model which is used to measure the
situation that the prey keeps away from the predator
and conversely. Notice also that in recent years, many
researchers have shifted from the study of the formation

of stationary spatial patterns induced by Turing insta-
bility to the study of the formation of spatiotemporal
patterns. For example, by combiningwith themodel (1)
and considering the self-diffusion and cross-diffusion,
Tang et al. [32] have proposed a predator–prey model
with herd behaviour and cross-diffusion, and they study
the spatiotemporal dynamics near Turing–Hopf bifur-
cation point of the proposed model. Faria [33] com-
puted the normal forms on centre manifolds (or other
invariant manifolds) for partial functional differential
equations (PFDEs) near the positive constant equilib-
rium point. Especially, when aHopf bifurcation occurs,
Faria [33] used the obtained normal forms to study the
qualitative behaviours of solutions on those manifolds.
In [34], Song et al. have proposed a rigorous procedure
for calculating the normal form for the codimension-
two Turing–Hopf bifurcation in the general reaction–
diffusion system and to investigate the dynamical clas-
sification near the Turing–Hopf bifurcation point in
detail.

Notice the fact that if the herd is too small, it may not
be possible for the herd to form an appropriate group
defence. In other words, if the herd is too small, the
boundary of the herdmay consist of the total number of
the population. Thus,DeAssis et al. [35] have proposed
amodifiedpredator–preymodelwith herd behaviour by
considering large prey populations which display herd
behaviour, and small prey populations which display
individual behaviour. From a mathematical point of
view, the interaction term a1uv can be used to describe
a small number of prey populations, and a2

√
uv can

be used to describe a large prey populations. Thus,
the response function of their model is described by
a piecewise function

g(u) =
{
a1u, if 0 ≤ u ≤ h1,

a2
√
u, if u > h1,

where h1 represents a critical threshold of group size
for effective defence. By considering that in real life,
a smooth transition between ineffective and effective
group defence is expected, at least for some species,
and the function g′(u) is discontinuous, the authors in
[35] have proposed the following response function

f (u) = a
u√

u + h2
,

where a and h2 are parameters for which the biological
interpretationwill be explained after some calculations.
When u → 0 and u → ∞, the authors in [35] have
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Fig. 1 The graphs of response functions f (u) and g(u) for a1 =
1, a2 = √

20 and h1 = h2 = h̃ = 20

created a smooth transition function f (u) that approx-
imates g(u) by letting g(u)/ f (u) goes to one. Through
simple calculations, the authors in [35] obtained that
a = a2 and h2 = (a2/a1)2. Furthermore, it follows
that h1 = (a2/a1)2 from the continuity of g(u), i.e. the
critical threshold h1 of group size for effective defence
and the threshold h2 is consistent. Thus, f (u) can be
seen as an approximation of g(u) with a smooth tran-
sition for the individual behaviour a1u and the group
defence a2

√
u. For convenience, the authors in [35] let

h1 = h2 = h̃. Then, the functional response function
of their proposed model can be written as

f̃ (u, v) = a
u

√
u + h̃

v.

Here, by setting a1 = 1 and a2 = √
20, then h1 =

h2 = h̃ = 20, we plot the graphs of f (u) and g(u) in
Fig. 1. The coordinate of point P is (20, 20).

Thus, based on the above facts, the authors in [35]
have proposed a modified predator–prey model with
herd behaviour described by the following ordinary dif-
ferential equations
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

du

dt
= ru

(
1 − u

K

)
− a

u
√
u + h̃

v,

dv

dt
= −mv + ea

u
√
u + h̃

v,

(2)

where r is the intrinsic growth rates of the prey, K is
the carrying capacity of the prey, a is the maximum
value of prey consumed by per predator per unit time,
h̃ is a threshold for the transition between herd group-
ing and solitary behaviour, m is the death rate of the

predator in the absence of prey, and e is the conversion
or consumption rate of prey to predator.

To the best of our knowledge, there are no results
on spatiotemporal dynamics near Turing–Hopf bifur-
cation point of the model (2). Therefore, by assum-
ing that the prey and predator populations are in an
isolate patch and neglecting the impact of migration,
including immigration and emigration, and introduc-
ing the spatial diffusion into the model (2), we consider
the following modified predator–prey model with herd
behaviour and cross-diffusion subject to homogeneous
Neumann boundary condition for x ∈ Ω := (0, �π)

with � ∈ R
+. That is

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= d11Δu + d12Δv + ru

(
1 − u

K

)
− a

u
√
u + h̃

v,

x ∈ Ω, t > 0,

∂v

∂t
= d21Δu + d22Δv − mv + ea

u
√
u + h̃

v,

x ∈ Ω, t > 0,

∂u

∂n
= ∂v

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = φ(x) ≥ 0, v(x, 0) = ψ(x) ≥ 0, x ∈ Ω,

(3)

where u(x, t) and v(x, t) describe the prey and predator
densities at the spatial location x and at time t , respec-
tively, the nonnegative constants d11 and d22 are the
self-diffusion coefficients of the prey and the preda-
tor, respectively, and the nonnegative constants d12, d21
are the cross-diffusion coefficients, which describe the
respective population fluxes of preys and predators
resulting from the presence of the other species, respec-
tively, Δu = ∂2u/∂x2, Δv = ∂2v/∂x2, and n is the
outward unit normal vector at the smooth boundary
∂Ω . Moreover, φ(x) andψ(x) are the initial functions.
Furthermore, it is necessary to assume that d11d22 >

d12d21, which indicates that the flux of the respective
densities in the spatial domain depends more strongly
on their own density than on the other [36]. Especially,
we point out that the condition d11d22 > d12d21 can
also be obtained in Sect. 3 which is one of the neces-
sary conditions for the occurrence of Turing instability
for model (4).

In this paper, by calculating the normal form for
the codimension-two Turing–Hopf bifurcation in the
model (4), we investigate the dynamical classification
near the Turing–Hopf bifurcation point. It is necessary
to point out the fact that, although we use the method
of computing normal form which presented in [34],
since we choose d11 as the bifurcation parameter and
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the existence of cross-diffusion, the procedure of com-
puting B11 and B13 needs to be deduced again, see
“Appendix” for details.

The remaining part of this article is organized as
follows. In Sect. 2, we show the non-negativity and
boundedness of solutions corresponding to the tempo-
ral model and the spatiotemporal model, respectively.
Furthermore, the existence and priori boundedness of
solutions corresponding to the spatiotemporal model
without cross-diffusion are also researched. Section 3
is devoted to the stability analysis of the proposed spa-
tiotemporal model, including the stability analysis for
the case without self-diffusion and cross-diffusion and
the stability analysis for the case with self-diffusion
and cross-diffusion. Furthermore, we plot the bifurca-
tion diagram for model (4) in d11 − δ plane which
can be found in Sect. 3. In Sect. 4, we compute the
normal form on the centre manifold for Turing–Hopf
bifurcation corresponding to themodel (4) by using the
method in [34]. Some numerical simulations are given
to support the theoretical results in Sect. 5. Finally, we
conclude this paper in Sect. 6.

2 Non-negativity and boundedness of solutions
corresponding to the temporal model

With a non-dimensionalized change of variables

u → 1

K
u, v → 1

eK
v, t → mt,

and let

d11 = d11
m

, d12 = d12
m

, d21 = d21
m

, d22 = d22
m

,

γ = r

m
, β = ae

√
K

m
,

then model (3) becomes the following non-dimensiona
lized model

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= d11Δu + d12Δv + γ u(1 − u) − βuv√

u + h
, x ∈ Ω, t > 0,

∂v

∂t
= d21Δu + d22Δv − v + βuv√

u + h
, x ∈ Ω, t > 0,

∂u

∂n
= ∂v

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = φ(x) ≥ 0, v(x, 0) = ψ(x) ≥ 0, x ∈ Ω,

(4)

where h = h̃/K represents the critical threshold of
group size for effective defence in non-dimensional
scaling. Since we assumed that there is an observ-
able group defence effect, it is reasonable to take
0 < h̃ < K , and hence 0 < h < 1.

The temporal model associated with the model (4)
is
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

du(t)

dt
= γ u(t)(1 − u(t)) − βu(t)v(t)√

u(t) + h
, t > 0,

dv(t)

dt
= −v(t) + βu(t)v(t)√

u(t) + h
, t > 0,

u(0) ≥ 0, v(0) ≥ 0.

(5)

For the temporal model (5), we have the following
results.

Theorem 1 Suppose that γ > 0, β > 0, 0 < h < 1
and consider the system given by (5) and its trajectories
u(t), v(t); if the initial value u(0) ≥ 0, v(0) ≥ 0, then
the solutions u(t) and v(t) are always non-negative.
Furthermore, for any solution (u(t), v(t)) of system
(5), we have

lim
t→∞ sup u(t) ≤ (γ + 1)2

4γ
, lim

t→∞ sup v(t) ≤ (γ + 1)2

4γ
.

Proof In fact, the system (5) is composed of the fol-
lowing three subsystems
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

du(t)

dt
= γ u(t)(1 − u(t)) − βu(t)v(t)√

u(t) + h
, t > 0,

dv(t)

dt
= −v(t) + βu(t)v(t)√

u(t) + h
, t > 0,

u(0) > 0, v(0) > 0,

(6)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

u(t) = 0, t > 0,

dv(t)

dt
= −v(t), t > 0,

u(0) = 0, v(0) ≥ 0

(7)
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and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

du(t)

dt
= γ u(t)(1 − u(t)), t > 0,

v(t) = 0, t > 0,

u(0) ≥ 0, v(0) = 0.

(8)

Since it is easy to verify that the solution of (7) will
approach the origin (0, 0) along the v-axis as t → ∞
and the solution of (refh8) will tend to (1, 0) along the
u-axis as t → ∞, we only need to consider the solu-
tions of (6). Assume X (t) = (u(t), v(t)) is a solution
of system (6). If it does not remain in the first quadrant,
then the solution either hits the u-axis or the v-axis
in finite time. Thus, by combining with the analysis
results of the subsystems (7) and (refh8), we can obtain
that any solution (u(t), v(t)) of system (6) with non-
negative initial value (u(0), v(0)) will remain positive
for all t > 0, or will approach either the original or
(1, 0) along the axes.

Next, the boundedness of solutions is confirmed. Let
w̃(t) = u(t) + v(t), then by adding
du(t)

dt
= γ u(t)(1 − u(t)) − βu(t)v(t)√

u(t) + h
to
dv(t)

dt
= −v(t) + βu(t)v(t)√

u(t) + h
,

we have
dw̃(t)

dt
= γ u(t)(1 − u(t)) + u(t) − w̃(t)

≤ (γ + 1)2

4γ
− w̃(t)

resulting in

lim
t→∞ sup w̃(t) ≤ (γ + 1)2

4γ
.

Furthermore, notice that w̃(t) = u(t) + v(t), then
we have

lim
t→∞ sup u(t) ≤ (γ + 1)2

4γ
, lim

t→∞ sup v(t)

≤ (γ + 1)2

4γ
.

This concludes the proof. 	


2.1 Non-negativity and boundedness of solutions
corresponding to the spatiotemporal model

Theorem 2 Suppose that γ > 0, β > 0, 0 < h < 1
and Ω ⊂ R is a bounded domain with smooth bound-

ary. Then for any solution (u(x, t), v(x, t)) of model
(4), we have

lim
t→∞ sup

∫

Ω

u(x, t)dx ≤ (γ + 1)2

4γ
|Ω|,

lim
t→∞ sup

∫

Ω

v(x, t)dx ≤ (γ + 1)2

4γ
|Ω|,

where |Ω| is the length of the bounded domain Ω .

Proof Denote

M1(t) =
∫

Ω

u(x, t)dx, M2(t) =
∫

Ω

v(x, t)dx,

then by integrating on both sides of each equation on
the region Ω in system (4), we have

dM1(t)

dt
=
∫

Ω

(d11Δu + d12Δv) dx

+
∫

Ω

(γ u(1 − u) − βuv√
u + h

)dx,

dM2(t)

dt
=
∫

Ω

(d21Δu + d22Δv) dx

+
∫

Ω

(−v + βuv√
u + h

)dx .

(9)

Let M(t) = M1(t) + M2(t), then by combining
with Eq. (9) and noticing the homogeneous Neumann
boundary defined in system (4), we can obtain

dM(t)

dt
= dM1(t)

dt
+ dM2(t)

dt

=
∫

Ω

(γ u(1 − u) − v) dx

=
∫

Ω

(γ u(1 − u) + u) dx − M(t)

≤ (γ + 1)2

4γ
|Ω| − M(t),

from which we obtain that

lim
t→∞ sup M(t) ≤ (γ + 1)2

4γ
|Ω|.

Furthermore, notice that M(t) = M1(t) + M2(t),
then we have

lim
t→∞ sup

∫

Ω

u(x, t)dx ≤ (γ + 1)2

4γ
|Ω|,

lim
t→∞ sup

∫

Ω

v(x, t)dx ≤ (γ + 1)2

4γ
|Ω|.

This proof is completed. 	
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2.2 The existence and priori boundedness of solutions
corresponding to the spatiotemporal model
without cross-diffusion

In this section, we give out a sufficient condition for the
existence of a positive solution of system (4) without
cross-diffusion. Meanwhile, we derive a priori bound-
edness of the solution. When d12 = d21 = 0, system
(4) becomes
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= d11Δu + γ u(1 − u) − βuv√

u + h
, x ∈ Ω, t > 0,

∂v

∂t
= d22Δv − v + βuv√

u + h
, x ∈ Ω, t > 0,

∂u

∂n
= ∂v

∂n
= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = φ(x) ≥ 0, v(x, 0) = ψ(x) ≥ 0, x ∈ Ω.

(10)

Theorem 3 Suppose that γ > 0, β > 0, 0 < h < 1
and Ω ⊂ R is a bounded domain with smooth bound-
ary. Then we have the following results:

(i) For φ(x) ≥ 0, ψ(x) ≥ 0 and φ(x) �≡ 0, ψ(x) �≡
0, system (10) has a unique solution (u(x, t),
v(x, t)) satisfying 0 < u(x, t) ≤ u∗(t), 0 <

v(x, t) ≤ v∗(t) for t > 0 and x ∈ Ω , where
(u∗(t), v∗(t)) is the unique solution of
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

du

dt
= γ u(1 − u), t > 0,

dv

dt
= −v + βuv√

u + h
, t > 0,

u(0) = φ∗ = sup
x∈Ω

φ(x), v(0) = ψ∗ = sup
x∈Ω

ψ(x),

and Ω represents the closure of Ω;
(ii) For any solution (u(x, t), v(x, t)) of system (10),

we have

lim
t→∞ sup u(x, t) ≤ 1, lim

t→∞ sup
∫

Ω

v(x, t)dx

≤ (γ + 1)|Ω|.
Proof Denote

f (u, v) = γ u(1 − u) − βuv√
u + h

,

g(u, v) = −v + βuv√
u + h

,

then we have fv ≤ 0 and gu ≥ 0 for (u, v) ∈ R
2+ =

{(u, v) | u ≥ 0, v ≥ 0}. Thus, the system (10) is a
mixed quasi-monotone system.

Furthermore, if we assume that (u1(x, t), v1(x, t))
= (0, 0) and (u2(x, t), v2(x, t)) = (u∗(t), v∗(t)), then
we can obtain

∂u2
∂t

− d11Δu2 − f (u2, v1)

= 0 ≥ 0

= ∂u1
∂t

− d11Δu1 − f (u1, v2) ,

∂v2

∂t
− d22Δv2 − g (u2, v2)

= 0 ≥ 0

= ∂v1

∂t
− d11Δv1 − g (u1, v1) ,

and 0 ≤ φ(x) ≤ φ∗, 0 ≤ ψ(x) ≤ ψ∗, so
(u1(x, t), v1(x, t)) and (u2(x, t), v2(x, t)) are the
lower and upper solutions of system (10), respectively.

According to Theorem 3.3 in Section 8.3 of Chap-
ter 8 in [37], we know that (10) has a unique globally
defined solution (u(x, t), v(x, t)) which satisfies

0 ≤ u(x, t) ≤ u∗(t), 0 ≤ v(x, t) ≤ v∗(t), t > 0.

The strong maximum principle implies that u(x, t) >

0, v(x, t) > 0 when t > 0, for x ∈ Ω . This completes
the proof of conclusion (i).

From the above discussion, we can obtain that 0 <

u(x, t) ≤ u∗(t), 0 < v(x, t) ≤ v∗(t) for all t > 0,
and u∗(t) is the unique solution of

du

dt
= γ u(1 − u), u(0) = φ∗ > 0.

One can see that u∗(t) → 1 as t → ∞. Thus, for
any ε > 0, there exists t0 > 0 such that u(x, t) ≤
1 + ε for t > t0 and x ∈ Ω , which implies that
lim

t0→∞ supt>t0 u(x, t) ≤ 1.

Furthermore, if let

N1(t) =
∫

Ω

u(x, t)dx, N2(t) =
∫

Ω

v(x, t)dx,

N (t) = N1(t) + N2(t),

then

dN1(t)

dt
=
∫

Ω

d11Δudx +
∫

Ω

(

γ u(1 − u) − βuv√
u + h

)

dx,

dN2(t)

dt
=
∫

Ω

d22Δvdx +
∫

Ω

(

−v + βuv√
u + h

)

dx .

By using the homogeneous Neumann boundary condi-
tion, we can obtain
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dN (t)

dt
= dN1(t)

dt
+ dN2(t)

dt

= −N2(t) + γ

∫

Ω

u(1 − u)dx

= γ

∫

Ω

u(1 − u)dx − (N1(t) + N2(t)) + N1(t)

= γ

∫

Ω

u(1 − u)dx − (N1(t) + N2(t)) +
∫

Ω

u(x, t)dx

≤ −N (t) + (γ + 1)N1(t).

From limt0→∞ supt>t0 u(x, t) ≤ 1, we can obtain that
limt0→∞ supt>t0 N1(t) ≤ |Ω|. Thus for small ε > 0,
there exists t1 ≥ 0 such that

dN (t)

dt
≤ −N (t) + (γ + 1)|Ω|, t > t1. (11)

It is well known that the solution N (t) of

dN (t)

dt
= −N (t) + (γ + 1)(1 + ε)|Ω|

satisfies

lim
t→∞ N (t) = (γ + 1)(1 + ε)|Ω|.

In terms of comparison principle and using (11) we
obtain that, for t2 > t1

∫

Ω

v(x, t)dx = N2(t) < N (t) ≤ (γ + 1)(1 + ε)|Ω| + ε, t > t2,

which implies that

lim
t2→∞ sup

t>t2

∫

Ω

v(x, t)dx ≤ (γ + 1)|Ω|.

This completes the proof of conclusion (i i). 	


3 Stability analysis of the corresponding
spatiotemporal model

The system (4) has two boundary equilibrium points
(0, 0) and (1, 0).Moreover,when0 < δ < (1/

√
h + 1),

the system (4) has a unique positive constant equilib-
rium point E∗ (u∗, v∗) with

u∗ = δ

2

(
δ +

√
δ2 + 4h

)
, v∗ = γ u∗(1 − u∗),

where δ = 1/β with β > 0, and 0 < h < 1, γ > 0.
Defining a real-valued Hilbert space

X :=
{

(u, v)T ∈ H2(0, �π) × H2(0, �π) : ∂u

∂x

= ∂v

∂x
= 0 at x = 0, �π

}

with the inner product defined by

[U1,U2] =
∫ �π

0
UT
1 U2 dx

for U1 = (u1, v1)T ∈ X and U2 = (u2, v2)T ∈ X .
The linearization of system (4) at positive constant
equilibrium point E∗ (u∗, v∗) is
d

dt

(
u
v

)

= dΔ

(
u
v

)

+ A

(
u
v

)

(12)

with

dΔ =
(
d11

∂2

∂x2
d12

∂2

∂x2

d21
∂2

∂x2
d22

∂2

∂x2

)

,

A =
(
a11 a12
a21 a22

)

=
(

γ u∗
2(u∗+h)

(−3u∗ + 1 − 2h) − 1
γ (1−u∗)(u∗+2h)

2(u∗+h)
0

)

=

⎛

⎜
⎜
⎝

γ
(
δ2
(−3δ2−8h+1

)+δ
√

δ2+4h
(−3δ2−2h+1

))

2δ
√

δ2+4h+2δ2+4h
− 1

γ
(
δ
√

δ2+4h
(
2−2δ2−4h

)+δ2
(
2−2δ2−8h

)+8h
)

4
(
δ
√

δ2+4h+δ2+2h
) 0

⎞

⎟
⎟
⎠ .

(13)

It is well known that the eigenvalue problem
{

ϕ′′(x) = λ̃ϕ(x), x ∈ (0, �π),

ϕ′(0) = ϕ′(�π) = 0

has eigenvalues λ̃k = −k2/�2 with corresponding nor-
malized eigenfunctions

γk(x) = cos( kx
�

)
∥
∥cos( kx

�
)
∥
∥
L2

=
{ 1√

�π
, k = 0,√

2√
�π

cos( kx
�

), k ≥ 1,

(14)

where k ∈ N0 = N ∪ {0} is often called wave number,
andN0 = N∪{0} is the set of all non-negative integers,
N = {1, 2, ...} represents the set of all positive integers.
Thus, the eigenfunctions of dΔ on X corresponding
to its eigenvalues have the form

βk(x) =
(
ak
bk

)

γk(x),

where ak, bk ∈ R and γk(x) is defined by Eq. (14).
Let

(
y1
y2

)

=
∞∑

k=0

(
ak
bk

)

γk(x)

be an eigenfunction of dΔ + A corresponding to an
eigenvalue λ, that is

(dΔ + A)(y1, y2)
T = λ(y1, y2)

T.
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Then, we have

Lk

(
ak
bk

)

= λ

(
ak
bk

)

, k ∈ N0 = N ∪ {0} ,

where

Lk =
(
a11 − d11

k2

�2
a12 − d12

k2

�2

a21 − d21
k2

�2
a22 − d22

k2

�2

)

which follows that the eigenvalues of dΔ+ A are given
by the eigenvalues ofLk with k ∈ N0 = N∪{0}. Notice
that the solutions of Eq. (12) can be obtained by using
the eigenvalues and eigenvectors of the matrix dΔ+ A.
Then by the Fourier expansion
(
u
v

)

=
∞∑

k=0

qTk

(
ξ1k
ξ2k

)

eλt , qk =
(
qk1
qk2

)

∈ C
2,

(15)
which can be seen as a nontrivial solutions of Eq. (12),
where

ξ1k (x) =
(

γk(x)
0

)

, ξ2k (x) =
(

0
γk(x)

)

, k ∈ N0 = N ∪ {0} ,

and by substituting (15) into (12), we can obtain the
following sequence of characteristic equations Δk , i.e.

λ2 − Tkλ + Dk = 0, (16)

where

Tk = a11 − (d11 + d22)
k2

�2
,

Dk = (d11d22 − d12d21)
k4

�4

− (a11d22 + d21 − d12a21)
k2

�2
+ a21.

(17)

By combining with Eqs. (16) and (17), and notic-
ing that the necessary condition for the occurrence of
Turing instability is d11d22 − d12d21 > 0 and

4 (d11d22 − d12d21) a21 − (a11d22 + d21 − d12a21)
2

< 0,

then in the d11 − δ plane, we can define a curve L by

L : (a11d22 + d21 − d12a21) − 2
√

(d11d22 − d12d21) a21 = 0.

(18)

According to [32], we know that if there exist a non-
negative integer k1 and a positive integer k2 �= k1 such
that Δk1 = 0 has a pair of purely imaginary roots and
Δk2 = 0 has a simple zero root, and no other roots
of (16) has a zero real part, and the corresponding
transversality conditions hold, then we call the bifur-
cation in this case as a Turing–Hopf bifurcation.

3.1 Stability analysis for the case without
self-diffusion and cross-diffusion

In the case of without self-diffusion or cross-diffusion
(d11 = d12 = d21 = d22 = 0), the original system (4)
becomes the following ordinary differential equation
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

du

∂t
= γ u(1 − u) − βuv√

u + h
, t > 0,

dv

∂t
= −v + βuv√

u + h
, t > 0,

u(0) = u0 ≥ 0, v(0) = v0 ≥ 0.

(19)

Clearly, the original system (4) and (19) have the same
positive constant equilibrium point E∗(u∗, v∗). By a
simple linear analysis, we can obtain the following
result.

Theorem 4 For thepositive constant equilibriumpoint
E∗(u∗, v∗) of system (19) with γ > 0, β > 0, 0 <

h < 1, we have the following results on its stability.

(i) When 1/2 < h < 1, the positive constant equi-
librium point E∗ (u∗, v∗) is always asymptotically
stable;

(ii) When 0 < h ≤ 1/2, the positive constant equi-
librium point E∗ (u∗, v∗) is asymptotically stable
for

max
{
0, δ∗} < δ <

1√
h + 1

, δ∗ = 1 − 2h√
3(1 + h)

,

and unstable for 0 < δ < δ∗.

Moreover, Δ0 = 0 has a pair of purely imaginary
roots ±i

√
D0 iff δ = δ∗, which implies that system

(19) undergoes a Hopf bifurcation at δ = δ∗ near the
positive constant equilibriumpoint E∗ (u∗, v∗), and the
Hopf bifurcation curve is defined by

H0 : δ = δ∗ = 1 − 2h√
3(1 + h)

. (20)

Proof By combining with Eqs. (16), (17) and 0 < δ <

1/
√
h + 1, we have

T0 = a11, D0 = a21 > 0.

Indeed, if 0 < δ < 1/
√
h + 1, follows that D0 =

a21 > 0, then for the stability analysis of E∗(u∗, v∗),
it is sufficient to study the sign of

T0 = a11 = γ u∗
2 (u∗ + h)

(−3u∗ + 1 − 2h) .
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Let P(δ) := −3u∗ + 1 − 2h, then by combining with

u∗ = δ

2

(
δ +

√
δ2 + 4h

)
,

we can obtain

P(δ) = −3δ

2

(
δ +

√
δ2 + 4h

)
+ 1 − 2h.

Notice that for 1/2 < h < 1, P(δ) is always nega-
tive. For 0 < h ≤ 1/2, notice that P(δ) is decreasing
with respect to δ, so the sign of P(δ) is determined by
its root δ∗. Thus, T0 = a11 is positive for δ < δ∗ and
negative conversely. Notice also that when δ = δ∗, we
can obtain T0 = a11 = 0. Thus, when δ = δ∗, by com-
bining with λ2 − T0λ+ D0 = 0, we have λ = ±i

√
D0

iff δ = δ∗.
This completes the proof. 	


3.2 Stability analysis for the case with self-diffusion
and cross-diffusion

In this section, we investigate the effect of cross-
diffusion on the positive constant equilibrium point
E∗(u∗, v∗) of the original system (4). We have the fol-
lowing Theorem 5.

Theorem 5 Assume that γ > 0, β > 0, 0 < h < 1,
H0 is defined by δ = δ∗ = (1 − 2h)/

√
3(1 + h) and

Lk is defined by

(d11d22 − d12d21)
k4

�4
− (a11d22 + d21 − d12a21)

k2

�2

+a21 = 0. (21)

Then
(I) if 0 < d21 < (�2γ (4h + 1))/3, then original
system (4) is always stable over the Hopf bifurcation
curve H0, that is, system (4) doesn’t undergo Turing–
Hopf bifurcation;
(II) if (�2γ (4h + 1))/3 < d21 < (d11d22)/d12, then

(i) The Hopf bifurcation curve H0 intersects with the
Turing bifurcation curve Lk, and a codimension-
2 Turing–Hopf bifurcation occurs at the intersect
point

(
d∗
11, δ

∗), where

d∗
11 = d12d21

k4∗
�4

+ (d21 − d12
γ (4h+1)

3 )
k2∗
�2

− γ (4h+1)
3

d22
k4∗
�4

,

δ∗ = 1 − 2h√
3(1 + h)

;

(ii) For (d11, δ) = (
d∗
11, δ

∗), the equation Δ0 = 0 has
a pair of purely imaginary roots±iωc andΔk∗ = 0
has a simple zero root, and for the system (4), there
are no other roots with zero real parts, where

ωc = √
a21(δ∗) =

√
γ (4h + 1)

3
.

Proof The Turing bifurcation curve Lk defined by (21)
is followed from Dk = 0, i.e.

(d11d22 − d12d21)
k4

�4
− (a11d22 + d21 − d12a21)

k2

�2
+ a21 = 0.

By combining with Eqs. (16) and (17), we can see
that Tk < 0 provided that a11 < 0, and that Dk > 0 is
equivalent to

d11 >
d12d21

k4

�4
+ (a11d22 + d21 − d12a21)

k2

�2
− a21

d22
k4

�4

.

Notice that a11(δ∗) = 0, a21(δ∗) = γ (4h + 1)/3,
and when

d12d21
k4

�4
+ (a11(δ

∗)d22 + d21 − d12a21(δ
∗)) k

2

�2
− a21(δ

∗) < 0,

i.e. 0 < d21 < (�2γ (4h + 1))/3, the Turing bifurca-
tion curveLk doesn’t interact with theHopf bifurcation
curve H0. Here, a11(δ∗), a21(δ∗) indicating a11 and a21
are dependent on δ∗, respectively. That is, system (4) is
always asymptotically stable over the Hopf bifurcation
curve H0. Thus, the conclusion (I) is confirmed.

When d11d22 − d12d21 > 0 and

d12d21
k4

�4
+ (a11(δ

∗)d22 + d21 − d12a21(δ
∗)) k

2

�2
− a21(δ

∗) > 0,

i.e. (�2γ (4h+1))/3 < d21 < (d11d22)/d12, the Turing
bifurcation curve Lk interact with the Hopf bifurcation
curve H0, then by substituting δ = δ∗ into Dk = 0 and
solving Dk = 0 for d11, we have that

d11(k) = d12d21
k4

�4
+ (d21 − d12

γ (4h+1)
3 ) k

2

�2
− γ (4h+1)

3

d22
k4

�4

,

k > k∗,

where k∗ is defined by Eq. (22). Furthermore, the sym-
bol [ · ] in Eq. (22) stands for the integer part function.
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k∗ =

⎡

⎢
⎢
⎣�

√
√
√
√ (d12

γ (4h+1)
3 − d21) +

√

(d21 − d12
γ (4h+1)

3 )2 + 4γ (4h+1)
3 d12d21

2d12d21

⎤

⎥
⎥
⎦ . (22)

Let

f (x) = d12d21x2 + (d21 − d12
γ (4h+1)

3 )x − γ (4h+1)
3

d22x2
, x > k∗,

we can obtain that

f ′(x) =
(
d12

γ (4h+1)
3 − d21

)
x2 + 2γ (4h+1)

3 x

d22x4
, x > k∗.

Therefore, if (d12γ (4h + 1))/3− d21 < 0, we have
f ′(x) ≥ 0 for x ≤ x∗, and f ′(x) < 0 for x > x∗,
where

x∗ = 2γ (4h + 1)

3d21 − γ d12(4h + 1)
.

By setting

k∗ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[�√x∗], if d11
(
[�√x∗] + 1

)
≤ d11

(
[�√x∗]

)
,

x∗ > k∗,

[�√x∗] + 1, if d11
(
[�√x∗]

)
< d11

(
[�√x∗] + 1

)
,

x∗ > k∗,
(23)

then there exists a k∗ > k∗ such that d∗
11 = d11 (k∗) =

maxk>k∗ d11(k).
Furthermore, if (d12γ (4h + 1)/3) − d21 > 0, we

have f ′(x) ≤ 0 for x ≤ x∗, and f ′(x) > 0 for x > x∗.
By setting

k∗ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[�√x∗] + 1, if d11
(
[�√x∗] + 1

)
≤ d11

(
[�√x∗]

)
,

x∗ > k∗,

[�√x∗], if d11
(
[�√x∗]

)
< d11

(
[�√x∗] + 1

)
,

x∗ > k∗,

then there exists a k∗ > k∗ such that d∗
11 = d11 (k∗) =

mink>k∗ d11(k).
Thus, the Hopf bifurcation curve H0 intersects with

the Turing bifurcation curve Lk at

(
d∗
11, δ

∗) =
⎛

⎝
d12d21

k4∗
�4

+ (d21 − d12
γ (4h+1)

3 )
k2∗
�2

− γ (4h+1)
3

d22
k4∗
�4

,

1 − 2h√
3(1 + h)

)

,

which is called as the Turing–Hopf bifurcation point.
Next, we continue to verify the transversality condi-

tion. Taking d11 as a bifurcation parameter and letting
λ(d11) be the root of Eq. (16) near d11 = d∗

11 satisfying
λ
(
d∗
11

) = 0. Differentiating the two sides of the char-
acteristic equation (16) with respect to d11, we obtain

2λ
dλ(d11)

dd11
−
(
dTk(d11)

dd11
λ + Tk

dλ(d11)

dd11

)

+ dDk(d11)

dd11
= 0.

By combining with Eq. (17), we can obtain

dλ(d11)

dd11
= −d22

k4

�4
− k2

�2
λ

2λ − Tk
. (24)

Moreover, when δ > δ∗, from the discussion in Sect.
3.1, we know that a11 < 0. Thus, when δ > δ∗, we can
obtain that

Tk∗ = a11 − (d11 + d22)
k2∗
�2

< 0. (25)

By combining with Eqs. (24) and (25), we have

Re

(
dλ(d11)

dd11

∣
∣
∣
∣
Lk∗

)

= Re

⎛

⎜
⎝

−d22
k4

�4
− k2

�2
λ

2λ − Tk

∣
∣
∣
∣
∣
∣
Lk∗

⎞

⎟
⎠

= Re

⎛

⎝
−d22

k4∗
�4

−Tk∗

⎞

⎠ = d22
k4∗
�4

Tk∗
< 0,

where the symbol Re(ϑ) represents the real part of ϑ .
This, together with the fact that

sign

(
dRe(λ(d11))

dd11

∣
∣
∣
∣
Lk∗

)

= sign

(

Re

(
dλ(d11)

dd11

∣
∣
∣
∣
Lk∗

))

< 0,

we have

dRe(λ(d11))

dd11

∣
∣
∣
∣
Lk∗

< 0,

where the symbol sign represents the sign function.
Moreover, if taking δ as a bifurcation parameter, let-

ting λ(δ) = α(δ)±iβ(δ) be the pair of roots of Eq. (16)
near δ = δ∗ satisfying α (δ∗) = 0 and β (δ∗) = ωc, we
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have the following transversality condition. Differen-
tiating the two sides of Eq. (16) with respect to δ, we
obtain

2λ
dλ(δ)

dδ
−
(
dTk(δ)

dδ
λ + Tk

dλ(δ)

dδ

)

+ dDk(δ)

dδ
= 0.

(26)

By combining with Eqs. (17) and (26), we have

dλ(δ)

dδ
=
(
λ + d22

k2

�2

)
da11
dδ −

(
d12

k2

�2
+ 1

)
da21
dδ

2λ − Tk
.

(27)

Furthermore, by Eqs. (17) and (27) as well as T0(δ∗) =
a11(δ∗) = 0 and

da11(δ)

dδ

∣
∣
∣
∣
δ=δ∗

= 3γ (h + 1)(2h − 1)

(4h + 1)
√
3(h + 1)

> 0,

we have

Re

(
dλ(δ)

dδ

∣
∣
∣
∣
H0

)

= Re

(
iωc

da11
dδ |δ=δ∗ − da21

dδ |δ=δ∗

2iωc − T0(δ∗)

)

= 1

2

da11
dδ

∣
∣
∣
∣
δ=δ∗

= 3γ (h + 1)(2h − 1)

2(4h + 1)
√
3(h + 1)

> 0.

This, together with the fact that

sign

(
dRe(λ(δ))

dδ

∣
∣
∣
∣
H0

)

= sign

(

Re

(
dλ(δ)

dδ

∣
∣
∣
∣
δ=δ∗

))

> 0,

we have

dRe(λ(δ))

dδ

∣
∣
∣
∣
H0

> 0.

Thus, the proof of conclusion (II) is completed. 	


3.3 Bifurcation diagram for system (4) in d11 − δ

plane

Taking � = 1, γ = 3, h = 0.1, d12 = 1, d21 =
10, d22 = 15, and by combining with Eqs. (13), (18),

(20), (21), (22) and (23), we can conclude that k∗ = 0,
k∗ = 1 and

H0 : δ = 1 − 2h√
3(1 + h)

= 0.4404,

a21

=
3
(
δ
√

δ2 + 0.4
(
2 − 2δ2 − 0.4

)
+ δ2

(
2 − 2δ2 − 0.8

)
+ 0.8

)

4
(
δ
√

δ2 + 0.4 + δ2 + 0.2
) ,

L :
45
(
δ2
(
−3δ2 + 0.2

)
+ δ

√
δ2 + 0.4

(
−3δ2 + 0.8

))

2δ
√

δ2 + 0.4 + 2δ2 + 0.4

− 2
√

(15d11 − 10)a21 + 10 − a21 = 0,

L1 : 15d11 −
45
(
δ2
(
−3δ2 + 0.2

)
+ δ

√
δ2 + 0.4

(
−3δ2 + 0.8

))

2δ
√

δ2 + 0.4 + 2δ2 + 0.4

− 20 + 2a21 = 0.

Numerical calculation confirms that when k∗ = 1,
theTuringbifurcation curvesL1 are tangent to the curve
L at P1(−0.0131, 0.8717) and P2(0.5583, 0.7399), see
Fig. 2a for details. Moreover, the Hopf bifurcation
curve H0 intersects with Turing bifurcation curve L1

at the point
(
d∗
11, δ

∗) = (1.1467, 0.4404) and system
(4) undergoes Turing–Hopf bifurcation near the pos-
itive constant equilibrium point E∗ (0.2667, 0.5867),
see Fig. 2b for details.

4 Normal form for Turing–Hopf bifurcation in the
reaction–diffusion system (4)

Notice that the method of computing normal form of
general reaction–diffusion system which presented in
[34] can be used to obtain the third-order truncated
normal form of system (4) by a slight modification.
Denote the Turing–Hopf bifurcation point as

(
d∗
11, δ

∗).
Introduce the perturbation parameters μ1 and μ2 by
setting d11 = d∗

11 + μ1 and δ = δ∗ + μ2 such that
(μ1, μ2) = (0, 0) is the Turing–Hopf bifurcation point
in the perturbation plane ofμ1 andμ2. Then the system
(4) becomes
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= (d∗

11 + μ1)Δu + d12Δv + γ u(1 − u)

− uv

(δ∗ + μ2)
√
u + h

, x ∈ Ω, t > 0,

∂v

∂t
= d21Δu + d22Δv − v + uv

(δ∗ + μ2)
√
u + h

,

x ∈ Ω, t > 0.

(28)
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(a) (b)

Fig. 2 Bifurcation diagram for system (4) in d11 − δ plane with
k∗ = 1. H0 denotes the Hopf bifurcation curve, L1 denotes the
Turing bifurcation curve and L is the curve defined by (18). The
region R1 is the stability region of the positive constant equi-

librium point E∗, R2 represents the region of Turing instability,
and R3 and R4 are the instability region of the positive constant
equilibrium point E∗

The positive constant equilibrium point of system
(28) becomes

u∗ = δ∗ + μ2

2

(
δ∗ + μ2 +

√
(δ∗ + μ2)2 + 4h

)
,

v∗ = λu∗(1 − u∗)

with 0 < δ∗ + μ2 < 1/
√
h + 1. Making the change

of variables by the translation u = u − u∗ and v =
v − v∗, and dropping the bars, then the system (28) is
transformed into

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u

∂t
= (d∗

11 + μ1)Δu + d12Δv + γ (u + u∗) (1 − (u + u∗))

− (u + u∗) (v + v∗)

(δ∗ + μ2)
√

(u + u∗) + h
, x ∈ Ω, t > 0,

∂v

∂t
= d21Δu + d22Δv − (v + v∗)

+ (u + u∗) (v + v∗)

(δ∗ + μ2)
√

(u + u∗) + h
, x ∈ Ω, t > 0.

(29)

For the system (29), whenμ1 = μ2 = 0,Δ0(λ) = 0
has a pair of purely imaginary roots ±iωc, Δk∗(λ) = 0
has a simple zero root λ = 0 and a negative real root
λ = −Tk∗ , and if k �= 0, k∗, all roots of Δk(λ) = 0
have negative real parts.

By the real-valuedHilbert spaceX which is defined
in Sect. 3, the system (29) can be written as the follow-
ing abstract ordinary differential equation (ODE), that

is

dU (t)

dt
= dΔU + L0(U ) + F̃(U, μ) (30)

where U = (u, v)T , μ = (μ1, μ2) , F̃(U, μ) =
L(μ)(U ) − L0(U ) + d̃Δu + F(U, μ),

d =
(
d∗
11 d12
d21 d22

)

, d̃ =
(

μ1 0
0 0

)

,

L(μ) =
(
a11(δ∗ + μ2) − 1
a21(δ∗ + μ2) 0

)

.

(31)

Here, a11(δ∗ +μ2), a21(δ∗ +μ2) indicating a11 and
a21 are dependent on δ∗ + μ2, respectively. Moreover,
we have

F(U, μ) =
(
F (1) (u, v, μ1, μ2)

F (2) (u, v, μ1, μ2)

)

with

F (1) (u, v, μ1, μ2) = γ (u + u∗) (1 − (u + u∗))

− (u + u∗) (v + v∗)
(δ∗ + μ2)

√
(u + u∗) + h

− a11(δ
∗ + μ2)u + v,

F (2) (u, v, μ1, μ2) = − (v + v∗)

+ (u + u∗) (v + v∗)
(δ∗ + μ2)

√
(u + u∗) + h

− a21(δ
∗ + μ2)u.

(32)
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For the formal Taylor expansions of L

L(μ) = L0 + μ1L
(1,0)
1 + μ2L

(0,1)
1

+ 1

2

(
μ2
1L

(2,0)
2 + 2μ1μ2L

(1,1)
2 + μ2

2, L
(0,2)
2

)

+ · · · ,

and by Eq. (31), we can obtain

L0 =
(
a11(δ∗) − 1
a21(δ∗) 0

)

, L(1,0)
1 =

(
0 0
0 0

)

,

L(0,1)
1 =

(
A 0
B 0

)

,

where
A :=
γ
(−3(u∗)2 − 6u∗h + h − 2h2

) (
2δ + √

δ2 + 4h + δ2√
δ2+4h

)

4(u∗ + h)2
,

B :=
γ
(−h − (u∗)2 − 2u∗h − 2h2

) (
2δ + √

δ2 + 4h + δ2√
δ2+4h

)

4(u∗ + h)2
.

Let

Mk(λ) = λI2 −
(

−d∗
11

k2

�2
−d12

k2

�2

−d21
k2

�2
−d22

k2

�2

)

− L0

=
(

λ + d∗
11

k2

�2
d12

k2

�2
+ 1

d21
k2

�2
− γ (4h+1)

3 λ + d22
k2

�2

)

,

where I2 is a 2 × 2 identity matrix, then by a straight-
forward calculation, we can obtain that ξ0 ∈ C

2 and
ξk∗ ∈ R

2 are the eigenvectors associated with the
eigenvalues iωc and 0, respectively, and η0 ∈ C

2 and
ηk∗ ∈ R

2 are the corresponding adjoint eigenvectors,
where

ξ0 =
(

1
−iωc

)

, η0 = 1

2

(
1
i

ωc

)

, ξk∗ =
⎛

⎜
⎝

1

− d∗
11

k2∗
�2

d12
k2∗
�2

+1

⎞

⎟
⎠ ,

ηk∗ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

3d21
k2∗
�2

(

d12
k2∗
�2

+1

)

−γ (4h+1)

(

d12
k2∗
�2

+1

)

3d21
k2∗
�2

(

d12
k2∗
�2

+1

)

−γ (4h+1)

(

d12
k2∗
�2

+1

)

+3(d∗
11)

2 k4∗
�4

−3d∗
11

k2∗
�2

(

d12
k2∗
�2

+1

)

3d21
k2∗
�2

(

d12
k2∗
�2

+1

)

−γ (4h+1)

(

d12
k2∗
�2

+1

)

+3(d∗
11)

2 k4∗
�4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

such that

〈Ψ1, Φ1〉 = I2, 〈Ψ2, Φ2〉 = 1,

where

Φ1 = (
ξ0, ξ0

)
, Φ2 = ξk∗ , Ψ1 = col

(
ηT0 , ηT

0

)
, Ψ2 = ηTk∗ .

Here, col(.) represents the column vector. Furthermore,
for vectors ϕ̂, ψ̂ ∈ R

2, we define their scalar product
as
〈
ψ̂T , ϕ̂

〉 = ψ̂T ϕ̂.
Notice that the phase space X can be decomposed

as

X = P ⊕ Q, P = Im π, Q = Ker π, (33)

where dimP = 3 and π : X �→ P is the projection
defined by

π(U ) =
(

Φ1

〈

Ψ1,
([
U, β

(1)
0

]
,
[
U, β

(2)
0

])T
〉)T

β0

+
(

Φ2

〈

Ψ2,
([
U, β

(1)
k∗

]
,
[
U, β

(2)
k∗

])T
〉)T

βk∗ .

According to (33), U ∈ X can be decomposed as

U =
(

Φ1

(
z1
z2

))T
(

β
(1)
0

β
(2)
0

)

+ (z3Φ2)
T

(
β

(1)
k∗

β
(2)
k∗

)

+ w

= (
z1ξ0 + z2ξ0

)
γ0(x) + z3ξk∗γk∗ (x) + w

= (Φ1, Φ2)

⎛

⎝
z1γ0(x)
z2γ0(x)
z3γk∗ (x)

⎞

⎠+
(

w1

w2

)

,

(34)

where w = col (w1, w2) and
(
z1
z2

)

=
〈

Ψ1,
([
U, β

(1)
0

]
,
[
U, β

(2)
0

])T
〉

,

z3 =
〈

Ψ2,
([
U, β

(1)
k∗

]
,
[
U, β

(2)
k∗

])T
〉

.

By letting

Φ = (Φ1, Φ2) , zx = (
z1γ0(x), z2γ0(x), z3γk∗(x)

)T
,

Equation (34) can be rewritten as

U = Φzx + w.

For the simplicity of notation, we denote
⎛

⎜
⎜
⎝

[
F̃, β

(1)
v

]

[
F̃, β

(2)
v

]

⎞

⎟
⎟
⎠

v=k∗

v=0

= col

⎛

⎜
⎜
⎝

⎛

⎜
⎜
⎝

[
F̃, β

(1)
0

]

[
F̃, β

(2)
0

]

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

[
F̃, β

(1)
k∗

]

[
F̃, β

(2)
k∗

]

⎞

⎟
⎟
⎠

⎞

⎟
⎟
⎠ ,

and if letLU := dΔU+L0(U ) and denote byL1 the
restriction of L to Q, then system (30) is equivalent
to a system of abstract ordinary differential equations
(ODEs) inR3×Q, with finite- and infinite-dimensional
variables also separated in the linear term. That is,
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ż = Bz + Ψ

⎛

⎜
⎜
⎝

[
F̃(z, w,μ), β

(1)
v

]

[
F̃(z, w,μ), β

(2)
v

]

⎞

⎟
⎟
⎠

v=k∗

v=0

,

ẇ = L1(w) + H(z, w,μ),
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where

z = (z1, z2, z3)
T , B = diag {iωc,−iωc, 0} ,

Ψ = diag {Ψ1, Ψ2} , F̃(z, w,μ) = F̃ (Φzx + w,μ) ,

and

H(z, w,μ) = F̃(z, w,μ) −

⎛

⎜
⎜
⎝

〈

ηT0 ,

⎛

⎜
⎜
⎝

[
F̃(z, w,μ), β

(1)
0

]

[
F̃(z, w,μ), β

(2)
0

]

⎞

⎟
⎟
⎠

〉

ξ0

+
〈

ηT0 ,

⎛

⎜
⎜
⎝

[
F̃(z, w,μ), β

(1)
0

]

[
F̃(z, w,μ), β

(2)
0

]

⎞

⎟
⎟
⎠

〉

ξ0

⎞

⎟
⎟
⎠ γ0(x)

−
〈

ηTk∗ ,

⎛

⎜
⎜
⎝

[
F̃(z, w,μ), β

(1)
k∗

]

[
F̃(z, w,μ), β

(2)
k∗

]

⎞

⎟
⎟
⎠

〉

ξk∗γk∗ (x).

According to [34], by a recursive transformation, the
authors obtain that the normal form for Turing–Hopf
bifurcation in system (30) reads as

ż = Bz

+
⎛

⎝
B11μ1z1 + B21μ2z1
B11μ1z1 + B21μ2z1
B13μ1z3 + B23μ2z3

⎞

⎠

+
⎛

⎝
B210z21z2 + B102z1z23
B210z1z22 + B102z2z23
B111z1z2z3 + B003z33

⎞

⎠

+ O
(
|z||μ|2 + |z|2|μ| + |z|4

)
.

(35)

The normal form (35) can be written in real coordi-
nates ṽ through the change of variables z1 = ṽ1 −
i ṽ2, z2 = ṽ1 + i ṽ2, z3 = ṽ3, and then changing
to cylindrical coordinates by ṽ1 = ρ cosΘ, ṽ2 =
ρ sinΘ, ṽ3 = ς , we obtain, truncating at third-order
terms and removing the azimuthal term

ρ̇ = α1(μ)ρ + κ11ρ
3 + κ12ρς2,

ς̇ = α2(μ)ς + κ21ρ
2ς + κ22ς

3,
(36)

where

α1(μ) = Re (B11) μ1 + Re (B21) μ2,

α2(μ) = B13μ1 + B23μ2,

κ11 = Re (B210) , κ12 = Re (B102) , κ21 = B111,

κ22 = B003.

According to Section 8.6 in [38], we know that the
third-order truncated normal form (36) is exactly the
same to the third-order truncated normal form of the
four-dimensional smooth system depending on two

parameters with Hopf–Hopf bifurcation. For the so-
called simple case [38], i.e. κ11κ22 > 0, the dynamics
of system (4) near the bifurcation value is topologically
equivalent to that of normal form (36). However, for the
“difficult” cases, the original system (4) is never topo-
logically equivalent to the truncated normal form (36).
In general, for the “difficult” cases, in order to obtain
the whole dynamics of the original (4), five-order or
higher-order normal form needs to be calculated.

With the help ofMATLABsoftware, the explicit val-
ues of the coefficients B11, B21, B13, B23, B210, B102,
B111 and B003 can be obtained for the fixed parameters.
Notice that the formulas which are used to calculate the
above coefficients are rather complicated and we leave
them in “Appendix”.

5 Numerical simulations

In this section, the third-order truncated normal form is
obtained under the given parameters and some numer-
ical simulations are made to support the results of our
theoretical analysis. More precisely, some numerical
simulations about the temporal patterns, spatial pat-
terns and spatiotemporal patterns are given.

Let Ω = (0, π) and γ = 3, h = 0.1, d12 =
1, d21 = 10, d22 = 15, then the system (4) at
least undergoes Turing–Hopf bifurcation at the point
(1.1467, 0.4404). By using the above-given parame-
ters, the normal form truncated to the third-order terms
is

ρ̇ = −1.5571μ2ρ − 1.0401ρ3 − 1.4138ρς2,

ς̇ = (0.9290μ1 − 2.5716μ2)ς

− 3.3790ρ2ς − 2.4380ς3,

(37)

where μ1 and μ2 are perturbation parameters for
the Turing–Hopf bifurcation point (1.1467, 0.4404).
Notice that ρ > 0 and ς is arbitrary real number. Sys-
tem (37) has a zero equilibrium point A0(0, 0) for any
μ1, μ2 ∈ R, three boundary equilibrium points

A1

(√−1.5571μ2

1.0401
, 0

)

, for − 1.5571μ2 > 0,

A±
2

(

0,±
√
0.9290μ1 − 2.5716μ2

2.4380

)

,

for 0.9290μ1 − 2.5716μ2 > 0, and two interior equi-
librium points
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Table 1 The twelve unfoldings of (36)

Cases Ia Ib II III IVa IVb V VIa VIb VIIa VIIb VIII

d +1 +1 +1 +1 +1 +1 −1 −1 −1 −1 −1 −1

b + + + − − − + + + − − −
c + + − + − − + − − + + −
d − bc + − + + + − − + − + − −

Table 2 The corresponding
relationship between the
equilibrium points of (37)
and the solutions of original
system (4)

Equilibrium points of (37) Solutions of the original system (4)

A0 Positive constant steady state

A1 Spatially homogeneous periodic solution

A±
2 Two spatially inhomogeneous steady states

with cos x-like shape in space

A±
3 Two spatially inhomogeneous periodic solutions

with cos x-like shape in space

A±
3

(√
1.3134μ1 + 0.1605μ2

2.2415
,±
√−0.9663μ1 − 2.5867μ2

2.2415

)

for 1.3134μ1 + 0.1605μ2 > 0 and −0.9663μ1 −
2.5867μ2 > 0.

Define the critical bifurcation lines are as follows:

H0 : μ2 = 0,

L1 : μ2 = 0.3613μ1,

T1 : μ2 = −8.1832μ1, μ1 > 0,

T2 : μ2 = −0.3736μ1, μ1 > 0.

These four lines divide the μ1 − μ2 parameter plane
into six regions marked as Dj , j = 1, 2, . . . , 6.

Based on Section 7.5 in [39], by the different signs
of d, b, c, d−bc in Table 1, the system (36) has twelve
distinct types of unfoldings, which are twelve essen-
tially distinct types of phase portraits and bifurcation
diagrams. More precisely, for the system (37), we have
d = +1, b = 1.3593 > 0, c = 1.3860 > 0, d−bc =
−0.8840 < 0. That is, the unfolding of the planner
system (37) corresponding to the Case Ib in Table 1.
Thus, the phase portraits and bifurcation diagrams cor-
responding to Case Ib can be given out, see Fig. 7.5.2
in Section 7.5 in [39] for details.

The dynamics of the original reaction–diffusion sys-
tem (4) can be determined by the third-order trun-
cated normal form (37) near the neighbourhood of the
Turing–Hopf bifurcation point. According to [34], the

Fig. 3 Bifurcation diagram of the system (4) near the Turing–
Hopf bifurcation point (1.1467, 0.4404)

corresponding relationships between the equilibrium
points of plane system (37) and the solutions of origi-
nal system (4) are shown in Table 2.

Furthermore, by the defined critical bifurcation
lines, the bifurcation diagram in theμ1−μ2 parameter
plane is shown in Fig. 3. The linearized equation of the
system (37) at each equilibrium point is

d

dt

(
ρ

ς

)

=
(
C1 − 2.8276ρiςi
−6.7580ρiςi C2

)(
ρ

ς

)

,

(38)
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1372 Y. Lv

Fig. 4 When (μ1, μ2) = (0.60, 0.25) lies in region D1 and let d11 = 1.1467, δ = 0.5004, the positive constant steady state
E∗(0.5615, 0.7386) is asymptotically stable. The initial value is u(x, 0) = 0.5615 − 0.25 cos(x), v(x, 0) = 0.7386 + 0.25 cos x

where

C1 := −1.5571μ2 − 3.1203ρ2
i − 1.4138ς2

i ,

C2 := 0.9290μ1 − 2.5716μ2 − 3.3790ρ2
i − 7.3140ς2

i

with i = 1, 2, 3, 4 and

(ρ1, ς1) = A0, (ρ2, ς2) = A1,

(ρ3,±ς3) = A±
2 , (ρ4,±ς4) = A±

3 .

More precisely, the coefficientmatrices of linearized
equation (38) at equilibriumpoints A0, A1, A

±
2 , A±

3 are

J (A0) =
(−1.5571μ2 0
0 0.9290μ1 − 2.5716μ2

)

,

J (A1) =
(
3.1142μ2 0
0 0.9290μ1 + 2.4870μ2

)

,

J (A±
2 )

=
(−0.5387μ1 − 0.0658μ2 0
0 − 1.8580μ1 + 5.1432μ2

)

,

J (A±
3 )

=
(−1.2188μ1 − 0.1490μ2 C3

C4 2.1021μ1 + 5.6268μ2

)

,

respectively, where

C3 := ∓2.8276
√

−0.2526μ2
1 − 0.0826μ2

2 − 0.7070μ1μ2,

C4 := ∓6.7580
√

−0.2526μ2
1 − 0.0826μ2

2 − 0.7070μ1μ2.

By combining with the bifurcation diagram in Fig.
3 and the linear stability theory, we can analyse the
sign of the eigenvalues corresponding to the character-
istic equations; thus, the stability and instability of each
equilibrium point in regions D1-D6 can be obtained.

In region D1, the third-order truncated normal form
(37) has only one equilibrium point A0 and it is asymp-
totically stable. This implies that the positive constant
steady state E∗ of the original system (4) is asymp-
totically stable, as shown in Fig. 4 for (μ1, μ2) =
(0.60, 0.25) and the initial value u(x, 0) = 0.5615 −
0.25 cos(x), v(x, 0) = 0.7386 + 0.25 cos x .

In region D2, the third-order truncated normal form
(37) has two equilibrium points: A0 and A1. The equi-
librium point A0 is unstable and the equilibrium point
A1 is asymptotically stable. This means that the system
(4) has a stable spatially homogeneous periodic solu-
tion. For (μ1, μ2) = (−0.28,−0.1) and initial value
u(x, 0) = 0.1802 + 0.01 cos(x), v(x, 0) = 0.4431 +
0.01 cos x , Fig. 5 illustrates this result.

In region D3, the third-order truncated normal form
(37) has four equilibrium points: A0, A1, A

+
2 and A−

2 .
The equilibrium points A0, A

+
2 and A−

2 are unstable
and the equilibrium point A1 is asymptotically stable.
Thus, the original system (4) has an unstable positive
constant steady state, two unstable spatially inhomo-
geneous steady states like cos x-shape in space, and
a stable spatially homogeneous periodic solution. By
choosing (μ1, μ2) = (−0.16,−0.08) and the ini-
tial value u(x, 0) = 0.1961 + 0.2 cos x, v(x, 0) =
0.4729+0.2 cos x , the dynamics of the original system
(4) evolves from the spatially inhomogeneous steady
states to the spatially homogeneous periodic solution,
as shown in Fig. 6.

In region D4, the third-order truncated normal form
(37) has six equilibrium points: A0, A1, A

±
2 and A±

3 .
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Fig. 5 When (μ1, μ2) = (−0.28,−0.1) lies in region D2 and
let d11 = 1.1467, δ = 0.4404, the positive constant steady state
E∗(0.1802, 0.4431) is unstable and there is a stable spatially

homogeneous periodic solution. The initial value is u(x, 0) =
0.1802 + 0.01 cos(x), v(x, 0) = 0.4431 + 0.01 cos x

Fig. 6 When (μ1, μ2) = (−0.16,−0.08) lies in region D3 and
let d11 = 1.1400, δ = 0.4404, the positive constant steady state
E∗(0.1961, 0.4729) is unstable and there is a heteroclinic orbit

connecting the unstable spatially inhomogeneous steady state to
stable spatially homogeneous periodic solution. The initial value
is u(x, 0) = 0.1961 + 0.2 cos x, v(x, 0) = 0.4729 + 0.2 cos x

The equilibrium point A0 is unstable, the equilib-
rium points A1, A

±
2 and A±

3 are asymptotically sta-
ble. This implies that the original system (4) has an
unstable positive constant steady state, a stable spa-
tially homogeneous periodic solution, two stable spa-
tially inhomogeneous steady states like cos x-shape in
space and two stable spatially inhomogeneous peri-
odic solution like cos x-shape in space. Taking the
parameter (μ1, μ2) = (0.005,−0.002) and the ini-
tial value u(x, 0) = 0.2648 − 0.1 cos x, v(x, 0) =
0.5840− 0.15 cos x close to the unstable positive con-

stant steady state, the dynamics of the original sys-
tem (4) evolves fromunstable spatially inhomogeneous
steady states, spatially inhomogeneous periodic solu-
tion to stable spatially homogeneous periodic solution,
as shown in Fig. 7. Furthermore, by taking the param-
eter (μ1, μ2) = (0.23,−0.09) and the initial value
u(x, 0) = 0.1881 − 0.02 cos x, v(x, 0) = 0.4581 −
0.02 cos x close to the unstable positive constant steady
state, the dynamics of the original system (4) evolves
from unstable spatially inhomogeneous steady states
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Fig. 7 When (μ1, μ2) = (0.005,−0.002) lies in region D4 and
let d11 = 1.1467, δ = 0.4364, the positive constant steady state
E∗(0.2648, 0.5840) is unstable and there is a heteroclinic orbit
connecting the spatially inhomogeneous periodic solution to sta-
ble spatially homogeneous periodic solution. The initial value is

u(x, 0) = 0.2648 − 0.1 cos x, v(x, 0) = 0.5840 − 0.15 cos x .
a and b are transient behaviours for u and v, respectively; c and
d are middle-term behaviours for u and v, respectively; e and f
are long-term behaviours for u and v, respectively
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Fig. 8 When (μ1, μ2) = (0.23,−0.09) lies in region D4 and
let d11 = 1.1467, δ = 0.4364, the positive constant steady
state E∗(0.1881, 0.4581) is unstable and there is stable spatially

homogeneous periodic solution. The initial value is u(x, 0) =
0.1881 − 0.02 cos x, v(x, 0) = 0.4581 − 0.02 cos x

to stable spatially homogeneous periodic solution, as
shown in Fig. 8.

In region D5, the third-order truncated normal form
has four equilibrium points: A0, A1, A

+
2 and A−

2 . The
equilibrium point A0 is unstable and the equilibrium
points A1, A

+
2 and A−

2 are asymptotically stable. Thus,
the original system (4) has an unstable positive con-
stant steady state, a stable spatially homogeneous peri-
odic solution and two stable spatially inhomogeneous
steady states like cos x-shape in space. Taking the
parameter (μ1, μ2) = (0.17,−0.03) and the initial
value u(x, 0) = 0.2389 − 0.15 cos x, v(x, 0) =
0.5455− 0.15 cos x close to the unstable positive con-
stant steady state, the dynamics of the original sys-
tem (4) evolves from unstable positive constant steady
state to stable spatially homogeneous periodic solu-
tion, as shown in Fig. 9a and b. Taking the param-
eter (μ1, μ2) = (0.31,−0.05) and the initial value
u(x, 0) = 0.2213 − 0.2 cos x, v(x, 0) = 0.5169 +
0.2 cos x close to the unstable positive constant steady
state, the dynamics of the original system (4) evolves
from unstable positive constant steady state to stable
spatially inhomogeneous steady states, as shown in Fig.
9c and d.

In region D6, the third-order truncated normal form
(37) has three equilibrium points: A0, A

+
2 and A−

2 . The
equilibrium point A0 is unstable and the equilibrium
points A+

2 and A−
2 are asymptotically stable. Thus,

the original system (4) has an unstable positive con-

stant steady state and two stable non-constant steady
states like cos x-shape in space. For the fixed parame-
ter (μ1, μ2) = (0.75, 0.1675) and choosing different
initial values, the original system (4) can converge to
one of these two stable non-constant steady states, as
shown in Fig. 10a and b for the initial value u(x, 0) =
0.4514 − 0.15 cos x, v(x, 0) = 0.7429 + 0.15 cos x
and Fig. 10c and d for the initial value u(x, 0) =
0.4514 + 0.15 cos x, v(x, 0) = 0.7429 − 0.15 cos x .

6 Conclusion and discussion

In this paper, a predator–prey model with cross-
diffusion considering the prey individual behaviour
and herd behaviour transition with homogeneous Neu-
mann boundary condition is investigated.We first show
that the non-negativity and boundedness of solutions
corresponding to the model without self-diffusion and
cross-diffusion and the model with self-diffusion and
cross-diffusion. Then we show the existence and pri-
ori boundedness of solutions corresponding to the spa-
tiotemporal model without cross-diffusion. In order to
classify the possible dynamical classification near the
Turing–Hopf bifurcation point, by using the method
of computing the normal form presented in [34], the
third-order truncated normal form (37) is given. By
the obtained third-order truncated normal form (37),
we obtain a zero equilibrium point corresponding to
the positive constant steady state of the original sys-
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Fig. 9 When (μ1, μ2) = (0.17,−0.03) lies in region D5 and
let d11 = 1.1467, δ = 0.3, the positive constant steady state
E∗(0.2389, 0.5455) is unstable and there is a heteroclinic orbit
connecting the unstable positive constant steady state to sta-
ble spatially homogeneous periodic solution. The initial value is
u(x, 0) = 0.2389 − 0.15 cos x, v(x, 0) = 0.5455 − 0.15 cos x .

When (μ1, μ2) = (0.31,−0.05) lies in region D5 and let
d11 = 0.9, δ = 0.4004, the positive constant steady state
E∗(0.2213, 0.5169) is unstable and there is a heteroclinic orbit
connecting the unstable positive constant steady state to sta-
ble spatially inhomogeneous steady states. The initial value is
u(x, 0) = 0.2213 − 0.2 cos x, v(x, 0) = 0.5169 + 0.2 cos x

tem (4), three boundary equilibrium points A1 and A±
2

in which A1 corresponding to the spatially homoge-
neous periodic solution of the original system (4) and
A±
2 corresponding to the two spatially inhomogeneous

steady states with cos x-like shape in space of the orig-
inal system (4). Furthermore, two interior equilibrium
points A±

3 is also obtained corresponding to the two
spatially inhomogeneous periodic solutionswith cos x-
like shape in space of the original system (4).Moreover,
we obtain four inequality which is used to ensure the
existence of these different types of equilibrium points.
Notice that the four inequality can be seen as the four
critical bifurcation lines; thus, by the defined critical

bifurcation lines, the bifurcation diagram in the μ1-μ2

parameters plane which includes six different regions
is shown in Fig. 3.

By the numerical simulations, the rich dynamics
such as the positive constant steady state, the spatially
homogeneous periodic solution, spatially inhomoge-
neous steady states and spatially inhomogeneous peri-
odic solutions have been found, which can be seen in
Figs. 4, 5, 6, 7, 8, 9 and 10. Especially, we would like to
mention that the interaction between the Turing bifur-
cation curve and the Hopf bifurcation curve may leads
to the emergence of the spatially inhomogeneous peri-
odic solutions, see Fig. 7a and b for details.
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Fig. 10 When (μ1, μ2) = (0.75, 0.1675) lies in region D6 and
let d11 = 0.9, δ = 0.5004, the positive constant steady state
E∗(0.4514, 0.7429) is unstable and there are two stable spa-
tially inhomogeneous steady states like cos x in space. a and b:

the initial value is u(x, 0) = 0.4514 − 0.15 cos x, v(x, 0) =
0.7429 + 0.15 cos x ; c and d: the initial value is u(x, 0) =
0.4514 + 0.15 cos x, v(x, 0) = 0.7429 − 0.15 cos x

Wehave to point out the fact that themethod of com-
puting normal form developing in this paper can also
be used to the case without cross-diffusion by a slight
modification. Furthermore, in order to the simplicity of
notation for further normal form computation and for
the convenience of carrying out the numerical simula-
tions, we let Ω := (0, π). However, the spatial Ω can
also be taken (0, �π) with � ∈ R

+. Notice also that
the general open interval (̃a, b̃) can be transformed to
(0, π) by a translation and rescaling.
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Appendix

In Sect. 1, we have pointed out that the procedure of
computing B11 and B13 needs to be deduced again. In
the following, the detailed derivation process of B11

and B13 is given. Following Section 3.1.1 in [34], by
considering the formal Taylor expansion

L(μ) = L0 + μ1L
(1,0)
1 + μ2L

(0,1)
1

+ 1

2

(
μ2
1L

(2,0)
2 + 2μ1μ2L

(1,1)
2 + μ2

2L
(0,2)
2

)

+ · · · ,

F(Φzx + w,μ) = 1

2
F2(Φzx + w,μ)

+ 1

3! F3(Φzx + w,μ) + · · · ,

where Fj (Φzx + w,μ), j ≥ 2 is the j-th Fréchet
derivative of F(Φzx + w,μ). For simplicity, we set

H
(
αzq11 zq22 zq33 μ

l1
1 μ

l2
2

)
=
(

αzq11 zq22 zq33 μ
l1
1 μ

l2
2

αzq21 zq12 zq33 μ
l1
1 μ

l2
2

)

, α ∈ C.

Furthermore, we have

f 12 (z, 0, μ) = Ψ

⎛

⎝

[
2L̃1(μ) (Φzx ) + F2 (Φzx , μ) , β

(1)
v

]

[
2L̃1(μ) (Φzx ) + F2 (Φzx , μ) , β

(2)
v

]

⎞

⎠

v=k∗

v=0

,

where L̃1(μ) = μ1L
(1,0)
1 + μ2L

(0,1)
1 + d̃Δ, and

d̃ is defined by Eq. (31). Since F(0, μ) = 0 and
DF(0, μ) = 0, F2 (Φzx + w,μ) can be written as
follows

F2 (Φzx + w,μ) = F2 (Φzx + w, 0)

=
∑

q1+q2+q3=2

Aq1q2q3γ
q1+q2
0 (x)γ q3

k∗ (x)zq11 zq22 zq33

+ S2 (Φzx , w) + O
(
|w|2

)
,

where q1, q2, q3 ∈ N0,S2 (Φzx , w) is the product term
of Φzx and w, and

Aq1q2q3 =
(
A(1)
q1q2q3, A

(2)
q1q2q3

)T ∈ R
2.

Here, Aq1q2q3 = Aq2q1q3 , and Aq2q1q3 represents the
conjugation of Aq2q1q3 .

Noticing the fact that
∫ �π

0
γ 2
0 (x)γk∗(x)dx =

∫ �π

0
γ 3
k∗(x)dx = 0,

∫ �π

0
γ 2
0 (x)dx = 1,

then we can obtain that
1

2
g12(z, 0, μ) = 1

2
ProjKer

(
M1

2

) f 12 (z, 0, μ)

=
(H ((B11μ1 + B21μ2) z1)

(B13μ1 + B23μ2) z3

)

,

where

Ker
(
M1

2

)

= span

⎧
⎨

⎩

⎛

⎝
z1z3
0
0

⎞

⎠ ,

⎛

⎝
z1μi

0
0

⎞

⎠ ,

⎛

⎝
0

z2z3
0

⎞

⎠ ,

⎛

⎝
0

z2μi

0

⎞

⎠ ,

⎛

⎝
0
0

z1z2

⎞

⎠ ,

⎛

⎝
0
0
z23

⎞

⎠ ,

⎛

⎝
0
0

z3μi

⎞

⎠ ,

⎛

⎝
0
0

μ1μ2

⎞

⎠ ,

⎛

⎝
0
0
μ2
i

⎞

⎠

⎫
⎬

⎭

with i = 1, 2. Moreover,

B11 = ηT0 L
(1,0)
1 ξ0, B21 = ηT0 L

(0,1)
1 ξ0,

B13 = ηTk∗

(
L(1,0)
1 ξk∗ − B̃ξk∗

)
, B23 = ηTk∗L

(0,1)
1 ξk∗

with

B̃ =
(

− k2∗
�2

0
0 0

)

.

Next, by a slight modification of the calculation pro-
cedures in [34], we give the detail calculation pro-
cedures of B11, B21, B13, B23, B210, B102, B111, B003

steps by steps.
Step 1:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B11 = ηT0 L
(1,0)
1 ξ0, B21 = ηT0 L

(0,1)
1 ξ0),

B13 = ηTk∗

(
L(1,0)
1 ξk∗ − B̃ξk∗

)
,

B23 = ηTk∗L
(0,1)
1 ξk∗ ,

B210 = C210 + 3

2
(D210 + E210) ,

B102 = C102 + 3

2
(D102 + E102) ,

B111 = C111 + 3

2
(D111 + E111) ,

B003 = C003 + 3

2
(D003 + E003) .
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Step 2:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

C210 = 1

6�π
ηT0 A210, C102 = 1

6�π
ηT0 A102,

C111 = 1

6�π
ηTk∗ A111, C003 = 1

4�π
ηTk∗ A003,

D210 = 1

6�πωci

(
−
(
ηT0 A200

) (
ηT0 A110

)

+
∣
∣
∣η

T
0 A110

∣
∣
∣
2 + 2

3

∣
∣
∣η

T
0 A020

∣
∣
∣
2
)

,

D102 = 1

6�πωci

(
−2
(
ηT0 A200

) (
ηT0 A002

)

+
(
ηT0 A110

) (
ηT0 A002

)
+ 2

(
ηT0 A002

) (
ηTk∗ A101

))
,

D111 = − 1

3�πωc
Im
((

ηTk∗ A101

) (
ηT0 A110

))
,

D003 = − 1

3�πωc
Im
((

ηTk∗ A101

) (
ηT0 A002

))

with

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A200 = ξ201 f2000 + 2ξ01ξ02 f1100 + ξ202 f0200 = A020,

A002 = ξ2k∗1 f2000 + 2ξk∗1ξk∗2 f1100 + ξ2k∗2 f0200,

A110 = 2
(
|ξ01|2 f2000 + 2Re

(
ξ01ξ02

)
f1100

+ |ξ02|2 f0200
)

,

A101 = 2
(
ξ01ξk∗1 f2000 + (

ξ01ξk∗2 + ξ02ξk∗1
)
f1100

+ξ02ξk∗2 f0200
) = A011

A210 = 3
(
f3000 |ξ01|2 ξ01 + f0300 |ξ02|2 ξ02

+ f2100
(
ξ201ξ02 + 2 |ξ01|2 ξ02

)

+ f1200
(
ξ202ξ01 + 2 |ξ02|2 ξ01

))
,

A102 = 3
(
f3000ξ01ξ

2
k∗1 + f0300ξ02ξ

2
k∗2

+ f2100
(
ξ02ξ

2
k∗1 + 2ξ01ξk∗1ξk∗2

)

+ f1200
(
ξ01ξ

2
k∗2 + 2ξ02ξk∗1ξk∗2

))
,

A111 = 6
(
f3000 |ξ01|2 ξk∗1 + f0300 |ξ02|2 ξk∗2

+ f2100
(
|ξ01|2 ξk∗2 + 2ξk∗1 Re

(
ξ01ξ02

))

+ f1200
(
|ξ02|2 ξk∗1 + 2ξk∗2 Re

(
ξ02ξ01

)))
,

A003 =
(
f3000ξ

3
k∗1 + f0300ξ

3
k∗2
)

+ 3
(
f2100ξ

2
k∗1ξk∗2 + f1200ξk∗1ξ

2
k∗2
)

.

Step 3:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E210 = 1

3
√

�π
ηT0

(
(ξ01 f2000 + ξ02 f1100) h

(1)
0110

+ (ξ02 f0200 + ξ01 f1100) h
(2)
0110

+ (ξ01 f2000 + ξ02 f1100
)
h(1)
0200

+ (ξ02 f0200 + ξ01 f1100
)
h(2)
0200

)
,

E102 = 1

3
√

�π
ηT0

(
(ξ01 f2000 + ξ02 f1100) h

(1)
0002

+ (ξ02 f0200 + ξ01 f1100) h
(2)
0002

+ (ξk∗1 f2000 + ξk∗2 f1100
)
h(1)
k∗101

+ (ξk∗2 f0200 + ξk∗1 f1100
)
h(2)
k∗101

)
,

E111 = 1

3
√

�π
ηTk∗

(
(ξ01 f2000 + ξ02 f1100) h

(1)
k∗011

+ (ξ02 f0200 + ξ01 f1100) h
(2)
k∗011

+ (ξ01 f2000 + ξ02 f1100
)
h(1)
k∗101

+ (ξ02 f0200 + ξ01 f1100
)
h(2)
k∗101

)

+ ηTk∗
((

ξk∗1 f2000 + ξk∗2 f1100
)

(
1

3
√

�π
h(1)
0110 + 1

3
√
2�π

h(1)
(2k∗)110

)

+ (ξk∗2 f0200 + ξk∗1 f1100
)

(
1

3
√

�π
h(2)
0110 + 1

3
√
2�π

h(2)
(2k∗)110

))

,

E003 =ηTk∗
((

ξk∗1 f2000 + ξk∗2 f1100
)

(
1

3
√

�π
h(1)
0002 + 1

3
√
2�π

h(1)
(2k∗)002

)

+ (
ξk∗2 f0200 + ξk∗1 f1100

)

(
1

3
√

�π
h(2)
0002 + 1

3
√
2�π

h(2)
(2k∗).002

))

.

Here

f (U, μ) =
∑

i+ j+l1+l2≥2

1

i ! j !l1!l2! fi jl1l2u
iv jμ

l1
1 μ

l2
2 ,

fi jl1l2 =
(
f (1)
i jl1l2

, f (2)
i jl1l2

)T

with

f (k)
i jl1l2

= ∂ i+ j+l1+l2F (k)(0, 0, 0, 0)

∂ui∂v j∂μ
l1
1 ∂μ

l2
2

, k = 1, 2.
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More precisely, for the system (29), by combining
with Eq.(32), we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f2000 =
(−2γ + u∗v∗+4v∗h

4δ∗(u∗+h)2
√
u∗+h−u∗v∗−4v∗h

4δ∗(u∗+h)2
√
u∗+h

)

,

f1100 =
( −u∗−2h

2δ∗(u∗+h)
√
u∗+h

u∗+2h
2δ∗(u∗+h)

√
u∗+h

)

, f0200 =
(
0
0

)

,

f3000 =
( −3u∗v∗−18v∗h

8δ∗(u∗+h)3
√
u∗+h

3u∗v∗+18v∗h
8δ∗(u∗+h)3

√
u∗+h

)

, f0300 =
(
0
0

)

,

f2100 =
( u∗+4h

4δ∗(u∗+h)2
√
u∗+h−u∗−4h

4δ∗(u∗+h)2
√
u∗+h

)

, f1200 =
(
0
0

)

.

Furthermore, we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h0200 = 1√
�π

(M0 (2iωc))
−1

(
A200 −

(
ηT0 A200ξ0 + η0

T A200ξ0

))
,

h0020 = 1√
�π

(M0 (−2iωc))
−1

(
A020 −

(
ηT0 A020ξ0 + η0

T A020ξ0

))
,

h0002 = 1√
�π

(M0(0))
−1

(
A002 −

(
ηT0 A002ξ0 + η0

T A002ξ0

))
,

h0110 = 1√
�π

(M0(0))
−1

(
A110 −

(
ηT0 A110ξ0 + η0

T A110ξ0

))
,

hk∗101 = 1√
�π

(Mk∗ (iωc)
)−1

(
A101 − ηTk∗ A101ξk∗

)
,

hk∗011 = 1√
�π

(Mk∗ (−iωc)
)−1

(
A011 − ηTk∗ A011ξk∗

)
,

h(2k∗)002 = 1√
2�π

(M2k∗ (0)
)−1

A002,

h(2k∗)110 = (0, 0)T .
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