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Abstract Defective rotating machinery usually

exhibits complex dynamic behavior. Therefore, fea-

ture representation of machinery vibration signals is

always critical for condition monitoring of rotating

machinery. Permutation entropy (PeEn), an adaptive

symbolic description, can measure complexities of

signals. However, PeEn, which compresses all the

information into a single parameter, may lack the

capability to fully describe the dynamics of complex

signals. Afterward, multiscale PeEn (MPeEn) is put

forward for coping with nonstationarity, outliers and

artifacts emerging in complex signals. In MPeEn, a set

of parameters serves to describe the dynamics of

complex signals in different time scales. Nonetheless,

an average procedure in MPeEn may withhold local

information of complex signals and destroy internal

structures of complex signals. To overcome deficien-

cies of PeEn and MPeEn, this paper proposes gener-

alized PeEn (GPeEn) by introducing different orders

and time lags into PeEn. In GPeEn, a complex signal is

converted into a PeEn matrix rather than a single

parameter. Moreover, minimal, maximal and average

values of the PeEn matrix serve to briefly describe

conditions of rotating machinery. Next, a numerical

experiment proves that the proposed method in this

paper performs better than skewness, kurtosis, PeEn

and MPeEn in characterizing conditions of a Lorenz

model. Subsequently, the proposed method in this

paper is compared with skewness, kurtosis, PeEn and

MPeEn by investigating gear and roll-bearing vibra-

tion signals containing different types and severity of

faults. The results show that the proposed method in

this paper outperforms the other four methods in

distinguishing between different types and severity of

faults of rotating machinery.

Keywords Feature extraction � Permutation

entropy � Multiscale permutation entropy �
Generalized permutation entropy � Condition
monitoring � Rotating machinery

1 Introduction

Defective rotating machinery usually displays com-

plex nonstationarity and nonlinearity [1–4]. As a

result, feature representation of machinery vibration

signals is always a central problem for condition

monitoring of rotating machinery [2, 3, 5]. Currently,

some methods for time–frequency analysis, such as

wavelet transform (WT) and empirical mode decom-

position (EMD), have been exploited for feature
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extraction of machinery vibration signals [6–9].

However, either of WT and EMD seemingly encoun-

ters some difficulties in analyzing complex machinery

vibration signals [10–13]. A lot of references have

indicated that vibration signals from defective rotating

machinery display obvious fractal and chaotic prop-

erties [1, 14–18]. Consequently, extraction of nonlin-

ear features from vibration signals is critically

important for gaining an insight into the dynamics of

machinery. Then, phase space reconstruction (PSR)

has been adopted to reveal nature of complex

machinery vibration signals [19, 20]. Nevertheless, it

seems difficult for PSR to determine two important

parameters, i.e., the embedding dimension and the

time lag [21]. Next, multifractal detrended fluctuation

analysis (MFDFA) was applied to examine the

dynamics of complex machinery vibration signals

[1, 15, 17, 18]. Nonetheless, MFDFA needs refining

further since suffering from some shortages [1, 18].

Hence, nonlinear feature extraction for condition

monitoring of rotating machinery leaves much to be

desired [22].

Symbolic dynamics, a coarse-graining or descrip-

tion-reduction method, can remain chaotic properties

of complex signals but discards considerable details

[23]. Therefore, a symbolic description is effective for

demonstrating nature of complex signals [14, 16].

Currently, symbolic dynamics has been employed to

capture essence of machinery vibration signals

[14, 16]. Traditionally, a symbolic description can

convert an original signal into several symbols in

terms of a preset threshold [23]. As a result, the

threshold-based symbolic method is rather short of

adaptation. Next, permutation entropy (PeEn), an

adaptive symbolic description, was proposed for

measuring complexities of signals [24]. With preset-

ting a permutation order and a time lag, PeEn can

adaptively transform an original signal into a set of

symbols by comparing neighboring values of the

signal. Currently, PeEn has found its application in

various research fields [25–28]. However, PeEn,

which compresses all the information into a single

parameter, may lack the capability to fully describe the

dynamics of complex signals [24]. Afterward, PeEn

based on non-uniform embedding was presented for

dealing with time series with non-uniform embedding

[29]. Nevertheless, it seems difficult to select an

optimal set of time lags. Moreover, Ref. [30] inves-

tigated impacts of equalities in an input signal on

results of PeEn. Additionally, a generalized PeEn was

presented for applying PeEn to random processes [31].

Also, multiscale PeEn (MPeEn) was put forward for

coping with nonstationarity, outliers and artifacts

emerging in complex signals [32, 33]. In MPeEn, a

set of parameters serves to describe the dynamics of

complex signals in different time scales. Notwith-

standing, an average procedure in MPeEn may

withhold local information of complex signals and

destroy internal structures of complex signals. In fact,

a complex dynamic system may display different

dynamic behavior in different permutation orders and

time lags [34]. To relieve shortages of PeEn and

MPeEn, this paper broads the definition of PeEn by

introducing different orders and time lags into PeEn.

Thus, this paper proposes another generalized PeEn

(GPeEn) for characterizing dynamics of complex

signals. Here, it must be noticed that the concept of

GPeEn proposed in this paper is distinctly different

from that proposed in Ref. [31]. In GPeEn, a complex

signal is converted into a PeEn matrix rather than a

single parameter. Moreover, minimal, maximal and

average values of the PeEn matrix serve to briefly

describe conditions of rotating machinery. Next, the

performance of the proposed method in this paper was

benchmarked against that of skewness, kurtosis, PeEn

and MPeEn by analyzing time series generated in a

Lorenz model. In addition, the proposedmethod in this

paper was compared with skewness, kurtosis, PeEn

and MPeEn by investigating gear and rolling-bearing

vibration signal containing different types and severity

of faults. The results show that the proposed method in

this paper is clearly superior to skewness, kurtosis,

PeEn and MPeEn in condition monitoring of rotating

machinery.

This paper is structured as follows. Section 2

formulates PeEn and MPeEn, proposes GPeEn and

develops a novel method for feature extraction based

on GPeEn. In Sect. 3, the performance of the proposed

method in this paper is benchmarked numerically

against that of skewness, kurtosis, PeEn and MPeEn

by examining a Lorenz model. In Sect. 4, the proposed

method in this paper is compared experimentally with

skewness, kurtosis, PeEn and MPeEn by investigating

gear and bearing vibration signals containing different

types and severity of faults. Finally, Sect. 5 concludes

this paper.
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2 Generalized permutation entropy (GPeEn)

2.1 PeEn

The theoretical basis of PeEn was formed in Ref.

[24, 35, 36]. Furthermore, a time series

xtðt ¼ 1; 2; . . .; TÞ, where T indicates the length of

the series xt, can be converted into an m-order

embedding phase space with time lag l as follows [37].

Xi ¼ xi; xiþl; . . .; xiþ m�1ð Þl
� �

; 1� i� T � ðm� 1Þl
ð1Þ

Here, m and l represent the embedding order and the

time lag, respectively. For an arbitrary i, the m number

of real values Xi is arranged in an ascending order as

follows.

xiþðj1�1Þl � xiþðj2�1Þl � � � � � xiþðjm�1Þl
� �

ð2Þ

When two successive elements in Xi are equal, for

example, xiþ j1�1ð Þl ¼ xiþ j2�1ð Þl, one can record

xiþ j1�1ð Þl � xiþ j2�1ð Þl if j1\j2. As a result, any vector

Xi can be uniquely projected to ðj1; j2; . . .; jmÞ. This
means that a point corresponding to the vector Xi in the

m-order embedding phase space can be represented by

symbols. For this reason, the m-order embedding

phase space can be described by a symbol series.

For xt, there are at most m! permutations for order

m. The relative frequency p wð Þ for each permutationw
is given as follows.

pðwÞ ¼ F t t� T � m; ðxtþ1; . . .; xtþmÞ has type wjf g
T � mþ 1

ð3Þ

Here, w represents a permutation type, F wð Þ refers to
the absolute number of occurrences of w and p wð Þ
indicates the relative frequency of occurrences of w.

The permutation entropy hm for order m� 2 is

defined as follows.

hm ¼ �
X

p wð Þ log p wð Þ½ � ð4Þ

As shown in Eq. (4), for a specific order and a

specific time lag, PeEn can compress all the informa-

tion of a time series into a single parameter. When the

investigated time series is completely random, which

means the relative frequency p wð Þ for each permuta-

tion w is uniform, i.e., p wð Þ ¼ 1=m!, the PeEn hm
achieves the maximum value hp ¼ ln m!ð Þ. In some

cases, the PeEn hm is normalized by ln m!ð Þ as follows
[36].

0� hm=ln m!ð Þ� hp
�
ln m!ð Þ ¼ 1 ð5Þ

Moreover, when the investigated time series is com-

pletely deterministic, the PeEn hm achieves the

minimum value. Thus, the PeEn hm can serve to

demonstrate properties of a time series: The larger the

PeEn hm is, the more random the investigated time

series is. Accordingly, the maximum and the mini-

mum values of the PeEn hm relate to the nature of a

time series.

2.2 MPeEn

MPeEn introduces a multiscale concept to PeEn. For a

time series xtðt ¼ 1; 2; . . .; TÞ, where T indicates the

length of the series xt, a calculation procedure of

MPeEn includes the following three steps.

(1) Convert the original series xt into a coarse-

graining one as follows.

ysj ¼
1

s

Xjs

i¼ j�1ð Þsþ1

xi; 1� j�Ns ¼ int
T

s

� �

ð6Þ

Here, s stands for a scale factor and the sign

intð�Þ means to round down a figure. Thus, the

original series xt is divided into Ns non-

overlapping data windows with the same size

s. Consequently, a coarse-graining series ysj ðj ¼
1; 2; . . .;NsÞ is generated.

(2) Calculate the PeEn hsm of the coarse-graining

series ysj ði ¼ 1; 2; . . .;NsÞ.
(3) Change the window size sðs ¼ s1; s2; . . .; ssÞ,

where sj and s represent the jth window size and

the window number, respectively, repeat the

above two steps and finally obtainMPeEn, i.e., a

sequence of hsmðs ¼ s1; s2; . . .; ssÞ.

2.3 Feature extraction based on GPeEn

In GPeEn, different orders and time lags are consid-

ered for a time series xtðt ¼ 1; 2; . . .; TÞ. Here, GPeEn
has the lag number L and the order number N. Also,

wl;m represents a permutation with lag lð1� l� LÞ and
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order mð1�m�NÞ. As such, the relative frequency

pðwl;mÞ for each permutation wl;m is given as follows.

p wl;m

	 

¼

F t t� T � ml; xtþl; xtþ2l; . . .; xtþmlð Þ has type wl;m

��� �

T � mlþ 1

ð7Þ

The GPeEn hl;m for order m� 2 is defined as follows.

hl;m ¼ �
X

p wl;m

	 

log p wl;m

	 
� �
ð8Þ

Considering different orders and time lags for GPeEn,

one can convert a time series to a PeEn matrix whose

size is L� N. Obviously, the PeEn matrix obtained by

GPeEn contains more information than a single

parameter done by PeEn.

When the investigated time series in some order

and time lag is completely random, which means the

relative frequency p wl;m

	 

for each permutation wl;m is

uniform, i.e., p wl;m

	 

¼ 1= L� Nð Þ! ¼ 1=P!, where

P ¼ L� N, the GPeEn hl;m achieves the maximum

value hGp ¼ ln P!ð Þ. In some cases, the GPeEn hl;m is

also normalized by ln P!ð Þ as follows.

0� hl;m
�
ln P!ð Þ� hGp

�
ln P!ð Þ ¼ 1 ð9Þ

Moreover, when the investigated time series in some

time lag and some order is completely deterministic,

the GPeEn hl;m achieves the minimum value. Further-

more, an average value of the GPeEn hl;m can be used

to describe collective properties of the PeEn matrix.

Accordingly, the minimum, the maximum and the

average values of the PeEn matrix have the capability

to release essential details of a time series.

The PeEn matrix with the size L� N seems rather

redundant in describing properties of complex signals.

Afterward, this paper exploits the minimal, the

maximal and the average values of the PeEn matrix

to briefly describe the dynamics of complex signals.

Consequently, this paper proposes a novel method for

feature extraction based on GPeEn.

3 Application of GPeEn to Lorenz chaotic series

The feasibility of the proposed method in this paper

was evaluated by examining a time series generated in

a Lorenz model, which is formulized as follows.

_x ¼ rðy� xÞ
_y ¼ rx� y� xz
_z ¼ xy� bz

8
<

:
ð10Þ

In the Lorenz model, r ¼ 10 and b ¼ 8=3. As

known well, the Lorenz model demonstrates different

dynamics for different Rayleigh numbers r. When

0\r\13:9656, the Lorenz model does not relate to

chaos. When 13:9656\r\24:06, the Lorenz model

relates to transient chaos. When r[ 24:06, the Lorenz

model relates to chaos. Finer details on the Lorenz

model can refer to Ref. [38]. In this paper, r is assigned

one value at a time from [0.7 1.2 10 19 21 24.5 30 40].

Then, the Lorenz model is solved using the 4-order

Runge–Kutta algorithm, with the initial point

x0 y0 z0½ � ¼ ½ 0 1 1:05 �, the time interval T ¼
½ 0 105 � and the ode solver precision 10–6. First, the

skewness of the solutions of x for different r was

calculated, and the results are illustrated in Fig. 1. As

illustrated in Fig. 1, the skewness of the solutions of x

for r = 0.7, 1.2 and 10, which corresponds to non-

chaos, has a considerable fluctuation. Also, skewness,

identical for r = 24.5, 30 and 40, fails to distinguish

between these conditions. In what follows, the kurtosis

of the solutions of x for different r was calculated and

the results are illustrated in Fig. 2. As illustrated in

Fig. 2, the kurtosis of the solutions of x for r = 0.7, 1.2

and 10, which corresponds to non-chaos, has a

considerable fluctuation. Additionally, kurtosis, iden-

tical for r = 24.5, 30 and 40, is unsuccessful in

distinguishing between these conditions. Next, PeEn

was applied to examine the solutions of x for different

r, and the results are demonstrated in Fig. 3. As

demonstrated in Fig. 3, PeEn remains constant for

r = 0.7, 1.2 and 10 and does the same for r = 24.5, 30

and 40. Although successful in distinguishing between

non-chaos, transient chaos and chaos, PeEn fails to

distinguish between conditions for r = 0.7, 1.2 and

between those for r = 24.5, 30 and 40. In the

following, MPeEn was employed to decode the

solutions of x for different r and the results are

demonstrated in Fig. 4. In this paper, time scales in

MPeEn are set as ½1; 2; . . .; 20�. As demonstrated in

Fig. 4, although capable of distinguishing chaos from

the other conditions, MPeEn cannot serve to distin-

guish between non-chaos and transient chaos. Next,

GPeEn was employed to analyze the solutions of x for

different r, and the color maps of the PeEn matrix are

shown in Fig. 5. In this paper, GPeEn has the time lag
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range ½1; 2; . . .; 20� and the order range ½3; 4; . . .; 7�. As
shown in Fig. 5, orders and time lags exert a consid-

erable impact on PeEn. Thus, GPeEn greatly varies

with changes of orders and time lags. As a result, the

color maps in Fig. 5 can be almost classified as three

types: the upper color maps match 0\r\13:9656,

which corresponds to non-chaos; the middle color

maps match 13:9656\r\24:06, which corresponds

to transient chaos; the bottom color maps match

r[ 24:06, which corresponds to chaos. In addition,

the color maps for transient chaos produce a sharper

fluctuation than those for non-chaos or chaos. For this

reason, non-chaos, transient chaos and chaos can be

distinguished according to the color maps in Fig. 5.

Afterward, the minimum, the maximum and the

average values of the PeEn matrix were extracted,

and the results are displayed in Fig. 6. As displayed in

Fig. 6, these symbols can be clearly divided into three

different groups: non-chaos with 0\r\13:9656 in

the upper-right corner, transient chaos with

13:9656\r\24:06 in the middle and chaos with

r[ 24:06 in the lower-left corner. This means that the

proposed method in this paper can describe conditions

of the Lorenz model. In addition, Fig. 6 illustrates that

the order and the time lag both in PeEn and in MPeEn

are hard to choose since valid for all the conditions.

In general, both PeEn and MPeEn face difficulties

in determining optimal orders and time lags. As a

Fig. 1 Skewness of the

solutions of x in the Lorenz

model for different Rayleigh

numbers r

Fig. 2 Kurtosis of the

solutions of x in the Lorenz

model for different Rayleigh

numbers r
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result, both PeEn and MPeEn demonstrate little

feasibility for describing an evolving process of a

Lorenz model. By contrast, GPeEn, which constructs a

PeEn matrix by considering different orders and time

lags, performs better in describing dynamics of a

Lorenz model.

4 Condition monitoring of rotating machinery

4.1 Condition monitoring of gears

This subsection conducted a gear experiment for

modeling gear faults. In the gear experiment described

in Fig. 7, a driving motor has a constant speed of 1600

revolutions per minute (RPM). The gear experiment

comprises four different types of gear condition:

normal, slight-scratch, severe-scratch and broken-

tooth. In the gear experiment, sixteen pieces of

vibration signals with a sample frequency of

16,384 Hz and a size of 10,000 points were captured

from the driving end for each gear condition. These

four types of gear vibration signal are demonstrated in

Fig. 8.

To begin with, the skewness of these gear vibration

signals was estimated and the results are given in

Fig. 9. As given in Fig. 9, the skewness for normal and

slight-scratch gear conditions overlaps severely. This

means that skewness lacks the capability to distinguish

between these four types of gear condition. Afterward,

Fig. 3 PeEn of the solutions

of x in the Lorenz model for

different Rayleigh numbers

r

Fig. 4 MPeEn of the

solutions of x in the Lorenz

model for different time

scales
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the kurtosis of these gear vibration signals was

estimated, and the results are given in Fig. 10.

Similarly, Fig. 10 indicates that the kurtosis for

normal and slight-scratch gear conditions overlaps

severely. This proves that kurtosis is scarcely feasible

for distinguishing between these four types of gear

condition. Next, PeEn was applied to investigate these

gear vibration signals, and the results are demonstrated

in Fig. 11. As demonstrated in Fig. 11, PeEn can serve

to distinguish between these four types of gear

condition. However, PeEn for severe-scratch and

broken-tooth fluctuates considerably over times. Next,

MPeEn was adopted to examine these gear vibration

signals, and the results are illustrated in Fig. 12. As

illustrated in Fig. 12, MPeEn for these four types of

gear condition overlap greatly. In addition, MPeEn for

these four types of gear vibration signal fluctuates

widely over time scales. Thus, MPeEn seemingly

demonstrates little feasibility for discriminating

between these four types of gear condition. In the

following, GPeEn was made use of analyzing these

gear vibration signals. Moreover, minimal, maximal

and average values of the PeEn matrix obtained by

GPeEn served to distinguish between these four types

Fig. 5 GPeEn of the solutions of x in the Lorenz model for r ¼ 0:7; 1:2; 10; 19; 21; 24:5; 30; 40

Fig. 6 Minimal, maximal and average values of GPeEn of the solutions of x in the Lorenz model for

r ¼ 0:7; 1:2; 10; 19; 21; 24:5; 30; 40
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of gear condition and the results are indicated in

Fig. 13. As indicated in Fig. 13, these symbols can be

clearly divided into four different groups: normal,

slight-scratch, severe-scratch and broken-tooth. Con-

sequently, these four types of gear condition can be

clearly separated by the proposed method in this

paper.

4.2 Condition monitoring of rolling bearings

This subsection employed rolling-bearing vibration

signals from Bearing Data Center of Case Western

Reserve University to further measure the perfor-

mance of the proposed method in this paper. In the

bearing experiment described in Fig. 14, the revolving

speed of a driving motor fluctuates between 1720 and

1797 RPM. The bearing experiment includes twelve

Fig. 7 A gear experiment for modeling gear faults

Fig. 8 Four types of gear

vibration signal, (a)–(d) for

normal, slight-scratch,

severe-scratch and broken-

tooth, respectively
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different types of bearing condition, which are

displayed in Table 1. For each bearing condition, six

pieces of vibration signals with a sample frequency of

12,000 Hz and a size of 20,000 points were collected

from the driving end. These twelve types of bearing

vibration signal are displayed in Fig. 15.

To start with, the skewness of these bearing

vibration signals was calculated, and the results are

demonstrated in Fig. 16. As demonstrated in Fig. 16,

the skewness of these bearing vibration signals

overlaps severely. This shows that skewness hardly

serves to distinguish between these twelve types of

bearing condition. In the following, the kurtosis of

these bearing vibration signals was calculated, and the

results are demonstrated in Fig. 17. Similarly, Fig. 17

illustrates that the kurtosis of these bearing vibration

signals overlaps severely. Consequently, this suggests

that kurtosis is scarcely feasible for distinguishing

between these twelve types of bearing condition.

Subsequently, PeEn was utilized to explore these

bearing vibration signals, and the results are given in

Fig. 18. As given in Fig. 18, except normal, IR028 and

OR014, the remaining nine types of bearing condition

are hard to separate. After this, MPeEn was used to

study these bearing vibration signals, and the results

are depicted in Fig. 19. As depicted in Fig. 19, there is

considerable overlap between MPeEn of these twelve

types of bearing vibration signal. In addition, MPeEn

for IR007, IR028 and B014 fluctuates widely over

time scales. Furthermore, the proposed method in this

Fig. 9 Skewness for four

types of gear vibration

signal

Fig. 10 Kurtosis for four

types of gear vibration

signal
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Fig. 11 PeEn for four types

of gear vibration signal

Fig. 12 MPeEn for four

types of gear vibration

signal

Fig. 13 Separation of four

types of gear condition by

the proposed method in this

paper

123

864 J. Lin et al.



paper was adopted to probe these bearing vibration

signals, and the results are illustrated in Fig. 20. As

illustrated in Fig. 20, these symbols can be almost

divided into twelve groups: normal, IR007, IR014,

IR021, IR028, B007, B014, B021, B028, OR007,

OR014 and OR021. Hence, the proposed method in

this paper has the capability to distinguish between

these twelve types of bearing condition.

4.3 Discussions

This paper compares the performance of skewness,

kurtosis, PeEn, MPeEn and the proposed method in

this paper numerically and experimentally. Conse-

quently, skewness and kurtosis are not entirely reliable

for describing machinery conditions. Moreover, PeEn

frequently undergoes a small change over time for a

single machinery condition. This means that PeEn

may not be highly reliable for characterizing machin-

ery conditions. In addition, MPeEn illustrates a

considerable change over time for a single machinery

condition due to an average procedure. This means

that MPeEn may lack reliability for characterizing

machinery conditions. Also, the proposed method in

this paper performs well in describing machinery

conditions both numerically and experimentally.

Fig. 14 A rolling-bearing experiment for modeling bearing faults

Table 1 Twelve types of

rolling-bearing fault and

their specifications

Bearing conditions Abbreviations of bearing fault specifications Fault diameter

(inches)

Fault depth

(inches)

Normal Normal – –

Inner race faults IR007 0.007 0.011

IR014 0.014 0.011

IR021 0.021 0.011

IR028 0.028 0.050

Ball faults B007 0.007 0.011

B014 0.014 0.011

B021 0.021 0.011

B028 0.028 0.150

Outer race faults OR007 0.007 0.011

OR014 0.014 0.011

OR021 0.021 0.011
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Thus, these comparisons show that the proposed

method in this paper has a clear advantage over

skewness, kurtosis, PeEn and MPeEn in describing

machinery conditions. Additionally, the proposed

method in this paper delivers an excellent performance

in distinguishing between different types and severity

of machinery faults.

This paper makes twomain contributions. First, this

paper generalizes PeEn to GPeEn by introducing

different orders and time lags into PeEn. Indeed,

orders and time lags make a considerable impact on

PeEn, as demonstrated in this paper. Accordingly, it is

really necessary to consider orders and time lags for

PeEn. As a consequence, GPeEn can more fully reflect

Fig. 15 Twelve types of bearing vibration signal in the rolling-bearing experiment, (a)–(l) for normal, IR007, IR014, IR021, IR028,

B007, B014, B021, B028, OR007, OR014 and OR021, respectively

Fig. 16 Skewness for

twelve types of bearing

vibration signal
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nature of machinery vibration signals than PeEn.

Second, minimal, maximal and average values of the

PeEn matrix obtained by GPeEn are exploited to

describe machinery conditions. Consequently, this

enables application of GPeEn in describing machinery

conditions. Both numerical and experimental exam-

ples prove that the proposed method in this paper can

effectively characterize conditions of a complex

dynamic system.

Although performing well in characterizing condi-

tions of complex dynamic systems, the proposed

method in this paper still runs into some difficulties.

For one thing, GPeEn has a higher time cost than PeEn

and MPeEn. Currently, GPeEn seems slightly difficult

for online application. For another, although the

minimum, the maximum and the average values of a

PeEn matrix can be always extracted, properties of a

PeEn matrix need investigating further. Owing to a

limit of spaces, these problems will be solved in the

further.

5 Conclusions

This paper proposes GPeEn by introducing different

orders and time lags into PeEn for relieving deficien-

cies of PeEn and MPeEn. Moreover, minimal, max-

imal and average values of a PeEn matrix obtained by

GPeEn serve to briefly describe conditions of rotating

machinery. Afterward, a simulation proves that the

Fig. 17 Kurtosis for twelve

types of bearing vibration

signal

Fig. 18 PeEn for twelve

types of bearing vibration

signal
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proposed method in this paper performs better than

skewness, kurtosis, PeEn and MPeEn in describing

conditions of a Lorenz model. Afterward, the perfor-

mance of the proposed method in this paper was

compared with that of skewness, kurtosis, PeEn and

MPeEn by examining machinery vibration signals

containing different types and severity of machinery

faults. The results indicate that the proposed method in

this paper delivers a better performance than skew-

ness, kurtosis, PeEn and MPeEn in describing

machinery conditions. This paper seems to develop a

powerful method for condition monitoring of rotating

machinery.
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