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Abstract This paper explored different alternatives
for fault diagnosis based on algebraic identification
methods. As a novelty, the use of Extended State
Observers (ESO) is proposed to estimate time-
derivatives related to nonlinear complex terms, which
have a difficult analytical handling from the perspec-
tive of the classic algebraic framework. In this context,
three fault diagnosis schemes focused on residual gen-
eration, fault identification and parameter estimation
are presented and compared. These strategies estimate
as few parameters as possible, making their implemen-
tation simpler. To validate the proposed approach, a
twin-rotor aerodynamic system affected by multiple,
intermittent and simultaneous actuator faults was con-
sidered as case study. Finally, experimental results that
show the effectiveness and robustness of the proposed
strategies are provided.
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1 Introduction

In engineering applications, a fault can be defined as
the unacceptable deviation of a parameter or property
of a system from their nominal conditions [19]. In this
sense, both the complexity of processes and the large
number of variables that are monitored and controlled
have significantly increased the probability of fault
occurrence [21]. This scenario hasmotivated the devel-
opment of diagnostic and control techniques to improve
reliability and safety, and even guarantee an acceptable
performance in presence of faults [1,17,25,26].

Fault diagnosis involves warning about the occur-
rence of faults (detection) and provide their location,
nature or characteristics (isolation) [10]. In this context,
fault detection and isolation (FDI) methods often use
approaches based on physical or analytical redundancy.
In thefirst case, signals fromdifferent hardware compo-
nents, e.g., sensors, are compared for further processing
using statistical and signal processing techniques [21].
For its part, analytical redundancy focuses on model-
based and estimation schemes, thus reducing the invest-
ment in hardware [15]. This work is performed under
this framework.

In recent years, different approaches for FDI have
been developed. Reviews [19] and [20] present a
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general classification of FDI methods based on par-
ity equations, parameter estimation, unknown inputs
observers, extensions of Kalman filter, optimization,
and stochastic processes. Furthermore, [37] shows a
general overviews of the main model-based strate-
gies to deal with incipient faults focusing on statisti-
cal classifiers, Luenberger and sliding mode observers,
and optimizations based on linear matrix inequalities
(LMI), among others. Similarly, methods for nonlinear
systems [7], discrete event systems [38], and cyber-
physical systems [8] have been studied. Additionally,
some data-based strategies based on fuzzy logic [29],
hybrid computing [23], and support vector machine
[41] have also been explored.

Although fault diagnosis schemes are diverse, most
are based on residual generation and fault identification
(estimation). Residuals show the difference between
the fault-free operation and the performance under fault
conditions [33]. These signals present deviations when
the fault occurs, and they must be sensitive to a sin-
gle fault allowing its isolation. On the other hand, fault
identification provides more accurate information on
the dynamics of the fault; however, its online imple-
mentation is often more complex [10]. In general, FDI
strategies are negatively affected by noise, parame-
ter uncertainty, and unknown disturbances, making the
diagnosis process difficult [12]. Likewise, the effec-
tiveness against multiple, intermittent and simultane-
ous faults is still a challenge [26,34].

The algebraic identification method, introduced by
Fliess andSira-Ramírez in [14], is characterized by per-
forming an analytical treatment on the system model,
which includes derivations with respect to time, mul-
tiplication by powers of time (or other functions), and
iterated integration by conventional methods [13]. This
procedure is carried out to estimate unknown parame-
ters using equations independent of initial conditions,
free of explicit derivatives, and less sensitive to noise
and structured disturbances [35]. This method has been
commonly used in the estimation of harmonic con-
tent in electrical power systems [3], filtering of sig-
nals affected by noise [31], identification of vibration
modes in flexible structures [39], control of magnetic
levitation systems [24], industrial processes [27], and
motion control systems [30].

Although algebraic identification hasmultiple appli-
cations, some practical restrictions have limited this
approach. These include: (a) manipulation of nonlin-
ear operations that include derivatives of the system

outputs [40]; (b) high computational complexity when
estimating multiple parameters [5]; and (c) constraints
imposed by the numerical conditioning and the persis-
tence of excitation [14]. In fact, FDI applications of
algebraic identification methods have been confined to
linear systems and experimental results have not been
reported [11,12,22,32].

To deal with the mentioned issues, this work pro-
poses three strategies for fault diagnosis based on resid-
ual generation, fault identification and parameter esti-
mation. These schemes integrate algebraic treatment
and the use of extended state observers (ESO). Under
this approach, the ESO provide an estimation of the
derivatives of the system outputs, facilitating the direct
calculation of complex nonlinear operations, which are
difficult to solve analytically. In thisway, features of the
classic algebraic framework such as the elimination of
initial conditions, intrinsic noise filtering, rapid estima-
tion, and statistical independence in noise treatment are
kept. In addition, the proposed schemes estimate as few
parameters as possible, making their implementation
simpler. These strategies also avoid using auxiliary esti-
mators, switching policies, slidingwindow integrals, or
filters to smooth the estimated signals [5,40].

Summarizing, the novel contributions in this paper
are:

– Three alternatives for fault diagnosis based on an
improved algebraic identificationmethod are given.
These proposals are analyzed and compared to
establish their features and application scenarios.

– The classic algebraic method is reconditioned to
maintain its strengths and solve difficulties associ-
ated with the complexity and the numerical con-
ditioning. This allows a proper implementation in
FDI context.

– The main upgrading is the use of extended state
observers to estimate time derivatives of measur-
able variables, which are present in complex non-
linear terms of the dynamics of the system. In this
way, the implementation of the algebraic identifiers
is facilitated.

– Experimental validation is performed on a nonlin-
earmultivariable system affected by actuator faults.
The results demonstrate the applicability and prac-
tical viability of the proposed strategies.

The remaining of this paper is organized as fol-
lows: Section 2 introduces the algebraic framework for
fault diagnosis. Section 3 describes the algebraic resid-
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ual generation scheme. Section 4 presents an algebraic
fault identification strategy. Section 5 discuses the fault
diagnosis via algebraic parameter estimation. Section 6
shows the experimental validation for the case study of
a twin-rotor aerodynamics system affected bymultiple,
intermittent, and simultaneous actuator faults. Finally,
Sect. 7 summarizes the conclusions of this work.

2 Algebraic framework for fault diagnosis

Fault detection and isolation (FDI) are the basic objec-
tives of fault diagnosis. Therefore, to clarify the scope
of the strategies that will be proposed later, this section
introduces some definitions concerning fault diagnosis
under an algebraic framework.

Consider the following nonlinear system affected by
faults:

ẋ(t) = g(x, u, f )
y(t) = h(x, u, f ),

(1)

where x ∈ R
n represents the state vector, u ∈ R

k is
the input vector, y ∈ R

p is the output vector (measur-
able), and f ∈ R

μ is the fault vector (unknown inputs).
In regards to system (1) the following definitions are
considered:

Definition 1 A state x is algebraically observable if
it is related to y, u, and their time derivatives by a
polynomial equation [2].

Definition 2 A fault f is algebraically detectable, if
and only if, it indeed influences the output variables
[11].

Definition 3 A fault f is differential algebraically
isolable, if it satisfies an unique parity differential equa-
tion in terms of the input and output variables, and their
time derivatives. In systems with multiple faults, there
must be multiple parity equations. [13].

Definition 4 System (1) is algebraically diagnosable,
if the fault f can be estimated from the system equa-
tions and the available information of u and y [6].

Taking into account the above considerations, the
proposed strategies for fault diagnosis aided by
extended state observers (ESO) are presented in the
next sections.

3 Algebraic residual generation assisted by ESO

Fault detection can be carried out by analyzing signals
that warn the difference between fault-free and fault-
affected behaviors. These signals called residuals are
obtained by performing a mathematical treatment of
the system model. Like diagnosis methods based on
fault identification/estimation, the residual generation
should face the following challenges:

1. To provide algorithms based exclusively on known
inputs and measured outputs. Although direct han-
dling of themathematical model gives ideal expres-
sions for the residuals, these rely on explicit deriva-
tives of the system states and outputs [2]. Besides,
the complexity of such terms depends on the sys-
temorder and the particular nonlinear operations. In
this sense, observers can be used to obtain estima-
tions of the required variables. Nevertheless, fac-
tors such as noise and uncertainty cause estimation
errors, which affect the accuracy and speed of fault
diagnosis [9,24].

2. To avoid dependence on initial conditions of system
states. This feature is especially relevant when the
analytical procedure implies performing integrals
since the performance of strategies can decreased
by uncertainty in specific test conditions, e.g., ini-
tial values of positions, velocities, temperatures,
voltages, and levels [40]. Therefore, it is prefer-
able that the diagnosis process should not depend
on any initial condition.

Motivated by the above requirements, the algebraic
methodology can be used to eliminate initial conditions
as well as to minimize the explicit derivatives. How-
ever, to tackle complex nonlinear operations, which
have difficult analytical handling in the classic alge-
braic approach, this work proposes their direct calcula-
tion from estimations of the time derivatives of the out-
puts, which are provided by extended state observers
(ESO).

3.1 Algebraic residuals

Consider the following class of perturbed nonlinear
systems:

y(n) =κ(t, y, Φ)u+ζ(t, y, ẏ, ..., y(n−1), Φ)+ f (t),

(2)
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where n is the system order, y is the output, the
state vector is comprised by x = [x1 · · · xn] =
[y · · · y(n−1)], κ(t, y, Φ) is the control gain,
ζ(t, y, ẏ, · · · , y(n−1), Φ) is a drift function, Φ is the
parameter vector, Y0 = [y(t0), ẏ(t0), · · · , y(n−1)(t0)]
is the set of initial conditions, and f (t) represents an
additive fault function.

The general procedure for algebraic residual gener-
ation from equation (2) is as follows:

1. Rewrite model (2) as a parity equation solving for
the fault function (ideal residual) as follows

f (t) = y(n) − κ(t, y, Φn)u

−ζ(t, y, ẏ, ..., y(n−1), Φn), (3)

whereΦn is the nominal (known) parameter vector.
2. Multiply equation (3) by (−t)n to eliminate ini-

tial conditions. It is also possible to use other suit-
able functions of time, such as sinusoidal, ratio-
nal, or bounded exponential. However, this change
canmake analytical development in nonlinearmod-
els more tedious. Seeking to avoid equations with
explicit derivatives of the system outputs, espe-
cially the highest order ones, in the next step iter-
ated integrals will be carried out. Nevertheless, the
numerical evaluation of these integrals, without any
type of conditioning, requires knowledge of the ini-
tial conditions. Hence, to obtain expressions free of
initial values, convolutions with functions of time
are previously performed as proposed in this step
[40].

3. Carry out n iterated integrals, denoted as
∫ (n)

β(t) =
∫ (n)

t0
β(t) =

∫ t

t0

∫ λ1

t0
. . .

∫ λn−1

t0
β(λn)dλn . . . dλ1, (4)

where β(t) is any term in the equation after step
2. That is, (−t)n f (t). This procedure also has an
intrinsic filtering effect, since noise that corrupts the
outputs and their estimated derivatives is attenuated
by the repeated integrals, which act as low pass
filters [18].

4. Use an ESO to estimate time-derivatives in step
3. This is useful where there are integrals of non-
linear operations between states, powers of time,
and time derivatives of outputs. Defining ξ(t) =
ζ(t, y, ẏ, ..., y(n−1))+ f (t) as the total disturbance
of system (2), which has an ideal internal model

dξ(t)/dt = 0, then a full-order ESO is designed as
follows [35]

˙̂x = Ax̂ + Bκ(t, y, Φn)u + L
(
y − ŷ

)
, (5)

where x̂ = [
x̂1 · · · x̂n+1

]T is the estimated vector

of x = [
x1 · · · xn+1

]T with x1 = y, x2 = ẏ, xn =
y(n−1), xn+1 = ξ . In addition, L = [ln · · · l0]T
represents the observer gain vector, and matrices A
and B are

A =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

∈ R
(n+1)×(n+1), (6)

B =

⎡
⎢⎢⎢⎣

0
...

1(nth)

0

⎤
⎥⎥⎥⎦ ∈ R

(n+1)×1. (7)

The characteristic polynomial to tune the ESO has
the form

po(s) = sn+1 + ln+1s
n+1 + · · · + l1s + l0. (8)

It is worth noting that x̂ can be used for the fault
diagnosis scheme and the controller, both on an
active disturbance rejection framework.

5. Formulate the implementable algebraic residual as
follows

r(t) =
∫ (n)

(−t)n f (t). (9)

6. Analyze the residual for fault diagnosis.

Remark 1 In the ideal case, residuals should be equal to
zero. However, in practice, it is more reasonable to con-
sider thresholds due to noise parameter uncertainty and
external disturbances. These thresholds can be tuned
experimentally from the fault-free behavior.

Remark 2 Algebraic residual generation does not
require parameter estimation. This means that restric-
tions caused by numerical conditioning and compu-
tational complexity, which can appear in algebraic
parameter identification, are overcome for fault diag-
nosis purposes. Nevertheless, it is mandatory to period-
ically re-initialize the calculations to prevent numerical
overflows in the practical implementation.
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3.2 Resetting scheme

In real applications, the system conditions may vary
owing to disturbances and noise. Likewise, due to the
non-asymptotic nature of the signals involved in the
algebraicmethod, caused by themultiplication by pow-
ers of time of type (−t)n , a resetting scheme for the
integrals is required together with an updating strategy.

Figure 1 shows the resetting and updating proce-
dures proposed in this work. As can be seen, the time
base to compute the integrals (in blue) is restarted every
Tr by the rising edge of the reset signal (in black) at
times 0, Tr , 2Tr , 3Tr , · · · . By doing this, not only a
reliable and timely fault detection is ensured but also
numerical overflow is prevented. Nevertheless, during
resets, the information provided by the algebraic algo-
rithm suffers sudden changes. Therefore, an updating
policy is adopted to rule out unhelpful calculations.
In this way, after a reset, the last estimated values are
retained during a hold time denoted by Th (in red).
After that, the new estimates will be available within
the interval t = (Th, Tr ).

Remark 3 The signals used to calculate the algebraic
residuals have a non-asymptotic behavior. Therefore,
a long reset time (Tr ) could cause numerical overflow,
decrease the sensitivity, and increase the detection time.

On the other hand, a small Tr makes the diagnostic
scheme more noise-sensitive, so the detection thresh-
olds must be more accurate. Based on these consider-
ations, it is possible to propose an updating strategy
focused on reducing Tr as much as possible and tak-
ing the last sample before each restart. In this way, it
is only necessary to tune the parameter Tr . Finally, the
hold time is given by Th = Tr − Ts , where Ts is the
sampling time.

4 Algebraic fault identification assisted by ESO

As a second strategy for diagnosis, the algebraic fault
identification is now presented. In this context, additive
function f (t) in system (2) can bemodeled as aw-order
polynomial that locally approximates the fault. For the
sake of simplicity, and to reduce the degradation of
the numerical conditioning of the algebraic identifier,
in this work the internal model of f (t) is assumed as
follows
d f (t)

dt
= 0. (10)

This assumption implies that f (t) is modeled by a
constant trend (0-order polynomial), which is common
in the context of active disturbance rejection control
(ADRC). Therefore,

Fig. 1 Resetting and retain
scheme. The integrals are
reinitialized at Tr , the last
estimated values are
retained until Th , and new
estimates are available for
t = (Th, Tr )
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f (t) = α. (11)

The goal now is to estimate the time-varying param-
eter α, using the algebraic method presented in Sect. 3
and to build an online fault estimation as follows:

f̂ (t) = α̂, (12)

where α̂ is the estimate of α.
Combining equations (3) and (9) yields∫ (n)

(−t)nα̂ = r(t). (13)

Equation (13) is rewritten by defining G(t) =∫ (n)
(−t)n . Thus

G(t)α̂ = r(t). (14)

Applying an invariant filter, which improves the
signal-to-noise ratio, the algebraic identifier to estimate
the parameter α̂0 becomes:

â =
∫ t
t0
G(λ)r(λ)dλ∫ t
t0
G(λ)2dλ

. (15)

Subsequently, fault identification allows a diagnosis
based on thresholds or experimental rules, compared
to fault-free behavior.

4.1 Error and sensitive indices

Unlike other applications of algebraic methods, fault
detection has the advantage that the occurrence of the
fault conveniently excites the algebraic identifier (15),
which improves numerical conditioning. In this sense,
the criterion of the integral square error, the normalized
error index and the sensitivity index are adopted to eval-
uate the performance of the identifier. These indices
are also useful for tuning the resetting and updating
scheme, which is required to guarantee a reliable esti-
mation.

From (14), the residual error is defined as

ε(α, t) = G(t)α − r(t). (16)

Next, the optimization objective is formulated as fol-
lows:

j (α, t) = 1

2

∫ t

t0
ε2(α, λ)dλ. (17)

Defining the following terms for a simplified nota-
tion:

M1=
∫ t

t0
G2(λ)dλ, M2=

∫ t

t0
r(λ)G(λ)dλ,

M3=
∫ t

t0
r2(λ)dλ. (18)

Therefore, (17) is now expressed as:

j (α̂, t) = 1

2

(
M3 −

(
M2

2M1
−1

))
. (19)

Then, the normalized error index is set as:

Eα =
√

j (α̂, t)

j (0, t)
=

√
M3 − (

M2
2M1

−1
)

M3
≤ 1. (20)

On the other hand, the sensitivity error defined as the
maximum variation of α̂ required to cause a doubling
of the residual error (16) is given by:

Δα =
√

j (α̂, t)M1
−1. (21)

Remark 3 To ensure a reliable and fast detection, the
resetting strategy presented in Sect. 3 is also used for
the fault identification strategy. In addition, to choose
the most suitable reset time (Tr ) it is necessary to take
into account the following criteria: (a) the initial tran-
sit (Tr min), which is caused by numerical hardware
limitations, noise, and numerical conditioning; (b) the
numerical overflow; and (c) the fact that the reliabil-
ity of the estimation and the speed of detection could
be degraded by too long restart time (Tr max). On the
other hand, after the transient, the estimation can be
updated in the interval (Th, Tr ).

The error and sensitivity indices can support the
selection of Tr and Th . The procedure for tuning these
parameters is as follows: (1) it is advisable to start the
tests using a long reset time Tr to guarantee conver-
gence of the algorithm. (2) From real data, error index
Ex and sensitivity index Δx are computed. Afterward,
the settling time (ts) is measured for a certain metric
based on the adopted indices, e.g., t (Ex ≤ 5%). (3) The
settling time provides a guide to choose the hold time,
such that, Th > ts . Similarly, the reset time must be
greater than the hold time. For practical purposes, we
suggest that Th is slightly larger than ts and Tr ≥ 3Th ,
to achieve useful estimations with the least dead time.

Remark 4 It is possible to assume more complex poly-
nomial models for the fault, such that:

f (t) =
w∑
i=0

(
αi t

i
)

. = α0 + α1t + · · · + αw−1t
w−1

+αwt
w. (22)
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Then, the vector of time-varying parameters Ω =[
α̂0 · · · α̂w

]T can be estimated as follows:

Ω =
[∫ t

t0
GT (λ)G(λ)dλ

]−1 ∫ t

t0
GT (λ)r(λ)dλ, (23)

where

G = [
γ0(t) γ1(t) . . . γw−1(t) γw(t)

]
, (24)

and

γi (t) =
∫ (n)

(−1)nt (n+i), (25)

for i = 0...w.
Thus, the fault f (t) is identified on line from the

estimated parameter vector Ωα as follows

f̂ (t) =
w∑
i=0

(
α̂i t

i
)

= [
1 t · · · tw−1 tw

]
Ω. (26)

Notice that although the accuracy of the fault esti-
mation improves with a higher polynomial orderw, the
requirements in terms of persistence of the excitation
and numerical conditioning also rise [5,14].

5 Fault diagnosis via algebraic parameter
estimation assisted by ESO

The third proposed strategy focuses on estimating spe-
cific model parameters associated with the faults. To
do this, a physical interpretation of the source of the
fault is required. Likewise, given the detectability and
isolability restrictions, it is advisable to concentrate the
process on as few parameters as possible.

The general procedure for algebraic identification of
a single parameter on equation (2) is presented below.

1. (Optional) Derive the differential equation ρ-times
to eliminate structured polynomial disturbances
f (t). This procedure can have a negative influence
on numerical conditioning.

y(n+ρ) = Dρ[κ(t, y, Φ)u

+ ζ(t, y, ẏ, ..., y(n−1), Φ) + f (t)], (27)

where Dρ = dρ/dtρ

2. Multiply equation (27) by (−t) j to eliminate initial
conditions, where j = n + ρ

3. Perform j iterated integrals, according to definition
(4). Use the estimations provided by the ESO in (5)
when it is necessary.

4. Rewrite resulting expressions as a linear equation
in terms of the required parameter

Pk = q(t), (28)

where k is the parameter associated with the fault
(to be estimated), P contains explicit operations
in terms of, t , u(t), and y(t), which multiply the
parameter. As a result, q(t) is the remain of the
equation.

5. Compute the online estimated parameter using a
single invariant filter as follows:

k̂ =
∫ t
t0
P(λ)q(λ)dλ∫ t
t0
P(λ)2dλ

. (29)

6. Compare the estimated parameters with their nomi-
nal values or a suitable threshold for fault diagnosis.

The error and sensitivity indices (presented in Sect.
4) can be easily adapted to evaluate the degree of fit of
the estimated parameters for the system model. As a
consequence, the normalized error index of k̂ is given
by:

Ek =
√

M3 − (
M2

2M1
−1

)
M3

≤ 1, (30)

where

M1=
∫ t

t0
P2(λ)dλ, M2=

∫ t

t0
q(λ)P(λ)dλ,

M3=
∫ t

t0
q2(λ)dλ. (31)

Similarly, the sensitivity index for k̂ is set as:

Δk =
√

j (k̂, t)M1
−1, (32)

where the optimization objective is:

j (k̂, t) = 1

2

(
M3 −

(
M2

2M1
−1

))
. (33)

6 Case study and experimental validation

In this section, the proposed strategies based on alge-
braic methods are applied to fault diagnosis using a
twin-rotor aerodynamic system (TRAS), which oper-
ates in closed loop. In addition, experimental results
that validate the proposed strategies are presented.
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Fig. 2 General description of a Twin-Rotor Aerodynamic Sys-
tem

6.1 Dynamic model

Consider the TRAS shown in Fig. 2. During its opera-
tion the systemcan be tilted θ degrees around theY-axis
(Pitch), and rotate ψ degrees around the Z-axis (Yaw).
The dynamic model of the TRAS was defined by the
following expressions:

[
Jeqp + Mheli

(
l2mc + h2

)]
θ̈

+Mheli

[
0.5 sin 2θ

(
l2mc − h2

)
− (lmch cos 2θ)

]
ψ̇2

+ [Mheli g(lmc cos θ + h sin θ)]

= KppVmp + KpyVmy − Bp θ̇ − Fcp, (34)[
Jeqy + Mheli

(
cos2 θ

(
l2mc − h2

)
+ (lmch sin 2θ) + h2

)]
ψ̈

+Mheli

[
− sin 2θ

(
l2mc − h2

)
+ 2 (lmch cos 2θ)

]
ψ̇ θ̇

= KypVmp + KyyVmy − Byψ̇ − Fcy . (35)

where angles θ and ψ are the measured outputs, and
Vmp, and Vmy are the voltage applied to the front and
rear propellers, respectively. The equivalent moments
of inertia in the Pitch and Yaw axes are Jeqp and Jeqy ,
whileMheli is the total movingmass of the system. The
positions of the center of mass in the X and Z axes are
lmc and h, respectively. These general parameters are
provided by the TRAS manufacturer (Quanser inc �).

On the other hand, Bp and By are the viscous fric-
tions, while Fcp and Fcy are the torques caused by
Coulomb frictions on each axis. For their part, Kpp and
Kpy relate the voltages with torques generated in the
Pitch axis. Likewise, Kyp and Kyy relate the voltages
with torques generated in theYawaxis. It is important to
mention that nominal values of these parameters were
estimated in [35] using algebraic methods.

6.2 ESO-based control

To control the system, an ESO-based controller is pro-
posed under the active disturbance rejection (ADRC)
framework. Therefore, a simplified representation of
(34) and (35), which includes two decoupled loops, is
adopted as follows:

θ(2) = κθuθ + ξθ , (36)

ψ(2) = κψuψ + ξψ, (37)

where ξθ and ξψ are the total disturbances associ-
ated to each loop, which group all the internal and
external effects [36]. In addition, κθ = [Jeqp +
Mheli

(
l2mc + h2

)]−1 is the control gain in the Pitch
axis and κψ = [Jeqy + Mheli

(
cos2 θ

(
l2mc − h2

) +
(lmch sin 2θ)+(

h2
) )

]−1 is the control gain in the Yaw

axis. Furthermore, uθ and uψ are auxiliary control sig-
nals defined as:

uθ = KppVmp + KpyVmy, (38)

uψ = KypVmp + KyyVmy . (39)

To estimate ξθ and the states in the Pitch axis, the fol-
lowing extended estate observer (ESO) based on equa-
tion (5) is proposed:

d

dt
θ̂ = ˙̂

θ + lθ2(θ − θ̂ ), (40)

d

dt
˙̂
θ = ξ̂θ + κθuθ + lθ1(θ − θ̂ ), (41)

d

dt
ξ̂θ = lθ0(θ − θ̂ ), (42)

where εθ = θ − θ̂ is the estimation error in the Pitch
axis, and lθ0 = 4000, lθ1 = 800, and lθ2 = 50 are
the observer gains. These values were adjusted from
the characteristic polynomial (8) rewritten as Poθ =
(s − �θ1)(s − �θ2)(s − �θ3). The poles were placed
on �θ1 = −10, �θ2 = −20, and �θ3 = −20, which
provides a bandwidth of 7.3 rad/s.

Similarly, the ESO that estimates ξψ and the states
in the Yaw axis is designed as follows:

d

dt
ψ̂ = ˙̂

ψ + lψ2(ψ − ψ̂), (43)

d

dt
˙̂
ψ = ξ̂ψ + κψuψ + lψ1(ψ − ψ̂), (44)
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d

dt
ξ̂ψ = lψ0(ψ − ψ̂), (45)

where the estimation error in the Yaw axis is εψ =
ψ − ψ̂ , and gains lψ0 = 2688, lψ1 = 584, and lψ2 =
42 were tuned using the polynomial (8) rewritten as
Poψ = (s − �ψ1)(s − �ψ2)(s − �ψ3). In this case, the
poles were placed om �ψ = −12, �ψ = −14, and
�ψ = −16 giving a bandwidth of 7 rad/s.

It is worth noting that the eigenvalues of ESOs
were experimentally tuned to reach an effective distur-
bance rejection, but taking into account the restrictions
imposed by measurement noise and sampling time.
Besides, a good damping factor was desirable (real
poles) to achieve a soft start-up and avoid pole-shifting
during testing. For practical purposes, the bounds of the
estimation errors were defined as |εθ | ≤ 0.15 degrees
and |εψ | ≤ 0.15 degrees. In this way, the bandwidth
of each observer was increased until the desired errors
were attained.

To track the reference positions denoted by θ∗(t) and
ψ∗(t), two sliding mode control loops assisted by ESO
are implemented. In this context, εθ = (θ̂ − θ∗) and
εψ = (ψ̂ − ψ∗) represent the tracking errors and their
time derivatives are ε̇θ = (

˙̂
θ − θ̇∗) and ε̇ψ = (

˙̂
ψ − ψ̇∗)

respectively. From these variables, the following first-
order sliding surfaces are adopted:

ςθ = ε̇θ + ιθ εθ , (46)

ςψ = ε̇ψ + ιψεψ, (47)

where −ιθ and −ιψ are the desired poles in the sliding
surfaces. Therefore, the characteristic polynomials, in
the Laplace domain, that define the dynamics for the
Pitch andYaw loops are Pyθ = s+ιθ and Pyψ = s+ιψ
respectively.

Inspiredby the active disturbance rejection approach,
the control strategies contain two parts. Firstly, a con-
tinuous term based on the estimation of the disturbance
affecting the sliding surface dynamics at each loop.
Secondly, a discontinuous term acting on the sliding
surface [36]. Accordingly, the following control laws
are proposed:

uθ = 1

κθ

[
ξ̂εθ − Wθ sign (ςθ )

]
, (48)

uψ = 1

κψ

[
ξ̂εψ − Wψ sign

(
ςψ

)]
, (49)

where Wθ and Wψ are the amplitudes of the switch-
ing parts. Besides, ξ̂εθ = θ̈∗ − ε̇θ − lθ1εθ − ξ̂θ and
ξ̂εψ = ψ̈∗ − ε̇ψ − lψεψ − ξ̂ψ are the equivalent distur-
bances of the sliding surfaces. These signals are com-
puted from the estimates provided by the observers and
some reference-dependent calculations.

The stability of the sliding regimes is assured by
choosing ιθ > 0 and ιψ > 0. Furthermore, to guaran-
tee an appropriate sliding regime creation it is required
that Wθ > 0 and Wψ > 0 [4]. However, the higher
amplitude the greater the chattering in the control sig-
nal. Based on these considerations, the gains of the con-
trollers were experimentally adjusted as ιθ = ιψ = 1
andWθ = Wψ = 0.05. These values yield bandwidths
of 1 rad/s, settling times of less than 5 s, and a reduced
chattering effect. In addition, for each loop, the rela-
tionship between the observer bandwidth (ωo) and the
controller bandwidth (ωc) satisfies ωo > 5ωc as sug-
gested in [16].

6.3 Fault diagnosis schemes

In thiswork, two actuator faults that affect the operation
of the TRAS are considered. Fault 1 ( f 1) is a sudden
loss of efficiency in the front propeller motor. Fault 2
( f2) is a sudden loss of efficiency in the rear propeller
motor. In this way, the fault occurrence profile is pre-
sented inFig. 3 and several scenarios are considered: (a)
single fault ( f 1 OR f2); (b) multiple and simultaneous
faults ( f1 AND f2); and (c) intermittent and repetitive
faults (switching on f 1 AND f2). In addition, the pro-
posed algebraic diagnosis schemes for Faults 1 and 2
are presented below.

6.3.1 Parameter estimation

Assuming that Faults 1 and 2mainly affect the parame-
ters Kpp and Kpy respectively, it is required to propose
two algebraic identifiers. These allow detecting the
respective fault, but they are also insensitive to noise,
uncertainties, and other faults. Therefore, multiplying
(34) and (35) by t2, integrating twice with respect to
time and organizing in terms of the desired parameters,
the following expressions are obtained:

Pθ (t)Kpp = qθ (t), (50)

Pψ(t)Kyy = qψ(t). (51)
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Fig. 3 Fault occurrence
profile considered for the
TRAS. f1 is the front
propeller motor fault, and f2
is rear propeller motor fault
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where

Pθ (t) =
∫ (2)

t2Vmp, Pψ(t) =
∫ (2)

t2Vmy, (52)

and the rest of the equations are:

qθ (t) =
(
Jeqp + Mheli

(
l2mc + h2

))
[
t2θ − 4

∫ (1)

tθ + 2
∫ (2)

θ

]

+0.5Mheli

(
l2mc − h2

) ∫ (2)

t2 sin(2θ) ˆ̇ψ2 − Mheli lmch

∫ (2)

t2 cos(2θ) ˆ̇ψ2

+Mheli glmc

∫ (2)

t2 cos(θ) + Mheli gh
∫ (2)

t2 sin(θ) − Kpy

∫ (2)

t2Vmy

+Bp

(∫ (1)

t2θ − 2
∫ (2)

tθ

)
+ Fcp

∫ (2)

t2, (53)

qψ(t) =
(
Jeqy + Mheli h

2
) [

t2ψ − 4
∫ (1)

tψ + 2
∫ (2)

ψ

]

+Mheli

(
l2mc − h2

)[
t2(cos2 θ)ψ − 4

∫ (1)

t (cos2 θ)ψ

+2
∫ (2)

(cos2 θ)ψ

−2
∫ (2)

t (sin 2θ) ˆ̇θψ

]
+ Mheli lmch

[
t2(sin 2θ)ψ − 4

∫ (1)

t (sin 2θ)ψ

−
∫ (1)

2t2(cos 2θ) ˆ̇θψ + 2
∫ (2)

(sin 2θ)ψ

+4
∫ (2)

t (cos 2θ) ˆ̇θψ

]

−Kyp

∫ (2)

t2Vmp + By

[∫ (1)

t2ψ − 2
∫ (2)

tψ

]

+Fcy

∫ (2)

t2. (54)

Notice that ˆ̇θ , and ˆ̇ψ are provided by the designed
observers.

Then, the algebraic identifiers to estimate Kpp and
Kyy are:

K̂ pp =
∫ t
t0
Pθ (λ)qθ (λ)dλ∫ t
t0
Pθ (λ)2dλ

, (55)

K̂ yy =
∫ t
t0
Pψ(λ)qψ(λ)dλ∫ t
t0
Pψ(λ)2dλ

, (56)

Fault indicators are activated when the estimates
Kpp and Kyy go outside±25%of their nominal values,
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which are considered acceptable ranges (thresholds) to
generate a fault alarm.

6.3.2 Residual generation

From Equations (50) and (51), residuals for Faults 1
and 2 are described as follows:

r1(t) = qθ (t) − Pθ (t)Kpp, (57)

r2(t) = qψ(t) − Pθ (t)Kyy, (58)

where Kyy and Kyy take their nominal values.
Although ideally the residuals are zero for the fault-

free case, several factors such as noise, external distur-
bances, and parameter uncertainty can cause deviations
in practice. Thus, taking into account the experimen-
tal signal-to-noise ratio, the detection thresholds were
selected as ±5max |r f f |, where max |r f f | is the max-
imum peak of the residual in the fault-free case.

6.3.3 Fault identification

Assuming that d f1/dt = 0 and d f2/dt = 0 are the
internal models of the faults, the parameters used for
the fault identification are:

f̂1 = α̂1, (59)

f̂2 = α̂2, (60)

To estimate α̂1 and α̂2, the following algebraic iden-
tifiers are proposed:

â1 =
∫ t
t0
G(λ)r1(λ)dλ∫ t
t0
G(λ)2dλ

, (61)

â2 =
∫ t
t0
G(λ)r2(λ)dλ∫ t
t0
G(λ)2dλ

, (62)

where G(t) = ∫ (2) t2.
The diagnosis rules based on fault estimation are

experimentally deduced such that detection thresholds
are chosen as ±15max | f̂ f f |, where max | f̂ f f | is the
maximum peak of the signal in the fault-free case.

6.4 Experimental results

The experimental setup is depicted in Fig. 4. The
controllers were built on Simulink� and they were
implemented usingWinCon software (Quanser inc�).

R1O
N

O
FF

Fault 1
R2O

N
O

FF

Fault 2

UPM 2405

Mul�Q4-PCI

WinCon
Simulink

Quanser TRAS

Vmy

Vmp

Ψ

UPM 1503

θ 

Fig. 4 Experimental setup including: TRAS, acquisition card
(MultiQ4-PCI), power stage (UPM-2405/1503), control software
(Wincon�-Simulink�), and the circuit to cause faults

The integration method was Runge–Kuta and the fun-
damental sample time was 1 ms. In addition, input
and output signals were managed by the MultiQ4-PCI
acquisition card and the power stage included the DC–
DC converters (UPM-2405 and UPM-1503). Further-
more, the proposed faults were emulated by inserting
external electrical resistors in series with the circuit of
each motor.

Figure 5 shows the input and output signals for the
TRAS under the proposed ESO-based control for con-
ventional tracking tasks. As can be seen, voltages have
a chattering effect caused by the sliding mode compo-
nent of the control laws. Despite fault tolerate proper-
ties of the controller, the effect of both faults can be
noticed.

The fault diagnosis based on algebraic parameter
estimation is presented in Fig. 6. The shaded region
indicates the presence of Fault 1 and Fault 2 and
the results allow to determine that they mainly affect
parameters Kpp and Kyy respectively. This assump-
tion neglects the effect on the parameters Kpy and
Kyp, which can be noticeable when both faults are
active. Even so, faults are isolated with low detection
time and a good signal-to-noise ratio. Figure 7 depicts
the error indices (Ekpp, Ekyy) and sensitivity indices
(Δkpp, Δkyy) based on equations (30) and (32), for
a single estimation interval [0, Tr ], In the absence of
faults, the identifier settling times for E ≤ 0.05 were
ts1 = 0.2 s for Kpp, and ts2 = 0.32 s for Kyy . From
these measures and taking in to account Remark 4, the
hold times were tuned as Th1 = 0.3 s and Th2 = 0.5 s.
Likewise, since Th ≥ Tr , a single reset time Tr = 1.5 s
was selected to facilitate the implementation. Concern-
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Fig. 5 Time response of the
angular positions (θ , ψ) and
voltages (Vmp , Vmy) of the
system in the presence of
faults
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Fig. 6 Algebraic estimation
of parameters Kpp and Kyy .
Parameter deviations
outside the thresholds
indicate fault occurrence
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Fig. 7 Error and sensitivity
indices for estimation of
parameters Kpp (E,kpp ,
Δkpp) and Kyy (Ekyy ,
Δkpp). Shaded region
corresponds to the hold time
(Th) of the identifier
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Fig. 8 Algebraic residuals
for Fault 1 (r1) and Fault 2
(r2). Deviations of the
residuals outside the
thresholds indicate fault
occurrence
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Fig. 9 Algebraic
identification of Fault 1 ( f1)
and Fault 2 ( f2). Deviations
of the estimated signals
outside the thresholds
indicate fault occurrence
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Fig. 10 Error and
sensitivity indices for
identification of Fault 1
(Eα1, Δα1) and Fault 2
(Eα2, Δα2). Shaded region
corresponds to the hold time
(Th) of the identifier

0 Th1=0.3 1 Tr=1.5

 Estimation Interval (s)

0

0.5

1

 E
1

0 Th1=0.3 1 Tr=1.5

 Estimation interval (s)

0

0.05

0.1

0.15

0.2

1

0 Th2=0.5 1 Tr=1.5

 Estimation interval (s)

0

0.5

1

 E
2

0 Th2=0.5 1 Tr=1.5

 Estimation interval (s)

0

5

10

15

20

2
Fault-Free Fault-affected

123



Fault diagnosis based on Algebraic identification assisted by ESO 885

ing sensitivity indices, it was obtained Δkpp < Δkyy ,
which means greater accuracy in the estimation of Kpp

compared to Kyy .
Figure 8 presents experimental results of fault diag-

nosis via algebraic residual generation using Tr1 =
0.3s and Tr2 = 0.5s as reset times. As can be seen,
residuals r1 and r2 are close to zero for the fault-free
case and they deviate considerably from the thresholds
when faults appear, allowing their detection. Likewise,
isolation is also possible for both faults, despite noise
and uncertainties.

Algebraic identification of faults is presented in Fig.
9. Here, additive faults f1 and f2 were successfully
approximated by constant trends. In addition, not only
fault detection and isolation are performed, but also the
effects of noise are reduced compared to the residual
generation scheme. The error and sensitivity indices for
the fault identification are presented in Fig. 10. Since
the estimation of α1 and α2 tend to zero in the fault-free
case, values Th1 = 0.3 s, Th2 = 0.5 s and Tr = 1.5
s found previously, were initially adopted here. Subse-
quently, these were verified by computing the indices
and settling times in the fault-affected case. Experi-
mental results show that although the numerical condi-
tioning without faults seems not the best, the identifiers
are sensitive to the faults, exhibiting settling times of
ts1 = 0.235 s and ts2 = 0.425 s for Eα1 and Eα2

respectively. As these times were comparable with the
ones obtained for parameter estimation, values Th1 s,
Th2 s and Tr s were not modified. In relation to the sen-
sitivity measures, they were reduced compared to those
obtained in Δpp and Δkyy . Moreover, Δα1 < Δα2, so
Fault 1 was estimated with greater accuracy than Fault
2.

6.5 Comparison with fault estimation based on
polynomial observers

To compare the proposed fault estimation strategy
with other reported methods, additional tests were per-
formed using a diagnosis scheme based on polynomial
observers. This kind of observer was introduced in [28]
for state estimation in nonlinear systems and extended
in [2] to fault estimation of a quad-rotor mini air vehi-
cle.

The polynomial observer to estimate Fault 1 is as
follows:

d

dt
θ̂ = ˙̂

θ + kθ11(θ − θ̂ ) + kθ12(θ − θ̂ )3, (63)

d

dt
˙̂
θ =κθuθ +Γ̄θ + f̂κ1 + kθ21(θ −θ̂ ) + kθ22(θ − θ̂ )3,

(64)

d

dt
f̂κ1 = b f 11( f̄κ1 − f̂κ1) + b f 12( f̄κ1 − f̂κ1)

3, (65)

f̂1 = f̂κ1/κθ , (66)

where

Γ̄θ = κθ

[
−Mheli

[
0.5 sin 2θ̂

(
l2mc − h2

)
−

(
lmch cos 2θ̂

)] ˙̂
ψ2

−
[
Mheli g(lmc cos θ̂ + h sin θ̂ )

]
− Bp θ̇ − Fcp

]
,

(67)

f̄κ1 = d

dt
˙̂
θ − κθuθ − Γ̄θ . (68)

To estimate Fault 2, the following polynomial
observer is proposed:

d

dt
ψ̂ = ˙̂

ψ + kψ11(ψ − ψ̂) + kψ12(ψ − ψ̂)3, (69)

d

dt
˙̂
ψ = κψuψ + Γ̄ψ + f̂κ2

+ kψ21(ψ − ψ̂) + kψ22(ψ − ψ̂)3, (70)

d

dt
f̂κ2 = b f 21( f̄κ2 − f̂κ2) + b f 22( f̄κ2 − f̂κ2)

3, (71)

f̂2 = f̂κ2/κψ, (72)

where

Γ̄ψ = κψ

[
Mheli

[
sin 2θ̂

(
l2mc − h2

)
−2

(
lmch cos 2θ̂

)] ˙̂
ψ

˙̂
θ

−Byψ̇ − Fcy
]
,

(73)

f̄κ2 = d

dt
˙̂
ψ − κψuψ − Γ̄ψ . (74)

Constants kθ11 = kθ12 = kψ11 = kψ12 = 12,
kθ21 = kθ22 = kψ21 = kψ22 = 36, b f 11 = b f 12 = 6,
b f 21 = b f 22 = 6 were experimentally obtained to
ensure stability and a good noise to signal ratio, under
the basis of a pole placement strategy with repeated
eigenvalues on −6. For more details about the conver-
gence analysis and tuning, see [2,28].

Figure 11 shows a comparison between the algebraic
fault identification strategy and an estimation scheme
based on polynomial observers using the same control
signals and measured outputs. In general terms, both
methods are capable to detect and isolate the considered
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Fig. 11 Comparison
between fault diagnosis
approaches based on:
algebraic identification
assisted by ESO (blue) and
polynomial observers (red).
(Color figure online)
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Table 1 Reaction times to activation (tON−OFF ) and deactivation (tOFF−ON ) of the fault for different diagnosis methods

Fault Method Reaction times (s)

tON−OFF tOFF−ON Average

Min Max Min Max

f1 Algebraic Id. + ESO 0.19 0.34 0.30 0.30 0.28

Polynomial Observer 0.19 0.19 1.95 2.08 1.10

f2 Algebraic Id. + ESO 1.00 1.00 0.51 0.73 0.81

Polynomial Observer 1.10 1.27 2.45 2.26 1.77

faults. However, the proposed method exhibits some
improvements in reaction times to activation and deac-
tivation of the faults, as shown in Table 1. On the other
hand, the transitory effects in the detection of abrupt
faults (especially for Fault 1) are less in the strategy
with an algebraic approach.

7 Conclusions

In this work, three alternatives for fault diagnosis based
on algebraic identification were presented and com-
pared. The proposed approach reconditioned the classic
algebraicmethod, reducing the complexity and improv-
ing the numerical conditioning. In this way, a viable

proposal for its implementation is provided. In this
sense, a novel complement consisting of the addition of
Extended State Observers (ESO) was used to estimate
time derivatives of system outputs, allowing the direct
calculation of nonlinear complex terms.

Although the proposals were developed with the
same foundations, they exhibited different distinguish-
ing features. Firstly, the strategy based on fault identifi-
cation presents the best results in terms of noise immu-
nity, facilitating a more flexible selection of thresholds
for detection. This approach can be appropriate for
highly noisy environments. Secondly, parameter esti-
mation provides more information on the location of
faults. However, the selection of thresholds requires

123



Fault diagnosis based on Algebraic identification assisted by ESO 887

greater knowledge of the system. This alternative can
be a valid option for specific fault isolation problems.
Thirdly, residual generation is more sensitive to noise,
but it does not require an explicit calculation of parame-
ters, which reduces its computational complexity. This
advantage can be useful when only fault detection is
required, for instance in supervisory systems. Finally,
the strategies can be applied independently or simul-
taneously, e.g., a composite scheme of parameter esti-
mation and residuals can be formed.

The diagnosis schemes were experimentally vali-
dated on a twin-rotor aerodynamic system affected by
actuator faults. Results showed that all identifiers were
robust against noise and uncertainty, allowing fault
detection and isolation in scenarios with single, multi-
ple, simultaneous and intermittent faults. This reveals
the practical potential of the proposed strategies for a
wide range of applications.
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