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Abstract A novel type of linear multi-step formulas

is proposed for solving initial value problems, such as

the problems of multi-body systems and vibration

systems and a variety of dynamic problems in

engineering. This type of formulas is derived from

an eigen-based theory and is characterized by problem

dependency since it has problem-dependent coeffi-

cients, which are functions of physical properties for

defining the problem under analysis and applied step

size. These coefficients are no longer limited to be

scalar constants but can be constant matrices. The

detailed development of a set of problem-dependent

formulas is presented, and their numerical properties

are intensively explored. These formulas can be

explicitly or implicitly implemented in the solution

of initial value problems. One of these problem-

dependent methods can combine A-stability and

explicit formulation together, and thus, it is best

suited to solve nonlinear stiff problems, such as

problems in chemical kinetics and vibrations, the

analysis of control systems and the study of dynamical

systems. It is validated that A-stability in conjunction

with explicit formulation can save many computa-

tional efforts for solving nonlinear stiff dynamic

problems when compared to conventional implicit

methods. Notice that there exists no conventional

method that can simultaneously combine A-stability

and explicit formulation.

Keywords Eigen-dependent formula � Problem-

dependent formula � Convergence � Consistency �
Absolute stability � Nonlinear problems � Stiff
dynamic systems

1 Introduction

The use of the laws of Newtonian dynamics to multi-

body or vibration systems can lead to a set of second-

order ordinary differential equations (ODEs) [1]. They

can be converted to a set of first-order ODEs. Although

analytical solutions may be found for few simple

problems, the number and complex of these equations

generally require numerical solutions [2–14], where

the computational efficiency and accuracy of the

mathematical models will rely on those of the

numerical methods for solving ODEs. It is important

to select an appropriate numerical method since

solutions of these ODEs might be difficult and

computationally expensive. Numerical methods have

been developed to approximate the solutions of ODEs,

and they are classified into two categories of explicit

and implicit methods. In general, an explicit method

involves no nonlinear iterations for each step in the
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solution of nonlinear ODEs while the step size will be

limited due to no possession of A-stability property.

On the contrary, an A-stability of an implicit method

might have no limitation on a step size while it

generally requires nonlinear iterations for each step in

the solution of nonlinear ODEs. As a result, A-stability

and explicitness seems to repel each other for a

numerical method in the solution of nonlinear ODEs.

In fact, Dahlquist [15, 16] has proved that there is no

explicit method in the linear multi-step methods that

can have A-stability.

A difference formula to calculate next step incre-

ment is generally required to solve systems of first-

order ODEs. The coefficients of difference formulas

are generally scalar constants for current numerical

methods for solving ODEs. This type of difference

formulas is referred as conventional difference for-

mulas for brevity. Unlike the adoption of scalar

constant coefficients for conventional difference for-

mulas, a new type of problem-dependent difference

formulas is proposed in this work. This type of

difference formulas can be derived from an eigen-

based theory. In general, three major stages are

involved in the development procedure: (1) to decom-

pose a system of coupled first-order ODEs into a

system of uncoupled first-order ODEs; (2) to proposed

an eigen-dependent difference formula to solve each

uncoupled first-order ODE; (3) to convert all the

eigen-dependent difference formulas to a problem-

dependent difference formula. In general, the first and

third stages generally involve an eigen-decomposition

technique whereas some critical assumptions are

required in the second stage for developing an eigen-

dependent difference formula.

A series of problem-dependent difference formulas

will be proposed to solve the first-order ODEs. The

details of each major stage of the development

procedure will be presented. Besides, an insight of

each major stage will be disclosed and its correctness

will be also justified. It will be shown that the

application of the proposed problem-dependent dif-

ference formulas to solve ODEs can be either explic-

itly or implicitly implemented. A problem-dependent

method with an explicit implementation can simulta-

neously combine an A-stability and explicit formula-

tion; thus, it is promising for solving stiff problems

arising from engineering science, such as multi-body

systems, vibrations, electrical circuits, and chemical

reactions. Such stiff problems are often solved by

A-stable, implicit methods. To corroborate the numer-

ical properties and feasibility of the proposed prob-

lem-dependent methods, some examples are

examined, such as a Van der Pol oscillator, a structure

vibration problem, and a dynamical system of a

nonlinear pendulum. To numerically explore the

computational efficiency of the proposed explicit

problem-dependent method, a series of mechanical

systems, which are stiff, nonlinear problems, are

solved.

2 Decomposition of coupled ODEs

A system of n coupled first-order ODEs for modeling a

physical or engineering problem can be simply

expressed as [17–23]:

z0 ¼ g x; zð Þ ¼ Qzþ f; zðxÞ ¼

z1ðxÞ
z2ðxÞ
M

znðxÞ

8
>>><

>>>:

9
>>>=

>>>;

;

g x; zð Þ ¼

g1 x; zð Þ
g2 x; zð Þ

M

gn x; zð Þ

8
>>><

>>>:

9
>>>=

>>>;

ð1Þ

where Q is an n� n matrix and f is a vector-valued

function of x. The initial value problem for Eq. (1) is

to determine a function zðxÞ to satisfy Eq. (1) and

initial condition of zðx0Þ ¼ z0.

To decompose coupled Eq. (1) into a series of

uncoupled ODEs, it is required to conduct an eigen-

analysis of Q� kIj j ¼ 0 to determine the n eigenval-

ues and eigenvectors of the matrix Q. If the eigenval-

ues kðjÞ, j ¼ 1; 2; 3; . . .; n, of the matrix Q are distinct,

there exists a non-singular eigenvector matrix S such

that:

S�1QS ¼ L ¼

kð1Þ 0 L 0

0 kð2Þ L 0

L L L L

0 0 L kðnÞ

2

6
6
6
4

3

7
7
7
5
;

S ¼ sð1Þ; sð2Þ; L sðnÞ
� �

ð2Þ

where sðjÞ is the j-th eigenvector corresponding to the j-

th eigenvalue kðjÞ. Subsequently, the relationships of
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z ¼ Sy and f ¼ Sp are defined. After the substitutions

of these relationships into Eq. (1), it becomes:

y0 ¼ Lyþ p ð3Þ

Since L ¼ S�1QS and is a diagonal matrix, Eq. (3)

is a system of the uncoupled first-order ODEs. In

general, it can be alternatively expressed in compo-

nent-wise form and is found to be:

y0ðjÞ ¼ kðjÞyðjÞ þ pðjÞ; j ¼ 1; 2; 3; . . .; n ð4Þ

where yðjÞ and pðjÞ are the j-th component of y and p,

respectively. Each one of these n equations is

completely decoupled from the other n� 1 equations.

Hence, a system of n coupled ODEs is decomposed

into a set of n uncoupled ODEs by using an eigen-

decomposition technique. If Q is symmetric, negative

semi-definite, one can have kðnÞ � kðn�1Þ � � � �
� kð1Þ � 0. For simplicity, each uncoupled first-order

ODE can be alternatively written as:

y0 ¼ g x; yð Þ ¼ kyþ p ð5Þ

where k is an eigenvalue of the matrix Q and p is a

function of x. A discrete numerical solution of Eq. (5)

can be defined as a set of points ðxi; uiÞ, which are the

approximations to the corresponding point xi; yðxiÞ½ �
on the solution curve.

3 Development of eigen-dependent difference

formula

After decomposing a coupled first-order ODE into a

series of uncoupled first-order ODEs, the next stage is

to develop an eigen-dependent difference formula to

solve each uncoupled first-order ODE, i.e., Eq. (5).

The interval of interest x0 � x� xl can be equally

divided into l subintervals such that:

h ¼ xl � x0
l

; xi ¼ x0 þ ih; i ¼ 0; 1; 2; � � � ; l ð6Þ

where h is a step size and l is a positive integer. A

difference formula is applied to approximate the

solution of the first-order ODE as shown in Eq. (5).

3.1 Basic assumptions

An important goal to propose an eigen-dependent

difference formula to solve each uncoupled first-order

ODE is that an accurate solution must be yielded for

slow eigenmodes while no unstable solution must be

ensured for fast eigenmodes. This goal is planned to

develop a problem-dependent method that can com-

bine A-stability and explicit implementation at the

same time. In general, the following assumptions must

be made for developing an eigen-dependent difference

formula:

(1) A source-dependent term must be included in

the eigen-dependent difference formula so that a

desired order of accuracy can be achieved.

(2) Since the purpose is to develop an explicit

eigen-dependent difference formula, it only

involves the previous step data for determining

the current step data.

(3) Coefficients of the eigen-dependent difference

formula can be rational functions of the product

of the initial eigenvalue of the uncoupled first-

order ODE and the step size, i.e., the numerator

and/or denominator can be a polynomial func-

tion of the product of K0 ¼ k0h, where k0 is an
initial eigenvalue of the corresponding

eigenmode.

(4) A scalar constant term must be included in the

polynomial function of the numerator and that

of the denominator. This is intended to ensure

that an eigen-dependent coefficient can degen-

erate into an asymptotic scalar constant as the

product K0j j ¼ k0hj j tends to zero and infinity.

Hence, the eigen-dependent difference formula

will become a conventional difference formula

in both extreme cases.

(5) The maximum power of K0 in the numerator

must be no more than that of the denominator so

that a stable calculation can be guaranteed for

fast eigenmodes.

A series of eigen-dependent difference formulas

will be developed based on these assumptions and they

will be also explored subsequently.

An approximating difference formula to define the

increment of y is generally required for solving

Eq. (5), and the Taylor series expansion is often

adopted to derive this formula. As a result, many linear

multi-step formulas have been developed to solve a

system of coupled first-order ODEs. The following

general form will be used to develop a linear multi-

step, eigen-dependent difference formula:
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uiþ1 ¼ ui þ h
Xm

k¼1

bkviþ1�k þ wiþ1

 !

ð7Þ

where uiþ1 � yðxiþ1Þ, viþ1 � y0ðxiþ1Þ, and

b1; b2; . . .; bm are the coefficients of

vi; vi�1; . . .; viþ1�m. In addition, wiþ1 is a function of

the source term. It will be shown later that the term

wi?1 must be included in the general formulation of an

eigen-dependent difference formula so that a desired

order of accuracy can be obtained. This source-

dependent term has never been seen in the conven-

tional linear multi-step formulas. The eigen-dependent

coefficient bk is assumed to be:

bk ¼
bk

1þ amK0

for k ¼ 1; 2; . . .;m ð8Þ

where m is a total number of step data vi, vi�1, vi�2, . . .
for calculating uiþ1. The eigenvalue k as shown in

Eq. (5) is generally different from k0 for a nonlinear

first-order ODE since it may vary with x. It is evident

that bk is a rational function of K0, where the

numerator and denominator are polynomial functions

of K0. Besides, b1 to bm and am are scalar constant

coefficients. The maximum power of K0 in the

numerator is found to be 0 and is less than that in the

denominator of 1. A scalar constant term bk is taken

for the numerator and that of 1 is taken in the

denominator for simplicity.

It is found that bk will tend to bk in the limit K0j j !
0 while it will approach zero in the limit K0j j ! 1.

The former implies that the proposed eigen-dependent

formula will degenerate into a conventional formula

form, whose coefficients are scalar constants, for slow

eigenmodes. On the other hand, the latter implies that

there will be no unstable solutions for the fast

eigenmodes due to bk ¼ 0. As a result, it seems

possible to achieve the goal to develop an eigen-

dependent difference formula that can simultaneously

combine an A-stability and an explicit formulation

together.

3.2 Determination of coefficient

Since a numerical method is required to be conver-

gent, convergence must be satisfied for an eigen-

dependent difference formula. The convergence of the

proposed eigen-dependent difference formulas can be

proved by using the Dahlquist equivalence theorem

[15], which states that a linear multi-step formula is

convergent if and only if it is zero-stable and consis-

tent. Thus, consistency and zero-stability can be used

to determine the coefficients of the proposed eigen-

dependent difference formulas. It is clear that bk must

be appropriately determined so that desired numerical

properties, such as A-stability and desired order of

accuracy, can be achieved. The proposed eigen-

dependent difference formula can be applied to solve

the corresponding uncoupled first-order ODE and then

a Proposed Eigen-dependent Method is formulated

and will be abbreviated as PEM for brevity.

To verify that PEM is consistent and zero-stable can

be considered as an alternative way to prove the

convergence of PEM based on the Dahlquist equiva-

lence theorem. Besides, consistency of a numerical

method can be confirmed by its order of accuracy and

this order of accuracy can be, in general, determined

from a local truncation error. As a result, the local

truncation error of PEM can be applied to determine

the coefficients bk so that a desired order of accuracy

can be achieved. A local truncation error of a

numerical method is generally defined as the error

experienced in each step by using an approximating

difference equation to replace the differential equa-

tion. Hence, the local truncation error for PEM can be

written as:

Ei ¼
yiþ1 � yi

h
�

Xm

k¼1

bkgiþ1�k þ wiþ1

 !

ð9Þ

A local truncation error is limited by Eij j � ahb

where a is a constant and is independent of h. It is

consistent if b[ 0 and b is referred as the rate of

convergence or the order of accuracy.

An explicit expression of the local truncation error

for PEM can be obtained after substituting yiþ1, giþ1,

gi�1, . . . and giþ1�m into it. Each of the terms can be

expanded by a finite Taylor series if yðxÞ and g x; yðxÞ½ �
is continuously differentiable up to any required order.

As a result, they can be generally written as:

yiþ1 ¼ yi þ hy0i þ
1

2!
h2y00i þ

1

3!
h3y000i þ � � � ¼ yi þ hgi þ 1

2!
h2g0i þ

1

3!
h3g001 þ � � �

giþ1�k ¼ gi � ðk � 1Þh½ �g0i þ
1

2!
ðk � 1Þh½ �2g00i �

1

3!
ðk � 1Þh½ �3g000i þ � � �

ð10Þ

where k ¼ 1; 2; . . .;m for developing a set of eigen-

dependent difference formulas correspondingly. As a

result, the local truncation error of PEM is found to be:
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Ei ¼wiþ1 �
am

1þ amK0

� �

piþ1 � pið Þ þ 1

1þ amK0

� �

1� b1 þ b2 þ � � � þ bmð Þ½ �gi

þ 1

1þ amK0

� �
1

1!
am þ 1

2!
þ 1

1!
b2 þ 21b3 þ 31b3 � � � þ m� 1ð Þbm
� �n o

hg0i

þ 1

1þ amK0

� �
1

2!
am þ 1

3!
� 1

2!
b2 þ 22b3 þ 32b3 � � � þ m� 1ð Þ2bm
h in o

h2g00i

þ 1

1þ amK0

� �
1

3!
am þ 1

4!
þ 1

3!
b2 þ 23b3 þ 33b3 � � � þ m� 1ð Þ3bm
h in o

h3g000i

þ 1

1þ amK0

� �
1

4!
am þ 1

5!
� 1

4!
b2 þ 24b3 þ 34b3 � � � þ m� 1ð Þ4bm
h in o

h4g
ð4Þ
i þ � � �

ð11Þ

To be a consistent linear multi-step method, the

local truncation error of PEM is necessitated to at least

possess the first-order accuracy. This implies that all

the error terms with an order of h less than 1 must be

eliminated from Eq. (11). Hence, the second and third

terms on the right side of Eq. (11) must disappear

since they have a zero order of h. It is manifested from

Eq. (11) that the second term is the only source-

dependent error term, and thus, it can be completely

taken out by using the assumed source-dependent term

wiþ1. It is straightforward to find that the term of wi?1

is:

wiþ1 ¼
am

1þ amK0

piþ1 � pið Þ ð12Þ

Apparently, there is no way to remove the second

term on the right side of Eq. (11) if the source-

dependent term wi?1 is excluded from the general

formulation of the proposed difference formula, i.e.,

Eq. (7). A series of eigen-dependent difference for-

mulas can be derived from Eq. (11) if the coefficients

of am and b1, b2; . . ., bm are appropriately determined.

For brevity, PEM-m is used to represent a m-step

proposed eigen-dependent difference formula, where

the m-step data of vi, vi�1, vi�2,. . . and vi�mþ1 are

adopted to determine uiþ1 . As an example, PEM-1 can

be achieved if only the previous step data ui and vi are

used to approximate uiþ1 in Eq. (7). In this case,

Eq. (7) will reduce to uiþ1 ¼ ui þ h b1vi þ wiþ1

� �
and

its corresponding local truncation error in Eq. (11)

will be simplified to be:

Ei ¼ wiþ1 �
a1

1þ a1K0

� �

piþ1 � pið Þ þ 1� b1
1þ a1K0

gi

þ a1 þ 1
2

1þ a1K0

hg0i þ
1
2
a1 þ 1

6

1þ a1K0

h2g00i þ Oðh3Þ

ð13Þ

Clearly, an order of accuracy 1 can be obtained if

b1 ¼ 1 is adopted in addition to the satisfaction of

Eq. (12). As a result, the local truncation error for

PEM-1 becomes:

Ei ¼
a1 þ 1

2

1þ a1K0

hg0i þ
1
2
a1 þ 1

6

1þ a1K0

h2g00i þ Oðh3Þ ð14Þ

This equation reveals that PEM-1 can have the first-

order accuracy for a general value of a1. Thus, its

consistency is verified. The second-order accuracy can

be further achieved for PEM-1 if a1 ¼ �1
2
is taken, and

the corresponding local truncation error is found to be

Ei ¼ � 1
12
h2g00i =ð1� 1

2
K0Þ þ Oðh3Þ.

A series of eigen-dependent difference formulas

can be derived from Eq. (11) by applying the same

procedure, and the results are shown in Table 1. The

value of am is found to be a1 ¼ �1
2
, a2 ¼ � 5

12
and a3 ¼

� 9
24

corresponding to PEM-1 to PEM-3. The last

column of this table shows the A-stability interval of

each eigen-dependent difference formula and will be

investigated later. The column of Ei reveals that the

dominant error term increases from the second-order

to fourth-order accuracy corresponding to PEM-1 to

PEM-3. For comparison, the conventional formulas of

the Adams–Moulton Method (AMM) are also listed in

this table correspondingly. It is disclosed by the

second column that PEM has an explicit eigen-

dependent difference formula while AMM has an

implicit difference formula since it involves the

current step data viþ1 to determine uiþ1.

Some discrepancies can be found between the

coefficients bk for PEM and ck for AMM in Table 1.

Clearly, bk is an eigen-dependent coefficient while ck
is a scalar constant coefficient. It is also found that the

numerator of b1 is equal to the sum of c1 and c2 for

each corresponding difference formula, whereas the

other bk of the numerator is equivalent to ckþ1

correspondingly. The column of Ei exhibits that

PEM and AMM have the same order of accuracy for

a specific m. In fact, the only difference in the

coefficient of Ei is the denominator of 1þ amK0 for

PEM and 1 for AMM. The last column reveals that the

A-stability interval for each difference formula of

PEM is the same as that of AMM. This will be

validated later. Hence, it is expected that the perfor-

mance of PEM in the solution of an uncoupled first-

order ODE will resemble that of AMM due to almost

the same stability and accuracy properties.

It is of interest to assess the performance of each

eigen-dependent difference formula for both slow and
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fast eigenmodes since these formulas have the char-

acteristic of eigen dependency. Hence, the limiting

cases of K0j j ! 0 and K0j j ! 1 are investigated for

each eigen-dependent difference formula of PEM and

the results are summarized in Table 2. These two

limiting cases can imply the behaviors of the slow and

fast eigenmodes, respectively. As an example, in the

limit K0j j ! 0, the one-step proposed eigen-depen-

dent difference formula for PEM becomes:

uiþ1 ¼ lim
K0!0

ui þ
1

1� 1
2
K0

hvi þ
1
2

1� 1
2
K0

h piþ1 � pið Þ
� 	

� ui þ hvi þ 1

2
h piþ1 � pið Þ

ð15Þ

The similar calculating procedure can be also used

to obtain the results for the two-step to four-step

proposed eigen-dependent difference formulas. It is

manifested from Table 2 that the coefficients of each

eigen-dependent difference formula are no longer

eigen-dependent but become scalar constants in the

limiting case of K0j j ! 0. In fact, each eigen-

dependent difference formula degenerates like a

conventional difference formula except for an extra

source-dependent term. It is interesting to find that

each degenerate difference formula as shown in the

second column of Table 2 is analogous to that of AMM

as shown in Table 1. In fact, PEM and AMM have the

same coefficients for most terms of each correspond-

ing difference formula except that the coefficient of

the term of vi for PEM is equal to the sum of the

coefficients of the terms of vi and viþ1 for AMM.

On the other hand, it can be found that in the

limiting case of K0j j ! 1 the formulation of the

proposed eigen-dependent difference formula for

PEM-1 will reduce to:

uiþ1 ¼ lim
K0!1

ui þ
1

1� 1
2
K0

hvi þ
1
2

1� 1
2
K0

h piþ1 � pið Þ
� 	

� ui

ð16Þ

where uiþ1 is approximated by ui. This indicates

that ui?1 approaches u0 in the limit K0j j ! 1. Hence,

Table 1 PEM and AMM as well as their numerical properties

m PEM-m bk ¼ bk
1þamK0

wiþ1 ¼
am piþ1�pið Þ
1þamK0

Ei A-Stability

1
uiþ1 ¼ ui þ h

P1

k¼1

bkviþ1�k þ wiþ1

� �
b1 ¼ 1

1�1
2
K0

1
2
piþ1�pið Þ
1�1

2
K0

� 1
12

1�1
2
K0
h2y000ðxiÞ �1�K0 � 0

2
uiþ1 ¼ ui þ h

P2

k¼1

bkviþ1�k þ wiþ1

� �
b1 ¼

13
12

1� 5
12
K0
; b2 ¼

� 1
12

1� 5
12
K0

5
12
piþ1�pið Þ
1� 5

12
K0

� 1
24

1� 5
12
K0
h3yð4ÞðxiÞ �6leK0 � 0

3
uiþ1 ¼ ui þ h

P3

k¼1

bkviþ1�k þ wiþ1

� �
b1 ¼

28
24

1� 9
24
K0
; b2 ¼

� 5
24

1� 9
24
K0
; b3 ¼

1
24

1� 9
24
K0

9
24
piþ1�pið Þ
1� 9

24
K0

� 19
720

1� 9
24
K0
h4yð5ÞðxiÞ �3�K0 � 0

m AMM-m ck Ei A-Stability

1
uiþ1 ¼ ui þ h

P1

k¼0

ckþ1viþ1�k
c1 ¼ 1

2
; c2 ¼ 1

2
� 1

12
h2y000ðxiÞ �1�K0 � 0

2
uiþ1 ¼ ui þ h

P2

k¼0

ckþ1viþ1�k
c1 ¼ 5

12
; c2 ¼ 8

12
;c3 ¼ �1

12 � 1
24
h3yð4ÞðxiÞ �6leK0 � 0

3
uiþ1 ¼ ui þ h

P3

k¼0

ckþ1viþ1�k
c1 ¼ 9

24
; c2 ¼ 19

24
;c3 ¼ �5

24
; c4 ¼ 1

24 � 19
720

h4yð5ÞðxiÞ �3�K0 � 0

Table 2 Limiting cases of

PEM
PEM K0 ! 0 K0 ! 1

PEM-1 uiþ1 � ui þ hvi þ 1
2
h piþ1 � pið Þ uiþ1 � ui

PEM-2 uiþ1 � ui þ 13
12
hvi � 1

12
hvi�1 þ 5

12
h piþ1 � pið Þ uiþ1 � ui

PEM-3 uiþ1 � ui þ 28
24
hvi � 5

24
hvi�1 þ 1

24
hvi�2 þ 9

24
h piþ1 � pið Þ uiþ1 � ui
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there will be no unstable solution in each step of the

solution. This approximation is found not only for that

of PEM-1 but also for the other eigen-dependent

difference formulas of PEM as shown in Table 2. This

approximation result implies that although the contri-

bution from the fast eigenmodes might not be accu-

rately obtained it will not be abnormally amplified to

contaminate or even to destroy a total solution. This

study of extreme cases indicates that the slow eigen-

modes can be accurately integrated, which can be

confirmed by the dominant error term listed in the

column Ei of Table 1, while a stable calculation is

guaranteed for fast eigenmodes. This study of the two

limiting cases is indicative for the solution behaviors

of slow and fast eigenmodes. Notice that a further

exploration of a general value of K0 is still needed and

will be conducted later.

3.3 Zero stability

The proof of convergence is the most important aspect

in the evaluation of a linear multi-step method. The

consistency of PEM is verified through the study of the

local truncation error. Hence, the next step is to

substantiate that each eigen-dependent difference

formula of PEM can possess zero stability for the

complete verification of convergence.

A numerical method is zero-stable if the solution

remains bounded as h ! 0. In this limiting case, anm-

step eigen-dependent difference formula as given in

Eq. (7) will reduce to uiþ1 � ui ¼ 0. This recurrence

equation completely determines the characteristic

behavior of the linear multi-step method. The method

is said to be zero-stable if all solutions to uiþ1 � ui ¼ 0

remain bounded. As a result, to determine whether a

m-step eigen-dependent method of PEM is zero-

stable, one can assume that the solution to the

recurrence equation has the form of un ¼ u0w
n. After

substituting this solution into uiþ1 � ui ¼ 0, the result

is found to be u0w
n w� 1ð Þ ¼ 0. Clearly, w ¼ 0 and 1

are the two zeros of the equation uiþ1 � ui ¼ 0.

Consequently, it is affirmed that each eigen-dependent

difference formula of PEM is zero-stable. This proof

of zero stability in addition to the verification of

consistency for each eigen-dependent difference for-

mula of PEM, the convergence of PEM is validated

[24].

4 A-stability

The stability of the proposed eigen-dependent differ-

ence formulas for PEM was studied in the extreme

case of h ! 0, n ! 1, nh fixed. In addition to this

extreme case, it is also important to further explore the

performance of each eigen-dependent difference for-

mula for a general value of h[ 0 and n?1. In

numerical ODEs, a variety of different forms of

stability that have been defined and they are related to

a concept of stability in the dynamical systems sense

[15–23, 25–29]. It seems that A-stability is the most

basic one. In general, the result of the study of the

A-stability of a numerical method can provide infor-

mation that is very useful for choosing an appropriate

step size in the solution of nonlinear first-order ODEs.

It is important to adopt an A-stable method when

solving a stiff equation.

The canonical model problem, which will lead to an

exponentially decaying solution, can be generally

written as:

y0 ¼ k0y; x[ 0; yð0Þ ¼ y0 6¼ 0 ð17Þ

where k0 ¼ aþ ib and a\0 is assumed. A theoretical

solution of this canonical model problem can be

analytically derived and is found to be:

yðxÞ ¼ y0e
axeibx ð18Þ

Thus, yðxÞj j � eax as x� 0, yielding lim
x!1

yðxÞ ¼ 0.

For simplicity, k0 can be degenerated into a negative,

real number.

If the proposed linear multi-step, eigen-dependent

difference formula as shown in Eq. (7) is applied to

solve the canonical model problem, as shown in

Eq. (17), the following approximating difference

equation can be obtained:

uiþ1 � ui �
Xm

k¼1

K0bkuiþ1�k ¼ 0 ð19Þ

A solution un of this approximating difference

equation can be alternatively written as a linear

combination of the powers of the roots of the

corresponding stability polynomial. As a result, the

stability polynomial is found to be:

p w;K0ð Þ ¼ wnþ1 � wn � K0

Xm

k¼1

bkw
nþ1�k ð20Þ
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If all the roots of this equation have modulus less

than 1, then un will converge to zero for h[ 0 and

n?1. In general, a linear multi-step method is A-

stable for a specifiedK0 if and only if all the rootswi of

Eq. (20) can satisfy wij j\1 for thatK0. Otherwise, the

linear multi-step method is A-unstable. An interval of

amin �K0 � amax in the real line is called the A-

stability interval of the linear multi-step method if it is

A-stable for all K0 in this interval.

To investigate the stability properties of PEM, the

Routh-Hurwitz criterion [30] is adopted. As an

example, for PEM-1, Eq. (20) becomes:

p w;K0ð Þ ¼ wnþ1 � wn � K0b1w
n

¼ wn w� 1þ K0

1� 1
2
K0

� �� 	

ð21Þ

The roots of p w;K0ð Þ ¼ 0 are a zero root and:

w ¼ 1þ K0

1� 1
2
K0

ð22Þ

To meet the requirement of wj j � 1, it is straight-

forward to have:

�1�K0 � 0 ð23Þ

Thus, PEM-1 may have A-stability. The most

important consequence of the A-stability property is

that there is no limitation on the step size. This

property is very important and generally desired in the

solution of multi-body and other engineering systems,

since the user is only required to concern with the step

size for accuracy and not for stability. Using the same

the stability analysis procedure for PEM-1, both PEM-

2 and PEM-3 are also analyzed and the results of

A-stability interval for the m-step of PEM are listed in

the last column of Table 1.

It is more common to consider an A-stability region

in the complex plane ofK0 ¼ k0h. This implies that k0
can be a complex number while the step size h is

positive and real. As a result, the A-stability regions

for the m-step of PEM are plotted in Fig. 1. If the

expression of k0 ¼ aþ ib is adopted, the real and

imaginary parts of K0 are denoted by ah and bh,

respectively. In Fig. 1, it is found that the A-stability

region for PEM-1 is the open left half complex plane

while that for PEM-2 to PEM-3 is the interior region

bounded by each curve. It is manifested from PEM

that the increase of the order of accuracy will decrease

the A-stability region. An A-stable method, such as

PEM-1, may be defined as a method whose A-stability

region is the complete left half complex plane

including the imaginary axis.

Comparing the A-stability interval of m-step of

PEM as shown in the last column of Table 1 to that of

AMM, they are found to be the same for eachm-step of

the two methods correspondingly. In addition, the

A-stability region of each m-step of PEM as shown in

Fig. 1 is also the same as that of AMM. As a result, the

same stability property and similar local truncation

error of each m-step of the two methods might imply

that PEM can have almost the same performance as

that of AMM in the solution of first-order ODEs

although their formulations are different, where PEM

is explicit while AMM is implicit. It will be shown

next that PEM not only can be explicitly implemented

but also implicitly implemented.

5 Explicit or implicit implementation

In the original development of PEM, an initial

eigenvalue is intentionally adopted to determine the

eigen-dependent coefficients so that it can have an

explicit formulation. Thus, it is classified as an explicit

method. However, it may become an implicit method

if the current eigenvalue is applied to replace the initial

eigenvalue for determining the eigen-dependent coef-

ficients. The feasibility of applying a current eigen-

value to derive an implicit PEM will be verified next.

An explicit PEM will be abbreviated as PEM-E while

an implicit PEM is abbreviated as PEM-I for brevity.

Equation (9) can be also applied to develop a series

of eigen-dependent difference formulas for PEM by

using a current eigenvalue instead of an initial

eigenvalue for determining the eigen-dependent coef-

ficients. Unlike the adoption of Eq. (8), the coefficient

bk can be alternatively written in the form of:

bk ¼
bk

1þ amKiþ1

for k ¼ 1; 2; . . .;m ð24Þ

where Kiþ1 ¼ kiþ1h and kiþ1 is the eigenvalue corre-

sponding to the current step, i.e., the (i ? 1)-th step.

The only difference between Eqs. (8) and (24) is that

k0 is replaced by kiþ1. Applying the same procedure to

develop PEM-E, where Eq. (8) is adopted, a series of

similar eigen-dependent difference formulas for PEM-

I can be also derived based on Eq. (24). The proof of

convergence for PEM-I can be completed by using the
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same way for PEM-E. As a summary, the use of an

initial eigenvalue can be applied to derive PEM-E

while a current eigenvalue can be used to derive PEM-

I. Besides, PEM-E and PEM-I will have the similar

numerical properties, such as A-stability interval and

order of accuracy.

Since a current eigenvalue is applied to determine

the eigen-dependent coefficients for PEM-I and these

eigen-dependent coefficients cannot be known as a

prior, the use of the eigen-dependent difference

formula to solve first-order ODEs cannot be explicitly

implemented. In fact, Eq. (7) with the eigen-depen-

dent coefficients that are determined from a current

eigenvalue can be written as:

1þ amKiþ1ð Þ uiþ1 � uið Þ ¼ h
Xm

k¼1

bkviþ1�k

þ amh piþ1 � pið Þ ð25Þ

This equation is nonlinear since uiþ1 is a function of

kiþ1 (or Kiþ1). Thus, an iteration procedure is required

to be adopted for solving uiþ1. As a result, the eigen-

dependent difference formulas of this type will be

classified as implicit formulas. Consequently, PEM-I

is an implicit method.

In summary, the use of an eigen-dependent differ-

ence formula to solve first-order ODEs can be either

explicitly or implicitly implemented, such as PEM. An

initial eigenvalue is used to determine the eigen-

dependent coefficients for explicit eigen-dependent

difference formulas while for implicit eigen-depen-

dent difference formulas, a current eigenvalue is

adopted. An explicit implementation is preferred over

an implicit implementation for a numerical method

since an explicit implementation will involve no

nonlinear iterations for each step, and thus, it can save

many computationally efforts in contrast to an implicit

implementation.

6 Transformation from eigen-dependent

to problem-dependent formulas

Apparently, there will exist three steps to solve a

system of coupled first-order ODEs if using an eigen-

dependent method, such as PEM. They are: (1) to

decompose the coupled first-order ODEs into a set of

uncoupled first-order ODEs; (2) to use an eigen-

dependent difference formula to solve each uncoupled

first-order ODE; and (3) to apply a mode superposition

technique to sum up the solutions of all the eigen-

modes. Clearly, each step will involve the eigenvalues

and/or eigenvectors of the coupled first-order ODE.

Hence, an eigen-analysis of the system of the coupled

first-order ODEs must be performed first so that the

eigenvalues and eigenvectors can be achieved. It is

simple to conduct an eigen-analysis for a single first-

order ODE. However, it will become time consuming

for a large system of the coupled first-order ODEs.

Fig. 1 A-stability region for

PEM
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Consequently, it is infeasible to apply an eigen-

dependent method to solve a system of coupled first-

order ODEs in practical applications.

An eigen-analysis can be avoided if the system of

coupled first-order ODEs is directly solved and all the

eigen-dependent difference formulas are converted

into a problem-dependent difference formula, where

the eigen-dependent coefficient bk is no longer a

function of K0 but a function of the product of the

initial physical property for defining the problem, such

as Q0 in Eq. (1), and step size. To convert all the

eigen-dependent difference formulas for solving each

uncoupled first-order ODE to a problem-dependent

difference formula for solving the system of coupled

first-order ODEs can be completed by means of a

reverse procedure of an eigen-decomposition tech-

nique. As a result, the problem-dependent method can

be explicitly written as:

viþ1¼Qiþ1uiþ1 þ f iþ1

uiþ1 ¼ui þ h
Xm

k¼1

Bkviþ1�k þ wiþ1

 !
ð26Þ

where Bk and wiþ1 for PEM-E and PEM-I can be

expressed as:

Bk ¼ ðD0Þ�1bk

wiþ1 ¼ D0ð Þ�1am f iþ1 � f ið Þ
; for PEM - E

8
<

:

Bk ¼ Diþ1ð Þ�1bk

wiþ1 ¼ Diþ1ð Þ�1am f iþ1 � f ið Þ
; for PEM - I

8
<

:

ð27Þ

where D0 ¼ Iþ amhQ0 and Diþ1 ¼ Iþ amhQiþ1; am
and bk are summarized in Table 1 for PEM; and k ¼
1; 2; . . .;m for a m-step method. Notice that Q0 is the

initial matrix at the beginning of the solution proce-

dure, whileQiþ1 is the matrix at the (i ? 1)-th step and

might vary with the change of x for a system of

coupled, nonlinear first-order ODEs. The first line of

Eq. (26) is a set of coupled first-order ODEs and the

second line is a problem-dependent difference formula

for solving the set of the coupled first-order ODEs.

Since the reverse procedure of an eigen-decomposi-

tion technique is used to derive the problem-dependent

method, a series of eigen-dependent methods can be

yielded after the decomposition of the problem-

dependent method.

An initial matrix Q0 is adopted to determine the

problem-dependent coefficients for PEM-E as shown

in the first line of Eq. (27). In contrast, a current matrix

Qiþ1 is applied to determine the problem-dependent

coefficients for PEM-I as shown in the second line of

Eq. (28). The matrix Qiþ1 might be different from Q0

since it will vary with x for a system of nonlinear

ODEs. Both lines of Eq. (26) can be simultaneously

decoupled only if Qiþ1 and Q0 have the same

eigenvalues and eigenvectors, i.e., Qiþ1 is identical

to Q0. Hence, the decomposition of Eq. (26) can be

conducted if PEM-E is chosen to solve a system of

linear first-order ODEs whereas PEM-I can be adopted

to solve a set of linear or nonlinear first-order ODEs

sinceQiþ1 is found in both the first and second lines of

Eq. (26). Notice that a simultaneous decomposition of

the two lines of Eq. (26) implies that the method

follows the development procedure, and thus, it can

inherit the numerical properties of stability and

accuracy, i.e., convergence.

It is important to show that PEM-E can still give a

reliable solution for a system of nonlinear first-order

ODEs although an eigen-decomposition technique

cannot simultaneously decompose the coupled first-

order ODEs under analysis and problem-dependent

difference formula due to different eigenvalues and

eigenvectors between Q0 and Qiþ1. The feasibility of

using PEM-E to accurately solve a system of coupled,

nonlinear first-order ODEs can be verified next. This

verification is for a single step but not for a complete

solution procedure since Qiþ1 may vary with x for

each step for nonlinear first-order ODEs. However, it

is still indicative for a complete solution procedure

since it consists of each step. Besides, two extreme

cases of K0j j ! 0 and K0j j ! 1will be considered. It

is evident that the extreme case of can K0j j ! 0 imply

the behaviors of slow eigenmodes, while those of fast

eigenmodes are implied by the extreme case of

K0j j ! 1.

If PEM-I is applied to solve a nonlinear problem,

the solution of the (i ? 1)-th step is described next.

After decomposing Qiþ1, one can have

KðjÞ
iþ1 ¼ kðjÞiþ1 � h, for j ¼ 1; 2; . . .n, where the super-

script ðjÞ denotes the j-th eigenmode. Hence, the j-th

eigenmode solution is conceptually computed by:
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u
ðjÞ
iþ1 ¼ u

ðjÞ
i þ h

Xm

k¼1

bk

1þ amK
ðjÞ
iþ1

v
ðjÞ
iþ1�k þ

am

1þ amK
ðjÞ
iþ1

p
ðjÞ
iþ1 � p

ðjÞ
i


 �
" #

ð28Þ

However, for using PEM-E, Eq. (28) will become:

u
ðjÞ
iþ1 ¼ u

ðjÞ
i þ h

Xm

k¼1

bk

1þ amK
ðjÞ
0

v
ðjÞ
iþ1�k þ

am

1þ amK
ðjÞ
0

p
ðjÞ
iþ1 � p

ðjÞ
i


 �
" #

ð29Þ

where PEM-E adopts KðjÞ
0 to replace KðjÞ

iþ1 in the

difference formula. This implies that the use of

Eqs. (28) and (29) to solve nonlinear first-order ODEs

may result in different solutions. However, the differ-

ence is insignificant and both PEM-I and PEM-E can

still provide reliable solutions. This will be proved

next.

Two extreme cases of K0j j ! 0 and K0j j ! 1 that

are in correspondence to the behaviors of slow and fast

eigenmodes are considered. Although the difference

between Qiþ1 and Q0 for first-order nonlinear ODEs

leads to different eigen-dependent difference formulas

for each eigenmode as shown in Eqs. (28) and (29),

respectively, slow eigenmode solutions can be still

accurately calculated. This is because that Eqs. (28)

and (29) become the same in the limit K0j j ! 0 due to

1þ amK
ðjÞ
0 � 1 and 1þ amK

ðjÞ
iþ1 � 1. As a result, they

become:

u
ðjÞ
iþ1 � u

ðjÞ
i þ h

Xm

k¼1

bkv
ðjÞ
iþ1�k þ am p

ðjÞ
iþ1 � p

ðjÞ
i


 �
" #

ð30Þ

This equation is almost the same as a conventional

difference formula since it has scalar constant coef-

ficients. Thus, the solution of this eigenmode can be as

accurate as a conventional method if the scalar

constant coefficients, i.e., am and bk, are properly

determined.

Meanwhile, in the limiting case of K0j j ! 1, the

asymptotic values of 1þ amK
ðjÞ
0 � 1 as well as 1þ

amK
ðjÞ
iþ1 � 1 are found. As a result, Eqs. (28) and (29)

also become the same and reduce to:

u
ðjÞ
iþ1 � u

ðjÞ
i ) u

ðjÞ
iþ1 � u

ðjÞ
0 ð31Þ

Hence, there is no excessive amplitude growth or

even instability in the fast eigenmode solutions for

both PEM-I and PEM-E. Although the difference in

eigenvalues between Qiþ1 and Q0 will result in

different fast eigenmode solutions for PEM-I and

PEM-E, the accuracy of a total solution will be almost

unaffected by fast eigenmode solutions. This is

because that (1) The maximum power of K0 in the

numerator of the eigen-dependent coefficients is 0 and

is less than that of the denominator of 1. Thus, the

eigen-dependent coefficients will approach 0, result-

ing Eq. (31), in the limit K0j j ! 1. As a result,

stable solutions with no excessive amplitude growth

can be yielded for fast eigenmodes. (2) The contribu-

tions from fast eigenmodes to the total solution are

insignificant for stiff problems, where the total solu-

tion of the problem under analysis is dominated by

slow eigenmodes.

As a summary, it is corroborated that slow eigen-

mode solutions can be accurately obtained as a

conventional method if the scalar constants of am
and bk are appropriately determined for PEM since the

eigen-dependent difference formulas will degenerate

to conventional difference formulas for slow eigen-

modes. Besides, no excessive amplitude growth or

instability for fast eigenmodes is ensured since an

approximate solution of u
ðjÞ
iþ1 ¼ u

ðjÞ
i is found for each

fast eigenmode. Hence, PEM is best suited to solve

stiff problems.

In Eq. (26), Bk and wiþ1 are no longer eigen-

dependent but problem-dependent. As a result, ‘‘prob-

lem-dependent’’ is adopted instead of ‘‘eigen-depen-

dent’’ for PEM. It is beneficial for PEM in computing

efficiency if all the eigen-dependent difference for-

mulas can be converted to a problem-dependent

difference formula since an eigen-analysis of the

coupled first-order ODEs for each step can be avoided,

and thus, there is no necessity to involve a superpo-

sition technique to sum up each eigenmode solution to

obtain a total solution. Notice that although an eigen-

decomposition concept is adopted to provide a funda-

mental basis for developing the problem-dependent

formula, there is no involvement of any eigen-

decomposition in a complete step-by-step solution

procedure.

7 Implementation

To substantiate the numerical properties of PEM and

its performance in the solution of initial value
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problems, some numerical examples will be exam-

ined. Hence, it must be implemented for solving a

system of first-order ODEs, where both the explicit

and implicit implementations will be schematically

sketched.

7.1 Explicit implementation

The detailed implementation of PEM-E is described

next. The adoption of PEM-E to solve a system of first-

order ODEs can be generally written as shown in

Eq. (26), where Qiþ1 is the matrix corresponding to

the instantaneous state at the end of the (i ? 1)-th step

and is generally different from Q0 for a system of

nonlinear first-order ODEs. In addition, Bk and wiþ1

are defined in the first line of Eq. (28). Since uiþ1 in

the second line of Eq. (26) is a function of the previous

step data only, it can be directly calculated and is

numerically equivalent to solve the equation of:

Iþ amhQ0ð Þ uiþ1 � uið Þ ¼ h
Xm

k¼1

bkviþ1�k þ am f iþ1 � f ið Þ
" #

ð32Þ

A direct elimination method can be applied to solve

this equation. In general, a direct elimination method

consists of a triangulation and a substitution for each

step and a triangulation will consume most computa-

tional efforts of the step. The triangulation of the

matrix Iþ amhQ0 is required to be conducted only

once at the beginning since Iþ amhQ0 is invariant for

a whole solution procedure. Subsequently, viþ1 can be

calculated from the first line of Eq. (26). This solution

procedure will involve no nonlinear iterations for each

step, and the triangulation of Iþ amhQ0 is executed

only once. As a result, a lot of CPU demand can be

saved when compared to an implicit method, where an

iteration procedure is needed for each step. This

solution procedure can be conducted repeatedly until

the desired solution history is obtained.

7.2 Implicit implementation

In addition to an explicit implementation for PEM-E,

an implicit implementation for PEM-I is described

next. In Eq. (26), the second line is an implicit

problem-dependent formula if Bk and wiþ1 are defined

in the second line of Eq. (27). In this case, uiþ1 in the

second line of Eq. (26) is not only a function of the

previous step data but also the current step data. It can

be alternatively expressed as:

Iþ amhQiþ1ð Þ uiþ1 � uið Þ ¼ h
Xm

k¼1

bkviþ1�k þ am f iþ1 � f ið Þ
" #

ð33Þ

This equation is slightly different from Eq. (32) due

to the use of Qiþ1 to replace Q0. It must be solved

iteratively for each step sinceQiþ1 is a function of uiþ1

for a coupled nonlinear first-order ODEs. After

obtaining uiþ1, viþ1 can be also determined from the

first line of Eq. (26). Clearly, an explicit implemen-

tation of PEM-E involves no nonlinear iterations for

each step while an iteration procedure is generally

needed for PEM-I for using an implicit

implementation.

8 Numerical examples

Although PEM-m has been shown to possess almost

the same numerical properties, such as A-stability and

order of accuracy, as those of AMM-m, for solving

linear first-order ODEs, it is of interest to examine the

actual performance between PEM-m and AMM-m in

the solution of first-order ODEs. Some first-order

ODEs with a variety of different types of nonlinearity

will be solved. In fact, six test problems are examined

in this section. The examples in 8.1 and 8.2 are linear

ODEs while those in 8.3 to 8.6 are nonlinear ODEs.

Example 1 and 2 are intentionally devised to be linear

ODEs. This is because they have theoretical solutions

so that the numerical properties of PEM can be

validated. Meanwhile, the examples considered in 8.3

to 8.6 all are highly nonlinear ODEs, such as the well-

known stiff problem of the Van der Pol oscillator, a

nonlinear vibration of building including a free

vibration analysis and a forced vibration analysis, a

360� nonlinear pendulum and a series of nonlinear

mechanical systems including the three systems of

250, 500 and 1000 first-order ODEs. These examples

are used to validate the feasibility PEM in the solution

of highly nonlinear first-order ODEs. Besides, the

numerical properties of stability and accuracy can be

also affirmed by the various types of different

nonlinear examples. Since PEM-1 can integrate

explicit formulation as well as A-stability, it is also

of interest to explore its computational efficiency for
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solving nonlinear first-order stiff ODEs in contrast to a

conventional implicit method of AMM-1. The inves-

tigation of the computational efficiency can be

revealed by the example in 8.6. Notice that explicit

PEM-1 and implicit AMM-1 have almost the same

A-stability and accuracy properties.

8.1 A linear non-stiff system

An initial value problem is solved by using a problem-

dependent formula. A linear first-order ODE with a

specified initial value is considered and can be written

as:

y0ðxÞ ¼ 10yðxÞ � 10 cosðxÞ � sinðxÞ; yð0Þ ¼ 1 ð34Þ

A theoretical solution to this initial value problem is

found to be yðxÞ ¼ cosðxÞ. This initial value problem
is solved by explicit implementations of PEM-1 to

PEM-3, as listed in Table 1. Besides, the methods of

AMM-1 to AMM-3 are also adopted to solve the

problem for comparison. Notice that PEM is an

explicit method, while AMM is an implicit method.

In addition, there will be no difference between PEM-

E and PEM-I in the solution of linear first-order ODEs.

Numerical solution for Eq. (34) is plotted in Fig. 2,

where ‘‘Exact’’ is the theoretical solution of

yðxÞ ¼ cosðxÞ. In Eq. (34), an eigenvalue of k0 ¼
�10 is found and it is invariant. A step size of h ¼ 0:1

is adopted for each analysis. As a result, K0 ¼ k0h ¼
�1 is found, which implies that the stability conditions

for AMM-1 to AMM-3 and PEM-1 to PEM-3 are

satisfied since their stability interval are

�1�K0 � 0, �6�K0 � 0 and �3�K0 � 0, corre-

spondingly, as listed in Table 1. It is seen that the

solutions calculated from PEM-m are not only the

same as those determined from AMM-m but also

overlap together with the exact solutions in each plot

of this figure. This indicates that PEM-m can give a

numerical solution as accurate as that of AMM-m for

solving a linear first-order ODE. The numerical

accuracy of PEM-m and AMM-m can be further

explored by computing the absolute error of each step

in each analysis and the variation of the absolute error

with x for PEM-m is shown in Fig. 3. For comparison,

that for AMM-m is also plotted in each plot of the

figure, correspondingly. Each plot of Fig. 3 discloses

that the curve of PEM-m coincides together with that

of AMM-m. Hence, it can be drawn that PEM-m will

have the same numerical solution as that of AMM-m

in the solution of linear first-order ODEs if the same

step size is adopted. Besides, it is also found that a

more accurate solution can be achieved as m increases

for both PEM-m and AMM-m. This can be manifested

from the comparison of the amount of absolute error in

Fig. 3a–d. This phenomenon is also consistent with

the analytical prediction of the order of accuracy as

listed in Table 1.

8.2 A linear stiff system

A subclass of the initial value problems involving

rapidly decaying transient solutions might arise in a

wide variety of engineering applications, such as

problems in chemical kinetics, the study of spring and

damping systems and the analysis of control systems.

This type of problems is known as stiff problems

[2, 3, 6, 7, 10, 22, 25]. Stiff ODEs generally involve a

large dispersion of eigenvalues and these eigenvalues

refer to the rate of decay. Since PEM can combine A-

stability and explicit formulation, it is very promising

for solving stiff problems. Thus, it is applied to solve

the following initial value problem:

y01
y02

� 

¼ 0 1

�10000 �10001

� 	
y1
y2

� 

ð35Þ

The initial conditions are taken to be y1ð0Þ ¼ 5 and

y2ð0Þ ¼ �5. The eigenvalues of this system are found

to be kð1Þ0 ¼ �1 and kð2Þ0 ¼ �104, where the two

eigenvalues are widely separated. In fact, the stiffness

ratio is found to be as large as kð2Þ0 =kð1Þ0 ¼ 104 and thus

the system is stiff. The theoretical solutions are found

to be:

y1 xð Þ ¼ 5e�x; y2 xð Þ ¼ �5e�x ð36Þ

It is found that y1 xð Þj j ¼ y2 xð Þj j.
Both AMM-m and PEM-m are chosen to solve

Eq. (35) with the specified initial conditions. Numer-

ical results obtained from AMM-m and PEM-m are

plotted in Fig. 4. In each plot of this figure, ‘‘Exact’’ is

used to denote the solution is theoretically obtained. In

Fig. 4a, both AMM-1 and PEM-1 can provide the

solutions that almost coincide with the exact solution

for both h ¼ 0:1 and 0.5. This indicates that AMM-1

and PEM-1 can have an A-stability since an accurate

solution can be achieved although the maximum value

ofK0 is as large as - 5000 for h ¼ 0:5. This is in good
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agreement with the A-stability interval of

�1�K0 � 0, which is given in Table 1 for both

AMM-1 and PEM-1. Further verifications of the A-

stability interval for other AMM-m and PEM-m are

also conducted. As an example, for AMM-2 and PEM-

2, they can have an A-stability interval of

�6�K0 � 0. The step sizes h ¼ 5:9� 10�4 and 6:1�
10�4 are used to solve Eq. (35) and the results are

shown in Fig. 4b. The step size of h = 5.9 9 10-4 can

result in an accurate solution while that of h ¼ 6:1�

10�4 leads to an unstable solution although there only

exists a slight difference in step size. This is because

that h = 5.9 910-4 and 6:1� 10�4 are in correspon-

dence to Kð2Þ
0 ¼ kð2Þ0 h ¼ �5:9 and Kð2Þ

0 ¼ kð2Þ0 h ¼
�6:1. Clearly, Kð2Þ

0 ¼ �5:9 is within the A-stability

interval of �6�K0 � 0 and thus a reliable solution is

achieved while Kð2Þ
0 ¼ �6:1 is outside the A-stability

interval and thus instability occurs. A very similar

phenomenon is also found in Fig. 4c.

(a)

(c)

(b)

Fig. 2 Numerical solutions

for a linear first-order

differential equation

(a)

(c)

(b)

Fig. 3 Comparisons of

absolute errors between

AMM and PEM
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It is manifested from this example that an A-sta-

bility property is very important for a solution method

in the solution of stiff problems. Although PEM-2 to

PEM-3 and AMM-2 to AMM-3 can have better

accuracy than PEM-1 and AMM-1, they possess no

A-stability and thus they might be limited in the

solution of stiff problems. Evidently, both PEM-1 and

AMM-1 are promising for solving stiff problems due

to an A-stability property.

8.3 A Van der Pol oscillator

The Van der Pol oscillator [31, 32] is an oscillator with

nonlinear damping. It has been used to explore the

properties of nonlinear oscillators and various oscil-

latory phenomena in biological and physical fields,

such as the action potential in neurons, analyses of

electrical circuits and models of the heartbeat. The

Van der Pol equation can be generally written as:

€u� l 1� u2
� �

_uþ u ¼ 0 ð37Þ

where u is a dynamical variable and is a function of the

time t. The parameter l is a positive scalar constant

and it generally indicates the strength of the damping

and nonlinearity. After taking v ¼ _u, the second-order

ODE of Eq. (37) can be converted to a system of first-

order ODEs as:

_u
_v

� 

¼ 0 1

�1 l 1� u2ð Þ

� 	
u
v

� 

ð38Þ

In general, a stiff system can be simulated for a

large value of l. In this study, l ¼ 100 is taken and the

initial conditions of uð0Þ ¼ 2:0 and vð0Þ ¼ 0:0 are

adopted. The two eigenvalues of the system are widely

separated and are found to be �3:33� 10�3 and -

300, resulting the stiffness ratio of

Re kð2Þ0

�
�
�

�
�
�=Re kð1Þ0

�
�
�

�
�
� ¼ 9� 105.

The result calculated from AMM-1 with h ¼
0:0001 is considered as a reference solution for

comparisons. Both PEM-E-1 and PEM-I-1 as well as

AMM-1 are applied to solve Eq. (38) by using h ¼
0:001 and 0.003. Figure 5 displays the calculated

results. The results calculated from all the three

methods with h = 0.001 are almost the same and

coincide together with the reference solution as shown

in Fig. 5a. On the other hand, those obtained from

these methods with h ¼ 0:003 slightly deviate from

the reference solution, where the result obtained from

PEM-I-1 is almost the same as that obtained from

AMM-1, while the solution obtained from PEM-E-1

exhibits a slightly less error in contrast to AMM-1 and

PEM-I-1. This example validates that PEM-E-1 and

PEM-I-1 can have almost the same performance as

that of AMM-1 in the solution of nonlinear stiff

systems.

Fig. 4 Numerical solutions

obtained from AMM-m and

PEM-m for a stiff problem
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8.4 A structure vibration system

For a four-story building, its beams and floor systems

are assumed to be rigid in flexure and thus there is no

rotation of a horizontal section at the floor levels.

Hence, it can be simulated as a shear building and then

its governing equations of motion can be largely

simplified. For a shear building, the horizontal

displacement at each story floor can be chosen as a

degree of freedom for modeling the building. As a

result, a system of second-order ODEs can be adopted

to govern the dynamic behaviors of the building and

can be written as:

M€uþ C _uþKu ¼ f ð39Þ

where u ¼ u1 u2 u3 u4f gT; M, C and K are the

mass, viscous damping, and stiffness matrices, respec-

tively; and f is an external force vector. In general, the

mass and stiffness matrices M and C are constant

matrices while the stiffness matrix K may vary due to

geometric and/or material nonlinearity. Equation (39)

can be transformed into a system of first-order ODEs

by adopting v ¼ _u. As a result, it is found to be:

M 0
0 M

� 	
_u
_v

� 	

þ 0 M
�K �C

� 	
u
v

� 	

¼ 0
f

� 	

ð40Þ

where v ¼ fv1 v2 v3 v4gT . Figure 6 shows structural

and vibrational properties of the shear building.

Clearly, the stiffness of each story will reduce after

the frame deforms. Besides, the initial natural fre-

quencies of Eq. (39) are found to be xðkÞ
0 for k ¼

1; 2; 3; 4 as shown in Fig. 6. On the other hand, the

initial eigenvalues of kðkÞ0 for k ¼ 1; 2; . . .; 8 can be

found from Eq. (40). The relation between the initial

natural frequency and initial eigenvalue is found to be

xðkÞ
0 ¼ 	kðkÞ0

�
�
�

�
�
�. In general, xðkÞ is the natural fre-

quency of Eq. (39) for the k-th mode and the

eigenvalues for Eq. (40) are found to be 	kðkÞi
correspondingly. Since each story stiffness will reduce

due to deformation, the system of first-order ODEs

will become nonlinear. In this study, C ¼ 0 is taken

for simplicity. The first and fourth mode shapes of the

building are found to be:

/1 ¼

0:347
0:653
0:879
1:000

8
>><

>>:

9
>>=

>>;

; /4 ¼

�1:879
2:879
�2:532
1:000

8
>><

>>:

9
>>=

>>;

;

u 0ð Þ ¼ /1 þ
1

10
/4 ¼

0:159
0:941
0:626
1:100

8
>><

>>:

9
>>=

>>;

ð41Þ

where /1 and /4 denote the first and fourth modes of

the shear building and u 0ð Þ is an initial displacement

vector and is made up of first and fourth modes.

At first, the free vibration solutions to the initial

conditions of v 0ð Þ, as given in Eq. (41), in addition to

(a)

(b)

Fig. 5 Numerical solutions

of Van der Pol equations for

using AMM-1 and PEM-1
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v 0ð Þ ¼ 0 are calculated. In this case, f ¼ 0 is taken.

The result obtained from AMM-1 with h ¼ 0:0001 is

considered as a reference solution for comparison. On

the other hand, AMM-1, PEM-I-1, and PEM-E-1 are

also used to carry out calculations by using the step

sizes of h ¼ 0:001 and 0.003. Numerical results are

plotted in Fig. 7. It is seen in Fig. 7a that the three

methods with h = 0.001 result in almost the same

solution, and this result is reliable in contrast to the

reference solution. On the other hand, the result

obtained from PEM-I-1 with h ¼ 0:003 seems to

coincide together with that of AMM-1 as shown in

Fig. 7b while the solution calculated from PEM-E-1

slightly deviates from this solution. Evidently, the

results obtained from h = 0.003 for all the three

methods show more numerical errors when compared

to those calculated from h = 0.001. Hence, it is

affirmed by this example that PEM-E-1 and PEM-I-1

can have a comparable solution in contrast to AMM-1

in the solution of the nonlinear problem. Notice that

both AMM-1 and PEM-I-1 involve nonlinear itera-

tions for each step while PEM-E-1 is non-iterative. An

average iteration number is about 3.00 for AMM-1 and

PEM-I-1 for h = 0.001. Whereas, it is about 3.02 for

h = 0.003.

Meanwhile, an acceleration of 5 sin tð Þ is also

imposed upon the building at its base with zero initial

condition. The solution calculated from AMM-1 with

a step size of h ¼ 0:001 is considered as a reference

solution. Both PEM-I-1 and PEM-E-1 in addition to

AMM-1 are applied to compute the solutions. Calcu-

lated results are plotted in Fig. 8. It is revealed by the

two plots of this figure that the forced vibration

solutions calculated from PEM-E-1 and PEM-I-1 are

almost the same as those computed from AMM-1 for

using the step sizes of h ¼ 0:05 and 0.1. It is found in

both plots that the result of PEM-I-1 overlaps together

with that of AMM-I-1. This phenomenon is also

discovered in Fig. 7, and this might be due to the same

requirement of nonlinear iterations for each step.

Besides, an average iteration number for each step for

AMM-1 and PEM-I-1 is about 3.45 for h ¼ 0:05 and

3.99 for h ¼ 0:1. Since the slowest and fastest

eigenvalues are imaginary and are kmin
0

�
�

�
� ¼ 12:06

and kmax
0

�
�

�
� ¼ 353:21, respectively, the system can be

considered as a stiff system. Besides, the values of

Kmax
0

�
�

�
� ¼ kmax

0 h
�
�

�
� are found to be as large as 17.66 and

35.32 corresponding to h = 0.05 and 0.1. Conse-

quently, it can be used to numerically affirm that the

stability region of PEM-E-1 includes the imaginary

axis as shown in Fig. 1. It is validated by this example

that explicit PEM-E-1 can have roughly the same

performance as implicitAMM-1 in the solution of stiff

problems since it has a desired A-stability property

and the second-order accuracy. Consequently, it might

be very promising for solving stiff problems.

8.5 A dynamical system of nonlinear pendulum

A pendulum is generally made up of a weight attached

by a light, inflexible rod to an axle. Thus, it can swing

for larger angles. In this study, the magnitude of the

friction force is assumed to be proportional to the

velocity of the pendulum so that it can slow the

pendulum to a halt. The mass and length of the

pendulum are assumed to be 1kg and 1m, respectively.

Besides, the coefficient of friction is 0.5. The oscil-

latory motion of the pendulum is controlled by the

second-order equation of motion of

(1)
0

(2)
0

(3)
0

(4)
0

  12.06 rad/sec

100.00 rad/sec

234.73 rad/sec

353.21 rad/sec

ω

ω

ω

ω

=

=

=

=
( )(2) 7 3

2 110 1 0.3 /k u u N m= − −

( )(3) 7 3
3 210 1 0.3 /k u u N m= − −

( )(1) 7 3
110 1 0.3 /k u N m= −

(2) 510m kg=

(3) 510m kg=

(1) 510m kg=

( )(4) 7 3
4 310 1 0.3 /k u u N m= − −

3u

2u

1u

(4) 510m kg=
4uFig. 6 A four-story shear

building and its vibration

properties
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y00 þ 0:5y0 þ 9:81 sin yð Þ ¼ 0. After setting y1 ¼ y and

y2 ¼ y01 ¼ y0, one can have a set of first-order ODEs

for the pendulum as:

y01
y02

� 

¼
0 1

� 9:81

y1
sin y1 �0:5

" #
y1
y2

� 

ð42Þ

where y1 is the angle of the pendulum from the

vertical. A gravity acceleration of 9:81m=sec2 is

taken. An initial condition of y1 0ð Þ ¼ 0 and y2 0ð Þ ¼ 5

is considered.

Since this is a nonlinear initial value problem,

AMM-1 with a small step size of h ¼ 0:001 is used to

obtain a reference solution. In addition, AMM-1 and

PEM-E-1 with a step size of h ¼ 0:01 are also applied

to calculate solutions. Numerical results are plotted in

Fig. 9. The curve starts at the point y1; y2ð Þ ¼ ð0; 5Þ
and subsequently it spirals clockwise toward the point

0; 0ð Þ. It is evident that the result calculated from

AMM-1 with h = 0.01 almost coincides together with

the reference solution while that calculated from

(a)

(b)

Fig. 7 Free vibration

solutions for nonlinear four-

story shear-frame

(a)

(b)

Fig. 8 Forced vibration

solutions for nonlinear four-

story shear-frame
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PEM-E-1 slightly deviates from the reference solution

but can still provide a reliable solution. This is because

that AMM-1 involves an iteration procedure and an

average iteration number of 1.46 is found for each step

while there are no nonlinear iterations for each step for

PEM-E-1.

8.6 A series of mechanical systems

Since PEM-E-1 can simultaneously combine A-

stability and explicit formulation, it might be compu-

tationally efficient for solving stiff problems. This can

be validated by solving a stiff problem, which is

intentionally designed. For this purpose, three prereq-

uisites are required to design a stiff system: (1) it can

be easily constructed; (2) an arbitrary number of

equations can be formulated; and (3) it can have a

large dispersion of eigenvalues. Thus, a large mechan-

ical system is chosen for this study, where n boxcars

are connected by n springs and the first spring is

attached to a fixed wall. The boxcars are assumed to

slide along a frictionless horizontal surface. The

detailed structure of the mechanical system is depicted

in Fig. 10, where n ¼ 125, 250, and 500 are chosen to

mimic the three systems governed by the equations of

motion for n ¼ 125, n ¼ 250, and n ¼ 500. A coupled

governing equation of motion for each system can be

formulated as shown in Eq. (39) except that c ¼ 0 is

adopted. It is well recognized that a system of second-

order ODEs in n variables can be transformed into a

system of first-order ODEs in 2n variables. After this

transformation, three systems of first-order ODEs with

2n ¼ 250, 2n ¼ 500 and 2n ¼ 1000 can be simulated

and can be also expressed as shown in Eq. (40) with

c ¼ 0.

In the subsequent calculations, each mechanical

system is subjected to a constant acceleration ag at its

base. Notice that the stiffness ki will become nonlinear

if ui � ui�1j j 6¼ 0. It is found that xðkÞ
0 ¼ 	kðkÞ0

�
�
�

�
�
�, for

k ¼ 1; 2; . . .; n, where xðkÞ
0 is the initial natural

frequency for the k-thmode and the initial eigenvalues

are 	kðkÞ0 i correspondingly. The slowest and fastest

initial eigenvalues and input constant acceleration for

each system are summarized in Table 3. Clearly, each

system may be considered as a stiff system since the

slowest and fastest initial eigenvalues of each system

are drastically different. In fact, kmin
0

�
�

�
� is found to be

12.52, 6.27, and 3.14 for the systems of 2n = 250, 2n =

500, and 2n = 1000, respectively. Whereas, kmax
0

�
�

�
� is

found to be as large as 2000.0 for all the three systems.

AMM-1 and PEM-E-1 are adopted to solve such a stiff

problem. In general, AMM-1 with h ¼ 0:001, 0.002,

and 0.004 is applied to calculate the solution for the

systems 2n = 250, 2n = 500, and 2n = 1000,

respectively, and the result for each system is consid-

ered as a reference solution. Since AMM-1 and PEM-

E-1 can have A-stability, there is no limitation on the

Fig. 9 Numerical results for

oscillatory motion of

pendulum
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step size. As a result, a step size can be chosen by an

accuracy consideration only and a total number ofN ¼
250 steps is conducted for each system. Hence, a time

history of td ¼ 250h will be achieved for each

analysis. The step size h, response history td and total

number of steps N for each system are also listed in

Table 3.

It seems that the step size of h ¼ 0:01, 0.02, and

0.04 are the maximum allowable step sizes to obtain

reliable results for the systems of 2n = 250, 2n = 500,

and 2n = 1000, respectively. The calculated results of

the three systems are shown in Fig. 11. The solutions

obtained from PEM-E-1 almost overlap together with

those obtained from AMM-1 for each system; thus, it

is substantiated that PEM-E-1 can have a comparable

accuracy with AMM-1. A-stability of PEM-E-1 is

indicated by this example. This is because that kmin
0

�
�

�
�

and kmax
0

�
�

�
� are widely separated for each system and

the value of kðnÞ0 h
�
�
�

�
�
� for the initial fastest eigenvalue of

each system is found to be as large as 20, 40 and 80

corresponding to the systems of 2n = 250, 2n = 500,

and 2n = 1000. For the presence of the fastest

eigenmode, it is generally required to use a very small

step size to maintain stability for a numerical method

that has no A-stability.

In general, the computing time for each analysis can

be applied to evaluate the computational efficiency of

a solution method. Thus, the CPU time for each

analysis is recorded for AMM-1 and PEM-E-1 and is

listed in Table 4. PEM-E-1 consumes much less CPU

time in contrast to AMM-1 after comparing the third

column to the second column. This is because that

implicit AMM-1 involves nonlinear iterations for each

step while there is no involvement of nonlinear

iterations for explicit PEM-E-1. A ratio of R is defined

as the CPU time consumed by PEM-E-1 over that by

AMM-1. It is manifested from the last column of

Table 4 that R decreases with an increasing number of

the equations. Hence, the saving of the CPU demand

for PEM-E-1 in contrast to a conventional implicit

method, such as AMM-1 will increase as the number

of 2n increases. In fact, the ratio R as shown in the last

column is 1.6% for the system of 2n = 500 and it

becomes as small as 0.93% for the system of 2n =

1000.

The Newton–Raphson method is often involved as

an iteration procedure is adopted to solve nonlinear

equations. A direct elimination method is chosen to

solve a system of linear equations for each iteration,

where a triangulation, a substitution, and a stiffness

matrix update are involved. Thus, a total number of

triangulations, substitutions, and stiffness matrix

Fig. 10 A large, nonlinear

mechanical system under

constant acceleration

Table 3 The slowest and fastest initial eigenvalues and

loading data

n min kðkÞ0

�
�
�

�
�
� max kðkÞ0

�
�
�

�
�
� agðm/sec2Þ td(sec)

250 12.52 2000.00 100 2.5

500 6.27 2000.00 25 5

1000 3.14 2000.00 6.25 10
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updates is identical to the total number of nonlinear

iterations for each step in a whole solution procedure.

No nonlinear iterations are involved for an explicitly

implemented problem-dependent method, such as

PEM-E-1. In fact, it only requires a triangulation at

the start of the solution procedure. Subsequently, only

a substitution and a stiffness matrix update are needed

for each step. The computational effort for conducting

a substitution is much less than that for a triangulation

for a large system.

The total number of triangulations, substitutions,

and stiffness matrix updates for both AMM-1 and

PEM-E-1 are shown in Table 5 for comparison. It is

revealed by column 5 that the total number of

triangulations for AMM-1 is 1003, 866, and 788 for

the systems of 2n = 250, 2n = 500, and 2n = 1000,

where a convergent solution can be achieved after an

average iteration number of 4.01, 3.46, and 3.15 for

each step for the three systems correspondingly.

Whereas, only a triangulation is needed for PEM-E-

1. Besides, the total number of substitutions and

stiffness updates for AMM-1 is 1003, 866, and 788 for

the three systems while it is only 250 for PEM-E-1 for

each system. The difference in the total number of the

triangulations leads to the drastic difference in CPU

time. It is also found that the total number of

substitutions or stiffness updates for PEM-E-1 is only

about one-fourth to one-third of that required by

AMM-1. Consequently, PEM-E-1 can have much

better computational efficiency in contrast to conven-

tional implicit methods, such as AMM-1, for solving a

subclass of stiff problems.

9 Conclusions

A new series of linear multi-step formulas is proposed

in this work. In contrast to conventional linear multi-

step formulas, its coefficients are no longer limited to

be scalar constants but can be a function of the

eigenvalues of the problem under analysis or a

function of the physical properties for defining the

problem. This series of formulas is derived from an

eigen-based theory since the eigenvalues and

(a)

(c)

(b)

Fig. 11 Numerical

solutions for large nonlinear

mass-spring systems

Table 4 Comparison of

CPU time
n h(sec) N (total steps) AMM-1 PEM-E-1 R ¼ PEM-E-1

AMM-1

250 0.01 250 65.55 1.02 0.016

500 0.02 250 505.02 4.91 0.0097

1000 0.04 250 3822.06 35.53 0.0093
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corresponding eigenvectors of the system of the

coupled first-order ODEs will play a key role in the

development of this type of formulas for solving a

system of coupled first-order ODEs. The profile of this

development is to decompose a system of coupled

first-order ODEs into a series of uncoupled first-order

ODEs. Then, an eigen-dependent formula is devel-

oped to solve each uncoupled first-order ODE. Finally,

all the eigen-dependent formulas are combined to

formulate a problem-dependent formula by applying a

reverse procedure of an eigen-decomposition tech-

nique. This conversion from all the eigen-dependent

formulas to a problem-dependent formula can avoid

an eigen-analysis and a superposition of each eigen-

mode solution for each step. Hence, this series of

solution methods has a characteristic of eigen depen-

dency and problem dependency. In addition, its

problem-dependent coefficients are not scalar con-

stants but constant matrices with the same size of the

system of the first-order ODEs under analysis.

A successful development of an eigen-dependent

formula to solve each uncoupled first-order ODE is a

prerequisite to develop a problem-dependent formula.

Some assumptions regarding to the formulation of the

difference formulas and polynomial fractions of

eigen-dependent coefficients are also very important

to develop an eigen-dependent formula. These

assumptions in conjunction with the previously

described profile for developing a problem-dependent

method can be used to form a typical procedure for

developing a problem-dependent method for solving

first-order ODEs. This series of problem-dependent

methods can be explicitly or implicitly implemented.

A combination of A-stability and explicit formulation

can be very computationally efficient for solving a

subclass of first-order stiff ODEs, such as problems in

vibrations and chemical kinetics, the analysis of

control systems and the study of dynamical systems.

Although only a series of the problem-dependent

methods are developed in this work, it seems this

methodology to develop the problem-dependent meth-

ods can be also applied to develop other problem-

dependent formulas for solving systems of coupled

first-order ODEs.
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