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Abstract By adopting the absolute nodal coordinate

formulation, a novel and general nonlinear theoretical

model, which can be applied to solve the dynamics of

combined straight-curved fluid-conveying pipes with

arbitrary initially configurations and any boundary

conditions, is developed in the current study. Based on

this established model, the nonlinear behaviors of a

cantilevered L-shaped pipe conveying fluid with and

without base excitations are systematically investi-

gated. Before starting the research, the developed

theoretical model is verified by performing three

validation examples. Then, with the aid of this model,

the static deformations, linear stability and nonlinear

self-excited vibrations of the L-shaped pipe without

the base excitation are determined. It is found that the

cantilevered L-shaped pipe suffers from the static

deformations when the flow velocity is subcritical, and

will undergo the limit-cycle motions as the flow

velocity exceeds the critical value. Subsequently, the

nonlinear forced vibrations of the pipe with a base

excitation are explored. It is indicated that period-n,

quasi-periodic and chaotic responses can be detected

for the L-shaped pipe, which has a strong relationship

with the flow velocity, excitation amplitude and

frequency.

Keywords L-shaped fluid-conveying pipe �
Absolute nodal coordinate formulation � Base

excitation � Forced vibration � Nonlinear dynamics

1 Introduction

The system of pipes conveying fluid, as a one of the

typical and simplest fluid–structure interaction sys-

tem, always appears in various engineering fields,

including the nuclear industry, marine oil extraction,

aerospace engineering and so on. However, due to the

properties and working environment of the fluid-

conveying pipe, it may suffer from the flow-induced
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vibrations or the forced vibrations under the action of

the internal flow, external flow or external excitation.

And these vibrations may cause catastrophic damage,

so it is quite necessary to understand the mechanism of

the pipes conveying fluid. In addition, the system of

the fluid-conveying pipe can display rich dynamical

behaviors and has become a new paradigm in the field

of dynamics, which has been pointed out by Paı̈doussis

[1]. Thus, due to these facts, the literature concerned

with the dynamics of pipes conveying fluid has

emerged in the past few decades [2–9].

The existing literature in this topic was mainly

concerned with fluid–structure interaction of the

straight or curved pipes conveying fluid. To predict

the stability of the straight fluid-conveying pipes, the

linear theoretical model was first developed. It was

found that the cantilevered pipes would lose stability

by flutter [10], while the buckling instability would

occur in the system of the fluid-conveying pipes with

both ends supported [11, 12]. Because of this found,

the researchers hope to further determine the dynamic

responses of the pipe when the flow velocity become

sufficiently high. Inspired by this, the famous nonlin-

ear theoretical model for the pipes conveying fluid,

including the cantilevered pipes and pipes supported at

both ends, was established in the study of Semler et al.

[13], with the aid of the extended Hamilton’s princi-

ple. For a long time, this theoretical model has been

widely used by researchers to study the dynamics of

the fluid-conveying pipe system. Unfortunately, this

pipe model could only deal with the situation when the

deformation of the pipe was considered to be small. To

solve this problem, several large-deformation-based

theoretical models were developed based on the

absolute nodal coordinate formulation (ANCF)

[14, 15] or the geometrically accurate beam model

[16, 17]. As another kind of pipe commonly used in

engineering, the curved fluid-conveying pipe has also

been received extensive attention from scholars

[18–27]. In these studies, three different theories,

including the conventional inextensible theory, the

extensible theory and the modified inextensible the-

ory, were mainly employed to develop the different

theoretical models that could predict the stability and

dynamics of a semi-circular pipe conveying fluid with

both ends supported. However, it should be pointed

out that these models can only simulate the pipe with

an initially circular configuration, and are not suit-

able for the pipe with arbitrary initially configurations.

This kind of pipe is also common in engineering. As a

consequence, a few theoretical models, which could

deal with the pipes with arbitrary shapes, were

proposed [28–33]. For instance, based on the Hamil-

ton’s extended principle, a nonlinear theoretical model

was proposed by Sinir [28] to investigate the nonlinear

dynamics of a slightly curved fluid-conveying pipe

with both ends supported. It was found that the

periodic and chaotic motions could be observed in this

considered pipe system. To explore the three-dimen-

sional dynamics of the curved fluid-conveying pipes,

Łuczko and Czerwiński [29] developed a model,

which is general and well applicable to analysis of a

wide variety of systems. In addition, this proposed

model could handle various boundary conditions

easily. In quite recently, the statics and dynamics of

the slightly curved cantilevered fluid-conveying pipes

with four different initial shapes were first explored in

the study of Zhou et al. [30] by employing the absolute

nodal coordinate formulation. Some interesting and

sometimes unexpected results were found based on

their numerical calculations.

Although the above-mentioned literature covers a

wide range of pipe models, including the straight-

shaped pipes, circular-shaped pipes and even the pipes

with special or arbitrary configurations, they all

appeared singly and the combination of them was

not taken into account. In fact, due to some site

restrictions or special requirements, the straight-

curved combination pipes may often be used in

engineering, such as L-, U-, Z- and J-shaped pipes.

Thus, it is worth to explore the dynamics of the

straight-curved combination fluid-conveying pipe.

Indeed, a few researchers have studied this kind of

pipe [34–43]. In 1990, a linear analytical model that

include the Poisson coupling was proposed by Lesmez

et al. [34] to perform the modal analysis of vibrations

in liquid-filled piping system. Two examples, includ-

ing single pipe bend and piping system with U-bend,

were given to verify this proposed model. The

dynamic stiffness method of the wave approach was

employed by Koo and Yoo [36] to determine the

natural frequencies, frequency response functions and

the stability of the Korea Advanced Liquid Metal

Reactor (KALIMER) IHTS hot leg piping system. A

3D straight-curved combination pipe conveying fluid

was taken into account in the study of Dai et al. [38],

who mainly explored the influence of the internal flow

velocity on the natural frequencies of the considered
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pipe system with the aid of transfer matrix method. In

addition, it was found that the steady combined force

could have a great impact on the vibration character-

istics of the curved-shaped pipe. As pointed out by

Wen et al. [40], the nonlinear force caused by the

deformation of the straight pipe segment, static

deformation and geometrical nonlinearity of the pipe

could have a considerable influence on the dynamics

of the straight-curved combination pipe. Unfortu-

nately, this effect was not taken into account in the

study of Koo and Yoo [36], and only the static axial

force caused by static deformation of the pipe was

contained in the Dai et al.’s model [38]. Thus, a

modified four segmental kinetic theoretical model was

established by Wen et al. [40] to explore the nonlinear

static deformation and the linear stability of the

straight-curved pipe conveying fluid. Their numerical

results indicated that the effect of the static deforma-

tion of the pipe on the natural frequencies of the

pinned–pinned pipe or the pinned-sliding bearing-

pinned pipe was pronounced, while for pinned–pinned

pipe, this effect could be ignored. Based on the active

learning Kriging model, Zhao et al. [41] first inves-

tigated the resonance failure of the straight-curved

combination pipe conveying fluid and a failure

performance function was built. The finite volume

method was applied by Guo et al. [42] to study fluid-

induced vibrations of the Z-shaped pipe with different

supports and the effects of the supports on the

vibration amplitude of the pipeline. The corresponding

results demonstrated that the elastic support could

effectively reduce the vibration amplitude and was

also relatively safe. More recently, the vibration and

in-plane wave propagation analysis of a L-shaped

fluid-conveying pipe with multiple supports was

performed in the study of Wu et al. [43] with the help

of impedance synthesis method. This method had been

proved by the corresponding experiments. It was noted

that the periodic supports could effectively suppress

the vibration level of the considered pipe system for a

given frequency window.

The present study focuses on exploring the static

deformation, linear stability, nonlinear self-excited

and nonlinear forced vibrations for a straight-curved

combination fluid-conveying pipe with the aid of

absolute nodal coordinate formulation (ANCF). The

calculation method of ANCF is applied to establish an

effective theoretical model to deal with nonlinear

dynamical behaviors of arbitrary initial configurations

of pipes (e.g., L-, Z-, U- and J-shaped pipes) convey-

ing fluid, which is the uniqueness of this paper. It

should be pointed out that the model developed in

present work has four advantages compared with those

models mentioned in Ref. [31–40]: (i) it can determine

the extremely large-amplitude vibrations of the soft

straight-curved combination pipes conveying fluid;

(ii) it can be applied to the straight-curved combina-

tion pipes with arbitrary initially shapes, such as L-,

Z-, U- and J-shaped pipes; (iii) it can be applied to any

boundary conditions, such as pinned–pinned,

clamped-free, pinned–pinned-free and so on; (iv) it

can handle not only the self-excited vibrations but also

the forced oscillations.

2 Theoretical model of the pipe system

Figure 1 shows the schematic of the cantilevered

L-shaped fluid-conveying pipe subjected to a base

excitation. X1 and Y1 represent the global coordinates.

The base excitation is in the X-direction, and can be

expressed in the form of wb = D0sin(Xt), where D0

and X are the amplitude and frequency of the base

excitation, respectively. In addition, it can be found in

Fig. 1 that this pipe system consists of two straight

pipe segments and one curved pipe segment. The

length of the straight pipe segment near the clamped

end is L1, and the length near the free end is L2. As for

the curved pipe segment, it is a 1/4 arc of radius R. It

should be mentioned that, in this paper, the three pipe

segments are assumed to be equal in length, which

means L1 = L2 = pR/2 = L/3, where L is the length of

the whole L-shaped pipe. Moreover, the mass per unit

Xo

Flow out

Y

U

L1

A
R L2

wb=D0sin(Ωt)

X1

Y1

o1

Fig. 1 Schematic of cantilevered L-shaped fluid-conveying

pipe subjected to a base excitation
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length of the L-shaped pipe is m and the flexural

rigidity is EI. The fluid flowing in the pipe has mass

per unit length M and mean velocity U. The effects of

structural damping and gravitational force are not

considered, and the fluid is assumed to be plug flows

and incompressible.

The absolute nodal coordinate formulation (ANCF)

is employed here to establish a nonlinear theoretical

model for the considered L-shaped fluid-conveying

pipe. The L-shaped pipe in this paper is considered to

be slender and can only vibrate in the X–Y plane;

hence, the 2-node planar curved ANCF elements [44]

are chosen to discretize this pipe system. Since we

have chosen the ANCF to deal with this problem,

correspondingly, the extended Lagrange equation

introduced by Irschik and Holl [45] is required to

derive the nonlinear governing equations of this

L-shaped pipe system. And this equation can be

written as follows [45]:

d

dt

oT

o _q
� oT

oq
þ
Z
S

da � vF � vPð Þ oT
0

o _q

�
Z
S

da � ovF
o _q

� ovP
o _q

� �
T 0

¼ Q ð1Þ

where T denotes the total kinetic energy of the system,

q and _q are, respectively, the generalized coordinate

vector and velocity vector, and Q represents the vector

of generalized forces. The two surface integrals shown

in Eq. (1) should be only evaluated at the pipe element

boundaries S. In addition, vF and vP, respectively,

denote the absolute velocities of the pipe and fluid; T 0

represents the kinetic energy per unit volume of the

fluid; and da is an oriented surface element on S.

After determining all the terms shown in Eq. (1)

and making a series of operations, we can obtain the

nonlinear dynamic equation of the pipe element

subjected to a base excitation, which can be found in

Eq. (2). For the sake of brevity, we put the detailed

process of formula derivation in Appendix A, and the

interested readers can refer to it.

M�
e €q

� þ C�
e _q

� þK�
eq

� þ N�
eðq�Þ ¼ 0 ð2Þ

where M�
e ,C�

e andK�
e are the linear mass, damping and

stiffness matrices for the pipe element, respectively.

The damping matrices Ce
* are derived from Coriolis

fluid force.N�
eðq�Þ represents the vector of nonlinear

terms. These matrices and the vector of nonlinear

terms can be given as follows:

M�
e ¼

Z l

0

STSdx

C�
e ¼ u

ffiffiffi
b

p Z l

0

STS0 � S0
T
Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q�T0 S0
T
S0q

�
0

q dxþ u
ffiffiffi
b

p
L STSjx¼l � STSjx¼0

� �

K�
e ¼ � u2 þ 1

2
P0

� �Z l

0

S0
T
S0

q�T0 S0
T
S0q

�
0

dx

þ u2L
STS0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q�T0 S0
T
S0q

�
0

q jx¼l �
STS0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q�T0 S0
T
S0q

�
0

q jx¼0

0
B@

1
CA

N�
eðeÞ ¼

1

2
P0

Z l

0

S0
T
S0q

�
q�TS0

T
S0q

�

q�T0 S0
T
S0q

�
0

� �2
dx

þ
Z l

0

~IS0
� �T

S00 þ S00T ~IS0
� �h i

q�q�T ~IS0
� �T

S00q�

q�TS0
T
S0q

�
� �3

0
B@

�
3S0

T
S0q

�
q�T ~IS0

� �T
S00q�q�T ~IS0

� �T
S00q�

q�TS0
T
S0q

�
� �4

1
CAdx

�
Z l

0

q�T0
~IS0
� �T

S00q�0

q�T0 S0
T
S0q

�
0

� �3=2

~IS0
� �T

S00 þ S00T ~IS0
� �h i

q�

q�TS0
T
S0q

�
� �3=2

0
B@

�
3S0

T
S0q

�
q�T ~IS0

� �T
S00q�

q�TS0
T
S0q

�
� �5=2

1
CAdxþ

Z l

0

STdx
�a0x2 sin xtð Þ

0

	 


�u
ffiffiffi
b

p Z l

0

S0
T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�T0 S0

T
S0q

�
0

q dx
a0x cos xtð Þ

0

	 


þu
ffiffiffi
b

p STffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q�T0 S0

T
S0q

�
0

q jx¼l �
STffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q�T0 S0
T
S0q

�
0

q jx¼0

0
B@

1
CA a0x cos xtð Þ

0

	 


ð3Þ

In addition, in order to obtain the above expres-

sions, we have introduced the following quantities:

s ¼ EI

M þ m

� �1
2 t

L2
; q� ¼ q

L
; q�0 ¼ q0

L
; u ¼ M

EI

� �1
2

UL;

b ¼ M

M þ m
; P0 ¼ APL

2

I
; d0 ¼ D0

L
; x ¼ X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M þ mð ÞL4

EI

r
;

ð4Þ

According to the concept of the traditional finite

element method, these matrices and vector for those

pipe elements can be assembled into the correspond-

ing global matrices and vector, and then, we can have

the nonlinear governing equation of the whole L-

shaped pipe system
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M€eþ C _eþKeþ NðeÞ ¼ 0 ð5Þ

where e means the generalized coordinate vector; M,

C and K are the assembled mass, damping and

stiffness matrices for the whole pipe system, respec-

tively; N(e) represents the assembled vector of non-

linearities. Then, based on this equation and with the

aid of fourth-order Runge–Kutta integration algo-

rithm, the nonlinear dynamic behaviors of the

L-shaped pipe subjected to base excitation can be

easily determined.

In addition to the nonlinear dynamic responses, the

static deformations of the L-shaped pipe under the

action of the internal flow also need to be determined

since this considered pipe contains the curved pipe

segments. According to the suggestion in Ref. [30], to

determine the static deformation, we can divide the

generalized coordinate vector e into two parts: a static

part and a perturbation about the static part, leading to

the following expression

e ¼ es þ De ð6Þ

where es is the generalized coordinate vector of the

static equilibrium configuration, and De denotes the

perturbation about the static equilibrium position. By

substituting Eqs. (6) into Eqs. (5), and deleting all the

time-dependent terms, the static equilibrium equation

of the L-shaped pipe system can be obtained

Kes þ NðesÞ ¼ 0 ð7Þ

Based on the equilibrium equation shown in

Eq. (7), we can determine the static deformations of

the L-shaped pipe with the help of Newton–Raphson

method.

3 Results of the L-shaped pipe without the base

excitation

In this section, the cantilevered L-shaped pipe without

the base excitation will be investigated first, since the

results of such a pipe system are rarely reported in the

existing literature. In addition, the nonlinear mecha-

nism of forced vibrations of the L-shaped pipe with a

base excitation can be better understood based on the

results shown in this section. Unless otherwise stated,

several key system parameters are chosen to be: L = 1,

b = 0.5 and P0 = 10,000 for numerical calculation.

Since the base excitation is not taken into account in

this section, the amplitude of the excitation is set to be

zero, i.e., d0 = 0. Moreover, it should be pointed out

that 12 finite ANCF pipe elements will be employed in

the current work to discrete the considered L-shaped

fluid-conveying pipe. Appendix B will demonstrate

that 12 elements are sufficient to predict the nonlinear

responses of the pipe system under consideration.

3.1 Model validation

Before embarking some results of the cantilevered

L-shaped pipe conveying fluid, two validation exam-

ples will be given first in this subsection to demon-

strate the reliability of the proposed theoretical pipe

model in simulating the dynamics of the L-shaped pipe

without the base excitation.

The first validation example is to reproduce the

natural frequencies of an empty cantilevered L-shaped

pipe, which have been reported in researches of Jong

[46] and Wu et al. [43]. For the convenience of

comparison, the system parameters utilized in this

example are selected to be the same as those applied in

Refs. [46] and [43]: the length of the straight pipe

segments is L1 = L2 = 0.9 m, the radius of curvature

of the curved pipe segment is R = 0.127 m, Young’s

modulus is E = 210G pa, mass density of the pipe is

qp = 7800 kg/m3, outer diameter of the pipe cross

section is ro = 0.1 m, and inner diameter of the pipe

cross section is ri = 0.09 m. Based on the present

ANCF model and with these parameters, the first four

natural frequencies of the empty L-shaped pipe are

obtained, which are summarized in Table 1. In

addition to the results obtained by the present model,

in this table, the results obtained by four other models,

including continuous bend model, discrete bend

model, FEM model and impedance synthesis model,

are also given. By comparing these results, it is found

Table 1 The first four natural frequencies of the empty can-

tilevered L-shaped pipe (Hz)

Number of mode 1 2 3 4

Continuous bend model [46] 28 62 375 496

Discrete bend model [46] 28 61 362 480

FEM model [46] 28 65 387 506

Impedance synthesis model [43] 30 61 386 526

The present ANCF model 31.3 69.8 410.2 569.5
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that the results of the present model are larger than

those of other models, but the error is acceptable,

within 10%. This can be understood since the Poisson

effect is taken into account in these existing models

but not in the present ANCF model. Besides, the first

four vibration modes of the considered L-shaped pipe

are plotted in Fig. 2 to further verify the present ANCF

model. It is obvious that the mode shapes shown in

Fig. 2 are consistent with those reported in Ref. [43].

The natural frequencies and mode shapes of empty

cantilevered L-shaped pipe were reproduced by the

present ANCF model in the first validation example,

which only indicates that the present model can

simulate the L-shaped pipe when the internal flow

velocity is not considered. In the following, to

demonstrate the present model can also deal with the

problem of L-shaped pipe conveying fluid, a simula-

tion model is established with the aid of CFD

simulation as the second validation example. The

system parameters of the simulation model are chosen

to be: the length of the straight pipe segments is

L1 = L2 = 0.1 m, the radius of curvature of the curved

pipe segment is R = 0.0637 m, Young’s modulus is

E = 10 MPa, mass density of the pipe is qp-

= 7800 kg/m3, outer diameter of the pipe cross

section is ro = 0.004 m, inner diameter of the pipe

(a) (b)

(c) (d)

Fig. 2 The first four vibration modes of the empty cantilevered L-shaped pipe: a the first mode, b the second mode, c the third mode and

d the fourth mode
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cross section is ri = 0.003 m, and the fluid flowing in

the pipe is considered to be water. The CFD simulation

is based on ANSYS WORKBENCH platform, the

linear elastic model is used to build the pipe structure,

while the fluid flowing in the pipe is simulated by the

inviscid flow model. About meshing, the pipe structure

is meshed by Solid186 elements and the dynamic grid

technology is applied to mesh the fluid. In terms of

solution, the modified k-x turbulence model based on

SST (shear stress transport) and bidirectional fluid–

structure coupling technology are adopted in perform-

ing simulation. For comparison purpose, the physical

and geometrical parameters used in the present ANCF

model are considered to be the same as those applied

in the simulation model. Accordingly, the results are

given in Fig. 3, where the tip-end dimensionless static

displacements of the cantilevered L-shaped fluid-

conveying pipe in X-direction and Y-direction,

obtained by the present ANCF model and the simu-

lation model, for different dimensionless flow veloc-

ities are given. By inspecting this figure, it is clear that

the tip-end static displacements of the L-shaped pipe

obtained by the present model agree well with those

obtained by the simulation model. Furthermore, the

plotted results in Fig. 4 intuitively show the configu-

ration of deformed pipe at different values of flow

velocity (e.g., u = 1 and u = 3). The CFD simulation

results are offered for qualitative comparison to state

reliability of the present ANCF model. As can be seen

that the deformed configurations of pipe obtained by

both models are in good agreement. Combining Figs. 3

and 4, it is believed that the present ANCF model is

able to simulate the cantilevered L-shaped pipe

conveying fluid accurately.

Before leaving this subsection, it should be pointed

out that the present ANCF model is superior to the

simulation model in two aspects. The first is the

calculation time. To determine the static deformation

of pipe at one flow velocity, the calculation time

required by the present ANCF model in this paper is

0.035835 s, while that required by the simulation

model is about 8 h. In addition, the simulation model

takes up ten cores of CPU when calculating, while the

ANCF model only takes up one. The second advantage

of the present ANCF model is that it can predict the

extremely large static deformations and the nonlinear

dynamic responses of the considered L-shaped fluid-

conveying pipe, but the simulation model is hard to

realize. This is due to that when flutter instability

occurs in the pipe system, the deformation of the pipe

is relatively large, and at this time, the grid distortion

problem is prone to appear in the simulation model,

which leads to the divergence of the simulation results.

To solve the grid distortion problem, we can only

increase the number of grids; however, this will

greatly increase the simulation time. Thus, based on

the above considerations, we believe that the present

ANCF model has more advantages in dealing with the

problem of the pipes conveying fluid.

(a) (b)

Fig. 3 The tip-end dimensionless static displacements of the cantilevered L-shaped fluid-conveying pipe in a X dire and b Y-direction,

obtained by the present ANCF model and the simulation model, for different dimensionless flow velocities
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3.2 Linear stability analysis around the static

equilibrium configuration

As suggested by the previous study [30], the linear

stability analysis of the fluid-conveying pipe should be

performed around the corresponding static equilib-

rium configurations in the case of the considered pipe

initially curved. Thus, the linear stability analysis in

this subsection will be performed around the static

equilibrium configuration since the L-shaped pipe

contains the curved pipe segment. To achieve this

goal, the static deformations of the L-shaped pipe must

be determined first.

In Fig. 5a, the static displacement of pipe is

obtained based on Eq. (7) through Newton–Raphson

method. In order to make the interlaced curves easier

to distinguish, we draw them with different colors,

such as the red line represents the initially shapes of

the pipe, the blue lines denote the static equilibrium

configurations for the low flow velocities, while the

static deformations for the high flow velocities are

marked in black. By inspecting Fig. 5a, it is easy to see

that each flow velocity corresponds to a static equi-

librium configuration, and for a high flow velocity, the

corresponding static deformation is quite large, which

means that the flow velocity has a remarkable impact

The result of
present model

The result of
simulation model

The result of
simulation model

The result of
present model

(a) (b)

Fig. 4 The static deformations of the cantilevered L-shaped fluid-conveying pipe for two different dimensionless flow velocities:

a u = 1 and b u = 3, obtained by the present ANCF model and the simulation model

(a) (b)

Fig. 5 a Static equilibrium configurations of the cantilevered L-shaped pipe conveying fluid, and b dimensionless complex frequencies

of the lowest four modes of the pipe as a function of the dimensionless flow velocity
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on the static deformations of the cantilevered

L-shaped fluid-conveying pipe. In addition, with the

increase in the flow velocity, the position of the free

end of the L-shaped pipe in the local coordinate system

X-o-Y first moves to the upper left, and then after

reaching a critical point, it starts to move to the lower

right. This phenomenon is similar to the results

reported in Ref. [30], where the static deformations

of the slightly curved cantilevered pipe were explored.

After determining the static equilibrium configura-

tions of the considered L-shaped pipe, the nonlinear

governing equation can be linearized around the static

equilibrium position [30]:

MD€eþ CD _eþ KþKTð ÞDe ¼ 0 ð8Þ

where KT represents the tangential stiffness matrix at

the static equilibrium configuration and can be given

by [30]

KT ¼ oN eð Þ
oe

je¼es
ð9Þ

In Fig. 5b, the complex frequency of lowest four

modes can be obtained by solving eigenvalues of

Eq. (8). We show some dimensionless flow velocities

(u = 0, 6, 12) and mark them in red point in Fig. 5b,

and the interval flow velocity is 0.1 during calcula-

tions. In addition, it should be pointed out that the x-

coordinate in Fig. 5b is the dimensionless frequency

of the pipe, while the y-coordinate denotes the

dimensionless damping. It is well known that when

the damping of the fluid-conveying pipe is negative,

the flutter instability occurs, and when the damping is

zero, the corresponding flow velocity is the critical

flow velocity. Bering this in mind and by inspecting

Fig. 5b, it is easy to find that the flutter instability

occurs in the second mode of the considered L-shaped

pipe and the corresponding critical flow velocity is

ucr = 7.28.

3.3 Nonlinear dynamics

In this subsection, the self-excited vibrations of the

L-shaped pipe without base excitation will be exam-

ined. To this end, the initial tip-end displacement of

the pipe in the Y-direction is assumed to be 0.001 and

the dimensionless flow velocity gradually increases

from 7 to 13, in the progress of numerical calculations.

Then, based on Eq. (5) and applying the fourth-order

Runge–Kutta integration algorithm, the bifurcation

diagram of the dimensionless tip-end displacements in

X-direction of the cantilevered L-shaped pipe versus

internal flow velocity is obtained, which can be found

in Fig. 6. The black points in this bifurcation diagram

denote the tip-end vibration amplitude when the pipe

is vibrating at steady state. That is to say, when the

oscillation of pipe becomes steady, the tip-end

displacement will be recorded and obtained when the

vibration velocity of pipe is zero at a certain flow

velocity. The static equilibrium position of the pipe

varying with flow velocity is obtained and added in red

points. From this figure, it is immediately seen that the

flutter instability occurs in the system of cantilevered

L-shaped pipe, and the critical flow velocity is

ucr = 7.28, which is identical to the results predicted

by the linear stability analysis. When the flow velocity

is below the critical value, the considered pipe will

only suffer from the static deformation, which corre-

sponds to single point in the bifurcation diagram. Once

the flow velocity is beyond the critical value, the limit-

cycle oscillations take place, which leads to two points

corresponding to one flow velocity in the bifurcation

diagram. In order to further understand the nonlinear

dynamic responses of the L-shaped pipe, the oscillat-

ing shapes of the pipe for two typical flow velocities,

including u = 7.1 and 12, are added in Fig. 6, where

the initially curved shapes of the pipe are highlighted

in red, the static equilibrium configurations are marked

in black and the blue lines denote the oscillating

shapes of the pipe. It is found that in the case of

Fig. 6 Bifurcation diagram for the dimensionless tip-end

displacements in X-direction of the cantilevered L-shaped pipe

versus internal flow velocity
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u = 7.1, the pipe is stabilized at a static equilibrium

position. However, when the flow velocity is beyond

the critical flow velocity, such as u = 12, the pipe will

vibrate around the corresponding static equilibrium

configuration rather than the initially curved shape.

4 Results of the L-shaped pipe with the base

excitation

After a brief investigation on the self-excited vibra-

tions of L-shaped pipe conveying fluid in Sect. 3, the

effect of base excitation on the nonlinear forced

vibrations of the considered L-shaped pipe will be

explored in this section. To this end, the range of the

dimensionless excitation frequency is chosen to be

0–100, and three typical values of excitation ampli-

tude, namely d0 = 0.001, 0.01 and 0.05, are taken into

account in the numerical simulations. The other

system parameters are taken to be: L = 1, b = 0.5

and P0 = 10,000, which are the same as those utilized

in Sect. 3. In addition, according to the discussions in

the last section, the internal flow velocity could have

remarkable impacts on the dimensionless complex

frequencies and dynamical behaviors of the can-

tilevered L-shaped pipe in the absence of the base

excitation. Thus, it is also interesting to explore the

influence of the internal flow velocity on the nonlinear

forced vibrations of the considered L-shaped pipe in

the present of the base excitation. For that purpose,

two subcritical flow velocities, namely u = 5 and 7,

and two supercritical flow velocities, including u = 8

and 12, will be considered in this section. In addition,

it should be noted that the software MATLAB R2019a

is used for all the numerical calculations in this work;

the interval excitation frequency is chosen to be 0.5

during numerical calculations.

4.1 Model validation

In Sect. 3.1, two examples were given to prove that the

proposed ANCF model can be used to deal with the

problem of the L-shaped pipe in the absence of the

base excitation. However, whether this model can

handle the problem of the L-shaped pipe with base

excitation needs further verification. Unfortunately,

there are almost no models in the existing literature

that can be applied to simulate the nonlinear forced

vibrations of the L-shaped pipe with the base

excitation. As a consequence, we can only degenerate

the cantilevered L-shaped pipe into to a straight

cantilevered pipe, and compare the results obtained by

using the present ANCF model and the Semler et al.’s

model [13]. To this end, a straight cantilevered pipe

subjected to base excitation is taken into account and

the system parameters are selected to be: L = 1,

b = 0.2, P0 = 10,000 and d0 = 0.01. Based on

extended numerical calculations, the bifurcation dia-

grams of the dimensionless tip-end displacements of

pipe for two different values of flow velocity, namely,

u = 3.6 and 6, are illustrated in Fig. 7. When the flow

velocity is below the critical flow velocity (ucr = 5.6),

the results obtained by the two different models are

almost the same, except for the difference in vibration

amplitude when the excitation frequency is high,

which can be found in Fig. 7a. When the flow velocity

is beyond the critical value, it can be clearly seen from

Fig. 7b that the bifurcation trends obtained by the two

different models are basically the same, but the

vibration amplitudes are slightly different in the

considered rang of excitation frequency. Based on

the discussions in Ref. [30], this difference is easy to

be understood. Thus, it can be concluded that the

present ANCF model can also deal with problems of

the fluid-conveying pipe under base excitations.

4.2 The case of the L-shaped pipe conveying

subcritical fluid

First, we will pay our attention to the nonlinear forced

vibrations of the L-shaped pipe conveying subcritical

fluid under the base excitation. In the case of u = 5, the

bifurcation diagrams of the dimensionless tip-end

displacements in X-direction of the considered pipe for

three different values of excitation amplitude, includ-

ing d0 = 0.001, 0.01 and 0.05, are given in Fig. 8.

When the excitation amplitude is equal to 0.001, three

peaks can be observed in the bifurcation diagram

shown in Fig. 8a, although the vibration amplitude is

quite small. Considering that the L-shaped pipe

considered in this section is subjected to a base

excitation, it is easy to think that these three peaks are

caused by the resonance of the pipe. Indeed, the

dimensionless excitation frequencies corresponding to

these three peaks are 17.5, 30 and 78.5, which are

consistent with the second-, third- and fourth-order

natural frequencies of the pipe in the case of u = 5.

This indicates that the second-, third- and fourth-mode
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resonance takes place in the considered pipe system

under the action of the base excitation. The oscillating

shapes of the pipe for these three resonance frequen-

cies are further illustrated in Fig. 9, where the static

equilibrium configuration is highlighted in red and the

blue lines denote the oscillating shapes. It should be

mentioned that the deformations of the pipe shown in

Fig. 9 are magnified by the corresponding factors to

show the vibration shapes more clearly, since the

vibration amplitudes are quite small. From this figure,

it is observed that the L-shaped pipe is always

oscillating around the static equilibrium configuration.

In addition, if we observe carefully, it can be found

that each excitation frequency considered in Fig. 9

corresponds to different oscillating shapes of the pipe,

which indicates that the main modes participating in

the vibration of the pipe are different for these three

excitation frequencies.

The bifurcation diagram shown in Fig. 8b is the

result for d0 = 0.01, which is very similar to that for

d0 = 0.001. Two similarities can be summarized as:

(i) the pipe always undergoes the period-1 motions

within the excitation frequency under consideration;

(ii) there are also three peaks in the bifurcation

diagram, and the corresponding frequencies are also

equal to the second-, third- and fourth-order natural

frequencies of the pipe. Moreover, compared with

Fig. 8a, it is also noted that the amplitudes of the

forced vibrations of the considered L-shaped pipe are

increased with the increase in excitation amplitude.

When the excitation amplitude is increased to 0.05,

the situation is different, which can be immediately

seen in Fig. 8c. From this bifurcation diagram, it

seems that with the increase in excitation frequency,

the pipe undergoes the period-1 (0\x\ 27.5),

period-n (28\x\ 64), chaotic (64.5\x\ 74.5),

period-n (75\x\ 77) and period-1

(77.5\x\ 100) motions in sequence. This is not

entirely true, however. To further analyze these

dynamic behaviors, we plotted Fig. 10, in which the

time histories, phase portraits and power spectra

diagrams of the pipe for several typical values of

excitation frequency, including x = 17.5, 35, 70.5 and

76.5, are given. It is noted that the pipe undergoes the

period-1 motions when the excitation frequency

equals to 17.5 or 35, chaotic motion occurs in the

case of x = 70.5, and period-2 motion can be detected

in the considered pipe system for x = 76.5. In this

way, based on extensive calculations, it is found that

the pipe always undergoes the period-1 motions in the

range of 28\x\ 64 instead of the period-n motions

as originally thought. This means the pipe actually

undergoes the period-1 (0\x\ 64), chaotic

(64.5\x\ 74.5), period-n (75\x\ 77) and per-

iod-1 (77.5\x\ 100) motions, successively. In

addition, it is indicated that when the L-shaped pipe

is subjected to a base excitation with large excitation

amplitude, it may display rich dynamic responses.

Then, another subcritical flow velocity u = 7 is

considered and the corresponding bifurcation

(a) (b)

Fig. 7 Bifurcation diagrams for the dimensionless tip-end displacements of the cantilevered straight pipe versus excitation frequency,

for d0 = 0.01, with a u = 3.6 and b u = 6
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diagrams are displayed in Fig. 11. When the excitation

amplitude is small, e.g., d0 = 0.001 and 0.01, the pipe

always experiences the limit-cycle motions (period-1)

in the range of 0\x\ 100, which is similar with the

results shown in Fig. 8a and b. However, only two

peaks can be observed in the bifurcation diagrams

shown in Fig. 11a and b, and the corresponding

frequencies are identical to the second- and fourth-

order natural frequencies of the pipe for u = 7. This

means that the base excitation only excites the second-

and fourth-order vibration modes of the pipe. By

inspecting Fig. 11c, in which the results for d0 = 0.05

are given, it is noted that period-1 and chaotic motions

are the main dynamic responses of the pipe at this

time. By further comparing Figs. 8 and 11, it can be

concluded that when the flow velocity is below the

critical value, increasing the flow velocity can sim-

plify dynamic behaviors of the considered L-shaped

pipe under the same base excitation.

4.3 The case of the L-shaped pipe conveying

supercritical fluid

Then, the situation to be discussed is the nonlinear

forced vibrations of the L-shaped pipe conveying

supercritical fluid subjected to a base excitation. The

bifurcation diagrams for u = 8 and three different

values of excitation amplitude are illustrated in

(a) (b)

(c)

Fig. 8 Bifurcation diagrams for the dimensionless tip-end displacements in X-direction of the cantilevered L-shaped pipe versus

excitation frequency, for u = 5, with a d0 = 0.001, b d0 = 0.01, and c d0 = 0.05
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Fig. 12. Clearly, it can be seen that the results for the

pipe conveying supercritical fluid are quite different

from those for the pipe conveying subcritical fluid. For

instance, in the cases of d0 = 0.001 and 0.01, the

bifurcation diagrams shown in Fig. 12a and b indicate

that the quasi-periodic motions are the main dynamic

responses of the L-shaped pipe conveying supercrit-

ical fluid with the base excitation, except for some

periodic- and chaotic-motion windows. However,

only the period-1 motions would occur in the system

of the pipe conveying subcritical fluid for d0 = 0.001

and 0.01. To further show the characteristics of the

quasi-periodic motions, Fig. 13 is given, where the

time history, phase portrait, power spectra diagram

and Poincare map of the oscillation for x = 41.5 are

illustrated. When the excitation amplitude is increased

to 0.05, the main dynamic behaviors of the considered

pipe have changed from quasi-periodic motions to

periodic, quasi-periodic and chaotic motions, which

can be observed in Fig. 12c. In other words, the strong

base excitation can stimulate complex dynamic

responses of the L-shaped pipe conveying the super-

critical fluid.

Next, in the case for supercritical flow velocity,

u = 12, the corresponding results for three different

excitation amplitudes are plotted in Fig. 14. From this

figure, some features can be observed: (i) when the

excitation amplitude is relatively small, such as

d0 = 0.001 or 0.01, the mainly dynamic responses of

the pipe are the quasi-periodic motions, expect for

(a) (b)

(c)

Fig. 9 Oscillating shapes of the cantilevered L-shaped pipe for

three typical values of excitation frequency: a x = 17.5

(deformation is magnified by a factor of 20), b x = 30

(deformation is magnified by a factor of 10) and c x = 78.5

(deformation is magnified by a factor of 20), with u = 5 and

d0 = 0.001
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(a)

(b)

(c)

(d)

Fig. 10 Time histories, phase portraits and power spectra diagrams of the cantilevered L-shaped pipe for several typical values of

excitation frequency: a x = 17.5, b x = 35, c x = 70.5 and d x = 76.5, with u = 5 and d0 = 0.05
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some periodic windows; (ii) increasing the excitation

amplitude will increase the frequency range of limit-

cycle motions, while that of quasi-periodic motions

will decrease; (iii) the chaotic motion occurs in the

considered pipe system when the excitation amplitude

is increased to 0.05. It should be noted that these

features are quite different from those for a straight

fluid-conveying pipe under base excitations. Accord-

ing to ref. [47], the straight pipe only experiences

limit-cycle vibrations over the considered excitation

frequency range. However, as the excitation amplitude

is small (e.g., d0 = 0.001), the L-shaped pipe convey-

ing subcritical fluid also just undergoes limit-cycle

oscillations and has resonance peaks, which are

similar with those of a straight pipe.

5 Conclusions

In this paper, the nonlinear statics and dynamics of the

cantilevered L-shaped fluid-conveying pipe subjected

to a base excitation are systematically studied. To this

end, a novel nonlinear theoretical model is proposed

with the help of absolute nodal coordinate formulation

(ANCF). The corresponding nonlinear governing

equation of the considered pipe system is determined

by employing the extended Lagrange equations. Based

on this equation, the static deformations, linear

stability and the nonlinear self-excited vibrations of

the pipe without the base excitation are investigated

first. Then, the nonlinear forced vibrations of the pipe

under the base excitation are considered, devoting to

(a) (b)

(c)

Fig. 11 Bifurcation diagrams for the dimensionless tip-end displacements in X-direction of the cantilevered L-shaped pipe versus

excitation frequency, for u = 7, with a d0 = 0.001, b d0 = 0.01 and c d0 = 0.05
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exploring influences of the internal flow velocity,

excitation amplitude and excitation frequency on

dynamic responses of this L-shaped pipe system.

Finally, the main conclusions of this present work are

given as follows:

(i) Based on the three validated examples, it is

demonstrated that the present ANCF model is

available for predicting the nonlinear self-excited

and forced vibrations of L-shaped fluid-conveying

pipes.

(ii) The static deformations of L-shaped pipe fluid-

conveying are strongly dependent on the internal

flow velocity and can be extremely large when the

flow velocity is sufficiently high. The L-shaped pipe

without base excitations will lose stability by flutter

and the main dynamic behaviors after instability are

the limit-cycle vibrations.

(iii) Under the action of base excitations, more

complex dynamic responses, such as period-n,

quasi-periodic and chaotic behaviors, will occur

for the pipe system. It is found that the internal flow

velocity, excitation amplitude and frequency can

have great impacts on the forced vibration charac-

teristics. Increasing the excitation amplitude results

in enriching dynamical behaviors of the pipe.

(a)                                 (b) 

(c)

Fig. 12 Bifurcation diagrams for the dimensionless tip-end displacements in X-direction of the cantilevered L-shaped pipe versus

excitation frequency, for u = 8, with a d0 = 0.001, b d0 = 0.01 and c d0 = 0.05
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(a) (b)

(c) (d)

Fig. 13 Dynamic responses of the cantilevered L-shaped pipe for x = 41.5 with d0 = 0.01 and u = 8; a the time history, b phase

portrait, c power spectra diagram and d Poincare map
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(a) (b)

(c)

Fig. 14 Bifurcation diagrams for the dimensionless tip-end displacements in X-direction of the cantilevered L-shaped pipe versus

excitation frequency, for u = 12, with a d0 = 0.001, b d0 = 0.01 and c d0 = 0.05
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Appendix A

In this Appendix, the detailed derivations of Eqs. (2)

and (3) will be given. As we mentioned before, since

the ANC formulation was used in this study to

establish the theoretical model of the considered

L-shaped pipe, the equation shown in Eq. (1) should

be employed to derive the nonlinear governing

equation of the pipe system. Thus, each physical

quantity in Eq. (1) needs to be determined.

First, the absolute velocity vector of the pipe

element will be determined. Since the pipe is subjected

to a base excitation inX-direction, the position vector r

of an arbitrary point on the pipe element in the inertial

coordinate system X1-o1-Y1 consists of two parts: the

position vector of this point in the local coordinate

system X-o-Y, and the position vector of the local

coordinate system in the inertial coordinate system.

Thus, we have:

r ¼ rl þ ri ¼ Sqþ wb

0

	 

ðA:1Þ

where S and q, respectively, denote the shape function

and the nodal coordinate vector of the ANCF pipe

element, which have been defined in Ref. [30]. Then,

according to Eq. (A.1), the absolute velocity vector of

the pipe element can be easily defined:

vP ¼ dr

dt
¼ _r ¼ S_qþ _wb

0

	 

ðA:2Þ

According to the discussions in Ref. [30], the

absolute velocity vector of the fluid element can be

expressed as follows:

vF ¼ vP þ Uf s ðA:3Þ

where f is the longitudinal deformation gradient and s
denotes the tangential unit vector along the deformed

pipe axis. Their expression can be given as follows

[30]:

f ¼
ffiffiffiffiffiffiffiffiffi
r0Tr0

p
ffiffiffiffiffiffiffiffiffiffiffi
r0T0 r

0
0

q ; s ¼ r0ffiffiffiffiffiffiffiffiffi
r0Tr0

p ðA:4Þ

From the above expressions, we can quickly find

that neither vF nor vP is a function of _q, and hence, the

second surface integration shown in Eq. (1) is found to

be zero. Then, based on Eqs. (A.2), (A.3) and (A.4),

we can obtain the following expressions of the total

kinetic energy of the system and the density of kinetic

energy of the fluid

T ¼ 1

2
m

Z l

0

vTPvPdxþ 1

2
M

Z l

0

vTFvFdx

¼ 1

2
mþMð Þ

Z l

0

_qTSTS_qdx

þMU

Z l

0

_qTSTS0qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qT0S

0TS0q0

q dxþ 1

2
MU2

Z l

0

qTS0
T
S0q

qT0S
0TS0q0

dx

þ mþMð Þ
Z l

0

_wb

0

	 
T
S_qdxþMU

Z l

0

_wb

0

	 
T

S0qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qT0S

0TS0q0

q dx þ 1

2
mþMð Þl _wbð Þ2

ðA:5Þ

T 0 ¼ 1

2
qFv

T
FvF

¼ 1

2
qF _qTSTS_qþ qFU

_qTSTS0qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qT0S

0TS0q0

q þ 1

2
qFU

2 qTS0
T
S0q

qT0S
0TS0q0

þ qF
_wb

0

	 
T
S_qþ qFU

_wb

0

	 
T
S0qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qT0S
0TS0q0

q þ 1

2
qF _wbð Þ2

ðA:6Þ

where qF is the density of the fluid, q0 represents the

nodal coordinate vector of the initial pipe element, and

l is length of the pipe element. By substituting

Eqs. (A.2), (A.3) and (A.6) into the first surface

integration in Eq. (1), the following expression can be

determined
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Z
S

da � vF � vPð Þ oT
0

o _q

¼ aMU STS_qþ U
STS0qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qT0S

0TS0q0

q þ ST
_wb

0

	 
0
B@

1
CAj0;l

ðA:7Þ

where a is a scalar and can be defined as a(x = 0) = -1

and a(x = l) = 1.

Finally, the vector of generalized forces of the

system, Q, needs to be determined. Since the influence

of gravity and damping is not taken into account in this

article, we only need to determine the generalized

elastic forces vector of the system. Recalling that the

L-shaped pipe in this paper is considered to be slender,

the Euler–Bernoulli beam theory is adopted. Due to

this fact, the potential energy of the pipe element can

be written as

Uel ¼
1

2

Z l

0

EApe
2dxþ 1

2

Z l

0

EI j� j0ð Þ2
dx ðA:8Þ

where j0 denotes the initial curvature of the pipe

element. For the straight pipe segments j0 = 0, and for

the curved pipe segment j0 = 0. Moreover, e and j
are, respectively, the longitudinal strain and geomet-

rical curvature of the deformed pipe element, which

can be defined as follows [30]:

e ¼ 1

2
f 2 � 1
� �

; j ¼ r0 � r00j j
jjr0jj3

ðA:9Þ

According to Eq. (A.8), the vector of the general-

ized elastic forces is defined by

Q ¼ � oUel

oq

¼ �
Z l

0

EApe
oe
oq

dx� 1

2

Z l

0

EI j� j0ð Þ oj
oq

dx

ðA:10Þ

So far, all the terms in Eq. (1) have been deter-

mined. For the rest, we just need to substitute

Eqs. (A.5), (A.7), (A.10) and (4) into Eq. (1) and

perform some straightforward manipulations, so that

nonlinear governing equations of the pipe element can

be obtained.

Appendix B

It is well known that if the elements used to discretize

the pipe is not enough, the numerical results will not

converge, and if the number of elements is too large,

the calculation cost will increase. Due to this fact, it is

necessary to determine a suitable number of pipe

elements. To this end, the static equilibrium config-

urations of the L-shaped pipe for u = 8 with four

different numbers of pipe elements, including 6, 9, 12

and 15, are displayed in Fig. 15a. From this figure, it is

found that the results for 12 and 15 pipe elements are

almost the same, indicating that 12 pipe elements are

sufficient for predicting the static equilibrium

(a) (b)

Fig. 15 Convergence analysis on a the static equilibrium configurations of the L-shaped pipe for u = 8, and b the bifurcation diagrams

of dimensionless tip-end displacements in X-direction of the pipe versus internal flow velocity
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configurations of the L-shaped pipe. Furthermore,

Fig. 15b shows the bifurcation diagrams of dimen-

sionless tip-end displacements in X-direction of the

pipe without the base excitation for different numbers

of the pipe elements. Again, it is easy to find that the

results of 12 pipe elements are almost consistent with

those of 15 pipe elements. According to these two

figures, therefore, it is believed that 12 pipe elements

are sufficient to predict the nonlinear statics and

dynamics of the considered L-shaped pipe conveying

fluid.

References

1. Paı̈doussis, M.P.: The canonical problem of the fluid-con-

veying pipe and radiation of the knowledge gained to other

dynamics problems across Applied Mechanics. J. Sound

Vib. 310(3), 462–492 (2008)

2. Tang, S., Sweetman, B.: A geometrically-exact momentum-

based nonlinear theory for pipes conveying fluid. J. Fluid

Struct. 100, 103190 (2021)

3. Wang, Y., Wang, L., Ni, Q., Yang, M., Liu, D., Qin, T.:

Non-smooth dynamics of articulated pipe conveying fluid

subjected to a one-sided rigid stop. Appl. Math Model. 89,

802–818 (2021)

4. Abdollahi, R., Dehghani Firouz-abadi, R., Rahmanian, M.:

On the stability of rotating pipes conveying fluid in annular

liquid medium. J. Sound Vib. 494, 115891 (2021)

5. Yamashita, K., Nishiyama, N., Katsura, K., Yabuno, H.:

Hopf-Hopf interactions in a spring-supported pipe convey-

ing fluid. Mech Syst Signal Pr. 152, 107390 (2021)

6. Yan, D., Guo, S., Li, Y., Song, J., Li, M., Chen, W.:

Dynamic characteristics and responses of flow-conveying

flexible pipe under consideration of axially-varying tension.

Ocean Eng. 223 (2021)

7. Lu, Z.Q., Zhang, K.K., Ding, H., Chen, L.Q.: Nonlinear

vibration effects on the fatigue life of fluid-conveying pipes

composed of axially functionally graded materials. Non-

linear Dyn. 100(2), 1091–1104 (2020)

8. Mao, X.Y., Ding, H., Chen, L.Q.: Steady-state response of a

fluid-conveying pipe with 3:1 internal resonance in super-

critical regime. Nonlinear Dyn. 86(2), 795–809 (2016)

9. Reddy, R.S., Panda, S., Natarajan, G.: Nonlinear dynamics

of functionally graded pipes conveying hot fluid. Nonlinear

Dyn. 99(3), 1989–2010 (2020)

10. Paı̈doussis, M.P.: Fluid-structure interactions: slender

structures and axial flow. Academic Press, London (1998)

11. Holmes, P.: Pipes supported at both ends cannot flutter.

J. Appl. Mech. 45(3), 619–622 (1978)

12. Modarres-Sadeghi, Y., Paı̈doussis, M.P.: Nonlinear

dynamics of extensible fluid-conveying pipes, supported at

both ends. J. Fluid Struct. 25(3), 535–543 (2009)

13. Semler, C., Li, G., Paı̈doussis, M.P.: The non-linear equa-

tions of motion of pipes conveying fluid. J. Sound Vib.

169(5), 577–599 (1994)

14. Stangl, M., Gerstmayr, J., Irschik, H.: A large deformation

planar finite element for pipes conveying fluid based on the

absolute nodal coordinate formulation. J. Comput. Nonlin-

ear Dyn. 4(3), 031009 (2009)

15. Cai, F.C., Zang, F.G., Ye, X.H., Huang, Q.: Analysis of

nonlinear dynamic behavior of pipe conveying fluid based

on absolute nodal coordinate formulation. J. Vib. Shock.

30(6), 143–146 (2011)

16. Chen, W., Dai, H.L., Jia, Q.Q., Wang, L.: Geometrically

exact equation of motion for large-amplitude oscillation of

cantilevered pipe conveying fluid. Nonlinear Dyn. 98(3),

2097–2114 (2019)

17. Chen, W., Hu, Z., Dai, H., Wang, L.: Extremely large-am-

plitude oscillation of soft pipes conveying fluid under

gravity. Appl. Math. Mech-Engl. 41(9), 1381–1400 (2020)

18. Chen, S.S.: Flow-induced in-plane instabilities of curved

pipes. Nucl Eng Des. 23(1), 29–38 (1972)

19. Chen, S.S.: Vibration and stability of a uniformly curved

tube conveying fluid. J. Acoust Soc Am. 51(1B), 223–232

(1972)

20. Chen, S.S.: Out-of-plane vibration and stability of curved

tubes conveying fluid. J. Appl Mech-T ASME. 40(2),

362–368 (1973)

21. Misra, A., Paı̈doussis, M.P., Van, K.: On the dynamics of

curved pipes transporting fluid. Part I: inextensible theory.

J. Fluid Struct. 2(3), 221–244 (1988)

22. Misra, A., Paı̈doussis, M.P., Van, K.: On the dynamics of

curved pipes transporting fluid Part II: Extensible theory.

J. Fluid Struct. 2(3), 245–261 (1988)

23. Jung, D., Chung, J.: In-plane and out-of-plane motions of an

extensible semi-circular pipe conveying fluid. J. Sound Vib.

311(1–2), 408–420 (2008)

24. Jung, D., Chung, J., Mazzoleni, A.: Dynamic stability of a

semi-circular pipe conveying harmonically oscillating fluid.

J. Sound Vib. 315(1–2), 100–117 (2008)

25. Lin, W., Qiao, N.: In-plane vibration analyses of curved

pipes conveying fluid using the generalized differential

quadrature rule. Comput Struct. 86(1–2), 133–139 (2008)

26. Li, F., An, C., Duan, M., Su, J.: In-plane and out-of-plane

dynamics of curved pipes conveying fluid by integral

transform method. J. Braz Soc Mech Sci. 41(12), 542 (2019)

27. Zare, A., Eghtesad, M., Daneshmand, F.: An isogeometric

analysis approach to the stability of curved pipes conveying

fluid. Mar Struct. 59, 321–341 (2018)

28. Sinir, B.G.: Bifurcation and Chaos of Slightly Curved Pipes.

Math Comput Appl. 15(3), 490–502 (2010)
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