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Abstract In view of the facts in the infection and
propagation of COVID-19, a stochastic reaction–
diffusion epidemic model is presented to analyse and
control this infectious diseases. Stationary distribution
and Turing instability of this model are discussed for
deriving the sufficient criteria for the persistence and
extinction of disease. Furthermore, the amplitude equa-
tions are derived by using Taylor series expansion and
weakly nonlinear analysis, and selection of Turing pat-
terns for this model can be determined. In addition, the
optimal quarantine control problem for reducing con-
trol cost is studied, and the differences between the two
models are compared. By applying the optimal con-
trol theory, the existence and uniqueness of the optimal
control and the optimal solution are obtained. Finally,
these results are verified and illustrated by numerical
simulation.
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1 Introduction

By the end of 2019, a new virus infection named
COVID-19 (SARS-CoV-2) was recorded in China [1–
3]. The symptoms of infected individuals are respira-
tory problem, fever, dry cough, etc. and it seriously
affects the lungs. The incubation period of this infec-
tious disease is 3–14 days or longer [4], the asymp-
tomatic period is on an average 3 days [5].

The evolution that followed the outbreak indicated
that the world mechanisms for preventing the trans-
mission and quarantine of COVID-19 were consider-
ably limited, and almost all areas are suffering from
its serious impact. The epidemic models are often used
to forecast and control the spread of diseases as much
as possible, so as to the relevant government depart-
ments to prepare in advance and make necessary deci-
sions. As early as the eighteenth century, the work on
constructingmathematical models [6] of epidemiology
has begun. From Bernoulli [7] at that time to Kermack
and McKendrick [8] more than 100 years later, many
changes have taken place in the models, and now most
of the models used in epidemic research are based on
the latter. These models which constitute a set of non-
linear ordinary differential equations are called com-
partment models. As we all know, classical differential
equations are often used to analyse and study infec-
tious diseases, such as SI [9], SIS [10], SIR [11], SIRC
[12], SEIR [13] models and so on. Since the discovery
of the COVID-19, many models have been constructed
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to describe and study its dynamics [14–16]. With the
increase of real data and available information, the
models for COVID-19 pandemic are also developing,
what followed was increasingly complex epidemiolog-
icalmodels [17–20]. Sun et al. [21] proposed an SEIQR
model in light of the influences of lockdown and medi-
cal resources on the propagation of COVID-19. Zhang
et al. [22] considered the threshold of a stochastic SIQS
epidemic model with varying total population and its
corresponding deterministic epidemic model. Zhang et
al. [23] constructed a SIQRS model on networks and
investigate the related optimal control problems. Tang
et al. [24] studied the effects of isolation and quaran-
tine on the tendency of this novel coronavirus-caused
pneumonia in China.

Thepresent novel coronavirus (SARS-CoV-2) infec-
tion has spread all over the world in a large scale,
but there is no specific effective vaccine, anti-viral
medicine for such infection. The UK, which has made
rapid progress in COVID-19 vaccine trials, has only
approved the use of the vaccine in emergency situ-
ations [25]. There are still many questions about the
effect when it is promoted to millions of people. Thus,
at present, themost effectivemethod is still early detec-
tion and isolation treatment. This approach has been
practiced forcefully in China. In the face of a sudden
epidemic, China built Fangcang shelter hospitals [26]
which are large-scale, extemporaneous hospitals for the
first time to cope with it in February 2020. They trans-
formed the existing public places, for example exhibi-
tion centres and gymnasium, into the Fangcang shelter
hospitals to quarantine patients with COVID-19 and
prevent further infection. This measure reduce the inci-
dence and maintain it at a very low level by strict social
distancing, localized and targeted measures. China has
generally controlled the propagation of COVID-19 by
implementing these measures. Thus, quarantine treat-
ment is still the most effective treatment until specific
effective vaccines and drugs are developed. Although
continuous control can effectively control the epidemic
of infectious diseases, it usually costs a lot ofmanpower
and material resources. In order to achieve the control
goal and reduce the control cost, the optimal control is
a effective method to better control the epidemic situa-
tion [27,28]. The research on COVID-19 is developing
vigorously. Some meaningful results are obtained to
recognize this infectious disease, for example, clinical
studies have shown that the immune system’s memory
of the new coronavirus lingers for at least 6 months in

most people [29].According to the facts and inspired by
[30], a stochastic reaction–diffusion epidemic model
is presented. Diffusion is introduced into it to better
understand and analyse COVID-19, this model will be
elaborated in the next section.

The structure of this paper is as follows. In Sect. 2,
the epidemic models studied in this paper are intro-
duced in detail. In Sect. 3, the sufficient criteria for the
persistence and extinction of disease are derived. In
Sect. 4, we deal with this stochastic model by the given
method and obtain the conditions of how the Turing
instability arises. In Sect. 5, the amplitude equations for
Turing pattern are derived by usingTaylor series expan-
sion and weakly nonlinear analysis. And the stability
of these equations are analysed, by which the selection
of Turing patterns for this model can be determined.
In Sect. 6, the optimal quarantine control problems of
the stochastic model and its corresponding determinis-
tic model are studied. The existence and uniqueness of
the optimal control and the optimal solution are got by
using the optimal control theory. In Sect. 7, an approxi-
mation based on the solution of the deterministicmodel
is used to solve the stochastic optimal control problem
numerically. These results are verified and illustrated
by numerical simulations. Finally, some discussions
and conclusions are made in Sect. 8.

2 The model

In 2020, Anwarud Din et al. [30] had proposed a
stochastic coronavirus (COVID-19) epidemic model,
which consists of three stochastic differential equa-
tions. This model is based on stochastic theories and
study the transmissions dynamic of the novel virus. The
stochastic model is obviously better than the determin-
istic model in describing most phenomena in nature.
That’s because stochasticmodel has some inherent ran-
domness, while the deterministic model is completely
determined by initial condition and parameter value.

Different from the temporal development of epi-
demics that most researchers have focused on in the
past. Many significant epidemiological behaviours are
keenly impacted by space in the process of their trans-
mission and development due to the relevant character-
istics of the transmission environment or other interac-
tions. And its spread can also lead to strong spatial pat-
tern changes, resulting in some new phenomena. The
subjects which are related to the spatial variation in
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disease risk or incidence have attracted more attention
[31]. When the distribution of people is in different
spatial locations, the diffusion terms should be taken
into consideration to accord with the actual situation of
infectious diseases. Hence, on the basis of [30], we pro-
pose novel susceptible-infected-quarantined epidemic
models with spatial diffusion term that are more in line
with the actual characteristics. This model can better
research the spatial and temporal transmission laws of
population epidemics, and improve the awareness of
the epidemiological characteristics of population.

According to the characteristics of COVID-19, the
following assumptions are given.

(i) N (t) = S(t) + I (t) + Q(t) is the total population
which is changing with time t .

(ii) The state variables and parameters in the model are
nonnegative throughout this paper.

(iii) The initially infected individuals move to the quar-
antined class.

(iv) Once the infection is confirmed, then the quaran-
tined will be sent back to the infected area.

Based on the above assumptions (i)–(iv), we pro-
posed the following model

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dS = [d1∇2S + A − βSI − μ0S]dt + η1R1dB1,

dI = [d2∇2 I + βSI − (r1 + μ1 + μ0)I

+σQ]dt + η2R2dB2,

dQ = [d3∇2Q + r1 I − (μ0

+μ + σ)Q]dt + η3R3dB3,

(2.1)

where S is the susceptible individuals. I denotes the
infected individuals. Q represents the quarantine indi-
viduals. ∇2 = ∂2

∂x2
+ ∂2

∂y2
is the Laplacian operator in

two-dimensional space and di (i = 1, 2, 3) are dif-
fusion coefficients. Bi (i = 1, 2, 3) is the Brownian
motion, Ri = Ri (S, I, Q), (i = 1, 2, 3) are locally
Lipschitz-continuous functions. According to the dif-
ferent problems studied, the specific forms of Ri are
also different. In the problems investigated in this paper,
they have two forms:

H1: One recorded as form H1 is R1 = S, R2 =
I, R3 = Q, i.e., the environmental influence on
the individuals described by stochastic perturba-
tions [32].

H2: Second one recorded as form H2 is R1 = S − S0,
R2 = I − I0, R3 = Q − Q0 where (S0, I0, Q0) is

the equilibrium point of (2.1) after removing diffu-
sion terms and stochastic terms, i.e., the situation
of stochastic perturbations around the equilibrium
state [33].

The parameters in (2.1) are summarized as follows:

A : the per capita constant fecundity rate;
β : transmission coefficient between S and I;
μ0 : the per capita natural mortality rate;
r1 : the rate for individuals leaving I for Q;
μ1 : disease-caused death rate of infectious indi-
viduals;
σ : the rate for individuals leaving Q for I;
μ : disease-caused death rate of quarantined indi-
viduals;
ηi : noise magnitude (i = 1, 2, 3).

If d1 = d2 = d3 = 0, then (2.1) is reduced to the
following model,

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dS = [A − βSI − μ0S]dt + η1R1dB1,

dI = [βSI − (r1 + μ1 + μ0)I + σQ]dt
+η2R2dB2,

dQ = [r1 I − (μ0 + μ + σ)Q]dt + η3R3dB3.

(2.2)

The difference between (2.2) and the model from
[30] is that the incidence rate varies in form, one is
bilinear incidence rate βSI , and the other is standard

incidence rate
βSI

N
. If η1 = η2 = η3 = 0, then (2.2) is

simplified to the underlying deterministic model. With
regard to this deterministic system, we give the follow-
ing results according to [34].

The total population N (t) satisfies
dN (t)

dt
= A −

μ0N (t)−μ1 I (t)−μQ(t).When there is nodisease, the
population size N (t) approaches the carrying capac-

ity
A

μ0
. The solutions of the underlying deterministic

model are always within �1 ∈ R3+ which defined by

�1 = {(S, I, Q)|S ≥ 0, I ≥ 0, Q ≥ 0, S + I

+Q ≤ A

μ0
}.

The basic reproduction number (or the threshold) R0

of the underlying deterministicmodel corresponding to
(2.2) is determined by using the next generation matrix
method [35]:

R0 = Aβ

μ0R∗ , R∗ = (μ1 + μ0) + r1(μ + μ0)

μ + μ0 + σ
. (2.3)
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If R0 ≤ 1, there exist a unique equilibrium point,
i.e., the disease-free equilibrium (S∗∗, I ∗∗, Q∗∗) =
( A
μ0
, 0, 0). If R0 > 1, there are two equilib-

rium points, a disease-free equilibrium point and a
positive endemic equilibrium point (S∗, I ∗, Q∗) =(
A − I ∗R∗

μ0
, I ∗, r1 I ∗

μ + μ0 + σ

)

, where I ∗ = A

R∗ −
μ0

β
.

Next, some related theories in stochastic differential
equations [36] are given.

Let (�, {Ft }, P∗) be the complete probability
space with filtration {Ft }t≥0 which satisfy X (t) =
(S(t), I (t), Q(t)), |X (t)| = [S2(t)+ I 2(t)+Q2(t)] 12 ,
and Rd+ = {x ∈ Rd : χ > 0, j = 1, . . . , d}. For some
n ∈ N , some x0 ∈ Rn , and n-dimensional Brownian
motion B(t), we have the general n-dimensional SDE
as follows,

⎧
⎨

⎩

dx(t)

dt
= F(x(t), t) + G(x(t), t)

dB(t)

dt
,

x(0) = x0.
(2.4)

Define the differential operator L related to the func-
tion in (2.4), and operate L on a function U (t, x) ∈
C2,1(Rn × [t0,∞] ; R+) to obtain

LU = ∂U

∂t
+ FT ∂U

∂x
+ 1

2
tr [GT ∂2U

∂x2
G]. (2.5)

Then, the following two theorems show the exis-
tence of the unique positive global solution of stochas-
tic model (2.2) with form H1 and H2.

Theorem 2.1 There exist a unique solution (S((t),
I (t), Q(t)) of model (2.2) with form H1 for all t ≥ 0
with any initial condition (S((0), I (0), Q(0)) ∈ R3+.
Moreover, this solution will always remain in R3+ with
probability one, i.e., (S((t), I (t), Q(t)) ∈ R3+ for
∀t ≥ 0 almost surely (a.s.).

Proof Owing to the local Lipschitz continuity of the
coefficients in the equations with respect to any initial
value (S((0), I (0), Q(0)) ∈ R3+, a unique local solu-
tion (S(t), I (t), Q(t)) on t ∈ [0, τe) must exist. Next
we need to prove the explosion time τe = ∞ (a.s.) to
indicate this solution is global. Assume that all of the
initial conditions belong to [ 1

k0
, k0]×[ 1

k0
, k0]×[ 1

k0
, k0]

where k0 ≥ 0 is sufficiently large. For each integer
k ≥ k0, define the finishing time

τk = inf

{

t ∈ [0, τe) : max{S(t), I (t), Q(t)}

≥ k or min{S(t), I (t), Q(t)} ≤ 1

k

}

.

We set infφ = ∞ (φ is the empty set). As shown
above, τk is increasing as k → ∞. Setting τ∞ =
limk→∞ τk with τ∞ ≤ τe (a.s.). If we have τ∞ = ∞,
then τe = ∞ and (S(t), I (t), Q(t)) ∈ R3+ (a.s.) for
∀t ≥ 0. In the opposite case, there have two constants
ς ∈ (0, 1) and T > 0 make

P {T ≥ τ∞} > ς.

Thus, there exist an integer k1 ≥ k0 makes

P {T ≥ τk} ≥ ς, ∀k1 ≤ k. (2.6)

Next, defining a C2-function V : R3+ → R+ by

V (S, I, Q) = (S − log S − 1) + (I − log I − 1)

+(Q − log Q − 1). (2.7)

From y − 1 − log y ≥ 0, ∀y > 0, we can obtain
this function is nonnegative. Assume that ∀K ≥ k0 and
∀T > 0, and according to the Itô formula, we derive
the following formula

dV (S, I, Q) = LV (S, I, Q)dt + η1(S − 1)dB1(t)

+η2(I − 1)dB2(t) + η3(Q − 1)dB3(t),

(2.8)

where LV : R3+ → R+ is as follows,

LV =
(

1 − 1

S

)

[A − βS(t)I (t) − μ0S(t)] + η21

2

+
(

1 − 1

I

)

[βS(t)I (t) − (μ0 + r1 + μ1)I (t)

+ σQ(t)] + η22

2

+
(

1 − 1

Q

)

[r1 I (t) − (μ0 + μ + σ)Q(t)] + η23

2

≤ A + Aβ

μ0
+ 3μ0 + μ1 + r1 + μ + σ

+ η21 + η22 + η23

2
:= K

(2.9)

Now integrating both sides of (2.8) from 0 to τk ∧ T
where τk ∧ T = min {τk, T },
∫ τk∧T

0
dV (S(s), I (s), Q(s))

≤
∫ τk∧T

0
Kds +

∫ τk∧T

0
[η1(S − 1)dB1(s)

+η2(I − 1)dB2(s) + η3(Q − 1)dB3(s)] .
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Therefore,

E[V (S(τk ∧ T ), I (τk ∧ T ), Q(τk ∧ T ))]

≤ E

[∫ τk∧T

0
Kds

]

+ V (S(0), I (0), Q(0))

≤ KT

+ V (S(0), I (0), Q(0)).

(2.10)

Set �k = {τk ≤ T } for k ≥ k1 and P(�k) ≥ ς .
For ∀ω ∈ �k , there is at least one S(τk, ω), I (τk, ω),

Q(τk, ω) which equals k or 1
k . Thus, V (S(τk, ω),

I (τk, ω), Q(τk, ω)) is no less than (k − 1 − log k) or
( 1k − 1 + log k), then

V (S(τk , ω), I (τk , ω), Q(τk , ω)) ≥ (k − 1 − log k)

∧
(
1

k
− 1 + log k

)

.

According to (2.6) and (2.10), we derive

KT + V (S(0), I (0), Q(0)) ≥ E[1�(ω)V (S(τk , ω),

I (τk , ω), Q(τk , ω))]
≥ ς[(k − 1 − logk)

∧
(
1

k
− 1 + logk

)

],
(2.11)

where 1�(ω) represent the indicator function of �.
Letting k → ∞ leads to the contradiction ∞ =
V (S(0), I (0), Q(0))+KT < ∞, then we have τ∞ =
∞ a.s. ��
Remark 2.1 The above Theorem 2.1 shows that the
solution process of system (2.2) with form H1 is posi-
tive and global.

Theorem 2.2 There exist a unique solution (S((t),
I (t), Q(t)) of model (2.2) with form H2 for all t ≥ 0
with any initial condition (S((0), I (0), Q(0)) ∈ R3+.
Moreover, this solution will always remain in R3+ with
probability one, i.e., (S((t), I (t), Q(t)) ∈ R3+ for
∀t ≥ 0 almost surely (a.s.).

Proof The essence of the proof of this theorem is the
same as that of Theorem 2.1. The specific proof process
is omitted here, and only the differences corresponding
to (2.8) of Theorem 2.1 in the proof of this theorem are

pointed out as follows,

dV (S, I, Q) = [(1 − 1

S
)[A − βS(t)I (t) − μ0S(t)]

+ η21

2

(

1 − S0
S

)2

+ (1 − 1

I
)[βS(t)I (t)

− (μ0 + r1 + μ1)I (t)

+ σQ(t)] + η22

2

(

1 − I0
I

)2

+
(

1 − 1

Q

)

[r1 I (t)
− (μ0 + μ + σ)Q(t)]

+ η23

2

(

1 − Q0

Q

)2

]dt

+ η1

(

1 − 1

S

)

(S − S0) dB1(t)

+ η2

(

1 − 1

I

)

(I − I0) dB2(t)

+ η3

(

1 − 1

Q

)

(Q − Q0) dB3(t).

Then, (2.9) corresponds to the following formula

LV ≤ A + Aβ

μ0
+ 3μ0 + μ1 + r1 + μ + σ

+η21

2

(

1 − S0
S

)2

+ η22

2

(

1 − I0
I

)2

+η23

2

(

1 − Q0

Q

)2

:= K .

The remaining proof process is the same as the pre-
vious theorem. Therefore, this theorem shows that the
solution process of system (2.2) with form H2 is posi-
tive and global. ��

Remark 2.2 In the following sections, wemainly study
two kinds of problems, one is the impact of the stochas-
tic fluctuation of the environment on the existence and
extinction of diseases, and the related optimal quaran-
tine control problems, i.e., the form of stochastic per-
turbations in (2.2) is form H1. The other is the influence
of stochastic perturbations around the equilibrium state
on the pattern formations, i.e., the form of stochastic
perturbations in (2.1) is form H2.
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3 Extinction and stationary distribution criteria

In this section, we investigate the conditions for the
extinction and stationary distribution criteria of this dis-
ease. For the sake of convenience, let

〈X (t)〉 = 1

t

∫ t

0
X (r)dr

In order to prove the extinction and stationary distri-
bution criteria, the following lemmas need to be used.

Lemma 3.1 [36](Strong Law of Large Number) Let
M = {M}t≥0 be a continuous real valued local mar-
tingale and vanishing at t = 0, then

lim
t→∞〈M, M〉t = ∞, a.s. ⇒ lim

t→∞
Mt

〈M, M〉t = 0, a.s.

and also

lim
t→∞ sup

〈M, M〉t
t

< ∞, a.s. ⇒ lim
t→∞

Mt

t
= 0, a.s.

Lemma 3.2 Assume that (S(t), I (t), Q(t)) be a solu-
tion of (2.2) with form H1 along with initial values
(S(0), I (0), Q(0)) ∈ R3+, then lim sup

t→∞
(S(t) + I (t) +

Q(t)) < ∞ a.s. Further,

lim
t→∞

S(t)

t
= 0,

lim
t→∞

I (t)

t
= 0,

lim
t→∞

Q(t)

t
= 0, a.s. :

lim
t→∞

lnS(t)

t
= 0,

lim
t→∞

ln I (t)

t
= 0,

lim
t→∞

lnQ(t)

t
= 0, a.s :

lim
t→∞

1

t

∫ t

0
S(s)dB1(s) = 0,

lim
t→∞

1

t

∫ t

0
I (s)dB2(s) = 0,

lim
t→∞

1

t

∫ t

0
Q(s)dB3(s) = 0, a.s.

Proof From (2.2) with form H1, we can obtain

d(S + I + Q) = [A − μ0(S + I + Q)

−μ1 I − μQ] dt + η1SdB1

+η2 I dB2 + η3QdB3.

Solving this above equation,

S(t) + I (t) + Q(t) = A

μ0
+
(

S(0) + I (0) + Q(0)

− A

μ0

)

e−μ0t

− μ1

∫ t

0
I (s)e−μ0(t−s)ds,

− μ0

∫ t

0
Q(s)e−μ0(t−s)ds

+ η1

∫ t

0
S(s)e−μ0(t−s)dB1(s),

+ η2

∫ t

0
I (s)e−μ0(t−s)dB2(s)

+ η3

∫ t

0
Q(s)e−μ0(t−s)dB3(s),

≤ A

μ0
+
(

S(0) + I (0) + Q(0)

− A

μ0

)

e−μ0t + M(t) a.s.,

where M = η1
∫ t
0 S(s)e−μ0(t−s)dB1(s) + η2

∫ t
0 I (s)

e−μ0(t−s)dB2(s) + η3
∫ t
0 Q(s)e−μ0(t−s)dB3(s).

Obviously, M(t) is a continuous local martingale
with M(0) = 0. We define

X (t) = A(t) + M(t) − Q(t) + X (0),

where A(t) = A

μ0
(1− e−μ0t ), Q(t) = (S(0)+ I (0)+

Q(0))(1 − e−μ0t ), X (0) = S(0) + I (0) + Q(0).
Thus, we have S(t) + I (t) + Q(t) ≤ X (t) a.s.

for all t ≥ 0. It is clear that A(t) and Q(t) are con-
tinuous adapted increasing processes on t ≥ 0 with
A(0) = Q(0). By Theorem 1.3.9 in [36], we obtain
lim

t−→∞ X (t) ≤ ∞. Therefore,

lim
t−→∞(S(t) + I (t) + Q(t)) ≤ ∞, a.s.

Then, the following results can be got

lim
t→∞

S(t)

t
= 0, lim

t→∞
I (t)

t
= 0, lim

t→∞
Q(t)

t
= 0, a.s. :

lim
t→∞

lnS(t)

t
= 0, lim

t→∞
ln I (t)

t
= 0,

lim
t→∞

lnQ(t)

t
= 0, a.s.

Setting

M1(t) =
∫ t

0
S(s)dB1(s), M2(t) =

∫ t

0
I (s)dB2(s),
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M3(t) =
∫ t

0
Q(s)dB3(s).

Since the quadratic variations, we have

〈M1(t), M1(t)〉t =
∫ t

0
S2(s)ds ≤ (sup

t≥0
S2(t))t.

By using Lemma 3.1, we obtain

lim
t→∞

1

t

∫ t

0
S(s)dB1(s) = 0, a.s.

Similarly, we can also obtain

lim
t→∞

1

t

∫ t

0
I (s)dB2(s) = 0,

lim
t→∞

1

t

∫ t

0
Q(s)dB3(s) = 0, a.s.

��
Lemma 3.3 [36,37] Suppose that X(t) is a regular
Markov process in Rn+ whose dynamics is given by

dX (t) = b(X)dt +
k∑

r=1

gr (X)dBr (t).

The diffusion matrix is defined as follows

A(X) = (ai j (x)), ai j (x) =
k∑

r=1

gir (x)g
j
r (x).

TheMarkov process X (t) has a unique ergodic station-
ary distribution π(·) if there exists a bounded domain
D ⊂ Rd with regular boundary � and

(i) There is a positive number M such that
∑3

i, j=1 ai j (x)κiκ j ≥ M | κ |2, x ∈ D, κ ∈ Rd.

(i i) There exists a nonnegative C2-function V ∗ such
that LV ∗ is negative for any Rd \ D,then

P

{

lim
T→∞

1

T

∫ T

0
F(Xx (t))dt=

∫

Rd
F(x)π(dx)

}

=1,

for all x ∈ Rd, where F(·) is an integrable function
with respect to measure π .

In order to illustrate the extinction of disease, the
following result can be obtained,

Theorem 3.1 Assume that the model (2.2) with form
H1 has a solution (S((t), I (t), Q(t)) with initial value
(S((0), I (0), Q(0)) ∈ R3+. If RS

0 = (Aβ+σμ0)

μ0(μ0+μ1+r1+ η22
2 )

< 1, then

lim
t−→∞ sup

(
lnI (t)

t

)

≤(μ0+μ1+r1)(R
S
0 −1)<0, a.s.,

I(t) approaches zero exponentially a.s., i.e., the infec-
tion of COVID-19 will die out from the community with
probability 1. And

lim
t−→∞〈S(t)〉= A

μ0
, lim
t−→∞〈Q(t)〉 = 0, a.s.

Proof We integrate (2.2) with form H1 directly, and
apply the Itô formula to the second formula of (2.2),

dlnI (t) = [βS − (μ0 + μ1 + r1)

+σQ

I
− η22

2
]dt + η2dB2(t). (3.1)

By integrating relation (3.1) from 0 to t , then we can
get

lnI (t) − lnI (0) ≤
∫ t

0

[
Aβ

μ0
−
(

μ0 + μ1 + r1

+η22

2

)

+ σ

]

ds + η2

(

1 − I0
I

)

dB2(t)

≤
[(

Aβ

μ0
+ σ

)

−
(

μ0 + μ1 + r1 + η22

2

)]

t

+ η2dB2(t)

≤
(

μ0 + μ1 + r1 + η22

2

)

×
⎡

⎣
(Aβ + σμ0)

μ0(μ0 + μ1 + r1 + η22
2 )

− 1

⎤

⎦ t + η2dB2(t)

≤
(

μ0 + μ1 + r1 + η22

2

)

(RS
0 − 1)t + η2dB2(t).

(3.2)

According to the theorem of large number in [36],
we obtain

lim
t−→∞

B2(t)

t
= 0, a.s.

Taking the limit superior on both sides of (3.2) and
when RS

0 < 1

lim
t−→∞ sup

lnI (t)

t
≤
(

μ0 + μ1 + r1 + η22

2

)

(
RS
0 − 1

)
< 0, a.s.

then, based on Lemma 3.2, we can obtain

lim
t−→∞ I (t) = 0, a.s.

and

lim
t−→∞〈I (t)〉 = 0, a.s.
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Now, according to (2.2)
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(t) − S(0)

t
=A − β〈S(t)I (t)〉

− μ0〈S(t)〉 + η1

t

∫ t

0
SdB1(s),

I (t) − I (0)

t
=β〈S(t)I (t)〉 − (r1 + μ1

+ μ0)〈I (t)〉 + σ 〈Q(t)〉
+ η2

t

∫ t

0
I dB2(s),

Q(t) − Q(0)

t
=r1〈I (t)〉 − (μ0 + μ + σ)〈Q(t)〉

+ η3

t

∫ t

0
QdB3(s).

(3.3)

Adding both sides of each equations in (3.3) respec-
tively, we get

S(t) − S(0)

t
+ I (t) − I (0)

t
+ Q(t) − Q(0)

t
= A − μ0〈S(t)〉 − (μ0 + μ1)〈I (t)〉

− (μ0 + μ)〈Q(t)〉
+ η1

t

∫ t

0
SdB1(s) + η2

t

∫ t

0
I dB2(s)

+ η3

t

∫ t

0
QdB3(s),

(3.4)

the following formula is obtained by calculation

〈S(t)〉 = A

μ0
− μ0 + μ1

μ0
〈I (t)〉 − μ0 + μ

μ0
〈Q(t)〉

+ 1

μ0
[− S(t) − S(0)

t
− I (t) − I (0)

t

− Q(t) − Q(0)

t

+ η1

t

∫ t

0
SdB1(s) + η2

t

∫ t

0
I dB2(s)

+ η3

t

∫ t

0
QdB3(s)].

(3.5)

According to the third equation in (3.3), we obtain

〈Q(t)〉 = 1

(μ0 + μ + σ)
[r1〈I (t)〉 − Q(t) − Q(0)

t

+η3

t

∫ t

0
QdB3(s)].

Based on Lemma 3.2, we can get

lim
t−→∞〈Q(t)〉 = 0, a.s.

And (3.5) and Lemma 3.2 imply

lim
t−→∞〈S(t)〉 = A

μ0
, a.s.

��
In order to illustrate the stationary distribution of

disease, we can obtain the following result,

Theorem 3.2 The solution (S(t), I (t), Q(t)) of (2.2)
with form H1 is ergodic and there is a unique stationary
distribution π(·) when RS

1 = Aβ

(μ0+ η21
2 )(μ0+μ1+r1+ η22

2 )

>

1.

Proof This theorem is mainly proved by Lemma 3.3.
Firstly, the diffusion matrix of (2.2) with form H1 as
follows

A =
⎛

⎝
η21S

2 0 0
0 η22 I

2 0
0 0 η23Q

2

⎞

⎠ .

Furthermore, if we choose M =
min(S,I,Q)∈D⊂R3+{η21S2, η22 I 2, η23Q2}, then we obtain
3∑

i, j=1

ai j (S, I, Q)κiκ j = η21S
2κ2

1 + η22 I
2κ2

2

+η23Q
2κ2

3 ≥ M | κ |2,
where (S, I, Q) ∈ D, κ = (κ1, κ2, κ3) ∈ R3+. Then,
(i) in Lemma 3.3 holds.

Secondly, the key is to construct a nonnegative C2-
function V ∗ : R3+ → R+. Firstly, we construct

V1 = c3V2 − (lnS + lnQ) + S + I + Q,

where c1, c2, c3 are the positive constant and will be
determined later, V2 = S + I + Q − c1lnS − c2lnI . It
is obvious that

liminf
k→∞, (S,I,Q)∈R3+\Uk

V1(S, I, Q) = +∞, (3.6)

where Uk = ( 1k , k) × ( 1k , k) × ( 1k , k).
It can be obtained by calculation that

∂V1
∂S

= 1 + c3 − 1 + c1c3
S

,
∂V1
∂ I

= 1 + c3 − c2c3
I

,

∂V1
∂Q

= 1 + c3 − c3
Q

,

then, V1 have only one stagnation point (S∗
0 , I

∗
0 , Q∗

0) =
(
1 + c1c3
1 + c3

,
c2c3
1 + c3

,
c3

1 + c3
). According to the Hesse
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matrix of V1 at this stagnation point is positive defi-
nite, we can obtain V1(S, I, Q) has a minimum value
V1(S∗

0 , I
∗
0 , Q∗

0). From (3.6), we can say that V1 has one
unique minimum value inside R3+.

Next, we construct a nonnegative C2-function V ∗ :
R3+ → R+ as follows

V ∗(S, I, Q) = V1(S, I, Q) − V1(S
∗
0 , I

∗
0 , Q∗

0). (3.7)

We consider V2 by using (2.2) and (2.5), the follow-
ing formula can be obtained

LV2 =
(
1 − c1

S

)
(A − βSI − μ0S)

+ c1η21
2

+
(
1 − c2

S

)
[βSI

− (μ0 + μ1 + r1)I + σQ] + c2η22 I
2

2S2

+ [r1 I − (μ0 + μ + σ)Q]
≤ −3[c1c2βμ0A(S + I + Q)] 13

− μ1 I − μQ + A + c1β I

+ c1μ0 + c1η21
2

+ c2(μ0 + μ1 + r1) + c2σQ

I
+ c2η22

2

≤ −3(c1c2βA2)
1
3 + c1

(

μ0 + η21

2

)

+ c2

(

μ0 + μ1 + r1 + η22

2

)

+ c1β I + c2σQ

I
+ A − μ1 I − μQ.

(3.8)

Let

c1

(

μ0 + η21

2

)

= c2

(

μ0 + μ1 + r1 + η22

2

)

= A,

that means

LV2 ≤ −3A

⎡

⎢
⎢
⎢
⎣

⎛

⎜
⎜
⎝

Aβ
(

μ0 + η21
2

)(

μ0 + μ1 + r1 + η22
2

)

⎞

⎟
⎟
⎠

1
3

− 1

⎤

⎥
⎥
⎥
⎦

+c1β I + c2σQ

I
, (3.9)

which implies RS
1 = Aβ

(μ0 + η21
2 )(μ0 + μ1 + r1 + η22

2 )

.

Then, we have

LV ∗ ≤ −c3c4 + c1c3β I + c2c3σQ

I
− A

S

+ Aβ

μ0
+ 2μ0 + η21 + η23

2
+

μ + σ + A − μ0(S + I + Q) − r1 I

Q
,

(3.10)

where c4 = 3A[(RS
1 )

1
3 − 1] > 0.

We divide R3+ \ D into six regions as follows,

D1 = {(S, I, Q) ∈ R3+, 0 < S ≤ δ1},
D2 = {(S, I, Q) ∈ R3+, 0 < I ≤ δ2, S > δ1},
D3 = {(S, I, Q) ∈ R3+, 0 < Q ≤ δ3, I > δ2},
D4 = {(S, I, Q) ∈ R3+, S ≥ 1

δ4
},

D5 = {(S, I, Q) ∈ R3+, I ≥ 1

δ5
},

D6 = {(S, I, Q) ∈ R3+, Q ≥ 1

δ6
},

where D = {δ1 < S <
1

δ4
, δ2 < I <

1

δ5
, δ3 <

Q <
1

δ6
}, δi > 0 (i = 1, . . . , 6) are sufficiently small

constants. In the set R3+ \D, we can choose sufficiently
small δi > 0 (i = 1, . . . , 6) such that these conditions

hold: δ2 = δ21, δ3 = δ31,−
A

δ1
+ K 1 < 0,− r1

δ1
+ K 1 <

0,−μ0

δi
+K 1 < 0, (i = 4, 5, 6). where K 1 is positive

constant which can be determined at later stages [37].
Next, we will prove LV ∗(S, I, Q) < 0 on R3+ \ D,

(i) If (S, I, Q) ∈ D1, then through (3.10), we can
obtain

LV ∗ ≤ c1c3β I + c2c3σ + βA

μ0
+ 2μ0

+ η21 + η23

2
+ μ + σ + A − A

δ1
,

≤ − A

δ1
+ K 1 < 0,

where

K 1 = sup
(S,I,Q)∈R3+

{

c1c3β I + c2c3σ + βA

μ0
+ 2μ0

+η21 + η23

2
+ μ + σ + A

}

.
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(i i) If (S, I, Q) ∈ D2, then through (3.10), we can get

LV ∗ ≤ c1c3βδ2 + c2c3σ + βA

μ0
+ 2μ0

+η21 + η23

2
+ μ + σ + A − c3c4,

we select a big enough c3 > 0 and as small as
possible δ2 > 0 such that LV ∗ < 0 for (S, I, Q) ∈
D2.

(i i i) If (S, I, Q) ∈ D3, then through (3.10), we can
derive

LV ∗ ≤ c1c3β I + c2c3σ + βA

μ0
+ 2μ0

+ η21 + η23

2
+ μ + σ + A − r1δ2

δ3
,

≤ − r1
δ1

+ K 1 < 0.

(iv) If (S, I, Q) ∈ Di , (i = 4, 5, 6), then through
(3.10), we can gain

LV ∗ ≤ c1c3β I + c2c3σ + βA

μ0
+ 2μ0

+ η21 + η23

2
+ μ + σ + A − μ0

δi
,

≤ −μ0

δi
+ K 1 < 0.

Thus, under some above suitable conditions,LV ∗ <

0 for all (S, I, Q) ∈ R3+ \ D. Then, (i i) in Lemma 3.3
holds.

In conclusion, through Lemma 3.3, we can get (2.2)
with form H1 is ergodic and it has one and only one
stationary distribution. These are further verified in the
later numerical simulations (Figs. 2, 3). ��

4 Turing instability

In (2.1), let R1 = S − S0, R2 = I − I0, R3 = Q −
Q0 where (S0, I0, Q0) is the equilibrium point of the
underlying deterministic model corresponding to (2.2),
i.e., the form H2 of stochastic perturbations mentioned
above. Then, this means the situation of a white noise
stochastic perturbations around the equilibrium state
of the underlying deterministic model corresponding
to (2.2) is considered. From the relationship between
the white noise ξ(t) and the Brownian motion B(t),

dB(t) = ξ(t)dt , we let

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dB1(t) =
[

1√
2πσ0

exp

(
−(S − S0)2

2σ 2
0

)]

dt,

dB2(t) =
[

1√
2πσ0

exp

(
−(I − I0)2

2σ 2
0

)]

dt,

dB3(t) =
[

1√
2πσ0

exp

(
−(Q − Q0)

2

2σ 2
0

)]

dt.

where σ0 is the variance of the Gaussian distribution
satisfied. Then when R0 > 1, (2.1) has two equi-
librium points, i.e., (S∗∗, I ∗∗, Q∗∗) and (S∗, I ∗, Q∗).
In this section, Turing instability [38] of the positive
equilibrium of (2.1) with form H2 is studied, i.e., the
white noise perturbations around the endemic equilib-
rium state. In the following, the positive equilibrium
point (S∗, I ∗, Q∗) is denoted as (S0, I0, Q0). And the
zero-flux boundary conditions as follows,

∂S

∂n
= ∂ I

∂n
= ∂Q

∂n
= 0,

where n is space, (x, y) ∈ ∂� and � is spatial domain.
Next, linearising (2.1) with form H2 around (S0, I0,

Q0) which depends on time and space [39], here we
expand the stochastic terms by Taylor expansion and
then keep the linear terms, we can obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= d1∇2S − βS0 I − (β I0 + μ0)S + η11S,

dI

dt
= d2∇2 I + (βS0 − r1

−μ1 − μ0)I + β I0S + σQ + η21 I,
dQ

dt
= d3∇2Q + r1 I − (μ0 + μ + σ)Q + η31Q.

(4.1)

where ηi1 = ηi√
2πσ0

, (i = 1, 2, 3). And we can get

the system governing the dynamics of P is defined by

Pt = DP + E∇2P (4.2)

where the coefficient matrix is given by

D =
⎛

⎝
D11 D12 D13

D21 D22 D23

D31 D32 D33

⎞

⎠ , E =
⎛

⎝
d1 0 0
0 d2 0
0 0 d3

⎞

⎠ , (4.3)
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where

D11 = η11 − β I0 − μ0,

D22 = η21 + βS0 − r1 − μ1 − μ0,

D33 = η31 − μ0 − μ − σ,

D12 = −βS0, D21 = β I0,

D23 = σ, D32 = r1, D13 = D31 = 0.

We assume P take the following form,

P = (c1, c2, c3)
′
exp(λk t + ik · r), (4.4)

wherek·k = k2 and k is thewave number, r = (x, y) is
the spatial vector in two dimensions, i is the imaginary
unit, i2 = −1, then we obtain the following character-
istic matrix

A(k) =
⎛

⎝
D11 − d1k2 D12 D13

D21 D22 − d2k2 D23

D31 D32 D33 − d3k2

⎞

⎠ .

(4.5)

Therefore, we have the following characteristic equa-
tion,

λ3k + p2λ
2
k + p1λk + p0 = 0 (4.6)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p2 = (d1 + d2 + d3)k2 − (D11 + D22 + D33),

p1 = (d2d3 + d2d1 + d1d3)k4 − [D22(d3
+d1) + D33(d2 + d1) + D11(d3 + d2)]k2
+D11D33 + D11D22 + D22D33 − D32D23

−D12D21 − D13D31,

p0 = d1d2d3k6 − (d2d1D33 + d1d3D22

+d2d3D11)k4 + [d1(D22D33 − D32D23)

+d2(D11D33 − D13D31) + d3(D22D11

−D12D21)]k2 + D11D32D23

+D22D13D31 + D33D12D21 − D11D22D33

−D31D23D12 − D13D21D32.

(4.7)

According toRouth–Hurwitz criterion, all the eigen-
values have negative real parts if and only if

(i)p2(k) > 0, (i i)p0(k) > 0,

(i i i)p0(k) − p1(k)p2(k) < 0. (4.8)

Turing instability occurs if the equilibrium point
(S0, I0, Q0) is stable without diffusion, but driven

unstable by diffusion, i.e., with respect to certain value
of k(> 0). It is clear that (S0, I0, Q0) is locally asymp-
totically stable without diffusion if and only if

(i)p2(0) > 0, (i i)p0(0) > 0,

(i i i)p0(0) − p1(0)p2(0) < 0. (4.9)

Therefore, if at least one of the three conditions in (4.8)
does not hold, thenTuring instability occurs. So accord-
ing to (4.7), we let

p0(k
2) = g3k

6 + g2k
4 + g1k

2 + g0, (4.10)

where g3 > 0 and g0 > 0.
If we want to find some real number k2(> 0) such

that the value of p0 is negative, then min p0(k2) < 0
must be true, and here

k2 = k2c =
−g2 +

√

g22 − 3g1g3

3g3
. (4.11)

where k2c is real and positive if

g1 < 0 or, g2 < 0 and 3g1g3 < g22 . (4.12)

Therefore,

p0(k
2
c ) = 27g23g0 + 2g32 − 2(g22 − 3g1g3)

3
2 − 9g1g2g3

27g23
.

(4.13)

When p0(k2c ) < 0 if

27g23g0 + 2g32 − 2(g22 − 3g1g3)
3
2 − 9g1g2g3 < 0.

(4.14)

The conditions (4.12) and (4.14) are sufficient for the
occurrence of Turing instability with noise. And con-
ditions (4.9), (4.12) and (4.14) represent together the
analytical Turing space in parametric space of model
(4.1). Thus, from the perspective of diffusion, we must
do our best to control the diffusion of the infectious to
avoid another outbreak of COVID-19.

5 Amplitude equations for Turing patterns

The specific expression of amplitude equations for Tur-
ing patterns plays an important role in pattern selection
theory. From the point of view of epidemiology, Turing
patterns may lead to the homogeneous steady state in
the spatial domain by changing the control parameter
or diffusion parameter. In this section, we choose r1
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as the control parameter, and use multiple scale anal-
ysis to derive the amplitude equations. We utilise the
Taylor series expansion to expand the stochastic terms
of (2.1) with form H2 at (S0, I0, Q0), then we trun-
cate the expansion at third order and higher order have
no effect on the amplitude equations in the process. In
order to obtain the amplitude equations, we write (2.1)
with form H2 around the equilibriumpoint (S0, I0, Q0)

as follows

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS

dt
= d1∇2S − βS0 I − (β I0 + μ0)S − βSI

+η11S − η12S3,
dI

dt
= d2∇2 I + (βS0 − r1 − μ1 − μ0)I

+β I0S + σQ + βSI + η21 I − η22 I 3,
dQ

dt
= d3∇2Q + r1 I − (μ0 + μ + σ)Q

+η31Q − η32Q3,

(5.1)

where ηi2 = ηi1

2σ 2
0

, (i = 1, 2, 3).

In the following, we use multiple scale analysis
to derive the amplitude equations with wave vector
k j ( j = 1, 2, 3), k j (i = 1, 2, 3) are different types
of modes corresponding to the Turing patterns associ-
ated with an angle of 2π

3 within each pair, which satisfy
| k j |= kc and k1+k2+k3 = 0. Near the critical point,
the solution of (5.1) can be expanded as

P =
⎛

⎝
S
I
Q

⎞

⎠ = P ·
3∑

j=1

K je
ik j ·r + c.c.

where P is the eigenvector of the linearised opera-
tor, K j are the amplitudes associated with the modes
k j ( j = 1, 2, 3), and c.c. denotes complex conjugate.
Now we rewrite (5.1) as the following form

Pt = LP + N , (5.2)

where

L = D + �, � =
⎛

⎝
d1∇2 0 0
0 d2∇2 0
0 0 d3∇2

⎞

⎠ ,

N =
⎛

⎝
−η21S3 − βSI
−η22 I 3 + βSI

−η32Q3

⎞

⎠ . (5.3)

Next, we investigate over the expansion around the Tur-
ing threshold constant r1c and we obtain as follows,

P =
⎛

⎝
S
I
Q

⎞

⎠ = εP1 + ε2P2 + ε3P3 + · · · , (5.4)

where

P1 =
⎛

⎝
S1
I1
Q1

⎞

⎠ , P2 =
⎛

⎝
S2
I2
Q2

⎞

⎠ , P3 =
⎛

⎝
S3
I3
Q3

⎞

⎠ ,

such that,

r1c − r1 = εr11 + ε2r12 + · · · , (5.5)
∂

∂t
= ε

∂

∂T1
+ ε2

∂

∂T2
+ · · · , (5.6)

where T1 = εt, T2 = ε2t .
Under the time scales T1 = εt, T2 = ε2t , we have

∂K

∂t
= ε

∂K1

∂T1
+ ε2

∂K2

∂T2
+ · · · , (5.7)

where K is amplitude.
The operator L at the point r1 = r1c can be expanded

as

L = Lc + (r1c − r1)M, (5.8)

where

Lc =
⎛

⎝
D11+d1∇2 D12 D13

D21 Dc
22+d2∇2 D23

D31 Dc
32 D33+d3∇2

⎞

⎠ ,

Dc
22=η21 + βS0 − r1c − μ1 − μ0, Dc

32=r1c, (5.9)

and

M =
⎛

⎝
0 0 0
0 1 0
0 −1 0

⎞

⎠ . (5.10)

Substituting the above formulas into (5.2) and
expanding it with respect to different orders of ε, then
the following three equations can be obtained,

Lc

⎛

⎝
S1
I1
Q1

⎞

⎠ = 0, Lc

⎛

⎝
S2
I2
Q2

⎞

⎠ = L1, Lc

⎛

⎝
S3
I3
Q3

⎞

⎠ = L2,

(5.11)
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where

L1 = ∂

∂T1

⎛

⎝
S1
I1
Q1

⎞

⎠− r11M

⎛

⎝
S1
I1
Q1

⎞

⎠−
⎛

⎝
−βS1 I1
βS1 I1
0

⎞

⎠ ,

L2 = ∂

∂T1

⎛

⎝
S2
I2
Q2

⎞

⎠− ∂

∂T2

⎛

⎝
S1
I1
Q1

⎞

⎠− r11M

⎛

⎝
S2
I2
Q2

⎞

⎠

− r12M

⎛

⎝
S1
I1
Q1

⎞

⎠

−
⎛

⎝
−βS1 I2 − βS2 I1 − η12S31
βS1 I2 + βS2 I1 − η22 I 31

−η32Q3
1

⎞

⎠ .

By solving the first formula of (5.11), we have
⎛

⎝
S1
I1
Q1

⎞

⎠ =
⎛

⎝
ξ1
1
0

⎞

⎠ (W1e
ik1·r + W2e

ik2·r

+W3e
ik3·r + c.c.), (5.12)

where ξ1 = βS0
η11−β I0−μ0−d1k2c

, Wj ( j = 1, 2, 3) are

termed as the amplitude of the mode eik j ·r and its form
is determined by the perturbational term of the higher
order.

Then using the solvability condition of Fredholm to
determine whether the second formula of (5.11) has a
nontrivial solution or not. Next, considering of operator
L+
c which is the adjoint operator of Lc, and the zero

eigenvectors of operator L+
c are

⎛

⎝
S+
1
I+
1

Q+
1

⎞

⎠ =
⎛

⎝
1
ξ2
0

⎞

⎠ (W1e
ik1·r + W2e

ik2·r

+W3e
ik3·r + c.c.), (5.13)

where ξ2 = η11 − β I0 − μ0 − d1k2c
β I0

.

Substituting (5.12) into the second formula of (5.11),
we can get

Lc

⎛

⎝
S2
I2
Q2

⎞

⎠ =

⎛

⎜
⎜
⎜
⎝

ξ1
∂Wj

∂T1
∂Wj

∂T1
0

⎞

⎟
⎟
⎟
⎠

− r11

⎛

⎝
0

−Wj

Wj

⎞

⎠

−
⎛

⎝
u1WlWm

u2WlWm

0

⎞

⎠ , (5.14)

where
{
u1 = −2βξ1, u2 = 2βξ1,

j, l,m = 1, 2, 3; j �= l,m; l �= m.

According to the Fredholm solubility condition, the
vector function of the right hand of (5.14) must be
orthogonal with the zero eigenvectors of operator L+

c
to ensure the existence of the nontrivial solution of this
equation, then comparing the value of the coefficient
of eik j ·r, we have
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂W1

∂T1
= −r11ξ2W1 + (u1 + ξ2u2)W 2W 3

ξ1 + ξ2
,

∂W2

∂T1
= −r11ξ2W2 + (u1 + ξ2u2)W 1W 3

ξ1 + ξ2
,

∂W3

∂T1
= −r11ξ2W3 + (u1 + ξ2u2)W 1W 2

ξ1 + ξ2
.

(5.15)

Now, we let
⎛

⎝
S2
I2
Q2

⎞

⎠ =
⎛

⎝
S02
I 02
Q0

2

⎞

⎠+
3∑

j=1

⎛

⎜
⎝

S j
2

I j2
Q j

2

⎞

⎟
⎠ eik j ·r

+
3∑

j=1

⎛

⎜
⎝

S j j
2

I j j2

Q j j
2

⎞

⎟
⎠ e2ik j ·r

+
⎛

⎝
S122
I 122
Q12

2

⎞

⎠ ei(k1−k2)·r

+
⎛

⎝
S232
I 232
Q23

2

⎞

⎠ ei(k2−k3)·r

+
⎛

⎝
S312
I 312
Q31

2

⎞

⎠ ei(k3−k1)·r + c.c.

(5.16)

By replacing the (5.16) into the second formula of
(5.11) and the results is as follows for j �= k; j, k =
1, 2, 3; ( j, k) = (1, 2), (2, 3), (3, 1),
⎛

⎝
S02
I 02
Q0

2

⎞

⎠ =
⎛

⎝
R11

R12

R13

⎞

⎠ (|W1|2 + |W2|2 + |W3|2),
⎛

⎜
⎝

S j j
2

I j j2

Q j j
2

⎞

⎟
⎠ =

⎛

⎝
R21

R22

R23

⎞

⎠
W 2

j

2
,

⎛

⎜
⎝

S jk
2

I jk2
Q jk

2

⎞

⎟
⎠ =

⎛

⎝
R31

R32

R33

⎞

⎠
WjWk

2
.

(5.17)
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where

R11 = [−u1D23(D
c
22D33 − D23D

c
32)

−D12D23(u3D23 − u2D33)]/[D11

D23(D22D33 − D23D
c
32 − D21D33D12D23)],

R12 = [−u1D23D21D33 − D11D23(u3D23

−u2D33)]/[D12D23D21D33 −
D11D23(D

c
22D33 − D23D

c
32)],

R13 = [u1D23D21D
c
32 − (u3D23 − u2D33)(D12D21

−D11D
c
22)]/[D11D23

D21D
c
32 + D21D33(D12D21 − D11D

c
22)],

R21 = [−u1D23((D
c
22 − 4d2k

2
c )(D33 − 4d3k

2
c )

−D23D
c
32) − D12D23(u3D23

−u2(D33 − 4d3k
2
c ))]/[D23(D11

−4d1k
2
c )((D

c
22 − 4d2k

2
c )(D33 − 4d3k

2
c )

−Dc
23D33) − D12D23(D21(D33 − 4d3k

2
c )

−D23D31)],
R22 = [−u1D23(D21(D33 − 4d3k

2
c ) − D23D32)

−(u3D23 − u2(D33 − 4d3k
2
c ))

D23(D11 − 4d1k
2
c )]/[(D21(D33 − 4d3k

2
c )

−D23D32)(D12D23 − D13(D
c
22

−4d2k
2
c )) − ((Dc

22 − 4d2k
2
c )(D33 − 4d3k

2
c )

−D23D
c
32)(D11 − 4d1k

2
c )],

R23 = [(u2(D11 − 4d1k
2
c ) − u1D21)(D31(D

c
22

−4d2k
2
c ) − D21D

c
32) − (u3D21

−u2D31)(D12D21 − (D11 − 4d1k
2
c )(D

c
22

−4d2k
2
c ))]/[(D13D21 − D23

(D11 − 4d1k
2
c ))(D

c
22 − 4d2k

2
c ) − D21D

c
32)

−(D23D31 − D21(D33 −
4d3k

2
c ))(D12D21 − (D11 − 4d1k

2
c )

(Dc
22 − 4d2k

2
c ))],

R31 = [−u1D23((D
c
22 − 3d2k

2
c )(D33 − 3d3k

2
c )

−D23D
c
32) − D12D23(u3D23 −

u2(D33 − 3d3k
2
c )]/[(D23(D11 − 3d1k

2
c )

−D13D21)((D
c
22 − 3d2k

2
c )

(D33 − 3d3k
2
c ) − D23D

c
32) − D12D23(D21(D33

−3d3k
2
c ))],

R32 = [−u1D23(D21(D33 − 3d3)k
2
c ) − (D23(D11

−3d1k
2
c )(u3D23 − u2(D33

−3d3k
2
c )]/[D12D23(D21(D33 − 3d3)k

2
c )

−(D11 − 3d1k
2
c )((D

c
22 −

3d2k
2
c )(D333d3k

2
c ) − D23D

c
32)],

R33 = [−Dc
22D

c
32(u2(D11 − 3d1k

2
c ) − u1D21)

−u3D21(D12D21 − (D11 − 3d1

k2c )(D
c
22 − 3d2k

2
c ))]/[−D21D

c
32(D13D21

−D23(D11 − 3d1k
2
c )) − (D23

D31 − D21(D33 − 3d3k
2
c ))(D12D21

−(D11 − 3d1k
2
c )(D

c
22 − 3d2k

2
c ))].

Substituting the (5.12), (5.16), (5.17) into the third for-
mula of (5.11), and then we have

Lc

⎛

⎝
S3
I3
Q3

⎞

⎠ = ∂

∂T1

⎛

⎜
⎝

S j
2

I j2
Q j

2

⎞

⎟
⎠+

⎛

⎜
⎜
⎜
⎝

ξ1
∂Wj

∂T2
∂Wj

∂T2
0

⎞

⎟
⎟
⎟
⎠

− r11

⎛

⎜
⎝

0

−I j2
I j2

⎞

⎟
⎠− r12

⎛

⎝
0

−Wj

Wj

⎞

⎠

−
⎛

⎝
H11 H12 H13

H21 H22 H23

0 0 0

⎞

⎠

⎛

⎝
|W1|2

|W2|2 + |W3|2
W 2W 3

⎞

⎠

(5.18)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H11 = −β

(

R11 + R21

2

)

− βξ1

(

R21 + R22

2

)

−η12ξ
3
1

2
,

H12 = −β(R11 + R31) − βξ1(R21 + R32) − η12ξ
3
1 ,

H13 = −2βξ1r11,

H21 = β

(

R11 + R21

2

)

+ βξ1

(

R12 + R22

2

)

−η22

2
,

H22 = β(R11 + R31) + βξ1(R12 + R32) − η12,

H23 = 2βξ1r11.

(5.19)
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Then, utilizing the Fredholm solubility condition again,
we can obtain

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ξ1 + ξ2)(
∂ I 12
∂T1

+ ∂W1

∂T2
) = −ξ2(r11 I 12 + r12W1)

+[(H11 + H21ξ2)|W1|2
+(H12 + H22ξ2)(|W2|2 + |W3|2)]W1

−(H13 + H23ξ2)W 2W 3,

(ξ1 + ξ2)(
∂ I 22
∂T1

+ ∂W2

∂T2
) = −ξ2(r11 I 22 + r12W2)

+[(H11 + H21ξ2)|W2|2
+(H12 + H22ξ2)(|W3|2 + |W1|2)]W2

−(H13 + H23ξ2)W 1W 3,

(ξ1 + ξ2)(
∂ I 32
∂T1

+ ∂W3

∂T2
) = −ξ2(r11 I 32 + r12W3)

+[(H11 + H21ξ2)|W3|2
+(H12 + H22ξ2)(|W2|2 + |W1|2)]W3

−(H13 + H23ξ2)W 2W 1.

(5.20)

Therefore, K j ( j = 1, 2, 3) can be expanded as below,

K j = εWj + ε2 I j2 + · · · . (5.21)

In summary, we can get the amplitude equations from
(5.7) as follows,

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

τ0
∂K1

∂t
= r̃1K1 + h1K 2K 3

−[h2|K1|2 + h3(|K2|2 + |K3|2)]K1,

τ0
∂K2

∂t
= r̃1K2 + h1K 1K 3

−[h2|K2|2 + h3(|K1|2 + |K3|2)]K2,

τ0
∂K3

∂t
= r̃1K3 + h1K 1K 2

−[h3|K1|2 + h3(|K2|2 + |K1|2)]K3,

(5.22)

where

r̃1 = r1c − r1
r1c

, τ0 = ξ1 + ξ2

ξ2r1c
, h1 = H13 + ξ2H23

ξ2r1c
,

h2 = H11 + ξ2H21

ξ2r1c
, h3 = H12 + ξ2H22

ξ2r1c
. (5.23)

Next, the stability conclusion of (5.22) is given
for the subsequent numerical simulation and analy-
sis. Each amplitude in (5.22) can be decomposed to
mode ρ j = |K j | and acorresponding phase angle

ϕ j . Then substituting K j = ρ j eiϕ j , ( j = 1, 2, 3)
in (5.22), separating the real and imaginary parts and
ϕ = ϕ1 + ϕ2 + ϕ3, we can get the following equation

τ0
∂ϕ

∂t
= −h1(ρ2

2ρ
2
3 + ρ2

3ρ
2
1 + ρ2

1ρ
2
2 )

ρ1ρ2ρ3
sinϕ, (5.24)

and

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

τ0
∂ρ1

∂t
= r̃1ρ1 + h1ρ2ρ3cosϕ − h2ρ3

1 − h3(ρ2
2 + ρ2

3 )ρ1,

τ0
∂ρ2

∂t
= r̃1ρ2 + h1ρ1ρ3cosϕ − h2ρ3

2 − h3(ρ2
1 + ρ2

3 )ρ2,

τ0
∂ρ3

∂t
= r̃1ρ3 + h1ρ2ρ1cosϕ − h2ρ3

3 − h3(ρ2
2 + ρ2

1 )ρ3.

(5.25)

For (5.24), this system lies the stationary state when
ϕ = 0 orϕ = π . Forρ j ≥ 0,we can know that the solu-
tion of ϕ = 0 is stable when h1 > 0 and the solution
of ϕ = π is stable when h1 < 0. If we only consider
the stable solution, then the following equations are
obtained,
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

τ0
∂ρ1

∂t
= r̃1ρ1 + |h1|ρ2ρ3 − h2ρ3

1 − h3(ρ2
2 + ρ2

3 )ρ1,

τ0
∂ρ2

∂t
= r̃1ρ2 + |h1|ρ1ρ3 − h2ρ3

2

−h3(ρ2
1 + ρ2

3 )ρ2,

τ0
∂ρ3

∂t
= r̃1ρ3 + |h1|ρ2ρ1 − h2ρ3

3 − h3(ρ2
2 + ρ2

1 )ρ3.

(5.26)

By analysing (5.26), the following theorem is
obtained,

Theorem 5.1 The system (5.26) has four kinds of solu-
tions and the stability as follows,

(i) The stationary solution is stable for r̃1 < r11 = 0
and unstable for r̃1 > r11.

(ii) Stripe patterns solution is stable for r̃1 < r12 =
h21h2

(h2−h3)2
and unstable for r̃1 > r12.

(iii) Hexagonpatterns solution existwhen r̃1 >
−h21

4(2h3+h2)
,

the solution is stable for r̃1 < r13 = h21(2h2+h3)
(h2−h3)2

and

unstable for r̃1 > r13.
(iv) The mixed state solution exist when h3 > h2, r̃1 >

h2ρ2
1 , which is always unstable.

Proof Now, substitutingρ j = ρ j+�ρ j , ( j = 1, 2, 3)
into (5.26) (ignoring higher orderterms), and changing
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ρ j in the obtained equations to ρ j , then, we can obtain
the following matrix,

⎛

⎝
r̃1 − 3h2ρ2

1 − h3(ρ2
2 + ρ2

3 ) |h1|ρ3 − 2h3ρ1ρ2 |h1|ρ2 − 2h3ρ1ρ3
|h1|ρ3 − 2h3ρ1ρ2 r̃1 − 3h2ρ2

2 − h3(ρ2
1 + ρ2

3 ) |h1|ρ1 − 2h3ρ3ρ2
|h1|ρ2 − 2h3ρ1ρ3 |h1|ρ1 − 2h3ρ3ρ2 r̃1 − 3h2ρ2

3 − h3(ρ2
1 + ρ2

2 )

⎞

⎠ . (5.27)

Therefore,

(i) The stationary state ρ1 = ρ2 = ρ3 = 0, according
to (5.27), we can know that the stationary solution
is stable for r̃1 < r11 = 0, and vice versa.

(ii) Stripe patterns ρ1 = ρ =
√

r̃1
h2

�= 0, ρ2 = 0, ρ3 =
0, then (5.27) becomes
⎛

⎝
r̃1 − 3h2ρ2 0 0

0 r̃1 − h3ρ2 |h1|ρ
0 |h1|ρ r̃1 − h3ρ2

⎞

⎠ . (5.28)

From (5.28) for stripe patterns, and through calcu-
lation, we get three eigenvalues as follows,

λ1 = −2r̃1, λ2,3 = r̃1

(

1 − h3
h2

)

∓ |h1|
√
r̃1h2.

Then, stripe patterns solution is stable for r̃1 <

r12 = h21h2
(h2−h3)2

, and vice versa.
(iii) Hexagon patterns ρ = ρ1 = ρ2 = ρ3 =

|h1|±
√

[h21+4(h2+2h3)r̃1]
2(h2+2h3)

, then (5.27) becomes
⎛

⎝
a1 a2 a2
a2 a1 a2
a2 a2 a1

⎞

⎠ , (5.29)

where{
a1 = r̃1 − (3h2 + 2h3)ρ2,

a2 = |h1|ρ − 2h3ρ2.

From (5.29) for hexagon patterns, and through cal-
culation, we get three eigenvalues as follows,

λ1 = a1 + 2a2, λ2,3 = a1 − a2.

Then,wehaveλ1>0 forρ− = |h1|−
√

[h21+4(h2+2h3)r̃1]
2(h2+2h3)

,
so the pattern is unstable; and λ j < 0 ( j = 1, 2, 3)

for ρ+ = |h1|+
√

[h21+4(h2+2h3)r̃1]
2(h2+2h3)

when r̃1 < r13 =
h21(2h2+h3)
(h2−h3)2

, the pattern is stable.

(iv) The mixed state ρ1 = |h1|
h3−h2

, ρ2 = ρ3 =
√

r̃1−h2ρ2
1

h2+h3
, then (5.27) becomes

⎛

⎝
a3 a4 a4
a4 a5 a6
a4 a6 a5

⎞

⎠ (5.30)

where

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

a3 = r̃1 − 3h2ρ2
1 − h3(ρ2

2 + ρ2
3 ),

a5 = r̃1 − 3h2ρ2
2 − h3(ρ2

2 + ρ2
1 ),

a4 = |h1|ρ2 − 2h3ρ2ρ1,

a6 = |h1|ρ1 − 2h3ρ2
2 .

From (5.30), we can get

λ1 = a5 − a6, λ2 + λ3 = a3 + 2a5,

λ2λ3 = a3(a5 + a6) − 2a24,

if all the eigenvalues are negative, we need

(i)λ1 < 0, (i i)λ2 + λ3 < 0, (i i i)λ2λ3 > 0, (5.31)

when r̃1 <
(2h2+h3)h21
(h3−h2)2

, λ1 < 0 established, and λ2λ3 =
[r̃1 − (h2h21

(h3−h2)2
][r̃1 − (2h2+h3)h21

(h3−h2)2
] > 0. However, ρ2 =

ρ3 =
√

r̃1−h2ρ2
1

h2+h3
> 0, and h2 + h3 > 0, i.e., r̃1 >

(2h2+h3)h21
(h3−h2)2

. Thus, the conditions contradict each other,
this means that is always unstable. ��

6 Optimal quarantine control

The spread of infectious diseases can be effectively
suppressed under the continuous and high-intensity
quarantine control. However, combined with practical
factors, these are often difficult to implement 100%,
which correspond to the cost of isolation, treatment and
transportation, allocation of medical resources, even
people’s psychological spirit, etc. Applying the time-
varying optimal control theory [28] to control the epi-
demic situation can achieve the desired control objec-
tives and reduce the related control costs to a certain
extent.

In this section, optimal control problem of (2.2) with
form H1 is studied. If η1 = η2 = η3 = 0, then the
model (2.2) with form H1 is reduced to the underlying
deterministic model. Now, Let is study the determinis-
tic optimal control problem firstly.
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Define the time-varying quarantine control variables
r1(·) ∈ Uad = {ζ(t) is measurable, 0 ≤ ζ(t) ≤ r1, t ∈
[0, T ]}, where 0 ≤ r1 ≤ 1 and T > 0 is terminal time
corresponding to the actual needs. Then, we have the
following deterministic model,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

dS(t)

dt
= A − βS(t)I (t) − μ0S(t),

dI (t)

dt
= βS(t)I (t) − (r1(t) + μ1 + μ0)I (t)

+σQ(t),
dQ(t)

dt
= r1(t)I (t) − (μ0 + μ + σ)Q(t).

(6.1)

Let

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f1(t) = A − βS(t)I (t) − μ0S(t),

f2(t) = βS(t)I (t) − (r1(t) + μ1 + μ0)I (t)

+σQ(t),

f3(t) = r1(t)I (t) − (μ0 + μ + σ)Q(t).

(6.2)

Problem 1 In view of our control objectives are to
decrease the prevalence of epidemic and to balance
control strengths, so the objective function is defined
by

D(r1(·)) =
∫ T

0
(r21 (t) + cI (t))dt (6.3)

subject to (6.1) and S(0) = S0 ≥ 0, I (0) = I0 ≥
0, Q(0) = Q0 ≥ 0, under these conditions, minimize
the objective function (6.3).

Next, Problem 1will be solved by applying the Pon-
tryagin’s minimum principle [40]. We construct the
Hamiltonian function H for this problem as

H(t, S, I, Q, r1(t)) = r21 + cI + λ1 f1

+λ2 f2 + λ3 f3. (6.4)

where λ1(t), λ2(t) and λ3(t) are Lagrange multipliers
introduced.

The Pontryagin’s minimum principle transforms
Problem1 intominimizing theHamiltonianwith regard
to the controls at each time t , then the following result
can be obtained.

Theorem 6.1 The Problem 1 has an optimal solution
and this solution satisfies the following equations,

⎧
⎪⎨

⎪⎩

λ̇1 = λ1(β I + μ0) − λ2β I,

λ̇2 = −c + λ1βS − λ2(βS − μ1 − μ0 − r1) − λ3r1,

λ̇3 = λ3(μ0 + μ + σ) − λ2σ,

(6.5)

with transversality conditions λi (T ) = 0, (i =
1, 2, 3). Moreover, the optimal quarantine rate is

r∗
1 (t)=min[max(0,

1

2
I (t)(λ2(t)−λ3(t))), r1]. (6.6)

Proof Obviously, according to the convexity of Hamil-
tonian with respect to r1(t), it is easily to know the
existence of solution. The partial derivatives of the
function H with respect to S, I, Q respectively, i.e.,
λ̇1(t), λ̇2(t), λ̇3(t) as follows,

λ̇1(t) = −∂H

∂S
, λ̇2(t) = −∂H

∂ I
, λ̇3(t) = −∂H

∂Q
,

the above formulas verify (6.5). We now calculate the
optimal quarantine rate r∗

1 (t). Now for a fixed value of
t , on the basis of the Pontryagin’s minimum principle,
r∗
1 (t) must satisfy the following formula in the interval

[0, r1],
∂H

∂r1
= 2r1 − I (λ2 − λ3) = 0, (6.7)

then the optimal control r∗
1 (t) has been worked out. If

for ∀r1 ∈ [0, r1], there is 2r1 − I (λ2 −λ3) ≥ 0 (2r1 −
I (λ2−λ3) ≤ 0), thenwemust select r1(t) = 0(r1(t) =
r1), hence, there is

r∗
1 (t) = min

[

max(0,
1

2
I (t)(λ2(t) − λ3(t))), r1

]

.

��
Remark 6.1 In view of the above deterministic opti-
mality system has Lipschitz structure and the bound-
edness of the above variables, i.e., the state and adjoint
variables, we can determine the uniqueness of the solu-
tion. Then, the uniqueness of the optimal control also
can be guaranteed by the theories in Fister et al. [41].

Next, let is study the stochastic optimal control prob-
lem of (2.2), our objective is to seek an optimal quaran-
tine rate r∗

1 to minimizes the following objective func-
tion and x0 is an initial state,

E0,x0 [
∫ T

0
(r21 (s) + cI (s))ds], (6.8)
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what we obtain here is the expectation of the initial
state of the system i.e. at time t = 0. For the determin-
istic problem studied above, a fixed constant r1 ≤ 1
with r1(t) ≤ r1 (a.s.) is assumed. Then, we define the
admissible control law as follows,

A = {r1(·) : r1is adapted, and 0 ≤ r1 ≤ r1 a.s.}. (6.9)
We define the following performance criterion for this
problem of stochastic control,

J (t, x; r1) = Et,x

[∫ T

t
(r21 (s) + cI (s))ds

]

, (6.10)

where the expectation depends on the state of the sys-
tem. Define the following value function,

U (t, x) = inf
r1(·)∈A

J (t, x; r1) = J (t, x; r∗
1 ). (6.11)

We determine J : A → R+ given by (6.11). Next,
the stochastic optimal control problem is proposed and
solved.

Problem 2 Given (2.4), A in (6.9) and J in (6.10),
seek the value function

U (t, x) = inf
r1∈A

J (t, x; r1), (6.12)

and the optimal control

r∗
1 (t) = arg inf

r1∈A
J (t, x; r1(t)) ∈ A. (6.13)

Theorem 6.2 The Problem 2 about the optimal quar-
antine control has a solution as the following form

r∗
1 (t) = min[max(0,

1

2
I (t)(UI (t) −UQ(t))), r1]

(6.14)

Proof In order to determine (6.14) through thedynamic
programming method, we need to calculate IU (t) by
utilizing (2.5),

IU (t) = LU (t) −Ut (t)

= f1(t)US(t) + f2(t)UI (t) + f3(t)UQ(t)

+ 1

2
(η1S(t))2USS(t)

+ 1

2
(η2 I (t))

2UI I (t) + 1

2
(η3Q(t))2UQQ(t)

+ η1η2S(t)I (t)USI (t) + η1η3S(t)Q(t)USQ(t)

+ η2η3 I (t)Q(t)UIQ(t).

(6.15)

According to the Hamilton–Jacobi–Bellman theory
[42], we need to work out the following formula,

inf
r1∈A

[r21 (t) + cI (t) + IU (t)]. (6.16)

For this purpose, we obtain

∂[r21 (t) + cI (t) + IU (t)]
∂r1

= 2r1(t) + I (t)UQ(t)

−I (t)UI (t) = 0.

(6.17)

According to the proof of the argument in the previous
corresponding deterministic problem, and the bounds
of r1, then r∗

1 (t) emerges. ��

7 Case study and numerical simulation

In this section, we will show the relevant numerical
simulations of the stochastic and deterministic model
of coronavirus. The numerical simulations in this sec-
tion are divided into four parts. Firstly, the values of
relevant parameters in our proposed model are esti-
mated by an indirect method based on the real data
of COVID-19 in China and the USA. Secondly, the
numerical simulations are used to show the difference
between stochastic system (2.2) and its corresponding
deterministic system, and to verify the extinction and
stationary distribution criteria. Thirdly, numerical sim-
ulations of the proposed spatially COVID-19 epidemic
model with diffusion are made to test the stability con-
clusion. Lastly, the numerical simulations are used to
solve numerically the optimality system, and to test the
feasibility and effect of the proposed optimal control
strategy.

In order to obtain the proposed model parameters
based on the real data of COVID-19 of China and the
USA. We consider some of the parameters from some
reports and literatures, and the rest of the parameters
are fitted the model to some epidemiological data by
the use of least-square fitting, which provides the min-
imized estimates of the needed parameters [43]. Here,
we use the least square method to the proposed model
to obtain the best-fit parameters for China and theUSA.
The procedure looks for the set of initial guesses and
pre-estimated parameters for the model whose solu-
tions best fit or pass through all the data points [44], by
reducing the sum of the square difference between the
observed data and the model solution.

Chinese authorities reported the new virus on Jan-
uary 4, 2020. From this period up to January 22, the
statistics on the number of people contracting this
disease are not comprehensive enough, and the rel-
evant information is less. Since then, infection has
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Fig. 1 Model fitting of COVID-19 real data to the proposed epidemic model: a in China from January 22 to March 23, 2020. b in the
USA from March 4 to May 3, 2020

received more attention. We consider the real data of
COVID-19 in China from 22 January to 21 February
2020 obtained from worldometer [45]. According to
[45,46], considering the following estimates and val-
ues, N1(0) = 1400000000, S1(0) = N1(0) − 571,
I1(0) = 571, Q1(0) = 46. In Fig. 1a, we fitted the pro-
posed COVID-19 model to the epidemic data of China
using the least-squares fitting and the relevant best-fit
curve is shown.At the same time, unlikeChina’s stricter
quarantine measures, some countries have weak or
almost no quarantine control, which greatly increases
the risk of infection. Take the USA as an example.
According to the statistical data of WHO [47], the out-
break in the USA occurred on March 4, 2020. Accord-
ing to [46,48], considering the following estimates and
values, N2(0) = 331000000, S2(0) = N2(0) − 158,
I2(0) = 158, Q2(0) = 16. In Fig. 1b, we fitted the
proposed COVID-19 model to the epidemic data of the
USA using the least-squares fitting and the relevant
best-fit curve is shown. These fittings about China and
the USA, i.e., Fig. 1a, b shows that our model relatively
fit well to the reported data points and the accuracy of
the development tendency of the infected class. From
these, the obtained relevant parameter estimates about
China and theUSAare given inTables 1 and2. From the
fitting results, development trend and estimated param-
eters in Tables 1 and 2, we can observe and summarize
the differences betweenChina and theUSA in response
and treatment measures. The start time of simulation

and fitting in Fig. 1a, b is both the time of outbreak or
data recording in each country. It can be seen that under
the strong control and isolation measures in China, the
number of infected people gradually stabilized after a
period of time. However, both the number of infected
persons and the development trend reflected in Fig. 1b
almost show a trend that is difficult to control. This
is inseparable from the way of regulation adopted by
the government of the USA. In addition to the isola-
tion of patients in the hospital, other people’s travel,
work and life are basically unrestricted, and they do
not wear masks and other protective measures in their
daily activities. This greatly increases the probability
of contact with susceptible persons in the incubation
period, and makes the incidence rate high.

In the rest of this section, we will simulate and anal-
yse the proposed model to compare the differences of
the relevant contents and verify the results of the pre-
vious theoretical analysis. The simulations about the
difference between the two systems, the extinction and
stationary distribution of disease are obtained by the
method in [51], the parameters with biological feasi-
bility are set to two groups, which correspond to the
extinction and persistence of disease respectively. The
first group is A = 0.3, β = 0.5, μ0 = 0.2, μ1 = 0.2,
r1 = 0.3, σ = 0.2, μ = 0.1, η1 = 0.5, η2 = 0.4,
η3 = 0.2; the second group is A = 0.5, β = 0.7,
r1 = 0.3, σ = 0.1, μ = 0.2, η1 = 0.3, η2 = 0.4,
η3 = 0.6. The initial values of different populations
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Table 1 Model parameter
estimates for our proposed
model in China

Parameter Value Source

A μ0
365 × N1(0) Estimated

μ0
1

76.79 [49]

β 0.3805 Fitted

μ 0.0071 Fitted

μ1 0.0279 Fitted

r1 0.3442 Fitted

σ 0.0052 Fitted

Table 2 Model parameter
estimates for our proposed
model in the USA

Parameter Value Source

A μ0
365 × N2(0) Estimated

μ0 0.1595 [50]

β 0.6731 Fitted

μ 0.049 Fitted

μ1 0.055 Fitted

r1 0.0017 Fitted

σ 0.0036 Fitted

S(0) = 0.9, I (0) = 0.7, Q(0) = 0.5, units of time 0-
30. As we all know, the existence of noise disturbance
can change the behaviour of evolution in the determin-
istic system. In view of this reason, we compare them
in Fig. 2a, b. We can observe from Fig. 2a, b that the
random fluctuations can eradicate the infectious dis-
ease, i.e., the infection vanishes, but even in the case
of extinction, there will always be susceptible popu-
lation. In the deterministic system with isolated treat-
ment measures, although it can also reduce the num-
ber of infected people, it will not be eliminated, and
it takes longer. In Fig. 3a, b, it can be observed that
susceptible, infected and quarantine individuals always
exist. According to the given parameter values, we can
obtain RS

0 ≈ 0.897 < 1, RS
1 ≈ 1.832 > 1, these sat-

isfy the conditions of the extinction and persistence.
Thus, Figs. 2a and 3a verify the extinction and sta-
tionary distribution criteria. Figure 4a shows that in a
reasonable range, no matter what changes I (0), I (t)
approaches zero exponentially. Now, we select the first
set of parameters to elaborate that the influence ofwhite
noise magnitude η2 on this epidemic. For this purpose,
we select η2 = 0.25, 0.45, 0.75, and other param-
eters remain unchanged. In Fig. 4b, we can observe
that the infected population has decreased faster with

the increase of the stochastic disturbance intensity and
they all end up close to 0. Comparing the curves in Fig.
5a, b, we know that quarantine measure can decrease
the number of the infected population whether in the
stochastic system or in the corresponding deterministic
system. But in the stochastic system, the effect is better
because of the existence of stochastic term. Next, we
show how the quarantine rate r1 and the noise inten-
sity η2 influence the threshold R0 and RS

0 . Figure 6
describes that R0 decreases with the isolation rate r1
increases and there exists a critical value r01 ≈ 0.583.
When r1 > r01 , R0 < 1. In addition, Fig. 7 shows that
RS
0 decreases with the quarantine rate r1 or the noise

magnitude η2 increase and there is a critical noise mag-
nitude η∗

2. If η2 > η∗
2, then RS

0 < 1. The above numer-
ical simulations show that sufficiently big stochastic
disturbance of the transmission rate can make this epi-
demic disease die out to some extent. Next, we will
show the limit case of the system (2.2) with form H1

when S(t), I (t), Q(t) are perturbed by small noise. For
this reason, we can assume that the noise magnitude of
the small noise they are subjected to is the same, i.e.,
all of them are ε, (ε → 0). In this way, we can con-
sider the following groups of parameters, namely η1 =
η2 = η3 = 0.5, 0.3, 0.1, 0.05, 0.001, 0.0001, to
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show the intermediate cases of transition from stochas-
tic to deterministic, so as to analyse and show the limit
system. Not only the representative parameters close to
0 are selected, but also some larger ones are selected,
which can better reflect the asymptotic behaviour of the
limit system. Other parameters used in this part of the
simulations are in the first group described earlier, i.e.,
A = 0.3, β = 0.5, μ0 = 0.2, μ1 = 0.2, r1 = 0.3,
σ = 0.2, μ = 0.1. In fact, the noise magnitude can
reach three decimal places, which is corresponding to
the previous ε → 0 in real life, i.e., it is only subject to
very small noise disturbance or the limiting situation.
Our smallest parameter is taken to four decimal places,
so the numerical simulations will be closer to the deter-
ministic system and this system can be used to study
the limit properties more formally through ε → 0. As
shown in Fig. 8, it is not difficult to find that as the
value of ηi (i = 1, 2, 3) tend to 0, the trajectories of
numerical simulations of S(t), I (t), Q(t) are closer to
the deterministic system shown in Fig. 2b. And when
0.0001 is taken, the trend is basically the same as that
of Fig. 2b, and the change of S(t), I (t), Q(t) with the
change of ηi (i = 1, 2, 3) is also in line with the previ-
ous analysis and practical significance.

The numerical simulations of the spatially COVID-
19 epidemic model with diffusion are made to test the
stability conclusion. Next, we will simulate the con-
tinuous problem of spatially model with diffusion in a
discrete region of M × N lattice points by using the
Euler method. Define the time step �t and the lat-
tice constant �h between the lattice sites. Let r1 is
a varied parameter, d1 = 4.8, d2 = 1.6, d3 = 0.8,
M = N = 200 and other parameters are the same as
above. We run the simulation until the characteristics
and distribution of the simulated objects in the image
do not seem to change, or reach a stable state, then stop
and get the final image. In this section, the pattern for-
mation of I is analysed by simulating the distribution of
infected people. Figure 9a–d shows that the spatial dis-
tribution patterns of the infected class evolve with the
small stochastic disturbance of the stationary solution
in the spatially homogeneous state when the parame-
ters are in the region of analytic Turing space. With
the change of r1, the spatial pattern is different, the
pattern transits from the hexagonal pattern (Fig. 9b) to
the stripe pattern only (Fig. 9d), and in the process of
change experienced the coexistence of the two states
(Fig. 9c). When r1 is changed to an appropriate range,
stripe patterns prevail in the whole dominant.

For the simulations of optimal control of (2.2) and
its corresponding deterministic model, the parameters
are set as A = 0.3, β = 0.5, μ0 = 0.2, μ1 = 0.2,
σ = 0.2, μ = 0.1, c = 0.3, r1 = 1, and S(0) = 0.7,
I (0) = 0.02, Q(0) = 0, terminal time T = 150.
An iterative scheme of Runge–Kutta method which
is fourth order is utilized to deal with the determin-
istic optimal problem. Beginning by assuming an ini-
tial control based on the actual situation, and substi-
tuting it into the deterministic model (6.1) to solve
S, I, Q forward in time by Runge–Kutta method.
Then the above variables and the initial control are
used to dispose of (6.5) with the transversality con-
ditions backward in time through the same method.
Thus, a new control r1 is obtained. After that, repeat-
ing the above process, and this algorithm is terminated
when all the values of related variables in the above
optimal system converge sufficiently [52,53]. Numer-
ical simulations to the system including the stochastic
model corresponding to (6.1) compelledwith the proxy
adjoint system with transverslity conditions and char-
acterization of the control variable r∗

1 (t) in equation
(6.14) are carried out using forward backward algo-
rithm. Stochastic differential equations were first sim-
ulated using forth order Runge–Kutta method by intro-
ducing noise through Euler–Maruyama method [54]
and then adjoint system (6.5) are simulated backward
in time with final conditions. Particularly, we use as a
proxy for (λ2 − λ3) in the calculation of r∗

1 (t) in this
case. We note that makes U (t) becomes a stochastic
variable because of the existence of I (t). For the sake
of indicating the accuracy, effect and validity of the pro-
posed optimal control strategy, optimal control r∗

1 and
other constant controls are contrasted on the basis of
values of I (t) and objective function. Figures 10a and
11a tell us that the optimal control can make the value
of I (t) to keep relatively low level contrasted to other
seven constant controls (r1 = 0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6). With the increase of quarantine control intensity,
the overall level of the number of infected people, i.e.,
whether it is the peak or the end, will decrease in both
deterministic system and stochastic system. Although
low-intensity quarantine control will make the num-
ber of infected people reach a final stable trend and no
longer increase, the number of infection is very high at
this time, which will make COVID-19 long-term exis-
tence. On the contrary, high-intensity quarantine con-
trol will delay the time to reach the final stable trend,
and the final level of infection is relatively low, even to
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Fig. 2 Extinction: the simulation of the path S(t), I (t), Q(t)
for model (2.2) with A = 0.3, β = 0.5, μ0 = 0.2, μ1 = 0.2,
r1 = 0.3, σ = 0.2, μ = 0.1, η1 = 0.5, η2 = 0.4, η3 = 0.2

and its corresponding deterministic model, i.e., model (2.2) with
ηi = 0, (i = 1, 2, 3)

Fig. 3 Stationary distribution: the simulation of the path S(t), I (t), Q(t) for model (2.2) with A = 0.5, β = 0.7, r1 = 0.3, σ = 0.1,
μ = 0.2, η1 = 0.3, η2 = 0.4, η3 = 0.6 and its corresponding deterministic model, i.e., model (2.2) with ηi = 0, (i = 1, 2, 3)

achieve the purpose of elimination. Figures 10b and11b
represent the control profile of optimal control for the
corresponding model. Further it is observed that con-
trol profile of optimal control for model (2.2) exhibits
same state of affairs as that of deterministic control
profile. The optimal control should be kept as high as
possible from the beginning of the control policy and
till the level of infection reaches a significantly stable
low level. Then the quarantinemeasuresmaybe slightly

relaxed. It is not a surprise that the corresponding opti-
mal control is to keep themaximumvalueduring almost
the entire time period and then different kind of restric-
tions can be reduced to lower. It is worth noting that
this approximation is desirable due to the expression of
r∗
1 (t). Though the constant control r1 = 0.5 seems to
make the value of I (t) lower than the optimal control
r∗
1 , what’s more remarkable is that, the optimal con-
trol minimizes the value of objective function J from
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Fig. 4 The simulation of the path I (t) for model (2.2) with A = 0.3, β = 0.5, μ0 = 0.2, μ1 = 0.2, r1 = 0.3, σ = 0.2, μ = 0.1,
η1 = 0.5, η3 = 0.2, a I (0) = 0.8, 0.4, 0.2 and b η2 = 0.75, 0.45, 0.25

Fig. 5 The simulation of the path I (t) for model (2.2) with
A = 0.3, β = 0.5, μ0 = 0.2, μ1 = 0.2, σ = 0.2, μ = 0.1,
η1 = 0.5, η2 = 0.4, η3 = 0.2 and its corresponding determinis-

ticmodel, i.e., model (2.2) with ηi = 0, (i = 1, 2, 3), a r1 = 0.6,
0.2, 0 and b r1 = 0.6, 0.2, 0.1

Fig. 12. Thus, it can be seen that the optimal control
achieves the balance of control objective and control
cost.

8 Conclusion and further suggestions

The novel COVID-19 which broke out all over the
world is one of the most severe disease today. In this
paper, according to the facts in the infection and propa-

gation of COVID-19, we have formulated a stochastic
reaction–diffusion epidemic model to analyse and con-
trol this infectious diseases. Through the analysis, the
sufficient criteria for the persistence and extinction of
the disease are derived. This stochastic model is han-
dled skilfully, by which the conditions of how the Tur-
ing instability arise have been obtained through stabil-
ity analysis of local equilibrium. By using Taylor series
expansion and weakly nonlinear analysis, amplitude
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Fig. 6 The relationship between r1 and R0 for the deterministic
model corresponding to (2.2) with A = 0.3, β = 0.5, μ0 = 0.2,
μ1 = 0.2, r1 = 0.3, σ = 0.2, μ = 0.1, ηi = 0, (i = 1, 2, 3)

Fig. 7 The relationship of RS
0 , r1 and η2 for the stochastic model

(2.2) with A = 0.3, β = 0.5, μ0 = 0.2, μ1 = 0.2, σ = 0.2,
μ = 0.1, η1 = 0.5, η3 = 0.2

equations for Turing patterns are derived. The results
obtained from the stability analysis of amplitude equa-
tions determine the selection of patterns for this model.
It is well-known that noise could make a bistable sys-
tem which switches and regulates relevant mechanism
[54]. And from this stochastic model and the results
obtained, it can be seen that the white noise has a cer-
tain influence on pattern formation and the systemwith
noise effect hasmore abundant spatial dynamics. These
and general processing method for stochastic system
are the contents that are worthy of further study.

From the current situation around the world, the out-
break of COVID-19 not only seriously endangers per-
sonal health, but also greatly affects the social and eco-

nomic development. In terms of the scope, it also has
a strong impact on the medical resources and systems
of various countries. As soon as possible to develop
specific and effective aversion and treatment is still the
first to bear the brunt. In today’s situation, quarantine
is the most popular and effective method to control and
eliminate epidemic. Furthermore, the optimal quaran-
tine control problem is studied. The optimal control
strategies and solutions of deterministic and stochas-
tic problems are derived by the Pontrygin’s Minimum
Principle. Thanks to the difficulty of obtaining numeri-
cal results for stochastic optimal system, we utilise the
solution of the deterministic problem to approximate
them. The results of numerical simulation show that
the premise of effectively restraining the prevalence
of infectious diseases at present is constant and inten-
sive quarantine control, which is corresponding to the
cost, materials and manpower required. The blockade
order issued by the government to a certain extent dis-
rupt people’s work and life, leading to significant and
widespread socio-economic costs [55].On the contrary,
it is the pressure of production and life caused by these
restrictions that makes some enterprises and individu-
als gradually conflict with and lift the bans. That’s what
we don’t want to happen. Thus, We can not blindly
pursue the minimum number of infected people corre-
sponding to the duration and intensity of quarantine. In
order to promote the continuity of current and future
development, we should seek the balance between con-
trol target and control cost. In view of the complexity
and labor intensity of the formal method for numeri-
cal simulation of stochastic optimal control problems,
the method adopted in this paper is a feasible approx-
imation method. All the above analytical results are
supported by numerical simulations.

In the absence of full coverage of the vaccine, con-
trolling the flow of infectious individuals is still the top
priority. According to the World Health Organization
recommendations [56,57], 14 days of quarantine is one
of themost effectivemeans to guarantee safety,whether
due to entering and leaving the country or having just
come into contact with the carrier. Let’s take China
and the USA shown in the first part of section 7 for
example. As analysed in the previous paper, due to the
different attitudes and measures of the two countries in
dealing with the epidemic situation, the relevant simu-
lations and analysis results are also different. The most
obvious is the fitting results of the real COVID-19 data
of the two countries in Sect. 7. The start time of fitting
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Fig. 8 The simulation of the path (a) S(t), (b) I (t), (c) Q(t) for model (2.2) with A = 0.3, β = 0.5, μ0 = 0.2, μ1 = 0.2, r1 = 0.3,
σ = 0.2, μ = 0.1, η1 = η2 = η3 = 0.5, 0.3, 0.1, 0.05, 0.001, 0.0001

is the same time node with the same property, and the
time span of data selection is the same, but one result is
that the number of infected people gradually stabilizes
after a period of time, and the other is that it is difficult
to control. From the analysis results of this paper, we
can see that this is inseparable from the quarantine con-
trol strategy of the two countries. It can be seen from
the numerical simulations that the number of infected
people in China has gradually stabilized about 60 days
after the outbreak, which has to be admitted to have a
great relationship with the strong control and quaran-
tine measures implemented in China. This is in sharp
contrast to the spread of the epidemic in the USA in the
same period. With the overall improvement of China’s

epidemic situation, not only the domestic population
flow has increased, but also the entry-exit population
increases relatively,whichmakes some unfavorable sit-
uations worthy of the attention of the relevant depart-
ments appear, that is, they are related to the rebound
of the epidemic situation. How to deal with the com-
ing situation is the top priority for the relevant depart-
ments in China and even other countries with better
control of the epidemic situation facing similar situa-
tions. Through the investigation and the results of our
study, we put forward the following suggestions:

(i) Strengthen the isolation and virus detection of
entry-exit population to prevent overseas import.
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Fig. 9 Transition maps of Turing patterns

(ii) Enhance the awareness of protection, do not take
it lightly, maintain a certain social distance, and
prevent a large-scale rebound in the territory. Espe-
cially, during the university holidays and the begin-
ning of school, it should be carried out in batches
and travel off peak.

(iii) For areas that have rebounded or have a rebound
trend, i.e., relatively high risk areas, strict treatment
and control measures should be taken immediately,
and the source should be found out as soon as pos-
sible.

(iv) For some areas with low risk, normal work and life
can be kept to some extent, but the corresponding
monitoring and control mechanism should be fur-
ther improved according to the local actual situa-

tion, in and out of public places to take temperature
and wear masks, and so on.

One of the original purposes of this analysis and
simulation in our paper is to emphasize the strategic
position and importance of quarantine in the outbreak
ofCOVID-19 by comparing the different results caused
by different attitudes and implementation measures of
quarantine between China and the USA in the same
period. As for the USA, where the epidemic situation
is still severe, the above suggestions on China may not
be applicable to it in general because the epidemic sit-
uation is quite different from that of China. According
to the research results and investigation, we also put
forward the following trend suggestions, which are not
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Fig. 10 The simulation of the path I (t) for the deterministic system corresponding tomodel (2.2) with respect to seven kinds of constant
control and optimal control, control profile of optimal control r1(t)

Fig. 11 The simulation of the path I (t) for model (2.2) with respect to seven kinds of constant controls and optimal control, control
profile of optimal control r1(t)

only applicable to the USA, but also in line with some
western countrieswith controversial implementation of
quarantine measures like the USA.

(i) The government should issue more popular propa-
ganda to make the public understand the impor-
tance of quarantine and less direct contact for
the current situation. Understand what the peo-
ple think, and issue effective quarantine measures
on the premise of relaxing and appeasing policies.
The process should not be too tough to avoid the
loss outweighing the gain. And according to the

celebrity effect combined with some more influen-
tial people to demonstrate the implementation.

(ii) It is true that it is difficult to implement isolation
measures, but previous studies have found that in
some countries, more people support quarantine
than voluntary vaccination, which is due to the risk
of early vaccination. And one infected individual
at each site had less than one secondary infection.
Even partial vaccination, the infection can be sta-
bilized or even reduced by quarantine measures.
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Fig. 12 The simulation of the values of objective function J with
respect to five kinds of constant controls and optimal control

(iii) Even weak quarantine can promote the develop-
ment of the situation, but it takes a long time, and the
effect of strong quarantine in a short time is often
unsatisfactory. One should not expect that even a
short period of quarantine is sufficient to reduce
the infection below its survival level. The above
study found that implementation of longer quaran-
tine measures, such as 70–80 days or even longer,
is needed to achieve decisive results.

(iv) Keep as much quarantine as possible for most of
the time in the controlled quarantine plan. Only
when the infection reaches low level can quarantine
restrictions be gradually reduced. During any quar-
antine period, even at the end of a predetermined
time interval, control should not be zero. Some pro-
tective measures, such as wearing masks, avoid-
ing crowds and maintaining good personal hygiene
habits, should be continued and encouraged in soci-
ety, even after strict isolation.

Through the findings of this paper, especially the
section of optimal quarantine control, these show that
it is far from enough to deal with the corresponding
epidemic prevention and control problems by a sin-
gle measure or a simple superposition of several mea-
sures. For example, the results obtained in Sect. 6 show
that only one quarantine control measure is far from
enough. Although it will also have some effects, it will
take a long time, and some unstable and uncontrollable
factors will be more. In order to control the epidemic
as quickly as possible, a variety of measures should

be cross coordinated response. We should be prepared
to fight against coronavirus infection for a long time,
rather than the current epidemic wave, so as to reduce
the endemic burden and potentially eradicate the dis-
ease eventually. One can use model to short-term data
which will enables us to comprehend deeply the exist-
ing data as well as to make predictions when data is
unavailable. Due to the prevalence and concomitant
of infectious diseases, if the current situation changes,
the results of the model can be generally applied to the
characterization of themutated infectious diseases after
improvement, or can be applied to any next disease.
In the future, after verifying the safety, effectiveness
and universality of the vaccine in daily life, combined
withmore actual data, we can further expand themodel
by adding a vaccinated class to the stochastic system
proposed in this paper. And it is also the next step to
further consider the effects of infectious disease treat-
ment, vaccination, media publicity and other control in
the model on the related optimal control problems.
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