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Abstract Recently, the physics-informed neural net-
works (PINNs) have received more and more attention
because of their ability to solve nonlinear partial dif-
ferential equations via only a small amount of data to
quickly obtain data-driven solutions with high accu-
racy. However, despite their remarkable promise in the
early stage, their unbalanced back-propagation gradi-
ent calculation leads to drastic oscillations in the gra-
dient value during model training, which is prone to
unstable prediction accuracy. Based on this,we develop
a gradient optimization algorithm, which proposes a
new neural network structure and balances the interac-
tion between different terms in the loss function during
model training by means of gradient statistics, so that
the newly proposed network architecture ismore robust
to gradient fluctuations. In this paper, we take the com-
plex modified KdV equation as an example and use
the gradient-optimized PINNs (GOPINNs) deep learn-
ing method to obtain data-driven rational wave solu-
tion and soliton molecules solution. Numerical results
show that the GOPINNs method effectively smooths

J. Li · B. Li (B)
School of Mathematics and Statistics, Ningbo University,
Ningbo 315211, People’s Republic of China
e-mail: libiao@nbu.edu.cn

J. Chen
Department of Mathematics and Institute of Nonlinear Analysis,
Lishui University, Lishui 323000, People’s Republic of China

the gradient fluctuations and reproduces the dynamic
behavior of these data-driven solutions better than the
original PINNsmethod. In summary, ourworkprovides
new insights for optimizing the learning performance
of neural networks and improves the prediction accu-
racy by a factor of 10 to 30 when solving the complex
modified KdV equation.

Keywords Physics-informed neural networks ·
Gradient optimization · Complex modified KdV
equation · Rational wave solution · Soliton molecules
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1 Introduction

With the rapid development of computational science,
deep learning has achieved great success in many
fields, which include computer vision (CV), natural
language processing (NLP), recommender systems,
protein structure prediction, and so on [1–4]. There
is an important reason behind these successes: neural
network models are good approximators of complex
functions. And using this property of neural networks,
numerous data-driven methods have been proposed to
solve nonlinear partial differential equations (NPDEs)
[5–8], among which the physics-informed neural net-
works (PINNs) method proposed by Raissi et al. [8]
stand out with its high prediction accuracy and good
generalization ability in solving NPDEs. It does this by
efficiently designing the network loss of the function
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approximator so that it is constrained by the underlying
NPDEs and boundary conditions. That is, it respects
the given physics theorems described by the general
NPDEs as constraints for supervised learning. Sub-
sequently, many improved deep learning frameworks
basedon thePINNshave emerged to improve its robust-
ness as well as generalization capabilities for use in
other fields. For example, Raissi et al. [9] proposed a
minimization-based forward–backward stochastic neu-
ral networksmodel to solve coupled forward–backward
stochastic differential equations; Jagtap et al. [10]
proposed cPINNs that conforms to various conserva-
tion laws, solving problems on multiple subdomains
and ensuring flux continuity on subdomain bound-
aries; Mattey et al. [11] proposed backward compatible
PINNs, which can effectively address large domains or
multi-scale solutions. These methods were developed
to be applied in other different situations and even in
different domains.

In recent decades, the numerical solution of NPDEs
has always been a hot topic in the field of mathematical
physics. After the PINNs were proposed, their related
variants have been uninterruptedly applied in the direc-
tion of solvingNPDEs, such as function approximation
of unknown solutions [12], and data-driven discovery
[7,13]. It is worth noting that there are some scholars
who have done a lot of meaningful work in the field
of mathematical physics. Chen and his group solved
local wave solution of NPDEs of second and third
order, and some classical mathematical physics equa-
tions such as the Sine-Gordon, nonlinear Schrödinger,
and derivative nonlinear Schrödinger equations, and
obtained important breather, rogue waves, and other
soliton solutions for these equations in thefield ofmath-
ematical physics [14–19]. Yan and Dai et al. studied
data-driven solutions of related equations and param-
eter discovery using PINNs [20–23]. Bai et al. solved
Huxley equation using an improvedPINNmethod [24].
Wu et al. predicted the dynamic process and model
parameters of the vector optical solitons in birefrin-
gent fibers via the modified PINN [25]. Marcucci et al.
proposed a novel deep learning computational model
driven by nonlinear waves as a ‘hidden layer’ [26].

Basedon the idea of gradient-balancedoptimization,
we propose a gradient-optimized PINNs (GOPINNs).
Specifically, the gradient descent update process is
optimized by balancing the interactions between dif-
ferent terms in the loss function during model train-
ing through gradient statistics on the original PINNs

method and changing its fully connected feed-forward
neural network architecture. This improved approach
has twomainmotivations: (1)Automatically adjust the
penalty term coefficients during model training using
back-propagation gradient statistics [27] to equilibrate
the interactions among the terms of the loss function;
(2) The idea comes from the recent frequent use of
neural network attention mechanisms for CV and NLP
researches [28], where two transformer networks are
added to a traditional neural network to update the hid-
den layers and augment the hidden state using residual
connections. In summary, we can smooth the gradient
statistics on the hidden layers of the neural networks to
make the novel neural network architecture with better
stability and prediction accuracy.

In this article, by comparing the numerical results of
the PINNs and GOPINNs methods, we verify the good
learning performance of the newly method by taking
the rational wave and soliton molecules solutions of
the complex modified KdV equation as examples.

The paper is organized as follows. In Sect. 2, we
review the PINNs model and propose the GOPINNs
model by gradient analysis. In Sect. 3, we use PINNs
and GOPINNs methods to compare the dynamical
behaviors of the rational wave solution and the soliton
molecules solution of the modified KdV equation, and
the learning performance is also evaluated by compar-
ing the numerical results of the two methods. Finally,
the conclusions and discussion are given in Sect. 4.

2 Methods

2.1 The PINNs method

Firstly, let’s briefly review the PINNs, which is a deep
learning frameworkdesigned to infer the latent function
q(t, x) of the NPDEs of general form [8]

⎧
⎪⎨

⎪⎩

qt + Nx [q] = 0, (t, x) ∈ T × �,

q(0, x) = I(x), x ∈ �,

q(t, x) = B(t, x), (t, x) ∈ T × ∂�,

(1)

where variables t and x denote time and space coordi-
nates, T and� stand for their value range, respectively,
∂� is the boundary of the spatial domain �, subscripts
represent partial differentiation. Nx [·] is the combina-
tion of linear and nonlinear operators, I[·] and B[·]
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are the initial and boundary conditions (IBCs) opera-
tors. Then, we use a deep neural networks fθ (t, x) to
approach the latent solution q(t, x), here the residuals
of Eq. (1) are defined as

Rθ (t, x) = [ fθ (t, x)]t + Nx [ fθ (t, x)]. (2)

Generally, partial differential calculations can be done
automatically in neural networks by automatic back-
ward differentiation operations [27], and the parame-
ters θ in PINNs are shared among the latent solutions
and the residuals of NPDEs. And our aim is to filter
a good set of optimized parameters by the stochastic
gradient descent (SGD) calculation and set the general
form of the suitable loss function [30] as follows

L(θ) = LR(θ) +
N∑

j=1

λ jL j (θ), (3)

where LR(θ) is a loss term that penalizes the residuals
of the NPDEs, and L j (θ) represents that penalty items
of the other data for fθ (t, x) (e.g., initial or boundary
conditions, etc.). What is noted here is that in PINNs
[8], all λ j are equal to 1. In this paper, based on the
classical initial value and boundary problem, the terms
of the loss function (3) are defined as follows

LR = 1

NR

NR∑

j=1

[Rθ (t
j
R, x j

R)]2,

LI = 1

NI

NI∑

j=1

[q(0, x j
I ) − I j ]2,

LB = 1

NB

NB∑

j=1

[q(t jB, x j
B) − B j ]2, (4)

here {x j
I , I j }NI

j=1 and {t jB, x j
B,B j }NB

j=1 represent the

initial value and boundary datasets, and {t jR, x j
R}NR

j=1
denotes the randomcollocation points used tominimize

the residuals of NPDEs inside the solution domain. In
addition, LR represents the punishment of the NPDEs
that not being satisfied the random collocation points,
subsequently, LI and LB denote the loss on the IBCs,
respectively. The ultimate goal of these designs is to
construct the deep neural networks fθ (t, x) such that
the loss function (3) is as close to 0 as possible.

2.2 Gradient analysis for the PINNs method

Although there are some positive results [31–33], the
PINNs still present some unexpected difficulties in
approximating the latent solution q(t, x). In this paper,
let’s take the complex modified KdV equation [34] as
an example, which widely used in the fields of dynamic
evolution of ultrashort pulses, nonlinear lattices, fluid
dynamics, etc. The general form is as follows

qt + 6|q|2qx + qxxx = 0, (5)

where q = q(t, x) denotes a complex field. Here, we
can use PINNs to approximate the latent solution of Eq.
5 by the deep neural networks fθ (t, x), and the param-
eters could be obtained by minimizing the suitable loss
function (3) that meet the IBCs and the punishment of
the residuals of the complex modified KdV equation
inside the spatiotemporal domain T × �. At first, we
investigate the rational wave solution [34] of Eq. 5 with
the IBCs as follows

⎧
⎪⎪⎨

⎪⎪⎩

qt + 6|q|2qx + qxxx = 0, (t, x) ∈ [0, 10] × [0, 30]
I(x) = −c + 4c

4c2(s + x)2 + 1
,

B(t, 0) = −c + 4c
4c2(6c2t − s)2 + 1

, B(t, 30) = −c + 4c
4c2(6c2t − s − 30)2 + 1

.

(6)

Here, we set c = 1
2
√
6
, s = −14. Without loss of gen-

erality, the fθ (t, x) is defined as a deep fully connected
neural networks including eight hidden layers and 50
neurons in each hidden layer, and the nonlinear acti-
vation function is designated as a hyperbolic tangent
function. Then,we use theAdamoptimizer [27] tomin-
imize the loss function of Eq. 6 with 40000 iterations
of SGD.

In Fig. 1, comparing the difference among the exact
solution and predicted solution, we could see from the
absolute error plot thatmost of error points appear in the
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784 J. Li et al.

Fig. 1 (Color online) Rational wave solution (PINNs): The exact solution and predicted solution |q(t, x)|, and their absolute error with
the above parameter settings (relative L2 error: 6.45e − 02)

Fig. 2 (Color online) Rational wave solution (PINNs): Histograms of the back-propagation gradients distribution of ∇θLI ,∇θLB and
∇θLR at per hidden layer

central crest region, while the larger error points appear
at the right boundary and the peak of the rational line
wave from the combination of the three plots. Clearly,
the PINNs method cannot do the job in adapting to the
sharper areas and boundaries, which results in a relative
L2 prediction error of 10.01%.

In order to investigate why the PINNs method does
not obtain more accurate predictions, we took inspira-
tion from Glorot and Bengio’s interesting work [35],
which is monitoring the back-propagation gradient
fluctuations of the neural network parameters in each
hidden layer of our model for the training process.
It is important to note here that we are not tracking

the gradients of the total loss function, but the gradi-
ents of each individual items ∇θLI(θ),∇θLB(θ) and
∇θL∇(θ) that denote the shared parameters in per hid-
den layer of the deep neural networks.

Seeing Fig. 2, the gradients values represent the
IBCs terms∇θLI(θ) and∇θLB(θ) in per hidden layer,
respectively, which are sharply concentrated around
zero and formation of spikes, which is likely to be the
cause of the gradient imbalance. In addition, the gradi-
ents corresponding to the NPDE residuals ∇θLR(θ)

keep large values, especially in the later layers, is
related to the back-propagation computation mecha-
nism. And it’s always known that when the gradient
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Fig. 3 (Color online) Rational wave solution (PINNs): Loss
curves of LR(θ) and Lq (θ), respectively, with 40000 iterations
of the stochastic gradient descent via Adam optimizer

∇θLr (θ) is big, the deep neural networks will easily
infer to any solutions that satisfies the NPDEs. There-
fore, themodel we train should strictly return a solution
of the NPDEwith residuals as close to zero as possible,
otherwise it is easy to return wrong prediction.

The variation of the loss with different iterations is
shown in Fig. 3, where LR represents the residuals of
the NPDE, and Lq represents the error of the NPDE
on the initial value and the boundary. Obviously, we
can see that LR is still relatively smooth, but Lq is
very unstable during the iterations, which also explains
from the side that the unstable gradient can lead to poor
prediction accuracy of PINNs at the boundary.

2.3 A gradient-optimized fully connected network
architecture

Network architecture optimization is an important
research idea in deep learning, and the general approxi-
mation theorems for physics-informed neural networks
are usually lacking in solving NPDEs, so whether the
standard fully connected architecture can provide flex-
ible enough representations to infer more complex
NPDEs is a question we need to focus on. Inspired by
neural networks attention mechanisms that has been
widely used in CV and NLP [28], we have made a
simple adaptation of the standard fully connected net-
work architecture and proposed a new network archi-
tecture with the following features: the gradient equal-
ization effect is enhanced by using residual connections
through element multiplicative interactions between
different hidden layers, and numerical results show that
the inference performance of the newly proposed archi-
tecture seems to be better than the results obtained by

the original PINNs method. As shown below, the key
to adapting the traditional fully connected neural net-
work is to introduce two transformer network terms to
smooth the diffusion term of the NPDE, and then the
hidden layers are updated using a point-by-point mul-
tiplication operation according to the following feed-
forward propagation rules.

U = σ(W 1X + b1), V = σ(W 2X + b2)

Q(1) = σ(Ws,1X + bs,1),

P(l) = σ(Ws,l Q(l) + bs,l ), l = 1, ..., K ,

Q(l+1) = (1 − P(l)) �U + P(l) � V, l = 1, ..., K ,

fθ (t, x) = WQ(K+1) + b,

(7)

here X represents the (n × d) dimensional matrix of
the input points data, σ denotes nonlinear activation
function and � represents element multiplication. All
parameters of the new fully connected architectures are
substantially the same as the traditional fully connected
model, except that the weights and biases added to the
two transformer networks.

θ = {W 1, b1, W 2, b2, (Ws,l , bs,l)Kl=1, W, b}. (8)

Here, it’s alsoworth noting that the newproposed archi-
tecture and the forward propagation rules lead to rel-
atively small computational and memory overheads,
while significantly improving the prediction accuracy.

For consistency, we also set the deep neural net-
works with eight hidden layers and 50 neurons per hid-
den layer, and use a hyperbolic tangent as the nonlinear
activation function. After 40000 iterations of SGDwith
Adam optimizer, the numerical prediction results of the
newly proposed fully connected structure are shown in
Fig. 4. It is clear that the proposed training scheme can
properly balance the interaction between the initial and
boundaries, and reduce the relative prediction L2 error
(0.60%) by one order of magnitude. Compared with
the original PINNs scheme in Fig. 1, we can see by the
two figures that the absolute error on the boundary and
the crest area are effectively reduced. By tuning the tra-
ditional fully connected feed-forward neural networks
architecture, the prediction accuracy of the new model
ismore than ten times better than that of PINNsmethod.

The other numerical results of solving the rational
wave solution usingGOPINNsmodel are shown in Fig.
5. Comparing Figs. 5a and 2, it is found that the dis-
tribution of the gradients is significantly improved and
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Fig. 4 (Color online) Rational wave solution (GOPINNs): The exact solution and predicted solution |q(t, x)|, and their absolute error
with the above parameter settings (relative L2 error: 3.87e − 03)

(a)

(b) (c)

Fig. 5 (Color online) Rational wave solution (GOPINNs): (a)
Histograms of the back-propagation gradients distribution of
∇θLI ,∇θLB and ∇θLR at per hidden layer; (b) Evolution of
constraint values λI and λB in Eq. 3 with the iterations applied

to minimize the IBCs loss terms LI(θ) and LB(θ); (c) The loss
values of LR(θ) and Lq (θ) with 40000 iterations of the SGD
via Adam optimizer
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becomes smoother. From Fig. 5b, with the addition of
the constraint values, comparing Figs. 5c and 3, it can
be seen that the loss values become smaller, especially
the error loss termLq , which represents the initial value
and the boundary, becomes smoother and more stable,
and all these are finally reflected in the more accurate
prediction solution of GOPINNs model.

3 Numerical results of the complex modified KdV
equation

In this section,we provide the results of amore compre-
hensive numerical study aimed at evaluating the perfor-
mance of a fully connected deep neural network model
using gradient optimization to infer the NPDEs. In all
cases, we use neural networks with 8 hidden layers
and 50 neurons per hidden layer, the nonlinear activa-
tion function defined as hyperbolic tangent, and train
the deep neural networks using a SGD algorithm with
Adamoptimizer.Moreover, the train datasets initializa-
tion is performed in all neural networks using Xavier
[35] and we do not use any additional regularization
techniques. All algorithms were implemented in Ten-
sorFlow [36], and all numerical experiments run on the
ACER Aspire E5-571G laptop with 2.20 GHz 4-cores
i5 CPU.

3.1 Rational wave solution

Firstly, we review the numerical results of the rational
wave solution in Sect. 2.3. In this subsection, our goal
is to systematically analyze the performance of these
two models by setting a uniform criterion and quantify
their prediction results.

We conducted independent numerical experiments
using random weight initialization, after 40000 Adam
iterations in disparate numbers of hidden layers and dif-

ferent numbers of neurons each hidden layer, all numer-
ical results (relativeL2 errors) are presented in Table 1.
Apparently, the PINNs are sensitive to the connectivity
architecture of the neural networks, which leads it to be
very unstable in terms of prediction accuracy, produc-
ing relative L2 errors in the range of 5.56%–15.09%.
In contrast, the newly proposed GOPINNs show great
robustness in terms of neural network architectures and
have a positive correlation in terms of improved pre-
diction accuracy as disparate number of hidden layers
and neurons in per layer increases. This suggests that
the newly proposed neural networks architectures may
be stronger able to predict complex nonlinear partial
differential equations instead of the traditional fully
connected neural networks, which may also result in
a more SGD. Ultimately, our newly proposed model
obtains relatively accurate results on this problem (rel-
ative L2 error between 0.31% and 3.30%).

3.2 Soliton molecules solution

To further study the learning performance of the
newly proposed model in dealing with the evolution-
ary NPDEs, we chose the soliton molecules solution of
the complex modified KdV equation with more com-
plex dynamical behavior. Soliton molecules have been
a very popular research topic in recent years. It’s a
bound state of solitons and has been discovered experi-
mentally in nonlinear optical systems. In 2012, numer-
ical predictions of soliton molecules were obtained in
Bose–Einstein condensates [37]. In 2018, Liu et al. [38]
observed experimentally for the first time the real-time
dynamics of stable soliton molecules throughout the
buildup process. Recently, Lou [39] proposed a veloc-
ity resonance mechanism and obtained theoretically
the soliton molecules and asymmetric solitons in three
fifth-order systems. In this subsection, we set the IBCs
of soliton molecules solution as the following form

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

qt + 6|q|2qx + qxxx = 0, (t, x) ∈ [0, 1] × [−15, 15]
I(x) = 2 i

(
ie12+i x−ie12−i x+2 x+ie(2+i)x+e12+i x−e12−i x+2 x−ie−i x−e(2+i)x+e−i x

)
e−x+6

2 e12 cos(2 x)+2 e24+e2 x+12+e−2 x+12+2
,

B(t,−15) = −2 ie21−2 t (ie2 i t−18+15 i+4 t−ie−2 i t−30−15 i+4 t−ie12−15 i−2 i t+e2 i t−18+15 i+4 t+e−2 i t−30−15 i+4 t−e12−15 i−2 i t+iei(2 t+15)−ei(2 t+15)
)

e4 i t+12+30 i+e−4 i t+12−30 i+2 e24+e42−4 t+e−18+4 t+2
,

B(t, 15) = −2 ie−9−2 t
(
ie2 i t+42−15 i+4 t−ie−2 i t+30+15 i+4 t−ie12+15 i−2 i t+e2 i t+42−15 i+4 t+e−2 i t+30+15 i+4 t−e12+15 i−2 i t+iei(2 t−15)−ei(2 t−15)

)

e4 i t+12−30 i+e−4 i t+12+30 i+2 e24+e−18−4 t+e42+4 t+2
.

(9)
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Table 1 Rational wave solution: The relative L2 error among
the exact solution and the predicted solution |q(t, x)| for the
two models at disparate numbers of hidden layers and different
numbers of neurons in each hidden layer

Model

Network architecture PINNs GOPINNs

30 neurons | 6 hidden layers 9.66e-02 2.11e-02

50 neurons | 6 hidden layers 7.48e-02 1.04e-02

70 neurons | 6 hidden layers 5.52e-02 6.21e-03

30 neurons | 8 hidden layers 8.48e-02 8.97e-03

50 neurons | 8 hidden layers 6.45e-02 3.87e-03

70 neurons | 8 hidden layers 3.75e-02 3.55e-03

30 neurons | 10 hidden layers 5.67e-02 5.10e-03

50 neurons | 10 hidden layers 3.80e-02 3.08e-03

70 neurons | 10 hidden layers 2.92e-02 1.96e-03

Here, we set a suitable loss function as

L(θ) = LR(θ) + λILI(θ) + λBLB(θ), (10)

whereLR(θ),LI(θ),LB(θ) are defined in Eq. (4).We
recall the PINNs method in Sect. 2.1, here, it is worth
noting that when λI(θ) = λB(θ) = 1, the loss func-
tion Eq. (10) degenerates to the original form of the loss
function calculation for PINNs. Without loss of gener-
ality, here the various parameter settings of our network
parameters are consistent with the rational wave solu-
tion. Let’s first look at the results of training using the
PINNs scheme.

The results shown inFig. 6 indicate that∇θLI ,∇θLB
and ∇θLR rapidly converge near the origin and form
spikes, but ∇θLR remains smooth, which means that
the gradient of ∇θLR is almost decreasing compared
to ∇θLI and ∇θLB. This is a clear manifestation of
gradient imbalance, and therefore it is not possible to
fit the data for the IBCs accurately, which we can con-
sider as the main reason for the failure of the original
PINNs, and the relative L2-norm error of 7.72% for
the soliton molecules solution. In our experience, this
behavior is very commonly seen in systems of NPDEs
that use traditional PINNs models to solve more com-
plex dynamical behaviors [8].

Now, what we obviously want to know is whether
the newly raisedmodel can effectually alleviate the gra-
dient unbalance and thus obtain more robust and accu-
rate prediction results. For this purpose, the gradient

Table 2 Soliton molecules solution: Relative L2 errors among
the exact solution and predicted solution |q(t, x)| for these two
models, and the training time for 40000 iterations of SGD with
Adam optimizer

Models
Benchmarks PINNs GOPINNs

Relative L2 error 8.11e-02 2.73e-03

Training time (s) 43290.82 31791.01

distributions obtained using the GOPINNs method are
shown in Fig. 7. Comparingwith each hidden layer cor-
responding to the network structure used above,wefind
that the gradient distribution becomes smoother and the
gradient imbalance is significantly improved. In Table
2, we give the relative L2 errors of these two models
and the training time taken to complete their learning
performance. Clearly, we can see that GOPINNs not
only outperform PINNs in terms of accuracy, but also
have a significant advantage in terms of training time.

Figures 8 and 9 show a detailed visual assessment of
the predictability of the PINNs and GOPINNs models.
From Fig. 8, the PINNs model cannot get an accurate
predicted solution, which its absolute error is magni-
fied at the boundary and the crest of the wave on the
lower side. As shown in Fig. 9, we can discover that
the volatility of the absolute error becomes significantly
smaller, especially at the boundary, and the maximum
is 0.0040 and the relativeL2 error is 0.26%, whose pre-
diction accuracy is about 30 times better than PINNs.
Finally, Fig. 10a and b shows the evolution of the con-
straint values and loss function during the continuous
iteration via GOPINNs method, respectively.

4 Conclusions and discussion

Despite recent successes in some applications, PINNs
often have difficulty in approximating the solutions of
NPDEs exactly. In this paper, we supervise and ana-
lyze the underlying pattern of failure of PINNs related
to gradient dynamics in neural networks that leads to
gradient imbalance in the hidden layer when train-
ing the model via automatic back-propagation. For a
deeper understanding, we quantitatively analyze the
gradient dynamics in each hidden layer and clarify
the troubles with training PINNs by SGD algorithm.
In order to obtain a more stable gradient model, we
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Fig. 6 (Color online) Soliton molecules solution (PINNs): Histograms of the back-propagation gradients distribution of ∇θLI ,∇θLB
and ∇θLR at per hidden layer

Fig. 7 (Color online) Soliton molecules solution (GOPINNs): Histograms of the back-propagation gradients distribution of
∇θLI ,∇θLB and ∇θLR at per hidden layer

balance the interaction between different terms in the
loss function during model training by means of gradi-
ent statistics and come up with a new neural networks
structure that can improve the generalization and accu-
racy via smoothing the distribution of gradients. We
take the data-driven rational wave solution and soliton
molecules solution of the complexmodifiedKdV equa-
tion as examples, and the experimental results show that
the newly proposed architecture can play an important

role in the PINNs model. In summary, our study pro-
vides new insights into the development of PINNs and
continuously improves their prediction accuracy by a
factor of 10–30 when solving the complex modified
KdV equation.

Despite some recent progress, it must be acknowl-
edged that we are in an initial stage of comprehend-
ing the limitations of the PINNs model. To close this
gap, we still havemany questions to explore further: (1)
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Fig. 8 (Color online) Soliton molecules solution (PINNs): The exact solution and predicted solution |q(t, x)|, and their absolute error
with the above parameter settings (relative L2 error: 8.11e − 02)

Fig. 9 (Color online) Soliton molecules solution (GOPINNs): The exact solution and predicted solution |q(t, x)|, and their absolute
error with the above parameter settings (relative L2 error: 2.73e − 03)

(a) (b)

Fig. 10 (Color online) Soliton molecules solution (GOPINNs):
a Evolution of constraint values λI and λB in Eq. 10 with the
iterations applied to minimize the IBCs loss terms LI(θ) and

LB(θ); b The loss values of LR(θ) and Lq (θ) with 40000 iter-
ations of the SGD via Adam optimizer
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What’s the relationship among the gradient fluctuations
of a given NPDEs and the gradient dynamics for corre-
spondingPINNsmethod? (2)How to effectively reduce
these gradient fluctuations (e.g., by choosing different
loss functions, more efficient neural network architec-
tures, etc.)? (3) What else could we do to increase the
generalization and prediction accuracy during training?
These interesting discussions will be further explored
in future work.
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