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Abstract A numerical scheme grounded on the
Boundary ElementMethod expressed in the Frequency
Domain is proposed to perform Nonsmooth Modal
Analysis of one-dimensional bar systems. The latter
aims at finding continuous families of periodic orbits
of mechanical components featuring unilateral contact
constraints. The proposed formulation does not assume
a semi-discretization in space of the governing Par-
tial Differential Equations, as achieved in the Finite
Element Method, and so mitigates a few associated
numerical difficulties, such as chattering at the contact
interface, or the questionable approximation of internal
resonance conditions. The nonsmooth Signorini condi-
tion stemming from the unilateral contact constraint is
enforced in a weighted residual sense via the Harmonic
BalanceMethod. Periodic responses are investigated in
the form of energy-frequency backbone curves along
with the associated displacement fields. It is found that
for the one-bar systems, the results compare well with
existingworks and the proposedmethodology stands as
a viable option in the field of interest. The two-bar sys-
tem, for which no known results are reported in the lit-
erature, exhibits very rich nonsmooth modal dynamics
with entangled nonsmooth modal motions combining
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hardening and softening effects via the intricate inter-
action of various, possibly subharmonic and internally
resonant, nonsmooth modes of the two bars.
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1 Introduction

Within the framework of structural dynamics and con-
tinuum mechanics, linear modal analysis is a daily
used tool in industry, aiming at predicting vibratory
resonances of periodically forced mechanical systems
by searching for continuous families of periodic solu-
tions exhibited by the underlying autonomous system.
However, various challenges arisewhen possibly large-
scale nonlinear dynamical systems are targeted and
for which nonlinear modal analysis is needed instead.
Nonlinear modal analysis focuses on the description
of Nonlinear Normal Modes, which are commonly
defined as periodic motions of conservative unforced
systems [10,17]. Readers could refer to [26,27] for
comprehensive reviews. The presentwork targets struc-
tural systems where the nonlinearity is a nonsmooth
(possibly multi-valued) function of the state of the sys-
tem, such as a unilateral contact. Nonsmooth Modal
Analysis (NSA) is an incarnation of modal analysis
dedicated to this latter class of systems.

There is a vast literature on the topic of impact
oscillators. Most commonly, the investigated systems
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are of very small dimension with very few degrees-
of-freedom and governed by impulsive dynamics: the
acceleration involves Dirac δ distributions in time with
chattering occurrences in the solution as a notable con-
sequence. However, in the framework of continuum
mechanics, it is now established that, at least for the
bouncing bar example [4], neither impulsive dynamics
nor chattering exist in the solution. Accordingly, it is
crucial to develop solutionmethods capable of handling
the above considerations, which discards the classical
Finite Element Method (FEM) because of two major
difficulties: the need of an impact law which generates
chattering [24] or the implementation of a penalization
technique with questionable residual penetrations and
the difficulty to properly quantify the penalty param-
eter. The issue stems from the distribution of mass
notably at the contact interface. Recent FEM formu-
lations relying on Nitsche’s method [2] for the contact
constraints might have interesting numerical properties
yet to be tested for NSA purposes.

In light of this, a few numerical schemes have
been proposed to perform NSA of continuous sys-
tems. For instance, the Wave Finite Element Method
(WFEM) with a switch on boundary conditions [31]
could partially solve the case of a one-dimensional
bar system. The developed scheme preserves energy
but excludes continuation techniques in time because
time and space are discretized concurrently in order
to preserve the geometry of the characteristic lines in
the D’Alembert solution. Moreover, it cannot easily be
extended to higher dimensions. A solution based on the
Time-Domain Boundary Element Method (TD-BEM)
was also proposed [28]. However, it requires various
computations involving initial condition and attendant
space semi-discretization of the domain of interest: this
is not optimal since it heavily reduces the computa-
tional efficiency of TD-BEM. It has also been proven
that higher dimensional TD-BEMmight become unsta-
ble in time.

In order to perform NSA, the present work suggests
a numerical scheme which combines the Frequency-
Domain Boundary Element Method (FD-BEM) to the
Harmonic Balance Method (HBM). The governing
equation in the frequency domain is exactly solved, and
the Signorini boundary condition of unilateral contact
is satisfied in an weighted-residual sense. Modes of
vibration are then computed.

2 Systems of interest

The systems explored in the remainder are academic
systems yet not reduced to very few degrees-of-
freedom as classically done in vibro-impact dynam-
ics. The aim is to show that the investigation of vibro-
impact responses is not necessarily limited to small
scale systemswith very few degrees-of-freedom. How-
ever, we recognize that the systems considered are of
limited interest in the industrial sphere even though
NSA was initially motivated by aerospace applica-
tions [13]. It also has ramifications in areas like music
instruments [8], breathers [9] or applied mathemat-
ics [21] to cite a few.More generally, vibration analysis
is commonly conductedduring thedesignof amechani-
cal component and it is now recognized that unilaterally
contact conditions, when unavoidable, strongly affect
the dynamics and cannot be ignored [22].

2.1 Non-dimensional analysis

Three similar academic systems are considered in this
work. They are depicted in Fig. 1a–c. The first two
systems are simple one-dimensional bar with a Sig-
norini condition at one of its boundaries and either
a homogeneous Dirichlet or a Robin boundary con-
dition otherwise. The third system embeds two one-
dimensional bars facing each other through a common
unilateral contact interface. The present works targets
the periodic autonomous dynamics of such systems in
the context of nonlinear and nonsmooth modal anal-
ysis. All systems of interest in this paper have space-
independent Young’s modulus E , cross-sectional area
A and density ρ.

The non-dimensional analysis is now introduced to
later facilitate the exposition of the work and atten-
dant analysis. The non-dimensional variables are intro-
duced via an overbar notation which is then omitted:
•̄ is the non-dimensional version of •: x̄ = x/L1,
ȳ = y/L1, t̄ = t/τ , ū = u/L1, and w̄ = w/L1

with the characteristic time τ = L1/c1 where c1 =√
E1/ρ1. Derivatives of u are found using the chains

rule: ux = L1ū x̄ x̄x = ū x̄ and ut = L1ūt̄ t̄t = L1ūt̄/τ .
Higher derivatives can be found in a similar way:
uxx = ū x̄ x̄/L1 and utt = L1ūt̄ t̄/τ

2. For the second
bar, when considered, we have wt = L1w̄t̄/τ and
wt t = L1w̄t̄ t̄/τ

2. Meanwhile c̄ = c2/c1 and bar length
�̄ = L2/L1 for the second bar are introduced. Non-
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Nonsmooth modal analysis via the boundary element method 229

Fig. 1 Unilaterally constrained mechanical vibratory systems of interest and corresponding physical quantities

dimensional boundary conditions are also applied. For
the Robin boundary condition, non-dimensional spring
stiffness k̄ = kL1/(E1A1) is introduced. Also, ratio
α = E1/E2 A1/A2 is introduced for two-bar contact
condition.

In the remainder, the upper bar notation is dropped
and all considered quantities are non-dimensional.

2.2 Governing equations

With the notations introduced above, thewave equation
for the first bar reads

utt − uxx = 0, x ∈]0 ; 1[. (1)

Similarly, the governing equation of the second bar,
when considered, is

wt t − c2wyy = 0, y ∈]0 ; �[. (2)

2.3 Boundary conditions

2.3.1 Dirichlet–Signorini system

The first system of interest, in Fig. 1a, is clamped on
the left so that a homogeneous Dirichlet boundary con-
dition u(0, t) = 0 applies. The condition w(0, t) = 0
is also enforced for the two-bar system.

The nonsmooth periodic and autonomous dynamics
of this system has already been investigated, numeri-
cally in [31] using WFEM and analytically in [25].

2.3.2 Robin–Signorini system

The second system of interest, in Fig. 1b, considers a
Robin boundary condition at x = 0, via a linear spring
attaching the left tip of the bar to the rigid ground. This
condition is expressed as follows:

− ux (0, t) + ku(0, t) = 0. (3)

The corresponding nonsmooth vibratory dynamics
of this system has already been partially investi-
gated using WFEM [30]. Compared to the previous
Dirichlet–Signorini system, the Robin boundary con-
dition annihilates the above full internal resonance
condition featured by the first system in Fig. 1a, as
aimed.

2.3.3 Signorini boundary condition

For the one bar case, unilateral contact on the right
tip is a Signorini boundary condition. Defining g(t) =
g0 − u(1, t) as the gap and g0 as the initial gap dis-
tance, it takes the form g(t) ≥ 0, ux (1, t) ≤ 0, and
g(t)ux (1, t) = 0 where the notation g(t) is a shortcut
since g is not an explicit function of time t . By defining
the Signorini residual r(u(1, t), ux (1, t)) = ux (1, t)+
max[ac(u(1, t)−g0)−ux (1, t), 0], where ac is an arbi-
trary strictly positive constant, they can equivalently be
expressed as the
equality [23]

r(u(1, t), ux (1, t)) = 0. (4)
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For the two-bar system, the Signorini residual comes
with the equilibrium ux (1, t) = αwy(�, t) at the con-
tact interface and reads

r(u(1, t), w(�, t), ux (1, t))

= ux (1, t)

+ max[ac(u(1, t)

+ w(�, t) − g0) − ux (1, t), 0]. (5)

3 Solution method

A numerical scheme based on the Boundary Element
Method is implemented. The BEM forms a family of
methods for which the boundary of the domain of
interest is the main ingredient of the formulation and
full domain discretization is not required under the
assumption of vanishing initial conditions and body
forces [15]. It has the notable benefit of reducing
the dimension of the formulation. Among the vari-
ous incarnations of BEM, the FD-BEM combined with
HBM is selected to perform nonsmooth modal analy-
sis.

The FD-BEM, as its name implies, is a frequency-
domain form of BEM which is appropriate when peri-
odic solutions are targeted.

3.1 Fourier transform

The Fourier Transform along time of the displacement
u(x, t) (an equivalent definition holds for w(y, t)) is

û(x, ω) = 1

2π

∫ ∞

−∞
u(x, t) exp(−iωt)dt (6)

and has two arguments, namely space x and frequency
ω. The wave Eqs. (1) and (2) accordingly transform
into the well-known one-dimensional autonomous
Helmholtz equations

ûxx (x, ω) + ω2û(x, ω) = 0, x ∈]0 ; 1[ (7)

ŵyy(y, ω) + κ2ŵ(y, ω) = 0, y ∈]0 ; �[ (8)

respectively, where κ = ω/c is the frequency number
for the second bar.

3.2 BEM formulation

Themethodology described below is provided for a sin-
gle bar but can be adapted to the second bar in a straight-
forward fashion. It is very classical. FD-BEM is based
on a weighted residual form of (7) where the weight
function is the fundamental solution to the Helmholtz
equation [11]. The formulations for the first bar will be
derived at first for example. This fundamental solution
is the distributional solution û∗

xx (x, ξ, ω) to

û∗
xx (x, ξ, ω) + ω2û∗(x, ξ, ω) = δ(x − ξ) (9)

which has a known closed-form solution

u∗(x, ξ, ω) = 1

2ω
sin(ω|x − ξ |). (10)

The above Helmholtz equation is then transformed into
an integral equation through the residual form [3]

∫ 1

0
(ûxx (x, ω) + ω2û(x, ω))û∗(x, ξ, ω)dx

= 0, ∀ξ ∈]0 ; 1[. (11)

Two integrations by parts with respect to x yield

∫ 1

0
ûxx û∗dx = ûx û∗

∣∣∣1
0
− ûû∗

x

∣∣∣1
0
+

∫ 1

0
ûû∗

xxdx (12)

, and the residual form (11) becomes

ûx û∗
∣∣∣1
0
− ûû∗

x

∣∣∣1
0
+

∫ 1

0
(û∗

xx + ω2û∗)ûdx = 0. (13)

Recalling the definition of the Fundamental Solu-
tion (9), the integral part of Eq. (13) actually reads

〈û∗
xx + ω2û∗, û〉 = 〈δξ , û〉 = û(ξ, ω) (14)

in the distributional sense. In otherwords, the following
equality holds:

û(ξ, ω) = ûx (1, ω)û∗(1, ξ, ω) − ûx (0, ω)û∗(0, ξ, ω)

− û(1, ω)û∗
x (1, ξ, ω) + û(0, ω)û∗

x (0, ξ, ω).

(15)
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Nonsmooth modal analysis via the boundary element method 231

For the considered Helmholtz equation, substituting
Identities (15) and (10) into Eq. (13) generates the tar-
geted boundary integral equation (BIE)1

2û(x, ω = û(0, ω) cosωx + û(1, ω) cos(ω(1 − x))

− 1

ω
( p̂(0, ω) sinωx

− p̂(1, ω) sin(ω(1 − x))) (16)

where x and ξ could be interchanged because they
travel on the same domain. In Eq. (16), p̂(0, ω) =
−ûx (0, ω) and p̂(1, ω) = ûx (1, ω)were used to follow
the traditional notation in BEM, in the context of linear
elasticity and small strains considered in the present
work. The same time domain conventions are used in
the remainder.

For the second bar, the BIE is

2ŵ(y, ω) = ŵ(0, ω) cos κy + ŵ(�, ω) cos(κ(� − y))

− 1

κ
(q̂(0, ω) sin κy

− q̂(�, ω) sin(κ(� − y))) (17)

where q̂(�, ω) = ŵy(�, ω) and q̂(0, ω) = −ŵy(0, ω).
Reading (16) on the boundary {0}∪{1} leads to the two
linearly independent equations for the first bar

[
ω 0 −ω cosω sinω

−ω cosω sinω ω 0

]
⎛
⎜⎜⎝

û(0, ω)

p̂(0, ω)

û(1, ω)

p̂(1, ω)

⎞
⎟⎟⎠

=
(
0
0

)
, (18)

and reading (17) on the boundary {0} ∪ {�} leads to the
two linearly independent equations for the second bar

[
κ 0 −κ cos κ� sin κ�

−κ cos κ� sin κ� κ 0

]

⎛
⎜⎜⎝

ŵ(0, ω)

q̂(0, ω)

ŵ(�, ω)

q̂(�, ω)

⎞
⎟⎟⎠ =

(
0
0

)
. (19)

Note that the above identities have been derived by
solely transforming the wave equation, that is the local

1 There is no integral in the considered one-dimensional setting.

equation initially considered in our problem. They are
exact and can be understood as a Frequency-Domain
Boundary Element Method versions of D’Alembert’s
solution to the wave equation, see Appendix 3. The
boundary conditions at x = 0 and x = 1 (or y = 0
and y = �) have yet to be used. The considered Dirich-
let, Robin and Signorini boundary conditions will be
inserted in the BEM formulation in the remainder.

It should be also understood that the identities (18)
could be retrieved via the exact solution to Eq. (7) as
briefly explained in Appendix 1. However, the above
BEMformat generalizes to higher dimensions in amore
straightforward manner when the spatial domain of
interest is not a simple geometric shape.

Also, identities (18) somewhat indicate the superi-
ority of BEM formulations to FEM formulations in the
context of unilateral contact dynamics, at least in the
present one-dimensional framework. More precisely,
and as already said in the introduction, a classical FEM
formulation would transform the initially continuous
nature of mass and inertia of the system into a dis-
crete version, from which emerge difficult theoretical
questions at the contact interface, and most notably the
need of a possibly dissipative impact law. BEM does
not suffer this drawback [6] and is capable of handling
the Signorini conditions (4) without additional condi-
tions, as explained in Appendix 2.

3.3 Periodicity in time

3.3.1 Fourier series

Periodicity in time of the sought solution is enforced by
taking advantage of (18) showing that only quantities
at the boundary are left as unknowns. Accordingly, let
us seek the displacement u(1, t) and companion strain
p(1, t), with a common frequency � in the forms of
two distinct Fourier series

p(1, t) = 1

2
a0 +

∞∑
n=1

an exp( jn�t) and u(1, t)

= 1

2
b0 +

∞∑
n=1

bn exp( jn�t) (20)

where the complex coefficients an and bn are the new
unknowns of the problem. The corresponding Fourier
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Transforms read

p̂(1, ω) = 1

2
a0δ0 +

∞∑
n=1

anδn� and û(1, ω)

= 1

2
b0δ0 +

∞∑
n=1

bnδn�. (21)

Similar assumptions are made for the second bar in the
bilateral contact case, yielding:

q(�, t) = 1

2
d0 +

∞∑
n=1

dn exp( jn�t) and w(�, t)

= 1

2
f0 +

∞∑
n=1

fn exp( jn�t)

q̂(�, ω) = 1

2
d0δ0 +

∞∑
n=1

dnδn� and ŵ(�, ω)

= 1

2
f0δ0 +

∞∑
n=1

fnδn�. (22)

3.3.2 Boundary conditions

Here, the treatment of each boundary condition is dis-
cussed separately. Since the configurations of interest
include different combinations of boundary conditions,
the numerical solution procedure of each combination
will be discussed later along with the discretization
strategy.

3.3.3 Dirichlet boundary condition

Inserting the homogeneous Dirichlet boundary condi-
tion u(0, t) = û(0, ω) = 0 into (18) implies

−ω cosω û(1, ω) + sinω p̂(1, ω) = 0. (23)

Equation (23) features infinitely many singularities
when the ω cosω or sinω terms vanish. Such singu-
larities ω actually correspond to the natural frequen-
cies of the Dirichlet–Neumann and Dirichlet–Dirichlet
bar, respectively. Such frequencies are actually avoided
in the remainder since the solutions of interest lie
“between” these two extreme bar configurations where
the contact gap is either always open or always closed.

It is worth to state that Eq. (23), which dictates relation-
ships between Fourier Transforms evaluated at x = 1,
stems from a boundary condition at x = 0.

Inserting (21) into (23) leads to a system of linear
equations in the coefficients (an, bn), n = 0, 1, 2, . . .
of the form

−ωn cosωn bn + sinωn an = 0 with ωn = n�.

(24)

A counterpart obviously exists for the second bar in the
form

−κn cos κn� fn + sin κn� dn = 0 with κn = n�/c.

(25)

3.3.4 Robin boundary condition

In the frequency domain, theRobin boundary condition
becomes kû(0, ω) + p̂(0, ω) = 0. This condition is
inserted in (18) to form the extended system

⎡
⎣ ω 0 −ω cosω sinω

−ω cosω sinω ω 0
k 1 0 0

⎤
⎦

⎛
⎜⎜⎝

û(0, ω)

p̂(0, ω)

û(1, ω)

p̂(1, ω)

⎞
⎟⎟⎠

=
⎛
⎝0
0
0

⎞
⎠ (26)

which simplifies to

ω(ω − k cot ω)û(1, ω) + (k + ω cot ω) p̂(1, ω) = 0.

(27)

Again, the singularities inω, already mentioned for the
Dirichlet boundary condition, correspond to the nat-
ural frequencies of the Robin–Neumann and Robin–
Dirichlet bar, respectively [20] and are avoided in the
remainder. Plugging (21) into (27) leads to a system of
linear equations of the form

ωn(ωn − k cot ωn)bn + (k + ωn cot ωn)an = 0. (28)

It is important to mention here that the choice for
the Fourier Series (20) is natural when periodic solu-
tions are of interest but is also motivated by the Fourier
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Nonsmooth modal analysis via the boundary element method 233

Transform used in the formulation. This has the nice
consequence that the Dirichlet and Robin boundary
conditions above have simple forms and can be sat-
isfied exactly in the frequency domain, at least up to
the last considered harmonic in the computations. This
Fourier choice has a drawback: the possibility to have
Gibbs “spurious” oscillations in the approximated solu-
tions, at least in the velocity fields and contact force.
Instead, other periodic families could be implemented,
within the theory of Wavelets for instance. However,
combined to the chosen Fourier Transform formalism,
identities like (25) or (28) cannot be readily derived
and instead the boundary condition would have to be
enforced in a Weighted Residual sense as done for the
Signorini condition below.

3.3.5 Signorini boundary condition: unilateral
contact

Unlike the above Dirichlet and Robin boundary con-
ditions which can be explicitly expressed in terms of
the unknown Fourier coefficients, the Signorini con-
dition has no explicit form in the frequency domain.
Instead, a numerical version of the Harmonic Balance
Method is performed on (4) where expansions (20) are
first inserted. This can be recast in the system of non-
linear implicit equations in the coefficients (an, bn),
n = 0, 1, 2, . . . (gathered in vectors a and b)

gn(a,b) =
∫ T

0
exp( jn�t)

(
p(1, t)

+ max[ac(u(1, t) − g0) − p(1, t), 0])
dt = 0, n = 0, 1, 2, . . . (29)

whereT = 2π/� is periodof targetedperiodicmotion.
In other words, the Signorini condition is satisfied in
a weighted residual sense only, as achieved in any
Galerkin-like strategy.

A graphical example illustrates the nonsmoothness
of Eq. (29). The Fourier series is limited to only one
cosine term of magnitude a1 and one constant term of
magnitude a0. The integrals in Eq. (29) are functions
of the pair (a0, a1). These two surfaces are plotted in
Fig. 2. Their expected piecewise nature, induced by the
max operator in the complementarity condition, shows
lines where they do not seem to be differentiable in the
classical sense, even though a thorough analysis would
be needed here. They also intersect with the zero plane

at the same point showing that a solution exists in this
case. For the two-bar system, contact equilibrium reads

an = αdn, ∀n (30)

Complementary enforced in amanner similar toEq. (29)
reads

gn(a,b, f) =
∫ T

0
exp( jn�t)

(
p(1, t)

+ max[ac(u(1, t) + w(�, t) − g0)

− p(1, t), 0])
dt = 0, n = 0, 1, 2, . . . (31)

In Eq. (31), complementarity is enforced on p(1, t) and
g(t). The complementarity between q(�, t) and g(t) is
enforced through (30) along with (31).

As stated previously for the other boundary condi-
tions, and to avoid the Gibbs phenomenon in the solu-
tion, other families of periodic functions could be con-
sidered for the test and trial functions in (29) and (31).
The gain in how the Signorini conditions will be satis-
fied might be mitigated by the fact that other boundary
conditions (Dirichlet or Robin) will not be exactly sat-
isfied as with Fourier series: this has yet to be clarified.

3.4 Discretization and numerical approximation

Discretization comes into the proposed solution strat-
egy when the Fourier expansions (20) are truncated to
a finite number m of harmonics, such that we define
u(m)(1, t) ≈ u(1, t) and p(m)(1, t) ≈ p(1, t). A sec-
ond level of discretization lies in the computation of the
integrals (29). It was found that the computed solutions
were not sensitive to that numerical aspect. Accord-
ingly, it was decided to compute the integrals (29) via a
simple Riemann sum approximation with a subinterval
�t = T/(nhm)where T is targeted motion period, and
nh , a coefficient governing the accuracy of the approx-
imation and chosen as nh = 30 after a convergence
check.

The system of nonlinear equations in (a,b), and
(a,b,d, f) for the two-bar system, is then solved
numerically using a trust-region dogleg [19] solver, a
built-in numerical solver of Matlab®, even though the
equations are not expected to be sufficiently smooth,
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234 T. Lu, M. Legrand

Fig. 2 One-bar system:
HBM residuals g0 (red) and
g1 (blue) with only one
constant term (participation
a0) and one cosine term
(participation a1) in the
Fourier series and Signorini
residual projections (29).
Participation a0 = 0 in the
right plot

1 0:5 0 0:5 1

a1

R
es
id
ua
l

due to (29). For the Dirichlet–Signorini case, the sys-
tem is formed by Eqs. (24) and (29). For the Robin–
Signorini case, the system is formed by Eqs. (28)
and (29). The two-bar system involves Eqs. (24), (25),
(30) and (31).

3.5 Continuation

Once discretization is achieved, the task of finding peri-
odic solutions translates into an equivalentmultidimen-
sional root finding problem of the formF(a,b,�) = 0,
where � is the unknown fundamental frequency of
the Fourier series. To search for continuous families
of periodic solutions and construct the desired solu-
tion branches, continuation techniques shall be imple-
mented.

In this work, the classical sequential continua-
tion technique [16] is used where � is successively
increased by a small given increment on a given inter-
val of interest: the nonlinear system is solved for the
Fourier coefficients only. This technique is not able
to handle turning-points in the skeleton curve [17].
Even though turning-points were not found for the con-
sidered systems, the pseudo-arclength method [7,17],
wherea(s),b(s) and�(s) are functions of the arclength
s, was also attempted for comparison purposes. In both
approaches, numerical difficulties are expected due to
the lack of smoothness in the system.

It should be noted that the proposed FD-BEM/HBM
formulation nicely transforms the initial problem into
a set of, yet nonsmooth, nonlinear equations for which
continuation can be performed, at least in a piecewise
fashion for continuation branches bounded by grazing
solutions. This is in contrast to the fully discreteWFEM
technique [31] where integer quantities are searched
for, thus prohibiting the use of continuation strategies.

Furthermore, the developed solution technique is not
sensitive to the number of contact occurrences in the
solution whereas WFEM is.

4 Results

Vibratory responses generated by the proposed FD-
BEM can be compared to existing results for the one-
bar systems, see [14,25,28–31]. The initial gap g0 =
0.001 is used for all cases in this section, along with
ac = 4 in the definition of the Signorini residual func-
tions. The solutions were not found to be really sensi-
tive to ac. Also, in all Fourier expansions and projec-
tions, only the constant and cosine terms were consid-
ered.This has the detrimental consequence of removing
all solutions which are not even in time, even though
they are known to exist [25]. However, this choice
advantageously reduces the number of unknowns to
be handled by the solver and also mitigates the numeri-
cal issues induced by the solution non-uniqueness [25].
All quantities defined above in the Fourier series and
HBM projections are thus real.

In the coming sections, displacement fields are first
shown as 3D plots for the one-bar system. They later
are shown as in-plane 2D plots for the two-bar sys-
tem because their 3D counterparts become meaning-
less. Both views are indicated in Fig. 3 for a given
displacement field.

The energy-frequency plots in the coming sections
are normalized. For the one-bar systems, the energy of
vibration is normalized with respect to the energy of
the first linear grazing mode. For the two-bar systems,
the energy of vibration is normalized with respect to
the first linear grazing mode of bar 1 (on the left).
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Fig. 3 Proposed
illustrations and
displacement fields

Fig. 4 Signorini boundary
condition (4): Exact
solution [ ] and
FD-BEM with
m = 20 [ ] and
m = 80 [ ]. Bar
displacement at the contact
interface [left] and
complementarity condition
[right]. (Color figure online)

4.1 Accuracy and convergence analysis

The analysis is conducted on three main aspects: the
accuracy of the contact force, the convergence of an
energy residual and comparisonwith existing solutions,
all with respect to m.

Compared to known results [28,31] and as expected,
FD-BEM exhibits residual penetration at the contact
interface, as shown in Fig. 4. This is explained by
the fact that FD-BEM enforces the Signorini boundary
condition inweighted residual sense only, through (29),
in contrast with the TD-BEM and WFEM formula-
tionswhere the complementary condition is enforced at
every time step of the scheme, in a quasi-exact fashion
up to a chosen tolerance. Another factor of error is the
already mentioned Gibbs phenomenon, also observed
in Fig. 4. It is expected to emerge on discontinuous
functions like the strain and velocity fields within the
bar, or the contact force, known to be piecewise con-
tinuous functions with a countable number of disconti-
nuities when contact closes and opens [32]. This is not
necessarily an issue since the convergence of interest in
the present work is on the computed backbone curves,
which are less sensitive to the above concerns (Fig. 5).

Fig. 5 Convergence analysis of the FD-BEM formulation. Error
R(m) defined in Eq. (32)

Figure 6 compares time histories of the displace-
ment, contact force and Signorini residual defined in
Eq. (4) to the exact solution on the first nonsmooth
mode. Again, small discrepancies emerge in the con-
tact force, and to a lesser degree, in the displacement.
Bear in mind that the Gibbs phenomenon in the dis-
placement field is negligible and barely visible in all
plots provided in the sequel. The small amplitude and
high frequency waves for instance in Figs. 9, 12 or 14
are generated by internally resonant mechanisms in the
solutions.
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Fig. 6 Boundary displacement u(1, t) [ ] and strain ux (1, t) [ ] along with Signorini residual r [ ] for a periodic solution
with active contact: m = 20 [left], m = 40 [center] and exact solution [right]. T = 3.5. (Color figure online)

Finally, convergence analysis is also conducted on
the L2-norm of the Signorini residual

R(m) =
√∫ T

0
r(u(m)(1, t), p(m)(1, t))2dt (32)

which depends on m. The convergence plot is shown
in Fig. 5 for one solution located on the branch of the
first nonsmooth mode (NSM) along with the corre-
sponding period T . As expected, the error decreases
with increasing m, following the rate of convergence
O(1/m) exhibited by the Fourier series of a square
wave, which here emerges in the contact force, that is
in the function ux (1, t). Overall, it seems fair to state
that the FD-BEM results can be read with a sufficient
level of confidence even though the authors are aware
of convergence issues in the HBM, for discrete sys-
tems [1,5] at least.

4.2 Dirichlet–Signorini bar system

The system in Fig. 1a is considered. Backbone curves
and corresponding displacement fields of low fre-
quencymodes are shown in Fig. 7. The provided results
agree well with existing ones [18,31]. In the displace-
ment field, the participation of minor spurious high-
frequency waves is caused by the truncation in the
Fourier series and reduces by increasing m. Instead,
in the velocity field and contact force, the Gibbs phe-
nomenon is non-negligible due to the contact-induced
discontinuities in those functions.

In Fig. 7a, the three shown backbone curves, com-
puted via sequential continuation, show small spikes
at certain frequencies. This aspect was explored in

more details for the first NSM continuation curve,
recomputed via both sequential and arclength continu-
ations in Fig. 8. The general look of the low energy
solutions as a function of � is the same and con-
verges with m. However, the number of the small
spikes increases with m. This is caused by the occur-
rences of internal resonances, a classical phenomenon
in nonlinear systems where two or more modes inter-
act together [12]. The Dirichlet–Signorini bar system
is known to exhibit a full internal resonance condition
since all the eigenvalues ωk (or natural frequencies)
of its linear Dirichlet–Neumann counterpart are com-
mensurate to the first eigenvalue ω1 [31, Section 6.3].
Three different instances of such resonances are shown
in Figs. 9a–c. In Fig. 9a around 8/7ω1, the first NSM
interacts with the fourth NSM. In other words, the first
NSM illustrated in Fig. 7b is modulated by another
NSM of higher frequency. Such a phenomenon has
already been observed numerically [31] and is investi-
gated analytically in [25].

The sequential continuation is incapable of follow-
ing vertical branches with constant � while arclength
continuation can and so is more adapted to internal res-
onance branches, at least in principle. However, there
is an issue in the investigated system: the existence
of infinitely many internal resonances located at every
rational number in the considered frequency range [25].
Many of these branches are annihilated by the truncated
number of Fourier harmonics m but still, this mechan-
ical feature strongly affects the arclength continuation
procedure which is systematically attracted by such
internal resonance branches. This has the detrimental
effect of causing systematic continuation stalls between
internal resonance branches such that the arclength
continuation is not even able to capture the main,
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Fig. 7 Nonsmooth modal analysis of the Dirichlet–Signorini bar via FD-BEM with m = 20

Fig. 8 First NSM backbone curve: sequential [ ] and arclength [ ] continuation. (Color figure online)

i.e., low energy, backbone curve, without frequent and
user-control restarts of the procedure. This obviously
becomes more severe with increasing m. Arclength
continuation was accordingly discarded.

4.2.1 Terminology for nonsmooth modes

It is now convenient to better define the terminology
characterizing the computed nonsmoothmodes (NSM)
of vibration, as used in the remainder of the paper. A
(main) NSMi , i = 1, 2, . . ., is a low-energy solution
along a computed backbone curve located in the vicin-
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Fig. 9 First NSM internally resonant solutions of the Dirichlet–Signorini bar with m = 40

ity of the natural frequenciesωi of the underlying linear
system such as the solutions in Fig. 7b for i = 1, or 7d
for i = 2with one noticeable vibration node in space.A
subharmonic k of NSMi , k = 1, 2, . . ., is a low energy
solution along a backbone curve located in the vicin-
ity of ωi/k2. The terminology “NSMi subk” is used
in the remainder. An instance is provided in Fig. 7c
for i = 2 and k = 2. The other possible solutions
involve internal resonances. In the frequency-energy
plots, they are located above the low-energy skeleton
curves, i.e., with higher energies of vibration. They are
challenging to compute but commonly emanate from a
main NSMi and are characterized by the participation
of higher-frequency NSM j with j > i or NSM j subk
with j/k > i , such as illustrated in Figs. 9a–c.

4.3 Robin–Signorini bar system

In this section, the system shown in Fig. 1b is con-
sidered with the non-dimensional stiffness k = 0.5 in
the Robin boundary condition. The first three natural
frequencies of the system are ω1, ω2 ≈ 5.09ω1, and
ω3 ≈ 9.74ω1.

The backbone curves exposed in Fig. 10, for the
NSM1, can be compared to the configuration α =
1/2 in [30]. Both methodologies generate very simi-
lar outputs. However, in [30], a gap exists in the fre-
quency interval, before ω2/4, where no solution could
be found. The developed FD-BEM scheme is able to
find solution in that frequency interval, but it is too
early to really firmly state which of the methodologies
is correct. Coming back to FD-BEM, the low energy

2 Note that solutions in the vicinity of kωi /j , with i, j, k ∈ N
∗,

are also expected but not investigated in the present work.

backbone curves for m = 20 and m = 40 agree well,
even though more interval resonances are detected for
m = 40, as expected. Also, the motion in Fig. 11 [cen-
ter] compares verywellwith themotion reported in [30,
Figure 1.4 (left)].

The backbone curve corresponding to the second
NSM can also be found by FD-BEM and sequen-
tial continuation, see Fig. 12. It compares favorably
with [29, Figure 5.9] for α = 1/2. Clearly, internally
resonant mechanisms are expected again but tracking
them numerically is not an easy task. Their number
increases with m, but their magnitude is limited here.

A subharmonic backbone curve is reported in Fig. 13
and corresponds to NSM2 sub3. In order to maintain
accuracy in the results, the number of Fourier harmon-
ics in the solution is set to m = 60. Such a motion
exhibits three, possibly grazing, contact occurrences
per period along with one vibration node in space, as
shown in Fig. 13.

4.4 Two-bar system

In this section, the modal response of the two-bar sys-
tem in Fig. 1c is explored for three distinct configura-
tions defined by the triplet (�, c, α) with m = 20. A
magnification factor is indicated for every plotted dis-
placement field. Bar 1 is the bar on the left, while bar 2
is the bar on the right, see Fig. 1c, and the Signorini
boundary positions x = 1 and y = � are marked with
dashed lines on the shown displacement fields.

It should be noted that the dynamics observed in
the bar responses is very rich and a thorough exam-
ination is out-of-scope of this paper. This part of the
work plays the role of a proof-of-concept of the devel-
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Fig. 10 NSM1 backbone curve of the Robin–Signorini bar via sequential continuation

Fig. 11 NSM1 of the Robin–Signorini bar with m = 40: points a [left], b [center] and c [right] in Fig. 10b

Fig. 12 NSM2 of the Robin–Signorini bar via sequential continuation. Backbone curve [left] together with solutions at points e [center]
(low energy) and d [right] (internal resonance)

oped methodology and the analysis is focused on the
similarities shared with the one-bar systems.

4.4.1 Linear modal analysis

The linear modes of the two-bar system are essentially
the linear modes of the Dirichlet–Neumann one-bar

systems taken separately. More exactly, the first lin-
ear mode of the two-bar system considered as a whole
is the first linear mode of one bar, while the other
bar is at rest. The linear modes of the whole system
can then be identified by separately ranking all nat-
ural frequencies ω

( j)
i , i.e., natural mode i of bar j
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Fig. 13 NSM2 sub3 of the Robin–Signorini bar with m = 60. Backbone curve [left], point g with one contact and two grazings per
period [center] and point f with two contacts and one grazing per period [right]

(i being any strictly positive integer and j = 1 or
2), from low frequency to high frequency. In other
words, it is possible to uniquely define a one-to-one
sequence of natural frequencies for the whole two-
bar system by properly ranking the natural frequencies
of the one-bar subsystems j = 1, 2 as, for instance:
(ω1, ω2, ω3, . . .) = (ω

(1)
1 , ω

(2)
1 , ω

(1)
2 , ω

(1)
3 , ω

(2)
2 , . . .),

ranking which depends on the mechanical properties
of each bar. In this contribution, it was decided to keep
the notation ω

( j)
i . This is a bit questionable, and this

affects the coming analysis as follows: by assuming
that ω1 = ω

(1)
1 < ω

(2)
1 = ω2, the sentence “the first

mode of bar 1 interacts with the first mode of bar 2”
could identically be rephrased as “the first mode of the
two-bar system interacts with the second mode of the
two-bar system” and the color scheme used in the first
part of the paper (green for NSM1, red for NSM2 and
yellow for subharmonic NSM) becomes obsolete.

4.4.2 First configuration

The triplet (� = 0.95, c = 1, α = 1) is chosen so
that ω

(1)
1 � ω

(2)
1 . The corresponding backbone curves

are shown in Fig. 14a keeping the already used color
scheme. Displacement fields are selectively chosen in
the considered frequency range. First, it should benoted
that the first computed low-frequency backbone curve
does not seem to exist in the vicinity of ω

(1)
1 and ω

(2)
1 ,

in contrast with the one-bar systems. This should be
confirmed by further investigations. Second, the main
low-energy backbone curve has an hardening trend. All
solutions found in the frequency range [ω(2)

1 ; 4
3ω

(2)
1 ]

involveNSM1 and possibly internal resonances of each
bar (Fig. 14b–e). In other words, only motions without
any zero-displacement nodes in space, or node of vibra-

tion, are observed (even though internal resonances
tend to hide this), hence the selected green color. For
instance, the motion of the first bar in Fig. 14e exhibits
an internal resonance betweenNSM6andNSM1,while
the motion of the second bar shows an internal reso-
nance of NSM4withNSM1, probablywith the residual
participation of a higher frequency mode which is not
easy to distinguish.

NSM2 is also captured by FD-BEM as shown in
right handside of Fig. 14a. Associated modal motions
feature one node of vibration, clearly distinguishable
in Fig. 14f, g. This NSM2 branch includes two sub-
branches, both of the hardening type. Thefirst one starts
in the vicinity of ω

(1)
2 , and the displacement field is

shown in Fig. 14f. Interestingly, the solutions depicted
in Fig. 14f and, to a lesser degree in Fig. 14g feature
one bar in extension while the other bar is in compres-
sion during contact. All other solutions involve two
bars in extension during contact. In this configuration,
the first bar exhibits hardening, while the second bar
shows softening and involves an internal resonance.
On the second skeleton curve, two NSM2 of the hard-
ening type interact together as shown in Fig. 14g, with
a minor internal resonance in the first bar.

In order to highlight the difference with the one-
bar systems, the response at the contact interface is
indicated in Fig. 15. The main conclusion, and this is
obviously expected, is that the contact interface now
moves and depends on the solution, while it is fixed
by the rigid foundation for the one-bar systems. This is
clear in Fig. 15b.

Finally, and in order to support the above statements,
FD-BEM is compared to a time-marching scheme
based on the Time-Domain BEM combined with the
floating boundary method to handle unilateral contact
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Fig. 14 First and second NSMs, and internal resonances, for (� = 0.95, c = 1, α = 1)

Fig. 15 Strain (dotted) and position (solid) at the contact interface: bar 1 [ ] and bar 2 [ ]. (Color figure online)
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conditions [28]. Solution 14b at t = 0 is used as an
initial condition in the time-marching procedure, and
the final state at t = T is compared to the initial state
for periodicity. The time-step for the TD-BEM simu-
lation is set to �t = 0.01 in such a way that bar 1 has
100 elements in space while bar 2 has 95 elements. The
corresponding displacement field and contact force are
shown in Fig. 16, in the same scale as results of FD-
BEM in Fig. 15a. It should be indicated that the TD-
BEM solution is almost but not exactly periodic. The
maximum difference between the initial and final states
is less than 2%. Overall, TD-BEM and FD-BEM gen-
erated responses that bear a very strong resemblance.
Only the contact forces are slightly different in pattern
but similar in scale. The difference is mainly caused
by how the Signorini condition is enforced, in a time-
step fashion in TD-BEM and in an integral sense in
FD-BEM.

4.4.3 Second configuration

The triplet (� = 3.8, c = 4, α = 4) is chosen. Com-
pared to the first configuration, the second bar has dif-
ferent mechanical properties but shares the same nat-
ural frequencies as in configuration 1. The goal of the
chosen triplet is to observe how the nonsmooth modal
response is affected by the design rather than the lin-
ear modal signature of the system. The contribution
of internal resonance along the first NSM main back-
bone curve is much less dominant than that in the first
case. A displacement field is shown in Fig. 17 similar to
Fig. 14b.Overall, the energy-frequency skeleton curves
for NSM1 andNSM2, shown in Fig. 17a, share obvious
similarities with their counterparts for configuration 1,
with stiffening as the driving feature. In other words,
the linearmodal signature seems to dominate the design
features in how the nonlinear system behaves.

4.4.4 Third configuration

The triplet (� = 0.95, c = 2, α = 1) is chosen such
that the first natural frequencies ω

(1)
1 , ω(2)

1 and ω
(1)
2 are

not in vicinity of each other (actuallyω
(2)
1 ≈ 2.11ω(1)

1 ).
In contrast to the two first configurations, this system
is shown to exhibit NSMs which combine NSM1 of
one bar, possibly with the participation of internal res-
onance (green) withNSM j subk of the second bar (yel-
low). Accordingly, the backbone curve, shown in black

in Fig. 18a, can no longer be colored in terms of the
NSM category (that is green, yellow and red) as done in
the previous sections. However, the displacement field
plots keep the original color scheme in order to identify
the motion NSM category in each bar, separately.

The first family of NSMs is found in the range
[ω(1)

1 ; 1.13ω(1)
1 ]. The corresponding motion consists of

one period of the NSM1 in bar 1 and various motions
in bar 2, as detailed below. In the frequency range
[ω(1)

1 ; 1
2ω

(2)
1 ], bar 2 exhibits softening along NSM1

sub2 and mainly acts in compression during contact
as shown in Fig. 18b. It should be noted that point a in
Fig. 18a is almost located in themiddle of the frequency
interval [ω(1)

1 ; 1
2ω

(2)
1 ] whose bounds are close to each

other. The system seems tofind a balance betweenhard-
ening in bar 1 and softening in bar 2. In the frequency
range [ 12ω(2)

1 ; 1.13ω(1)
1 ], bar 2 exhibits NSM1 in com-

pression during contact, as indicated in Fig. 18c. Point b
in Fig. 18a is located in the interval [ 12ω(2)

1 ; 1.13ω(1)
1 ]

but quite far from the upper bound. This seems to imply
that the hardening effect in bar 1 dominates the soften-
ing effect in bar 2 so that the motion exists at the given
frequency. Also, the transition from point a to point b is
smooth: the behavior in bar 1 is not really affected but
bar 2 continuously morphs from NSM1 sub2 (yellow)
to NSM1 (green).

The second family of NSMs is found to lie in the
frequency range [ω(2)

1 ; 1.25ω(2)
1 ]. The corresponding

motion consists of NSM1 in bar 2 (green) along with
various subharmonic NSM in bar 1 (yellow): for exam-
ple, NSM6 sub5 (≈ 1

5ω
(1)
6 ) with softening effect in

Fig. 18d;NSM3sub2 (≈ 1
2ω

(1)
3 )with softening effect in

Fig. 18e; NSM3 sub2 with hardening effect in Fig. 18f.
The transition between subharmonics leads to a dis-
continuous backbone curve as well as frequency inter-
vals where periodic solutions could not be found. For
example, discontinuities are clear around 1

5ω
(1)
6 or for

frequencies slightly lower than 1
2ω

(1)
3 .

5 Conclusion

In this paper, a solution methodology relying on a
Frequency-Domain formulation of the Boundary Ele-
ment Method (FD-BEM) combined to the Harmonic
BalanceMethod (HBM) is introduced to performNon-
smooth Modal Analysis of one-dimensional bar sys-
tems. It is shown to be computationally efficient at the
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Fig. 16 TD-BEM results
with initial conditions
specified by FD-BEM
solution

Fig. 17 First NSM for � = 3.8, c = 4 and α = 4

cost of satisfying the Signorini boundary conditions in
a weighted residual sense only.

Nonsmooth modes are computed for a single
Dirichlet–Signorini bar, a single Robin–Signorini bar,
both constrained at one end by a rigid foundation,
and two Dirichlet–Signorini bars interacting through
a common unilateral contact interface. Various modal
responses are investigated, and the findings for the
single-bar system compare well with existing solutions
reported in the literature confirming the reliability of
the proposed procedure.

The modal dynamics of the two-bar system is very
rich. Only a very partial overview could be provided.
However, it includes the intricate interaction of non-
smooth modal motions within each bar with entan-
gled hardening and softening mechanisms which do
not seem to arise in nonlinear yet smooth mechanical
systems.

The proposed formulation is energy-preserving by
construction and could be extended to higher dimen-
sional elasticity systems. However, additional chal-

lenges are expected in tracking Nonsmooth Modes of
Vibration for such systems:

• The boundary of 1D problems does not need dis-
cretization since it reduces to a set of points. How-
ever, 2D/3D problems require spatial discretization
of their boundary, thus adding an additional level
of approximation in the solution.

• In the proposed implementation, a homogeneous
system is assumed and an exact fundamental
solution exists, which is highly beneficial. For
1D/2D/3D non-homogeneous elasticity problems,
the fundamental solution might not have an analyt-
ical expression or might not exist at all. Instead, a
scheme extending the alternate frequency-domain
formulation given in Appendix 1 could be imple-
mented through the use of the Finite Element
Method for instance to approximate the solution
to the counterpart of the Helmholtz equation. This
might affect the convergence of the proposed algo-
rithm, and BEM might not be as beneficial as in
the present study. Moreover, it is known that the
Finite Element Method implemented in unilater-
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Fig. 18 NSM for (� = 0.95, c = 2, α = 2) where NSM1 of bar 2 [ ] interacts with various subharmonic NSM of bar 1 [ ]. (Color
figure online)

ally constrained systems is not necessarily well-
posed in dynamics and should be complemented
with an impact law, in the form of Newton’s law
for instance [4]. It is not clear whether this aspect
could affect the proposed formulation. It is possible
that searching for periodic solutions with constant
energy is sufficient for the well-posedness and the
above impact law could be discarded. More work
is needed on this important topic.

• In 1D elasticity problems, only p-waves exist. In
2D/3D elasticity problems, the targeted solutions
combine both p- and s-waves. Thismight also affect
the convergence of the proposed methodology.

To summarize, 2D/3D systems involve additional chal-
lenges when it comes to Nonsmooth Modal Analysis.
Such challenges will be investigated in a coming work.
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Appendix1:Alternate equivalent frequency-domain
formulation

It is possible to retrieveExpression (18)without relying
on the developed FD-BEM formulation. The Fourier
Transform (6) of the displacement and the resulting
Helmholtz Eq. (7) are considered. The general solu-
tion to the Helmholtz Eq. (7) is û(x, ω) = A cosωx +
B sinωx which induces ûx (x, ω) = −ωA sinωx +
ωB cosωx . Reading the two previous identities on the
boundary {0} ∪ {1} leads to

û(0, ω) = A

û(1, ω) = A cosω + B sinω

ûx (0, ω) = ωB = − p̂(0, ω)

ûx (1, ω) = −ωA sinω + ωB cosω = p̂(1, ω) (33)

which is strictly equivalent to (18). The rest of the pro-
cedure follows.However, the extension of the FD-BEM
to higher dimensions in space is more straightforward
for the enforcement of the boundary conditions.

Appendix 2: Separation of variables

It seems appropriate to highlight a major difference
between the proposed approach based on direct and
inverse Fourier Transforms and the classical separa-
tion of variables sometimes used in solving the wave
equation via the superposition principle. The technique
can be summarized as follows:

• Consider an ansatz solution of the form u(x, t) =
(x) exp( jωt) and plug it into the wave Eq. (1).
This implies that the function (x) is solution to
the Helmholtz equation xx + ω2 = 0, identical
to Eq. (7) stemming from a Fourier Transform.

• The general solution is (x) = A cosωx +
B sinωx .

• Enforce the boundary conditions. Let us consider
the Dirichlet–Signorini bar for simplicity. Accord-
ingly, (0) = 0, that is A = 0.

• From the above, the solution now reads u(x, t) =
B sinωx exp( jωt). However, the Signorini condi-
tion cannot be properly enforced at this stage, as
achieved in (29). The usual approach would be to
consider an homogeneous Neumann condition at
x = 1 in order to generate a family of eigenfunc-
tions k(x) = sin(kπx/2), k = 1, 3, . . . so that
the sought solution is now expressed as the infinite
sum

u(x, t) = 
( ∑

k,odd

Bk sin(kπx/2) exp( jkπ t/2)
)

(34)

and then try to enforce the Signorini condition.
However, this would require either a penalization
or an impact law, with the corresponding questions
on the values of the companion parameters (penal-
ization coefficient or impact law restitution coeffi-
cient). Note that a finite-element-based approach in
space would not help either.

The Frequency-Domain procedure exposed in the cur-
rent work overcomes the above difficulties by han-
dling the Signorini condition directly in the frequency
domain and never assumes a solution in the form (34),
or similar.

Appendix3:D’Alembert solutionandFourier trans-
form

The general solution to the wave Eq. (1) is D’Alembert
solution u(x, t) = f (x + t) + g(x − t). The Dirichlet
condition at x = 0 implies f (t) + g(−t) = 0, that is
u(x, t) = f (x+t)− f (t−x). The corresponding strain
field is ux (x, t) = f ′(x + t) + f ′(t − x). At x = 1,
both equations yield u(1, t) = f (t +1)− f (t −1) and
ux (1, t) = f ′(t + 1) + f ′(t − 1). Applying a Fourier
Transform to each quantity along t leads to û(1, ω) =
2 j sinω f̂ (ω) and ûx (1, ω) = 2 jω cosω f̂ (ω), expres-
sions which agree with (23). The same procedure
applies to the Robin–Signorini system and Expres-
sion (27) would be retrieved. Again, this shows that
the proposed approach is a Frequency-Domain proce-
dure based on a Fourier Transform of the D’Alembert
solution.
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