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Abstract In this paper, the tracking problem of four-
Mecanum-wheel omnidirectional mobile robots is dis-
cussed. A fixed-time extended-state-observer-based
transient-performance-guaranteed adaptive fuzzy con-
troller based on the backstepping technique is designed
under the assumption that the viscous friction coef-
ficients are unknown. Firstly, fuzzy approximators are
employed to approximate the unknown dynamics. Sec-
ondly, error transformation functions are introduced to
guarantee the transient performance of tracking errors.
Thirdly, fixed-time extended state observers are applied
to estimate the external disturbances. Finally, the sta-
bility of the designed controller is proven by the prac-
tical fixed-time stability theory. Comparative simula-
tions are carried out, and the simulation results verify
the effectiveness of the designed controller.

Keywords Fixed-time control · Adaptive fuzzy ·
Extended state observer · Transient performance

1 Introduction

The Mecanum-wheel omnidirectional mobile robots
canmove in any direction on the plane. This omnidirec-
tional movement feature makes the Mecanum-wheel
omnidirectional mobile robots widely used in industry
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Chengdu 610065, China
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and daily life, especially in narrow and restricted work-
ing environments, such as warehouse robots, inspec-
tion robots, rescue robots, sweeping robots and service
robots. Therefore, the Mecanum-wheel omnidirec-
tional mobile robots have aroused extensive research
interest.

In order tomake themobile robot move according to
the reference trajectory, it is necessary to design accu-
rate tracking controllers for them. In [1], a static friction
model is used and a model-predictive controller with
friction compensation is applied to trajectory track-
ing of a three-wheel omnidirectional mobile robot. In
[2], a high-order slidingmode observer is implemented
for output feedback, and four continuous sliding mode
output-feedback controllers are presented to deal with
the robust trajectory tracking problem of a four-wheel
omnidirectionalmobile robot. In [3], a robust controller
with the combination of backstepping technique and
slidingmode control is designed for a four-wheel omni-
directional mobile robot. In [4], the tracking problem
of an omnidirectional mobile robot is solved by con-
sidering some suitable modifications of the computed-
torque control. In [5], a differential sliding mode con-
troller is designed to move a three-wheel omnidirec-
tional mobile platform. In [6], to solve the tracking
problem of an omnidirectional mobile robot for air-
craft skin inspection, a robust adaptive terminal sliding
mode control scheme is proposed.

In the above several strategies of controlling a
mobile robot, all the parameters of the mobile robot
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need to be known. Indeed, some time-invariant param-
eters can be obtained by measurement or consulting
the manual, for example, the length and width of the
robot chassis, the radius of the wheels. However, for
some parameters related to the working environment of
mobile robots and parameters that change greatly over
time, such as the viscous and static friction coefficients,
it is unrealistic to obtain their real-time values. Then,
there are some studies that focus on trajectory tracking
control when there are unknown dynamics or unknown
parameters in the mobile robot model. In [7], it is
assumed that in the robot dynamics there are unknown
terms modeled as an unknown input signal and that
a generalized proportional integral observer is used to
estimate the unknown input of a three-wheel omnidi-
rectional mobile robot. In [8], one assumes that some
parameters, such as mass and the moment of inertia,
are unknown and the adaptive backstepping approach
is applied to deal with the unknown parameters of a
three-wheel omnidirectional mobile robot. In [9], some
system parameters are assumed unknown and a switch-
ing controller is proposed for a three-wheel omnidi-
rectional mobile robot, which consists of an adaptive
linearizing controller, an adaptive sliding-mode con-
troller, a switching algorithm and a standard robust
controller.

Advanced control strategies can reduce the nega-
tive effects of unknown dynamics or unknown param-
eters to a certain extent, but such a controller will not
have excellent tracking performance.Amore direct and
effective method is to use learning models with univer-
sal approximation capabilities such as fuzzy systems
and neural networks to replace the unknown models.
The best approximation to the unknown model can be
achieved by adaptively adjusting the parameters of the
approximator, so that the influence of the unknown
model on the control objective can be compensated by
the universal approximator. In [10], a neural network
is utilized to emulate the uncertain nonlinear function
and an adaptive sliding mode controller is designed
for a four-Mecanum-wheel mobile robot to track the
trajectory. In [11], fuzzy wavelet networks are used to
on-line approximate some uncertain nonlinear terms of
the controller, and a nonsingular terminal sliding mode
controller is presented for trajectory tracking of a four-
Mecanum-wheel mobile robot.

In otherfields besides omnidirectionalmobile robots,
it is also very common to use universal approxima-
tors to deal with unknown dynamics. The difference

between the fuzzy system and the neural network is that
the fuzzy system has explicitly rules-based reasoning
mechanism and can be combined with human experi-
ence and expert knowledge [12]. In [12], fuzzy logic
systems are developed to approximate the unknown
nonlinear functions in spacecraft proximity systems,
which solves the relative pose motion problem of the
spacecraft. In [13], to achieve tracking tasks, inter-
val type-2 fuzzy systems are utilized to approximate
unknown nonlinear functions in flexible-joint manipu-
lator. In [14], fuzzy systems are constructed to approx-
imate unknown time-varying unmodeled dynamics in
a hypersonic flight vehicle for better tracking per-
formance. In addition to being used to approximate
unknownmodels, fuzzy systems are also used to repre-
sent known but complexmodels to reduce the complex-
ity and calculation of the controller. In [15], for render-
ing outputs track reference signals, the fuzzy systems
are applied to handle known complex nonlinear func-
tions in a two cascaded continuous stirred tank reac-
tors. In [16], under the influence of various nonlineari-
ties and uncertainties, fuzzy systems are introduced to
approximate known dynamics in bilateral teleoperation
manipulators, in order to implement the control design
without the prior modeling knowledge. In [17], a new
control method is proposed to ensure a Takagi–Sugeno
(T-S) fuzzy system to achieve H∞ performance. Then
in [18], a T-S fuzzy system is used to represent the
continuous-time nonlinear system, and by introducing
a matrix decoupling technique, the fuzzy resilient fil-
tering error system can meet the prescribed H∞ per-
formance. Although the above controllers can guaran-
tee the asymptotical convergence of the tracking error,
it cannot guarantee the transient performance and the
finite-time convergence of the tracking error.

In terms of transient performance, that is, to con-
strain the tracking error within a prescribed region, a
common approach is to use an error transformation
function to transform the tracking error, turning the
problem of guaranteeing transient performance into
a bounded problem. In [19], the error transformation
function is employed to guarantee the transient track-
ing performance of underactuated unmanned surface
vessels. In [20], performance functions are constructed
and the error transformation function is used to ensure
that the tracking error of air-breathing hypersonic vehi-
cles is confined within the prescribed boundaries. In
[21], an error transformation function is introduced to
transform the constrained tracking problem into the
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unconstrained stabilization problem, and then, the pre-
scribed transient trackingperformances of amarine sur-
face vessel are guaranteed. In [22], a finite-time perfor-
mance function is adopted to ensure the tracking errors
converge to the given range in the tracking problem of
stochastic nonlinear systems with unmodeled dynam-
ics.

In terms of finite-time convergence, the traditional
asymptotic stability theory can only guarantee the
infinite-time stability of the control object. In order
to stabilize the control object in a finite time, that is,
the tracking error converges within a finite time, the
finite-time stability theory has been developed. The
finite-time stability theory is first proposed by refer-
ence [23,24], and then, other forms of finite-time sta-
bility theory [25–28] are proposed for the convenience
of application. In [29], a finite-time adaptive neural
controller of which the design parameters are opti-
mized is developed to handle the finite-time optimal
control problem for a class of nonlinear systems. In
[30], for the tracking problem of a class of multi-input
and multi-output (MIMO) nonlinear systems, a finite-
time adaptive neural controller is constructed . In [31],
a finite-time performance-constrained adaptive fuzzy
controller is designed to solve the control problem of
stochastic high-order nonlinear systems. In [32], by
finite-time stability theory, the event-triggered finite-
time adaptive fuzzy control design is achieved, for
stochastic nonlinear nonstrict feedback systems with
unmodeled dynamics. However, the settling time deter-
mined by the finite-time stability theory depends on
the initial values of the control system. In order to
improve this defect, as an evolution of the finite-time
stability theory, the fixed-time stability theory has been
developed. The fixed-time stability theory is first pro-
posed by reference [33], but when uncertainties exist in
the control system, which is more practical and more
general case, this theory is not applicable. Therefore,
another practical fixed-time stability theory [34,35],
which is more suitable for the general case, was estab-
lished. In [34], a fixed-time controller is derived to guar-
antee that the attitude of a rigid spacecraft converges
to the equilibrium in a fixed settling time even in the
presence of external disturbances and actuator faults.
In [36], an adaptive fixed-time controller is designed to
guarantee that a stratospheric airship tracks the refer-
ence trajectory within a fixed time under external dis-
turbances. In [37], a fixed-time fault-tolerant controller
is given to solve the fixed-time tracking problem of a

underwater walking robot with external disturbances,
error constraints and actuator faults.

The use of universal approximator, error transforma-
tion function and fixed-time control can already make
the mobile robot have good tracking performance.
However, when the mobile robot is faced with exter-
nal disturbances, new unknown terms appear, which
are bound to adversely affect the tracking performance
of the mobile robot. If the disturbance is measurable,
using a feedforward control strategy to add a compen-
sation term for the disturbance in the controller can
eliminate the influence of the disturbance. The actual
situation is that the disturbance is often notmeasurable,
and its mathematical model is often unknown, which
makes it unrealistic to use a universal approximator to
approximate the disturbance. The feasible way is to use
the state observer to observe the disturbance with the
help of themeasurable state, in order to achieve the pur-
pose ofmeasuring and estimating the disturbance. If the
universal approximator has been used, the disturbance
observer can also estimate the approximation error of
the universal approximator, making the tracking per-
formance of the mobile robot even further. In [38], a
nonlinear disturbance observer is introduced into the
robotic exoskeleton to counteract the lumped distur-
bance. In [39], an adaptive sliding mode disturbance
observer is proposed to compensate the system uncer-
tainty with complex and uncertain dynamics. In [40],
the reduced-order extended state observer is proposed
to estimate the friction of a three-wheel omnidirec-
tional mobile robot without any explicit friction mode.
Some other disturbance observers are summarized in
[41]. By means of the mentioned finite-time stability
theory and fixed-time stability theory, in [42], a finite-
time extended state observer is constructed to estimate
the unavailable velocities and external disturbances in
the distributed formation control problem of marine
surface vehicles. In [43], a fixed-time extended state
observer is developed to estimate unmeasured veloci-
ties and lumped disturbances for marine surface ves-
sels.

This paper will set out to solve the problems in the
four-Mecanum-wheel mobile robot mentioned above:
unknown dynamics and unknown disturbances, guar-
anteeing the transient performance of the tracking error,
guaranteeing the convergence time of the tracking error
and the observation error. The fuzzy systems are used
to approximate the dynamics with unknown friction
coefficients in the mobile robot. The error transforma-
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tion function is used to guarantee the transient perfor-
mance of the tracking error. A fixed-time extended state
observer is introduced to observe external disturbances
and ensure the observation error converges in a fixed
time. Finally, a fixed-time adaptive tracking controller
is designed based on the backstepping technique to
complete the trajectory tracking task and guarantee the
tracking error converges within a fixed time. Compared
with the previous literature, the main contributions of
this paper are listed as follows:

1) The friction is not handled directly in [2,4]. A
static friction model is only established in [1,9,11]
. References [3,5,8] assume that the static friction
and the viscous friction are known. Reference [40]
assumes the viscous friction coefficient known and
uses a disturbance observer to observe the static
friction. Different from the existing results, this
paper uses fuzzy systems to approximate unknown
dynamics with unknown viscous friction coeffi-
cients in the mobile robot and uses an observer to
estimate the static friction. The independence of
viscous friction coefficients makes the controller
proposed in this paper more robust.

2) By introducing the practice fixed-time stability the-
ory proposed in [34,35], an adaptive fixed-time
tracking controller is designed, which theoretically
ensures that the tracking error of the mobile robot
converges to the neighborhood of the origin within
a fixed time, and the settling time is independent of
the initial state. To make the adaptive laws of the
fuzzy systems as simple and intuitive as possible
and to prove that the system satisfies the practice
fixed-time stability theory, Lemma 4 is specially
proposed and proved to handle the term of adaptive
laws whose exponent is greater than 1.

3) In the presence of unknown dynamics and external
disturbances, it is difficult to guarantee the tran-
sient performance of the tracking error. The fuzzy
systems approximating unknown dynamics, the
fixed-time extended state observer estimating exter-
nal disturbances, the error transformation function
ensuring the trajectory tracking errors of themobile
robot have a predetermined performance. Unlike
the existing literature, which can only guarantee the
asymptotic convergence of the tracking error of the
mobile robot, the controller designed in this paper
can keep the tracking error within a predetermined

region at all times even under unknown dynamics
and external disturbances.

This paper is organized as follows: In Sect. 2, the
problem preliminaries are given, involving the fixed-
time theory, useful scaling inequalities, fuzzy sys-
tems, error transformation functions and themathemat-
ical model of a four-Mecanum-wheel omnidirectional
robot. In Sect. 3, a fixed-time adaptive fuzzy controller
is derived by backstepping technique and a fixed-time
extended state observer for observing external distur-
bances is designed. In Sect. 4, a comparative simula-
tion example is shown. In Sect. 5, the conclusion of this
paper is drawn.

2 Preliminaries

2.1 Fixed-time stability

Lemma 1 ([34,35]): Consider the system ς̇ = f (ς).
If there exists a smooth positive-define function V (ς),
and scalars α > 0, β > 0, 0 < p < 1, q > 1, and
ρ > 0 such that

V̇ (ς) ≤ −αV p(ς) − βVq(ς) + ρ, t ≥ 0, (1)

then the nonlinear system ς̇ = f (ς) is practical fixed-
time stable and the settling time Tset can be estimated
by

Tset ≤ 1

αφ(1 − p)
+ 1

βφ(q − 1)
,

where 0 < φ < 1 is a constant. The residual set of the
solution of system ς̇ = f (ς) is given by:

ς ∈
{
V (ς) ≤ min

{(
ρ

α(1 − φ)

) 1
p

,

(
ρ

β(1 − φ)

) 1
q
}}

.

2.2 Inequalities

Lemma 2 ([37]): For xi ∈ R, i = 1, 2, · · · , n, one
has

n∑
i=1

|xi |λ ≥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
n∑

i=1
|xi |

)λ

, 0 < λ ≤ 1

n1−λ

(
n∑

i=1
|xi |

)λ

, λ > 1

(2)
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Lemma 3 ([25]): For real number z and ξ , and any
positive constants μ, θ, ι, the following relation holds,

|z|μ|ξ |θ ≤ μ

μ + θ
ι|z|μ+θ + θ

μ + θ
ι−

μ
θ |ξ |μ+θ . (3)

Lemma 4 For real number x, odd numbers r1 > r2,
constant c, r = r1/r2 > 1, there exists a constant
� > 0 such that

x(c − x)r − 1

1 + r
(cr+1 − xr+1) ≤ �. (4)

Proof Denote g(x) = x(c − x)r − 1
1+r (c

r+1 − xr+1).
The derivative of g(x) with respect to x is

g′(x) = (c − x)r − r x(c − x)r−1 + xr

= xr
(( c

x
− 1

)r − r
( c

x
− 1

)r−1 + 1

)
.

Let c/x = t, f (t) = (t − 1)r − r(t − 1)r−1 + 1,
and the derivative of f (t) with respect to t , f ′(t) =
(t − 1)r−2(r t − r2), has two zeros, t1 = 1, t2 = r . It
can be calculated that f (t1) = 1, f (t2) = 1 − (r −
1)r−1, f (0) = −r . When t < 1, f ′(t) > 0, f (t)
increases. When 1 < t < r , f ′(t) < 0, f (t) decreases.
When t > r , f ′(t) > 0, f (t) increases.

Case 1: If 1 < r < 2, f (t2) > 0, f (t) has only
one zero, t0 ∈ (0, 1). When t < t0, f (t) < 0. When
t > t0, f (t) > 0. That is, g′(x) has only one zero, x0 =
c/t0. When x > x0, g′(x) < 0, g(x) decreases. When
x < x0, g′(x) > 0, g(x) increases. At x0, g(x) gets
the absolute maximum value � = g(x0) > g(c) = 0.
Then, g(x) ≤ � holds.

Case 2: If r > 2, f (t2) < 0, f (t) has three zeros,
t0 ∈ (0, 1), t1 ∈ (1, r), t2 ∈ (r,∞). When t < t0,
f (t) < 0. When t0 < t < t1, f (t) > 0. When t1 <

t < t2, f (t) < 0.When t > t2, f (t) > 0. That is, g′(x)
has three zeros, x0 = c/t0, x1 = c/t1, x2 = c/t2.

Case c > 0: When x < x2, g′(x) > 0, g(x)
increases. When x2 < x < x1, g′(x) < 0, g(x)
decreases. When x1 < x < x0, g′(x) > 0, g(x)
increases. When x > x0, g′(x) < 0, g(x) decreases.
Function g(x) gets the local maximum values at x2 and
x0. At x = x2,

g(x2) = x2(c − x2)
r − 1

1 + r
(cr+1 − xr+1

2 ),

g′(x2) = (c − x2)
r − r x2(c − x2)

r−1 + xr2 = 0.

Substituting g′(x2) = 0 into g(x2) produces

g(x2) =x2(c − x2)
r − 1

1 + r

(
cr+1+x2(c − x2)

r

−r x22 (c − x2)
r−1)

= r

1 + r
cx2(c − x2)

r−1 − 1

1 + r
cr+1

According to x2 = c/t2 and t2 ∈ (r,∞), one can know
0 < x2 < c/r . Then,

(c − x2)
r−1 < cr−1,

g(x2) < cr
( r

1 + r
x2 − 1

1 + r
c
)

< 0 = g(c).

According to x0 = c/t0, t0 ∈ (0, 1), it can be inferred
that x0 > c > 0. According to x1 = c/t1, t1 ∈ (1, r),
it can be inferred that c/r < x1 < c < x0. On the basis
of g(x) monotonically increasing in (x1, x0), g(x0) >

g(c) is obtained. Therefore, g(x2) < g(x0). So � =
g(x0) and g(x) ≤ � holds.

Case c < 0: When x < x0, g′(x) > 0, g(x)
increases. When x0 < x < x1, g′(x) < 0, g(x)
decreases. When x1 < x < x2, g′(x) > 0, g(x)
increases. When x > x2, g′(x) < 0, g(x) decreases.
Function g(x) also gets the two local maximum values
at x2 and x0. According to x2 = c/t2, t2 ∈ (r,∞), one
gets 0 > x2 > c/r . Similarly, (c − x2)r−1 < cr−1

and g(x2) < 0 = g(c) are obvious. According to
x0 = c/t0, t0 ∈ (0, 1), one has x0 < c. According
to x1 = c/t1, t1 ∈ (1, r), one has c/r > x1 > c >

x0. On the basis of g(x) monotonically decreasing in
(x0, x1), it is easy to know g(x0) > g(c). Therefore,
g(x0) > g(x2). So � = g(x0) and g(x) ≤ � holds. ��

Remark 1 Lemma 4 mainly serves the stability analy-
sis part. Substituting x = θ̃ , c = θ∗, r = 2q − 1 into
Lemma 4 produces

θ̃
(
θ∗ − θ̃

)2q−1 − 1

2q

(
θ∗2q − θ̃2q

)
≤ �.

If θ is regarded as the adaptive parameter vector of
fuzzy systems, then by substituting θ̂ = θ∗ − θ̃

and slightly making some adjustments, (38) can be
obtained.
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2.3 Fuzzy system

Fuzzy systems usually consist of the following basic
fuzzy rules:

Ri : i f x1 is Al1
1 and x2 is Al2

2 and · · · and xn is Aln
n ,

then y is Y l1l2···ln ,

where Al1
1 , Al2

2 , · · · , Aln
n ,Y l1l2···ln are fuzzy sets, and

xi is the input and y is the output. Through singleton
function, center average defuzzification, and product
inference [25], the output of the fuzzy system can be
expressed as:

y =
∑p1

l1=1 · · ·∑pn
ln=1 y

l1...ln
(∏n

i=1 μ
li
Ai

(xi )
)

∑p1
l1=1 · · ·∑pn

ln=1

(∏n
i=1 μ

li
Ai

(xi )
) = θT ξ(x),

(5)

where
θ = [y1···1, y1···2, · · · , y p1···pn ],
ξ(x) = [ξ1···1(x), ξ1···2(x), · · · , ξ p1···pn (x)]T ,

ξ l1···ln (x) =
(∏n

i=1 μ
li
Ai

(xi )
)

∑p1
l1=1 · · · ∑pn

ln=1

(
n∏

i=1
μ
li
Ai

(xi )

) ,

and yl1···ln is the center of the fuzzy set Y l1···ln ,μ(x) the
membership function. μli

Ai
(xi ) represents the member-

ship of xi belonging to fuzzy set Ali
i .

Lemma 5 ([25]): Let f (x) be a continuous function
defined on a compact set �. Then for any a constant
ε > 0, there exists a fuzzy system (5) such that

supx∈�| f (x) − θT ξ(x)| ≤ ε. (6)

2.4 Guaranteed transient performance

Define the error variable e = x−xd , where x represents
the system state, and xd represents the reference signal
to be tracked by x . Guaranteeing transient performance
means constraining the errorwithin the upper and lower
boundaries, expressed as

η < e < η, (7)

where η represents the upper boundaries, η represents
the lower boundaries. Generally, the upper and lower
boundaries are taken as exponential decay form:

η = (η0 − η∞)e−at + η∞, (8)

Fig. 1 Robot coordinate system and global coordinate system

where η0 > η∞ > 0, a > 0. Assume that the upper
and lower boundaries are symmetrical, written as−η <

e < η and define z = e/η, then (7) becomes−1 < z <

1. Selecting the error transformation [19,20]

v = 1

2
ln

1 + z

1 − z
(9)

can transform the variable z from (−1, 1) to (−∞,∞).
As long as it can be proved that v is bounded, it can
be guaranteed that z ∈ (−1, 1), meaning that the error
e is constrained within the predetermined upper and
lower boundaries. Thanks to the error transformation
function, the error constraint problem is transformed
into a bounded problem.

2.5 Dynamic model

The schematic diagram of the four-Mecanum-wheel
omnidirectional mobile robot is shown in Fig. 1. The
speed transformation relationship between the robot
coordinate xror yr and the global coordinate xoy can
be expressed as:

q̇r = R(θ)q̇, (10)

where

R(θ) =
⎡
⎣cosθ −sinθ 0
sinθ cosθ 0
0 0 1

⎤
⎦ ,

and q̇ = [ẋ, ẏ, θ̇ ]T indicates the speed of the robot
in the x, y, θ direction in the global coordinate system,
q̇r = [ẋr , ẏr , θ̇r ]T the speedof the robot in the xr , yr , θr
direction in the robot coordinate system.
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According to Fig.1, the kinematics model of the
mobile robot can be obtained:

q̇r = J�̇, (11)

where

J = r

4

⎡
⎣ −1 1 −1 1

1 1 1 1
1

L1+L2

−1
L1+L2

−1
L1+L2

1
L1+L2

⎤
⎦ (12)

represents the transformationmatrix from �̇ to q̇r , �̇ =
[θ̇1, θ̇2, θ̇3, θ̇4]T the angular velocity of each wheel of
the robot, r the radius of the wheel, L1 and L2 the
distance from the center of the robot to the center of
the wheel in the xr and yr directions, respectively. By
generalized inverse operation, the right inverse matrix
of J can be obtained:

J · J+ = I,

J+ = J T (J · J T )−1 = 1

r

⎡
⎢⎢⎣

−1 1 (L1 + L2)

1 1 −(L1 + L2)

−1 1 −(L1 + L2)

1 1 (L1 + L2)

⎤
⎥⎥⎦ .

(13)

Then, the formula using q̇r to represent �̇ is obtained:

�̇ = J+q̇r . (14)

The dynamic model of the robot can be obtained by the
Lagrange dynamic equation [10,44]:

M�̈ + D�̇ = τ + d, (15)

where

M =
[

A+B+IM −A A B−A
−A A+B+IM B−A A
A B−A A+B+IM −A

B−A A −A A+B+IM

]
,

A = Izr2

16(L1 + L2)2
,

B = mr2

8
,

D = diag(D1, D2, D3, D4),

and τ = [τ1, τ2, τ3, τ4]T represents the torque inputs
of the robot’s four wheels, Iz moment of inertia of the
robot, IM moment of inertia of the wheels, m mass of
the robot, Di unknown viscous friction coefficient of
the four wheels, d external disturbances including the
static friction.

According to (10) ∼ (14), we can obtain

MJ+R(θ)q̈ + DJ+R(θ)q̇ + d = τ. (16)

Transform the torque input τ , external disturbances
d to the torque input τ̄ = [τ̄4, τ̄5, τ̄6]T , external distur-
bances d̄ = [d̄4, d̄5, d̄6]T

τ = MJ+R(θ)τ̄

d = −MJ+R(θ)d̄
. (17)

Remark 2 Imitating the speed transformation relation-
ship (10) and the kinematics model (14) to make such
a transformation is to change the four-dimensional
torque input τ into three-dimensional input τ̄ , so as
to correspond to the three-dimensional output, which
facilitates the design of the controller. Multiplying the
matrix M is to cancel out the M on the left side of (16).
After the three-dimensional controller τ̄ is designed,
it can be transformed into four-dimensional τ by (17),
and then, τ can be used as the torque inputs of the four
wheels of the mobile robot dynamic model (15).

Multiply both sides of (16) by R(θ)−1 JM−1, and
then (16) can be rewritten as:

q̈ = F(θ)q̇ + τ̄ + d̄, (18)

where

F(θ) = −R(θ)−1 JM−1DJ+R(θ).

According to (18), let x1 = x, x2 = y, x3 = θ, x4 =
ẋ, x5 = ẏ, x6 = θ̇ , and state space model can be
obtained,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = ẋ4
ẋ2 = ẋ5
ẋ3 = ẋ6
ẋ4 = f4(x3, x4, x5, x6) + τ̄4 + d̄4
ẋ5 = f5(x3, x4, x5, x6) + τ̄5 + d̄5
ẋ6 = f6(x3, x4, x5, x6) + τ̄6 + d̄6

. (19)

3 Fixed-time controller design

3.1 Controller design

Consider the state space model (19). Let e1 = x1 −
x1d , e2 = x2 − x2d , e3 = x3 − x3d , e4 = x4 −α1, e5 =
x5 − α2, e6 = x6 − α3, where α1, α2, α3 is the vir-
tual input of Step 1, and x1d , x2d , x3d is the refer-
ence of x1, x2, x3, respectively. Define the boundary
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function of e1, e2, e3 as η1 = (η10 − η1∞)e−aη1 t +
η1∞, η2 = (η20 − η2∞)e−aη2 t + η2∞ , η3 = (η30 −
η3∞)e−aη3 t + η3∞ , respectively. In addition, define
variables z1 = e1/η1 ∈ (−1, 1), z2 = e2/η2 ∈
(−1, 1), z3 = e3/η3 ∈ (−1, 1) and error transforma-
tion functions

v1 = 1

2
ln

1 + z1
1 − z1

v2 = 1

2
ln

1 + z2
1 − z2

v3 = 1

2
ln

1 + z3
1 − z3

. (20)

Differentiating e1, e2, e3 and v1, v2, v3 yields

ė1 = x4 − ẋ1d = e4 + α1 − ẋ1d

ė2 = x5 − ẋ2d = e5 + α2 − ẋ2d

ė3 = x6 − ẋ3d = e6 + α3 − ẋ3d

v̇1 = σ1

(
e4 + α1 − ẋ1d − e1

η̇1

η1

)

v̇2 = σ2

(
e5 + α2 − ẋ2d − e2

η̇2

η2

)

v̇3 = σ3

(
e6 + α3 − ẋ3d − e3

η̇3

η3

)

σ1 = 1

1 − z21

1

η1

σ2 = 1

1 − z22

1

η2

σ3 = 1

1 − z23

1

η3
(21)

Step 1: Choose the following Lyapunov function

V1 = 1

2
v21 + 1

2
v22 + 1

2
v23 . (22)

The derivative of V1 is:

V̇1 = v1σ1

(
e4 + α1 − ẋ1d − e1

η̇1

η1

)

+ v2σ2

(
e5 + α2 − ẋ2d − e2

η̇2

η2

)

+ v3σ3

(
e6 + α3 − ẋ3d − e3

η̇3

η3

)
. (23)

Design the virtual input α1 as

α1 = ẋ1d + e1
η̇1

η1
− a1v1 − b1v

2q−1
1 ,

α2 = ẋ2d + e2
η̇2

η2
− a2v2 − b2v

2q−1
2 ,

α3 = ẋ3d + e3
η̇3

η3
− a3v3 − b3v

2q−1
3 ,

(24)

where a1, a2, a3, b1, b2, b3, 2q−1 = q1/q2 are design
parameters and q1 > q2 are odd numbers. Substitute
(24) into (23) to get:

V̇1 = σ1(−a1v
2
1 − b1v

2q
1 ) + v1σ1e4

+ σ2(−a2v
2
2 − b2v

2q
2 ) + v2σ2e5

+ σ3(−a3v
2
3 − b3v

2q
3 ) + v3σ3e6. (25)

Step 2:Choose the Lyapunov function

V4 = V1 + 1

2
e24 + 1

2
e25 + 1

2
e26. (26)

The derivative of V4 is:

V̇4 = σ1(−a1v
2
1 − b1v

2q
1 ) + e4(v1σ1 + f4 + τ̄4 + d̄4

− α̇1) + σ2(−a2v
2
2 − b2v

2q
2 ) + e5(v2σ2 + f5

+ τ̄5 + d̄5 − α̇2) + σ3(−a3v
2
3 − b3v

2q
3 )

+ e6(v3σ3 + f6 + τ̄6 + d̄6 − α̇3). (27)

The controller can be designed as:

τ̄4 = −v1σ1 − f4 − d̄4 + α̇1 − a4e4 − b4e
2q−1
4 ,

τ̄5 = −v2σ2 − f5 − d̄5 + α̇2 − a5e5 − b5e
2q−1
5 ,

τ̄6 = −v3σ3 − f6 − d̄6 + α̇3 − a6e6 − b6e
2q−1
6 ,

(28)

where a4, a5, a6, b4, b5, b6, 2q−1 = q1/q2 are design
parameters and q1 > q2 are odd numbers.

Due to the unknown viscous friction coefficients, the
function f4, f5, f6 is unknown. The problem can be
solved by approximating f4, f5, f6 with the following
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fuzzy system,

f4(x3, x4, x5, x6) = θ∗T
f4 ξ f4(x3, x4, x5, x6) + ε f4 ,

f5(x3, x4, x5, x6) = θ∗T
f5 ξ f5(x3, x4, x5, x6) + ε f5,

f6(x3, x4, x5, x6) = θ∗T
f6 ξ f6(x3, x4, x5, x6) + ε f6 .

(29)

θ∗
f4
, θ∗

f5
, θ∗

f6
is the best parameter of the fuzzy systems

but unknown. Thus, only the estimation θ̂ f4 , θ̂ f5 , θ̂ f6 of
the best parameter θ∗

f4
, θ∗

f5
, θ∗

f6
can be used in the con-

troller. Similarly, the controller can only use the estima-

tion ˆ̄d4, ˆ̄d5, ˆ̄d6 of the disturbance d̄4, d̄5, d̄6.
ˆ̄d4, ˆ̄d5, ˆ̄d6

will be obtained by the fixed-time extended observer
designed in the next subsection. In order to facilitate
the calculation of α̇1, α̇2, α̇3, letα1, α2, α3 pass through
low-pass filters [45,46]

ψ ˙̄α1 + ᾱ1 = α1, ᾱ1(0) = α1(0),

ψ ˙̄α2 + ᾱ2 = α2, ᾱ2(0) = α2(0),

ψ ˙̄α3 + ᾱ3 = α3, ᾱ3(0) = α3(0),

(30)

where ψ > 0 is a parameter. Consequently, the calcu-
lation can be simplified by using: ˙̄α1, ˙̄α2, ˙̄α3 instead of
α̇1, α̇2, α̇3. So controller (28) can be modified to

τ̄4 = −v1σ1 − ˆ̄θTf4ξ f4 − ˆ̄d4 + ˙̄α1 − a4e4 − b4e
2q−1
4 ,

τ̄5 = −v2σ2 − ˆ̄θTf5ξ f5 − ˆ̄d5 + ˙̄α2 − a5e5 − b5e
2q−1
5 ,

τ̄6 = −v3σ3 − ˆ̄θTf6ξ f6 − ˆ̄d6 + ˙̄α3 − a6e6 − b6e
2q−1
6 .

(31)

For the purpose of making θ̂Tf4ξ f4 , θ̂
T
f5
ξ f5, θ̂

T
f6
ξ f6

approach f4, f5, f6, respectively, the adaptive law of
θ̂Tf4 , θ̂

T
f5
, θ̂Tf6 can be designed as:

˙̂
θ f4 = λ f4e4ξ f4 − γ f4 θ̂ f4 − κ f4 θ̂

2q−1
f4

,

˙̂
θ f5 = λ f5e5ξ f5 − γ f5 θ̂ f5 − κ f5 θ̂

2q−1
f5

,

˙̂
θ f6 = λ f6e6ξ f6 − γ f6 θ̂ f6 − κ f6 θ̂

2q−1
f6

.

(32)

λ f4 , λ f5 , λ f6 , γ f4 , γ f5 , γ f6 , κ f4 , κ f5 , κ f6 , 2q−1 = q1/
q2 are design parameters and q1 > q2 are odd numbers.

Remark 3 In fact, the Mecanum-wheel mobile robot is
a four-input three-output system, and it is very diffi-
cult to design an adaptive fuzzy controller directly. A

unique feature of the controller design in this paper is
that through transformation (17), the four-dimensional
input variable τ is transformed into a three-dimensional
input τ̄ , making the mobile robot a three-input three-
output system, so the design of the fuzzy controller
is carried out smoothly. After getting the controller τ̄ ,
bring τ̄ into (17) to get τ , which can be given to the four
motors of the robot as control inputs. In addition, by
expressing f4, f5, f6 containing the unknown viscous
friction coefficients with fuzzy systems, the problem of
unknown coefficients of viscous friction can be solved.

Remark 4 Supposing differentiating α1 directly with-
out using (30), the calculation of α̇1 will be very com-
plicated and extra variables ẍ1, ẍ1d , η̈1 are needed. This
problem can be easily solved by (30), which simplifies
the calculation and does not provide additional vari-
able values. All that needs to be done is to adjust the
parameter ψ .

Remark 5 Compared with general controllers, v2q−1
1 ,

e2q−1
4 are added to controllers (24) and (28). This is

for the v
2q
1 , e2q4 to appear in V̇ in the subsequent stabil-

ity analysis of subsection C, so that V̇ can satisfy the
determination formula (1). However, the θ̂

2q−1
f4

term in

the adaptive law (32) cannot result in θ̃
2q
f4

directly, for
which Lemma 4 is specially introduced and proved to
make θ̃

2q
f4

appear in V̇ of (34).

3.2 Fixed-time extended state observer design

Assumption 1 According to [43], the derivative of the

disturbance d̄4, d̄5, d̄6 is bounded, such that || ˙̄d4|| ≤
Hd4, || ˙̄d5|| ≤ Hd5, || ˙̄d6|| ≤ Hd6 holds.

Remark 6 Observer (33) needs to calculate
˙̄̂
d4,

˙̄̂
d5,

˙̄̂
d6

to represent the estimations of ˙̄d4, ˙̄d5, ˙̄d6, and then,
˙̄̂
d4,

˙̄̂
d5,

˙̄̂
d6 is integrated to obtain the estimations ˆ̄d4, ˆ̄d5,ˆ̄d6 of the disturbances d̄4, d̄5, d̄6. Therefore, it is nec-

essary to ensure that the
˙̄̂
d4,

˙̄̂
d5,

˙̄̂
d6 to be calculated is

bounded, that is, to ensure that the actual ˙̄d4, ˙̄d5, ˙̄d6 is
bounded.

With reference to the fixed-time extended state
observer (FXESO) proposed in [43], the FXESO for
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subsystem (19) can be designed as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̂x4 = θ̂Tf4ξ f4 + τ̄4 + ˆ̄d4 + k4sigμ1(x̃4) + h4sigν1(x̃4)
˙̂x5 = θ̂Tf5

ξ f5 + τ̄5 + ˆ̄d5 + k4sigμ1(x̃5) + h4sigν1(x̃5)
˙̂x6 = θ̂Tf6ξ f6 + τ̄6 + ˆ̄d6 + k4sigμ1(x̃6) + h4sigν1(x̃6)
˙̄̂
d4 = kdsigμ2(x̃4) + hdsigν2(x̃4) + wd tanh(x̃4)
˙̄̂
d5 = kdsigμ2(x̃5) + hdsigν2(x̃5) + wd tanh(x̃5)
˙̄̂
d6 = kdsigμ2(x̃6) + hdsigν2(x̃6) + wd tanh(x̃6)

,

(33)

where sigμ(·) = | · |μsign(·), sigν(·) = | · |νsign(·),
x̃4 = x4 − x̂4, x̃5 = x5 − x̂5, x̃6 = x6 − x̂6, tanh(x) =
(ex − e−x )/(ex + e−x ), Hd4 < wd , Hd5 < wd , Hd6 <

wd , 0 < μi < 1, μi = iμ̄ − (i − 1), νi > 1, νi =
i ν̄ − (i − 1), i = 1, 2, μ̄ = 1 − δ1, ν̄ = 1 + δ2. δ1, δ2
are small enough positive constants. The FXESO gains
k4, h4, kd , hd shouldmake the followingmatrices Hur-
witz,

P1 =
[−k4 1
−kd 0

]
, P2 =

[−h4 1
−hd 0

]
.

Lemma 5 ([43]): Under Assumption 1, the FXESO
(33) can simultaneously estimate x4, d̄4 in fixed time
bounded by:

Tb ≤ λϑ
max (�1)

γ1ϑ
+ 1

γ2ς�ς

whereγ1=λmin(Q1)/λmax (�1), γ2=λmin(Q2)/λmax

(�2), ϑ = 1 − μ̄, ς = ν̄ − 1, ς ≤ λmin(�2).
Q1, Q2,�1,�2 are nonsingular, symmetric, positive-
definite matrices satisfied �1P1 + P1�T

1 = −Q1,

�2P2 + PT
2 �2 = −Q2.

3.3 Stability analysis

Theorem 1 Consider theomnidirectionalmobile robot
system (19). The virtual controllers (24), the controllers
(31) with the adaptive laws (32) and the fixed-time
extended state observers (33) can enable the system
to have the following properties.

(1) All of the signals in the closed-loop system are
bounded.

(2) The tracking errors are constrained within the
predetermined boundaries ηi and converge to the
neighborhood of the origin in a fixed time.

Proof Choose the Lyapunov function as

V = 1

2
v21 + 1

2
v22 + 1

2
v23 + 1

2
e24 + 1

2
e25 + 1

2
e26

+ 1

2λ f4
θ̃Tf4 θ̃ f4 + 1

2λ f5
θ̃Tf5 θ̃ f5 + 1

2λ f6
θ̃Tf6 θ̃ f6 , (34)

where θ̃ f4 = θ∗
f4

−θ̂ f4 , θ̃ f5 = θ∗
f5

−θ̂ f5 , θ̃ f6 = θ∗
f6

−θ̂ f6 .
The derivative of V is:

V̇ = σ1v1

(
α1 − ẋ1d − e1

η̇1

η1

)
+ σ2v2

(
α2 − ẋ2d

− e2
η̇2

η2

)
+ σ3v3

(
α3 − ẋ3d − e3

η̇3

η3

)

+ e4
(
v1σ1 + f4 + τ̄4 + d̄4 − α̇1

) − 1

λ f4
θ̃Tf4

˙̂
θ f4

+ e5
(
v2σ2 + f5 + τ̄5 + d̄5 − α̇2

) − 1

λ f5
θ̃Tf5

˙̂
θ f5

+e6
(
v3σ3 + f6 + τ̄6 +d̄6 − α̇3

) − 1

λ f6
θ̃Tf6

˙̂
θ f6

.

(35)

Replace f4, f5, f6 with the form of fuzzy systems

f4 = θ∗T
f4 ξ f4 + ε f4 ,

f5 = θ∗T
f5 ξ f5 + ε f5 ,

f6 = θ∗T
f6 ξ f6 + ε f6 ,

and substitute the virtual controllers (24), the con-
trollers (31) and the adaptive laws (32) into (35), one
can have

V̇ = σ1

(
−a1v

2
1 − b1v

2q
1

)
+ σ2

(
−a2v

2
2 − b2v

2q
2

)
+σ3

(
−a3v23 −b3v

2q
3

)
−a4e

2
4 −b4e

2q
4

+e4
( ˙̃α1 + ˜̄d4 +ε f4

) + γ f4

λ f4
θ̃Tf4 θ̂ f4 + κ f4

λ f4
θ̃Tf4 θ̂

2q−1
f4

− a5e
2
5 − b5e

2q
5 + e5

( ˙̃α2 + ˜̄d5 +ε f5

) + γ f5

λ f5
θ̃Tf5 θ̂ f5

+ κ f5

λ f5
θ̃Tf5 θ̂

2q−1
f5

− a6e
2
6 − b6e

2q
6
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+e6
( ˙̃α3 + ˜̄d6 + ε f6

) + γ f6

λ f6
θ̃Tf6 θ̂ f6 + κ f6

λ f6
θ̃Tf6 θ̂

2q−1
f6

,

(36)

where α̃1 = ᾱ1 − α1, α̃2 = ᾱ2 − α2, α̃3 = ᾱ3 − α3.
According to Yang’s inequality,

θ̃Tf4 θ̂ f4 ≤ 1

2
θ∗T
f4 θ∗

f4 − 1

2
θ̃Tf4 θ̃ f4

θ̃Tf5 θ̂ f5 ≤ 1

2
θ∗T
f5 θ∗

f5 − 1

2
θ̃Tf5 θ̃ f5

θ̃Tf6 θ̂ f6 ≤ 1

2
θ∗T
f6 θ∗

f6 − 1

2
θ̃Tf6 θ̃ f6

e4( ˙̃α1 + ˜̄d4 + ε f4) ≤ 1

2
e24 + 1

2
( ˙̃α1 + ˜̄d4 + ε f4)

2

e5( ˙̃α2 + ˜̄d5 + ε f5) ≤ 1

2
e25 + 1

2
( ˙̃α2 + ˜̄d5 + ε f5)

2

e6( ˙̃α3 + ˜̄d6 + ε f6) ≤ 1

2
e26 + 1

2
( ˙̃α3 + ˜̄d6 + ε f6)

2

. (37)

By Lemma 4

θ̃Tf4 θ̂
2q−1
f4

≤ 1

2q

(
θ∗T
f4 θ∗

f4

)q − 1

2q

(
θ̃Tf4 θ̃ f4

)q + �4

θ̃Tf5 θ̂
2q−1
f5

≤ 1

2q

(
θ∗T
f5 θ∗

f5

)q − 1

2q

(
θ̃Tf5 θ̃ f5

)q + �5

θ̃Tf6 θ̂
2q−1
f6

≤ 1

2q

(
θ∗T
f6 θ∗

f6

)q − 1

2q

(
θ̃Tf6 θ̃ f6

)q + �6

.

(38)

Applying (37)(38) to (36),

V̇ ≤ σ1

(
−a1v

2
1 − b1v

2q
1

)
+ σ2

(
−a2v

2
2 − b2v

2q
2

)
+σ3

(
−a3v23 −b3v

2q
3

)
− (a4 − 1

2
)e24 − b4e

2q
4

+ γ f4

2λ f4
θ∗T
f4 θ∗

f4 − γ f4

2λ f4
θ̃Tf4 θ̃ f4 + κ f4

2qλ f4

(
θ∗T
f4 θ∗

f4

)q
− κ f4

2qλ f4

(
θ̃Tf4 θ̃ f4

)q + �4 + 1

2

( ˙̃α1 + ˜̄d4 + ε f4

)2
− (a5 − 1

2
)e25 − b5e

2q
5 + γ f5

2λ f5
θ∗T
f5 θ∗

f5 − γ f5

2λ f5
θ̃Tf5 θ̃ f5

+ κ f5

2qλ f5

(
θ∗T
f5 θ∗

f5

)q − κ f5

2qλ f5

(
θ̃Tf5 θ̃ f5

)q + �5

+ 1

2

( ˙̃α2 + ˜̄d5 + ε f5

)2 − (a6 − 1

2
)e26 − b6e

2q
6

+ γ f6

2λ f6
θ∗T
f6 θ∗

f6 − γ f6

2λ f6
θ̃Tf6 θ̃ f6 + κ f6

2qλ f6

(
θ∗T
f6 θ∗

f6

)q

− κ f6

2qλ f6

(
θ̃Tf6 θ̃ f6

)q + �6 + 1

2

( ˙̃α3 + ˜̄d6 + ε f6

)2
(39)

Denote

�4 = γ f4

2λ f4
θ∗T
f4 θ∗

f4 + κ f4

2qλ f4

(
θ∗T
f4 θ∗

f4

)q +�4

+ 1

2

( ˙̃α1 + ˜̄d4 +ε f4

)2
�5 = γ f5

2λ f5
θ∗T
f5 θ∗

f5 + κ f5

2qλ f5

(
θ∗T
f5 θ∗

f5

)q +�5

+ 1

2

( ˙̃α2 + ˜̄d5 +ε f5

)2
�6 = γ f6

2λ f6
θ∗T
f6 θ∗

f6 + κ f6

2qλ f6

(
θ∗T
f6 θ∗

f6

)q +�6

+ 1

2

( ˙̃α3 + ˜̄d6 +ε f6

)2
and sort (39),

V̇ ≤ −2σ1a1
(1
2
v21

) − 2qσ1b1

(
1

2
v21

)q

− 2σ2a2
(1
2
v22

)

− 2qσ2b2

(
1

2
v22

)q

− 2σ3a3
(1
2
v23

) − 2qσ3b3

×
(
1

2
v23

)q

−(2a4−1)

(
1

2
e24

)
−2qb4

(
1

2
e24

)q

−γ f4

(
1

2λ f4
θ̃Tf4 θ̃ f4

)
− κ f4(2λ f4)

q−1

q

×
(

1

2λ f4
θ̃Tf4 θ̃ f4

)q

+�4−(2a5−1)

(
1

2
e25

)

−2qb5

(
1

2
e25

)q

−γ f5

(
1

2λ f5
θ̃Tf5 θ̃ f5

)

− κ f5(2λ f5)
q−1

q

(
1

2λ f5
θ̃Tf5 θ̃ f5

)q

−(2a6−1)

×
(
1

2
e26

)
−2qb6

(
1

2
e26

)q

−γ f6

(
1

2λ f6
θ̃Tf6 θ̃ f6

)

− κ f6(2λ f6)
q−1

q

(
1

2λ f6
θ̃Tf6 θ̃ f6

)q

+ �6 (40)

Let

α = min{2σ1a1, (2a4 − 1), γ f4 , 2σ2a2, (2a5 − 1),

γ f5, 2σ3a3, (2a6 − 1), γ f6},
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Table 1 Model data and controller parameters

Robot parameters FXAFC-G (FXAFC) STSMC

L1 0.35 m a1 2 (10) κ f4 1 μ1 0.8 K1 2

L2 0.25 m a4 100 k4 10 μ2 0.6 K2 0.1

R 0.05 m b1 2 (10) h4 10 ν1 1.2 λ 2

Iz 0.1 kg·m2 b4 100 kd 150 ν2 1.4 β1 20

IM 0.2 kg·m2 λ f4 100 hd 150 ψ 0.02 β2 100

m 8 kg γ f4 1 ωd 10 2q − 1 5/3

ω = min{2qσ1b1, 2qb4, κ f4(2λ f4)
q−1/q, 2qσ2b2,

2qb5, κ f5(2λ f5)
q−1/q, 2qσ3b3, 2

qb6,

κ f6(2λ f6)
q−1/q}

, and then, (40) is scaled to

V̇ ≤ −α

(
1

2
v21 + 1

2
v22 + 1

2
v23 + 1

2
e24 + 1

2
e25 + 1

2
e26

+ 1

2λ f4
θ̃Tf4 θ̃ f4 + 1

2λ f5
θ̃Tf5 θ̃ f5 + 1

2λ f6
θ̃Tf6 θ̃ f6

)

− ω

((1
2
v21

)q +
(1
2
v22

)q +
(1
2
v23

)q +
(1
2
e24

)q
+

(1
2
e25

)q +
(1
2
e26

)q +
( 1

2λ f4
θ̃Tf4 θ̃ f4

)q
+

( 1

2λ f5
θ̃Tf5 θ̃ f5

)q +
( 1

2λ f6
θ̃Tf6 θ̃ f6

)q)
+ �4 + �5 + �6

.

(41)

By Lemma 2,

(1
2
v21

)q +
(1
2
v22

)q +
(1
2
v23

)q +
(1
2
e24

)q +
(1
2
e25

)q
+

(1
2
e26

)q +
( 1

2λ f4
θ̃Tf4 θ̃ f4

)q +
( 1

2λ f5
θ̃Tf5 θ̃ f5

)q
+

( 1

2λ f6
θ̃Tf6 θ̃ f6

)q ≥ 91−q
(
1

2
v21 + 1

2
v22 + 1

2
v23

+ 1

2
e24 + 1

2
e25+

1

2
e26+

1

2λ f4
θ̃Tf4 θ̃ f4+

1

2λ f5
θ̃Tf5 θ̃ f5

+ 1

2λ f6
θ̃Tf6 θ̃ f6

)q

.

(42)

Substitute (42) into (41) and define 91−qω = β, � =
�4 + �5 + �6,

V̇ ≤ −αV − βVq + �. (43)

By Lemma 3,

V p = 11−p · V p ≤ (1 − p)ι + p ι
− 1−p

p V, (44)

where 0 < p < 1. Let ι = p
p

1−p and (44) becomes

V ≥ V p − (1 − p)p
p

1−p . (45)

Apply (45) to (43) for scaling and let ρ = � + α(1 −
p)p

p
1−p ,

V̇ ≤ −αV p − βV q + ρ. (46)

With reference to Lemma 1, it is known that system
(19) is practical fixed-time stable and the convergence
time T of the tracking error is bounded by:

T ≤ 1

αφ(1 − p)
+ 1

βφ(q − 1)
, (47)

which is independent of the initial states of the sys-
tem. Then, it can be seen that vi is bounded and the
tracking error ei is confined within the predetermined
boundaries. ��

4 Simulation

The simulation of fixed-time observer-based adap-
tive fuzzy controller with guaranteed transient per-
formance (FXAFC-G) proposed in this paper, fixed-
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Fig. 2 Trajectory tracking simulation results

Fig. 3 Tracking results in x, y, θ directions

time observer-based adaptive fuzzy controller with-
out guaranteed transient performance (FXAFC) and
the observer-based super-twisting sliding mode con-
troller (STSMC) proposed in [40] are carried out.
The robot parameters [44] and controller parameters
used in the simulation are shown in TABLE 1. It
should be noted that STSMC needs the values of
viscous friction coefficients. In order to reflect the
actual situation that the coefficient fluctuates up and
down the average value, the viscous friction coeffi-

(a) (b)

Fig. 4 Input τ

cients D are set to D = diag([0.3, 0.4, 0.35, 0.45]) +
diag([0.06sin(0.2t), 0.08cos(0.1t), 0.07sin(0.15t),
0.09cos(0.25t)]). The viscous friction coefficients
used by STSMC are diag([0, 3, 0.4, 0.35, 0, 45]),
while FXAFC-G and FXAFC do not need this param-
eter. The boundary function selected for the track-
ing error e1, e2, e3 is the same η1 = η2 = η3 =
(100− 0.01)e−t + 0.01. The initial values of the adap-
tive parameters of the fuzzy systems are all set to 0,
and setting initial values of adaptive parameters of
fuzzy systems differently does not affect the simula-
tion results.⎧⎪⎨
⎪⎩
xd = 5cos(0.1t)

yd = 2.5sin(0.2t)

θd = 2sin(0.1t)

(48)

The reference trajectory is (48) of which the shape
is like “∞”. The initial state of the mobile robot is
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(a) (b) (c)

Fig. 5 Tracking errors

(x0, y0, θ0) = (0, 0, 0), and the initial state of the refer-
ence trajectory is (xd0, yd0, θd0) = (5, 0, 0), as can be
seen in Fig. 2. In reality, the torque input of the mobile
robot must be a finite value, so in simulation, the four-
dimensional torque input τ is limited to−12 < τ < 12.
Restricting the torque input τ to (−12, 12) is due to the
consideration of the saturation problem of the motors
on the actual robot, and it can be clearly pointed out
that after the input saturation constraint is added, the
stability of the mobile robot will not be affected.

The comparison of simulation results of trajectory
tracking is shown in Fig.2. A more detailed tracking
comparison of x, y, θ is shown in Fig. 3. Figures 2 and
3 show that three controllers canmake themobile robot
track the reference trajectory. The input τ is shown in
Fig. 4a. Figure 4b is an enlarged view of the framed
part in Fig. 4a.

In Fig. 4b, it can be seen that the STSMC in [40]
still has a relatively large chattering problem, which is
the reason for the worse stability in the steady state.
The cause of this problem is the switch item sign(s)

of the sliding mode surface s existing in the sliding
mode controller. Every coin has two sides. The switch-
ing characteristic of the slidingmode control makes the
system anti-disturbance, but it also brings chattering
problem to the system. Therefore, the chattering prob-
lem of sliding mode control can only be weakened but
not eliminated. Correspondingly, adaptive fuzzy con-
trol does not have such a chattering problem.

The overall comparison of the tracking error is
shown in Fig. 5b, the comparison of the transient pro-
cess shown in Fig. 5a, the comparison of the steady-
state error shown in Fig. 5c. Figure 5a is an enlarged
view of the left frame of Fig. 5b, and Fig. 5c is an
enlarged view of the right frame of Fig. 5b.

Figure 5a shows that the FXAFC-G designed in this
paper can track the reference signal more quickly and
more smoothly,while the FXAFCand theSTSMChave
a large overshoot and require more time to track the
reference trajectory. Figure 5c shows that the FXAFC-
G in this paper can achieve smallest steady-state errors
and best stationarity, while FXAFC causes huge steady
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(a) (b) (c)

Fig. 6 Trajectory tracking under disturbances

error. By comparing the two cases with guaranteed
transient performance andwithout guaranteed transient
performance, it can be seen that the error transforma-
tion function plays a huge role in ensuring the transient
performance, which can not only improve the rapidity
but also reduce the steady-state error.

As for the fixed-time convergence, according to
the definition of α,ω and the controller parameters
in TABLE 1, it can be obtained that α < 1, ω ≤
0.95. Then by β = 91−qω, β ≤ 0.22. From 0 <

φ < 1, 0 < p < 1, it can be seen that in (47),
1

αφ(1−p) + 1
βφ(q−1) > 7.8s, which indicates that the

convergence time T < 7.8s. This can be verified
directly from Figs.5 and 6. In Figs. 5a and 6a, the sim-
ulation curves of FXAFC and FXAFC-G all converge
to the neighbor of 0 before 7.8s.

On the basis of the existing simulation, the external
disturbance d = [sin(5t), sin(4t), cos(5t), cos(4t)]T
is added and the simulation result is shown in Fig. 6.

It can be clearly seen from Fig. 6 that the FXESO-
basedFXAFC-Gdesigned in this paper can greatly sup-
press disturbances, while the ESO-based STSMC can-
not resist the disturbance very well. Even the FXESO-
based FXAFC without guaranteed transient perfor-
mance is better than the ESO-based STSMC in terms
of disturbance rejection, which indicates that the effect
of FXESO on the disturbance observation is very sig-
nificant.

In summary of simulation, compared with STSMC,
the proposed method FXAFC-G has nearly the same
rapidity but smaller steady-state errors, better anti-
disturbance performance, and no input chattering prob-
lem. Furthermore, FXAFC-G can still achieve the
tracking tasks even if the viscous friction coefficients
are unknown and can predetermine the bound and the
convergence time of the tracking errors.
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5 Conclusion

For the tracking problem of the four-Mecanum-wheel
mobile robot, this paper uses fuzzy systems to approxi-
mate the dynamicswith unknown viscous friction coef-
ficients and designs a fixed-time adaptive fuzzy track-
ing controller to enable the mobile robot to track the
reference trajectory within a fixed time. An error trans-
formation function is introduced to guarantee the tran-
sient performance of tracking errors, and a fixed-time
extended state observer is used to observe external dis-
turbances. The FXESO-based transient performance
guaranteed fixed-time adaptive fuzzy controller pro-
posed in this paper, the FXESO-based transient per-
formance not guaranteed fixed-time adaptive fuzzy
controller and ESO-based super-twisting sliding mode
controller are compared and simulated, and the simula-
tion results verify the superiority of the controller in this
paper in trajectory tracking and disturbance resistance.
In future work, in addition to the four-Mecanum-wheel
omnidirectional mobile robot, it is worth considering
the application of the controller designed in this paper
on other types of omnidirectional mobile robots.
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