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Abstract Prediction of the response of nonlinear

dynamical systems under interacting parametric and

external excitations is important in designing systems

such as sensors, amplifiers or energy harvesters, to

achieve the desired performance. This paper concerns

the nonlinear forced Mathieu equation, with linear

damping and a 2:1 ratio between the parametric and

external excitation frequencies. The Method of Vary-

ing Amplitudes (MVA) is employed to derive approx-

imate analytical expressions for the response of the

system. Both single-term and double-term solutions

are developed: it is seen that, employing the double-

term approximation, the MVA can accurately predict

the response of the system over a wide range of

frequencies and system parameters, showing a max-

imum of 0.2% deviation from numerical results

obtained by direct integration of the equation of

motion. This is in contrast with most of the available

theoretical approaches such as the conventional

Method of Multiple Scales, which can predict the

response accurately only for a narrow range of system

parameters and excitation frequencies. Furthermore, it

is seen that the response is bounded, and analytical

expressions for the frequency and amplitude of the

upper bound are developed: this is unlike other

methods which predict unbounded response, unless

nonlinear damping is considered. Analytical expres-

sions for the response are developed, and results are

verified with numerical results obtained from direct

integration of the equation of motion. Numerical

examples are presented, showing good agreement with

results obtained by the MVA.

Keywords Nonlinear dynamical systems �
Interacting parametric and external excitations �
Bounded response � Nonlinear forced Mathieu

equation � Method of varying amplitudes � Method of

multiple scales

1 Introduction

In mechanical and electromechanical contexts, a

system is referred to as parametrically excited (PE)

when at least one of its parameters varies periodically

with time. Altering the system orbits in the phase

space, parametric excitation has been seen to enhance

(i.e., to increase) the output response of the system.

This kind of excitation has been observed in various

physical systems such as marine risers [1], ships under

parametric rolling induced by wave excitation [2, 3]
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and cable-supported structures [4, 5]. Parametric

excitation has been exploited extensively in the

literature in a wide range of applications from sensing

[6–8], to energy harvesting [9–19] and response

amplification [20–28].

Exploiting parametric excitation has shown the

capability to enhance the performance of dynamical

systems. It has been pointed out that the sensitivity of

simple harmonic resonance-based mass sensors can be

increased significantly when operated in the paramet-

ric resonance mode [8]. Energy harvesters subjected to

parametric excitation exhibit better performance com-

pared to externally excited ones. The operational

bandwidth of these devices can be notably broadened

by introducing some kind of nonlinearity into the

system [13]. However, if not taken into account,

parametric excitation might have disastrous effects on

systems. Parametrically excited roll motion of a ship

can cause a chaotic behavior which may capsize the

ship if the system parameters are not adjusted accu-

rately [2, 3]. Furthermore, periodic heave motion of

marine risers may endanger the safe operation of these

structures even with a small perturbation in the lateral

direction [1]. Therefore, investigating the dynamic

behavior of parametrically excited systems and the

impact of the system parameters on their performance

are of key significance. This can provide useful

insights into how to exploit parametric excitation to

enhance performance or prevent catastrophic effects

on a system as a result of operating at frequencies close

to parametric resonance frequencies.

Traditionally, perturbation methods have been used

to study the dynamic behavior of PE systems [29–32].

These methods are based on assuming that the

excitation is weak. Then, the response of the system

is obtained by defining a small frequency detuning

parameter around the principal parametric resonance,

which is twice the natural frequency of the system, and

solving the final autonomous system of equations [33].

They have proved to be able to accurately predict the

response of the system for a frequency range around

the principal parametric resonance. However, their

accuracy is a function of the system parameters and the

frequency detuning parameter. It has been pointed out

that they cannot predict the response of the system

correctly for arbitrary values of the system parameters

and excitation frequencies considered [34]. In recent

years, qualitative methods have been used to predict

the response of parametrically excited systems,

particularly around bifurcation points [35]. However,

the accuracy of these methods deteriorates as insuf-

ficient data are usually available for a frequency range

close to the considered bifurcation frequency.

Correct estimation of the response of PE systems

has a key role in evaluating their performance.

Particularly, developing an analytical approach that

can provide accurate predictions of the response of the

system in frequency ranges away from the principal

parametric resonance has attracted significant atten-

tion [34, 35]. This is the focus of this paper. Most of

the available theoretical approaches fail to provide

useful insight into the response of PE systems with a

hardening Duffing-type nonlinearity for the whole

frequency range considered [34]. Numerous studies on

this subject area can be found in the literature which

involves introducing nonlinear damping into the

equation of motion or modifying the frequency

detuning parameter in conventional perturbation tech-

niques [36–43]. Nevertheless, the results are only

accurate if the assumptions applied are satisfied, e.g.,

when the excitation frequency increases, the fre-

quency detuning parameter cannot be assumed to be a

small parameter any more, causing the accuracy of

predictions to decrease. Furthermore, the question

remains as how to develop accurate predictions,

particularly a bounded response, without imposing

restrictions on the frequency ranges and damping

types.

It is known that conventional perturbation tech-

niques can predict the response accurately for small

system parameters and around the principal paramet-

ric resonance. However, their accuracy deteriorates as

the excitation frequency increases, i.e., for systems

with the Duffing type hardening nonlinearity and

linear damping they predict an unbounded response

[34]. It was proposed that nonlinear damping must be

introduced into the governing equation of motion to

enable perturbation methods to obtain a bounded

response [39, 40]. Notably, although a bounded

response can be achieved analytically this way, the

response is highly dependent on the nonlinear damp-

ing coefficient and it implies the new challenge of

determining the value of this coefficient. Also, it has

been pointed out that the accuracy of the results will

still be dependent on having small values for the

system parameters [40]. This is due to the limitation of

perturbation techniques in requiring the system

parameters to be small and the excitation frequency
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to be around the principal parametric resonance. For

large upper bound responses away from the principal

parametric resonance frequency, the Duffing nonlin-

ear term is large and cannot be assumed to be small.

Therefore, an approximation developed based on this

assumption is not correct.

In contrast with the methods mentioned above,

which require the system parameters to be small and

the excitation frequencies to be around resonance, the

method of varying amplitudes (MVA) has proved to

be able to accurately predict the behavior of PE

systems for the whole frequency range considered and

has shown itself to be a useful technique for handling

both linear and nonlinear problems [44–47]. In the

present paper, we exploit parametric and external

excitations simultaneously in order to increase the

output response of PE systems. Employing the MVA,

we show that the response is bounded, even in the

presence of only linear damping, in contrast with prior

observations that arise from perturbation (small

parameter) analysis [32, 34, 48, 49].

The paper is focused on the analysis of the response

of the nonlinear forced Mathieu equation without the

commonly imposed restrictions on the frequency

range considered or requiring nonlinear damping to

be present in the equation of motion. The perfectly

tuned case is studied, where the parametric excitation

frequency is exactly twice the external excitation

frequency. Employing the MVA, analytical expres-

sions are developed for the output response of the

system and bifurcation frequencies which are valid for

the whole frequency range considered. The MVA

results show that, for hardening type Duffing nonlin-

earity, the response of the system is bounded. This is in

contrast with conclusions drawn from conventional

perturbation methods, which predict an infinite growth

of the response as the excitation frequency increases

[21]. Explicit closed-form analytical expressions for

the upper bound to the response of the system and the

frequency at which it is attained are provided, which

are of key importance for achieving optimal perfor-

mance. Furthermore, the transition of the system

response from pure parametrically excited to the case

where external excitation dominates is studied, with

the corresponding values for the critical external

excitation amplitude being provided.

The governing equations describing a PE system

with Duffing type (cubic) nonlinearity subject to

interacting parametric and external excitations are

presented in Sect. 2. Employing the MVA, analytical

expressions describing the steady state approximate

response of the system are developed using both

single-term and double-term approximations of the

solution. Furthermore, to provide a useful insight into

the system behavior, utilizing the single-term MVA

approximation, closed-form analytical expressions for

the upper bound to the response of the system and the

frequency at which it is attained are found. The results

are discussed and verified numerically by Direct

Integration (DI) of the equation of motion in Sect. 3.

In addition, results using the first- and second-order

approximations of the response by the Method of

Multiple Scales (MMS) are presented for comparison.

Finally, conclusions are drawn in Sect. 4.

2 Mathematical model and MVA solutions

The response of a dynamical system with Duffing type

nonlinearity under interacting parametric and external

excitations is investigated. The parametric excitation

frequency is tuned to be exactly twice the external

excitation frequency. The proposed system can be

modeled by the nonlinear forced Mathieu equation

with linear damping

€uþ b _uþ x2
0 1þ P cos Xtð Þð Þuþ gu3

¼ d cos
1

2
Xt þ u

� �
; ð1Þ

where u represents the displacement response of the

system (e.g., the displacement of a pendulum hanging

under gravity, whose support is subjected to a

combined horizontal and vertical sinusoidal excita-

tion), _u and €u are the first and the second derivatives of

u with respect to time, respectively, and X represents

the parametric excitation frequency. Furthermore, b is

the damping ratio, x0 is the linear undamped natural

frequency, P is the parametric excitation amplitude, d

is the external excitation amplitude, t is time, u is the

phase angle between the parametric and external

excitations, and g is the nonlinear coefficient. We note

that in this paper we only consider the hardening case,

where g[ 0, as is more relevant for practical appli-

cations [6–28].
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2.1 Steady-state approximate solution: single-

term MVA approximation

To obtain an approximate solution to the response of

the system modeled as (1), the MVA is used [44].

Employing the MVA, uðtÞ is considered as the sum

uðtÞ ¼
Xn
m¼1

CmðtÞ cos
1

2
mXt

� �
þ DmðtÞ sin

1

2
mXt

� �� �
;

ð2Þ

implying harmonics with time varying amplitudes

CmðtÞ and DmðtÞ. The time dependency of the ampli-

tudes allows the stability of the response to be

investigated. Note that for the system considered here

with cubic Duffing type nonlinearity, only odd values

of m (m ¼ 1; 3; :::) need to be considered in Eq. (2).

Using the single-term MVA approximation

(m ¼ n ¼ 1), and omitting the index 1, uðtÞ is

approximated as

uðtÞ ¼ CðtÞ cos 1

2
mXt

� �
þ DðtÞ sin 1

2
mXt

� �
: ð3Þ

Substituting Eq. (3) into Eq. (1) and separating

coefficients of cos 1
2
mXt

� �
and sin 1

2
mXt

� �
yield

€C þ b _C þ X _Dþ 1

2
bXD

þ x2
0 1þ 1

2
P

� �
� 1

4
X2

� �
C þ 3

4
g C2 þ D2
� �

C

¼ d cos uð Þ;
ð4Þ

€D� X _C þ b _D� 1

2
bXC þ x2

0 1� 1

2
P

� �
� 1

4
X2

� �
D

� �
sin

1

2
Xt

� �

þ 3

4
g C2 þ D2
� �

Dþ d sin uð Þ
� �

sin
1

2
Xt

� �

¼ � 1

2
Px2

0 þ
1

4
g C2 � 3D2
� �� �

C cos
3

2
Xt

� �

� 1

2
Px2

0 þ
1

4
g 3C2 � D2
� �� �

D sin
3

2
Xt

� �
:

ð5Þ

Assuming the terms gu3 and x2
0Pu are small

compared to the term x2
0u, one can neglect the

higher-order harmonics on the right-hand side of

Eq. (5), yielding

€D� X _C þ b _D� 1

2
bXC

þ x2
0 1� 1

2
P

� �
� 1

4
X2

� �
Dþ 3

4
g C2 þ D2
� �

D

þ d sin uð Þ
¼ 0:

ð6Þ

Solving Eq. (4) and Eq. (6) for the steady state

solution _C ¼ _D ¼ €C ¼ €D ¼ 0
� �

, the steady-state

response of the system is obtained as

uðtÞ ¼ C cos
1

2
Xt

� �
þ D sin

1

2
Xt

� �
: ð7Þ

To obtain the frequency response equation, uðtÞ in
Eq. (3) can be rewritten as

uðtÞ ¼ AðtÞ cos 1

2
Xt þ aðtÞ

� �
; ð8Þ

where AðtÞ is the amplitude and aðtÞ is the phase, given
by

AðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CðtÞ2 þ DðtÞ2

q
; aðtÞ ¼ tan�1 �DðtÞ

CðtÞ

� �
:

ð9Þ

For A and a, we then obtain

€Aþ b _Aþ x2
0 1þ 1

2
P cos 2að Þ

� �
� 1

4
X2

� �
Aþ 3

4
gA3

¼ d cos u� að Þ;
ð10Þ

�X _A� 1

2
bXAþ 1

2
x2

0PA sinð2aÞ ¼ �d sinðu� aÞ:

ð11Þ

Consequently, solving Eqs. (10) and (11) for the

steady-state solution, the frequency response equation

is obtained as

9g2A6 � 6g X2 � 4x2
0

� �
A4 � 24dg cos u� að ÞA3

þ X4 þ 4X2 b2 � 2x2
0

� �
þ 4x4

0 4� P2
� �� �

A2

þ 8d X2 � 4x2
0

� �
cos u� að Þ � 2bX sin u� að Þ

� �
A

þ 16d2

¼ 0:

ð12Þ

Equation (12) yields 6 solutions for A, with only

real, positive solutions being physically meaningful
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(There are in fact a maximum of 5 such solutions [42]).

As X2 ! 1 the response is bounded, with there being

only one real solution to (12). This can be seen by

retaining only the leading terms in X2 and A2 so that

Eq. (12) reduces to

9g2A4 � 6g X2 � 4x2
0

� �
A2 þ X4 þ 4X2 b2 � 2x2

0

� �� �
� 0:

ð13Þ

The radicand when solving this quadratic in A2 and

assuming X2 ! 1 reduces to �144g2X2b2: the

corresponding solutions for X2 ! 1 are therefore

complex and not physically meaningful. This is in

contrast with the single-term solution using MMS

which predicts an unbounded response with X2 ! 1
(see Sect. 3).

For example, Fig. 1 shows the frequency response

as a function of the frequency ratio X=x0 for the set of

system parameters b ¼ 0:1, g ¼ 0:05, x0 ¼ 1,

P ¼ 0:3, d ¼ 0:1, and u ¼ �p=4. It is divided into 5

separate frequency regions bounded by the frequen-

ciesX1 ¼ 1:97,X2 ¼ 2:17,X3 ¼ 2:88 andX4 ¼ 3:10.

The response of the system is bounded, in contrast

with the single-term solution using MMS: the upper

bound amplitude is A ¼ 19:38 and is attained at the

frequencyX4. We note that the upper bound frequency

X4 has not been determined or discussed previously

for the case of linear damping, cf., e.g., [21, 48].

2.2 Stability analysis

Unlike the conventional method of harmonic balance,

where the amplitudes are constants and the stability of

the response cannot be investigated, the MVA allows

the stability of the response to be analyzed directly. To

this end, the Jacobian matrix is considered [33]. From

Eqs. (4) and (6), one can define

x1 ¼ C; x2 ¼ _C; x3 ¼ D; x4 ¼ _D; ð14Þ

_x2 ¼� x2
0 1þ 1

2
P

� �
� 1

4
X2

� �
x1 � bx2 �

1

2
bXx3

� Xx4 �
3

4
gx1 x21 þ x23
� �

þ d cosðuÞ;

ð15Þ

_x4 ¼
1

2
bXx1 þ Xx2 � x2

0 1� 1

2
P

� �
� 1

4
X2

� �
x3

� bx4 �
3

4
gx3 x21 þ x23
� �

� d sinðuÞ:

ð16Þ

The Jacobian matrix J is then defined as the 4� 4

matrix whose ði; jÞth element is Jij ¼ o _xi
�
oxj. Conse-

quently, the trace tr Jð Þ and the determinantD Jð Þ of the
Jacobian matrix are

tr Jð Þ ¼ �2b; ð17Þ

DðJÞ ¼ 1

16
X2 � 4x2

0

� �2þ 1

4
b2X2 � P2x4

0

� �

� 3

4
g X2 � 4x2

0

� �
x21 þ x23
� �

þ 27

16
g2 x21 þ x23
� �2þ 3

4
gPx2

0 x23 � x21
� �

:

ð18Þ

We note that hardening type nonlinearity is con-

sidered in this paper ðg[ 0Þ. For b[ 0, trðJÞ is

negative. Therefore, the response of the system is

stable only if DðJÞ[ 0 [33]. Consequently, branches

b1, b2 and b5 in Fig. 1 are stable and branches b3 and

b4 are unstable.

Fig. 1 A as a function of X/x0 obtained from the single-term

approximation of the MVA using the frequency response

Eq. (12). Solid lines denote the stable solutions, and dotted lines

denote the unstable solutions (b = 0.1, g = 0.005, x0 = 1,

P = 0.3, u = -p/4, d = 0.1)
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2.3 Steady-state approximate solution: double-

term MVA approximation

To obtain more accurate analytical results, we take

into account higher harmonics in the MVA, cf. also

[34]. Employing the double-term approximation of the

MVA, the response of the system is approximated

using (2) for m ¼ 1; 3 as

uðtÞ ¼ C1ðtÞ cos
1

2
Xt

� �
þ D1ðtÞ sin

1

2
Xt

� �

þ C3ðtÞ cos
3

2
Xt

� �
þ D3ðtÞ sin

3

2
Xt

� �
:

ð19Þ

Substituting Eq. (19) into Eq. (1), and after some

simplifications, the following system of equations is

obtained:

€C1 þ b _C1 þ X _D1 þ x2
0 1þ 1

2
P

� �
� 1

4
X2

� �
C1

þ 1

2
bXD1 þ

1

2
x2

0PC3

þ 3

4
g C3

1 þ C1 D2
1 þ 2D1D3 þ 2C2

3 þ 2D2
3

� ��
þC3 C2

1 � D2
1

� ��
¼ d cosðuÞ;

ð20Þ

€D1 � X _C1 þ b _D1 �
1

2
bXC1

þ x2
0 1� 1

2
P

� �
� 1

4
X2

� �
D1 þ

1

2
x2

0PD3

þ 3

4
g D3

1 þ D1 C2
1 � 2C1C3 þ 2C2

3 þ 2D2
3

� ��
þD3 C2

1 � D2
1

� ��
¼ �d sinðuÞ;

ð21Þ

€C3 þ b _C3 þ 3X _D3 þ
1

2
x2

0PC1 þ x2
0 �

9

4
X2

� �
C3

þ 3

2
XbD3 þ

1

4
g C3

1 þ 3C3
3 � 3C1D

2
1

�
þ3C3 2C2

1 þ 2D2
1 þ D2

3

� ��
¼ 0;

ð22Þ

€D3 þ b _D3 � 3X _C3 þ
1

2
x2

0PD1 þ x2
0 �

9

4
X2

� �
D3

� 3

2
XbC3 þ

1

4
g �D3

1 þ 3C3
1ðD1 þ 2D3Þ

�
þ3D3 2D2

1 þ C2
3 þ D2

3

� ��
¼ 0:

ð23Þ

Consequently, the steady-state solution can be

determined by setting all time derivatives in

Eqs. (20) to (23) to zero and solving the resulting

system of equations.

The analytical results of the single-term and double-

term approximations of the MVA for a system under

interacting parametric and external excitations are

shown in Fig. 2 for comparison. The system parame-

ters considered are b ¼ 0:15, g ¼ 0:01, x0 ¼ 1,

P ¼ 0:5, u ¼ �p=4, and d ¼ 0:2. Results are com-

pared with those obtained by direct numerical inte-

gration (DI) of the equation of motion (1). The Runge–

Kutta method was applied to obtain the numerical

results using a variable time step for each frequency

(ode45 inMATLAB). The steady-state response found

from DI converges to one of the stable solutions,

which solution depends on the chosen initial condi-

tions. While the single-term MVA results are in good

qualitative agreement with DI results, the accuracy

around the upper bound response is moderate. How-

ever, applying the double-term approximation of the

MVA, the difference between the upper bound

amplitude obtained analytically and that obtained

numerically (A ¼ 17:973 at X ¼ 3:650) is reduced

significantly from 7:83% (A ¼ 16:565 atX ¼ 3:490 in

the single-term approximation) to 0:1% (A ¼ 17:955

at X ¼ 3:650 in the double-term approximation).

2.4 Closed-form expressions for the upper bound

of the system response from the MVA

Accurate prediction of the dynamic response of

parametrically excited systems plays an important

role in evaluating their performance in practical

applications such as sensing, energy harvesting and

response amplification. As shown in Sect. 2.3, the

double-term approximation of the MVA can predict

the response very accurately. While the single-term

MVA approximation is less accurate, it can be used to

develop closed-form analytical expressions which

describe the main characteristics of the response. To
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investigate in detail the performance of the system

under interacting external excitation using the single-

term approximation of the MVA, in this section we

analyze the response of the system by comparing it

with the response of the equivalent parametrically

excited system with no external excitation. For the

equivalent system under pure parametric excitation

(d ¼ 0), the frequency response Eq. (12) becomes

A2
0 9g2A4

0 � 6g X2 � 4x2
0

� �
A2
0 þ X4

�
þ4X2 b2 � 2x2

0

� �
þ 4x4

0 4� P2
� ��

¼ 0;
ð24Þ

where A0 represents the amplitude response of the

system under pure parametric excitation. Conse-

quently, solving Eq. (24) for the nontrivial solution

and considering Eq. (9), A0 and the phase a0 for this

system are obtained as

A0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3g
X2 � 4x2

0 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0P
� �2� bXð Þ2

q� �s
;

sin 2a0ð Þ ¼ bX
x2

0P
;

ð25Þ

where the positive sign represents the stable nontrivial

response existing above the frequency Xc1 and the

negative sign represents the unstable nontrivial

response existing above the frequency Xc2 (see

Fig. 3), where Xc1 and Xc2 are

Xc1;2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x2

0 � 2b2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 b2 � 4x2

0

� �
þ Px2

0

� �2qr
:

ð26Þ

The response of the system has an upper bound Au0

which is attained at the frequency Xu0, where [34]

Au0 ¼ x0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0Pð Þ2� 2bð Þ2

3gb2

s
; Xu0 ¼

x2
0P

b
: ð27Þ

The amplitude response A0 of the system under pure

parametric excitation, obtained from the single-term

MVA approximation, is shown as a function of the

frequency ratio in Fig. 3. For the set of system

parameters considered, Xc1 ¼ 1:88, Xc2 ¼ 2:10,

Au0 ¼ 18:26, and Xu0 ¼ 3:00.

Now consider the case where the system is under

interacting parametric and external excitations. We

introduce a small positive parameter e\\1. Consid-

ering a small external excitation of amplitude d ¼ ed1
in Eq. (1), A and a are written as the power series

A ¼ A0 þ eA1 þ . . .; a ¼ a0 þ ea1 þ . . .: ð28Þ

Fig. 2 Response amplitude A as a function of frequency ratioX/
x0, comparing the numerical results obtained by DI (black dots)

with analytical results obtained by the MVA (blue color)

applying a the single-term approximation using Eq. (12) and

b the double-term approximation using Eqs. (19) to (23), for the

system under interacting parametric and external excitations.

The solid lines and discrete data points represent the stable and

unstable analytical results, respectively (b = 0.15, g = 0.01,

x0 = 1, P = 0.5, u = -p/4, d = 0.2)
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Consequently, substituting Eq. (28) into Eqs. (10)

and (11) and separating the coefficients of the same

power of e, the steady-state solution can be obtained.

Collecting the coefficients of order e0 leads to Eq. (25)
again, and collecting coefficients of order e yields

� x2
0Pa1 sin 2a0ð ÞA0

þ x2
0 1þ 1

2
P cosð2a0Þ

� �
� 1

4
X2 þ 9

4
gA2

0

� �
A1

¼ d1 cosðu� a0Þ;
ð29Þ

x2
0Pa1 cos 2a0ð ÞA0 þ

1

2
x2

0P sinð2a0Þ � bX
� �

A1

¼ �d1 sinðu� a0Þ:
ð30Þ

Solving Eqs. (29) and (30), it can be seen that when

a small external disturbance is added, the stable non-

trivial branch of the system response with no external

excitation will split into a pair of stable branches (see

Fig. 4). This is due to degeneracy of the solutions.

When d ¼ 0, for parametric excitation of period 2p=X
the solutions come as a pair uðtÞ and �uðtÞ, both of

period 4p=X. When d[ 0, the two solutions differ.

For the stable branches b1 and b2, the phases are given

by

ab1 ¼
p
2
� 1

2
sin�1 bX

x2
0P

� �

þ
ffiffiffiffiffi
3g

p
d cos uþ 1

2
sin�1 bX

x2
0
P

� 	� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0P
� �2� bXð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 4x2

0 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0P
� �2� bXð Þ2

qr ;

ð31Þ

ab2 ¼
3p
2

� 1

2
sin�1 bX

x2
0P

� �

�
ffiffiffiffiffi
3g

p
d cos uþ 1

2
sin�1 bX

x2
0
P

� 	� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0P
� �2� bXð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 4x2

0 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0P
� �2� bXð Þ2

qr ;

ð32Þ

respectively. Also, the amplitude responses for

branches b1 (Ab1) and b2 (Ab2) are

Ab1;2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3g
X2 � 4x2

0 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0P
� �2� bXð Þ2

q� �s

�
2d �bX cos uþ 1

2
sin�1 bX

x2
0
P

� 	� 	
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0P
� �2� bXð Þ2

q
sin uþ 1

2
sin�1 bX

x2
0
P

� 	� 	� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0P
� �2� bXð Þ2

q
X2 � 4x2

0 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0P
� �2� bXð Þ2

q� � :

ð33Þ

Fig. 3 Response amplitude A0 as a function of X/x0 for a

dynamical system under pure parametric excitation with no

external excitation obtained from the single-term approximation

of the MVA. Solid lines denote the stable solutions, and dotted

lines denote the unstable solutions (b = 0.1, g = 0.005, x0 = 1,

P = 0.3)

Fig. 4 Response amplitude A as a function of X/x0 obtained

from implementing the small parameter expansion of the

frequency response Eq. (12) using Eqs. (33) and (34) for a

frequency range away from Xu0 (b = 0.1, g = 0.005, x0 = 1,

P = 0.3, u = -p/4, and d = 0.1)
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Similarly, as illustrated in Fig. 4, the unstable re-

sponse branch of the corresponding system under pure

parametric excitation depicted in Fig. 3 splits into two

unstable branches b3 and b4 as a result of the external

excitation. For these branches, the amplitude

responses are obtained as

Ab3;4 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3g
X2 � 4x2

0 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0P
� �2� bXð Þ2

q� �s

�
2d �bX sin u� 1

2
sin�1 bX

x2
0
P

� 	� 	
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0P
� �2� bXð Þ2

q
cos uþ 1

2
sin�1 bX

x2
0
P

� 	� 	� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0P
� �2� bXð Þ2

q
X2 � 4x2

0 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0P
� �2� bXð Þ2

q� � :

ð34Þ

Furthermore, for these two branches

ab3 ¼
1

2
sin�1 bX

x2
0P

� �

�
ffiffiffiffiffi
3g

p
d sin uþ 1

2
sin�1 bX

x2
0
P

� 	� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0P
� �2� bXð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 4x2

0 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0P
� �2� bXð Þ2

qr ;

ð35Þ

ab4 ¼ pþ 1

2
sin�1 bX

x2
0P

� �

þ
ffiffiffiffiffi
3g

p
d sin uþ 1

2
sin�1 bX

x2
0
P

� 	� 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0P
� �2� bXð Þ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � 4x2

0 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0P
� �2� bXð Þ2

qr ;

ð36Þ

respectively.

The expansion (28) can accurately predict the

behavior of the system except around the three critical

frequencies Xc1, Xc2 and Xu0, where it predicts an

infinite response. To investigate the response of the

system in the frequency range around the upper bound,

Xu0, we consider a small deviation from this fre-

quency. Then, a and A are obtained as

a ¼ a0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Au0b X� Xu0ð Þ � 2d sin a0 � uð Þ

p
x0

ffiffiffiffiffiffiffiffiffiffiffiffi
2PAu0

p ;

ð37Þ

A ¼ Au0 þ a� a0ð ÞAe1 þ Ae2; ð38Þ

where Xu0 and Au0 can be obtained from Eq. (27) and

values of a0 are discussed below. Furthermore, Ae1 and

Ae2 are defined as

Ae1 ¼
4Pb2x2

0Au0

9gb2A2
u0 þ 4b2x2

0 � P2x4
0

; ð39Þ

Ae2 ¼ bðð4Pbx2
0Ae1 � 9gbAu0A

2
e1Þða� a0Þ2

þ 2Au0Px
2
0ðX� Xu0Þ þ 4db cosða0 � uÞÞ=

ð9gb2A2
u0 þ 4b2x2

0 � P2x4
0Þ:

ð40Þ

The positive sign in Eq. (37) corresponds to the

branches b1 and b2 around Xu0, and the negative sign

corresponds to the branches b3 and b4. For b1 and b4,

a0 ¼ 5p=4, and for b2 and b3, a0 ¼ p=4. The effects of
applying a small external excitation to the system

under pure parametric excitation for frequencies

around Xu0 are depicted in Fig. 5, along with the

results for frequencies away from Xu0 obtained from

the first expansion (33), (34). As indicated, two critical

frequencies appear as a result of adding a small

external excitation amplitude: Xu1 is the frequency

corresponding to the upper bound of branches b2 and

b3, while Xu2 is the frequency at which the upper

bound to the response of the system occurs, when

branches b1 and b4 collide. The amplitude responses

related to these critical frequencies are Au1 and Au2,

Fig. 5 Response amplitude A as a function of X/x0 obtained

from the expansion for a frequency range away from Xu0 using

Eqs. (33) and (34) (red color) and from the expansion for a

frequency range around Xu0 using Eqs. (37) to (40) (green

color). Solid lines represent the stable responses, and discrete

points represent the unstable responses (b = 0.1, g = 0.005,

x0 = 1, P = 0.3, u = -p/4, d = 0.1)
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respectively. Consequently, taking Eq. (26) into

account, and using Eqs. (37) to (40), Xu1, Xu2, Au1

and Au2 are obtained as

Xu1;2 ¼
x2

0P

b
�

2
ffiffiffiffiffi
3g

p
d cos p

4
þ u

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

0P
� �2� 2bx0ð Þ2

q ; ð41Þ

Au1;2 ¼ Au0

�
2Au0Px2

0 Xu1;2 � Xu0

� �2�4db cos p
4
� u

� �
9gb2A2

u0 þ 4b2x2
0 � P2x4

0

:

ð42Þ

For the set of system parameters considered in

Fig. 5, Xu1 ¼ 2:89, Au1 ¼ 16:94, Xu2 ¼ 3:11 and

Au2 ¼ 19:57 while Xu0 ¼ 3:00 and Au0 ¼ 18:26.

The responses of the system under pure parametric

excitation and the PE system with a small external

excitation added are shown in Fig. 6a for comparison.

The system parameters considered are b ¼ 0:1,

g ¼ 0:005, x0 ¼ 1, P ¼ 0:3, u ¼ �p=4 and d ¼ 0:1.

To illustrate the accuracy of the small parameter

expansions, Fig. 6b shows the responses obtained by

these expansions (red and green lines) and the direct

implementation of Eq. (12) (blue lines). As can be

seen, the analytical results obtained from the expan-

sions show good agreement with the results obtained

directly from Eq. (12) for the whole frequency range

considered, while those from Eqs. (41) and (42), which

concern the upper bound responses and the corre-

sponding frequencies, are accurate.

3 Results and discussion

In this section, we compare analytical and numerical

results in detail and show the corresponding frequency

Fig. 6 Response amplitude A as a function of X/x0 obtained

from the expansion for a frequency range away from Xu0 using

Eqs. (33) and (34) (red color) and from the expansion for a

frequency range aroundXu0 using Eqs. (37) to (40) (green color)

with: a the results corresponding to the system under pure

parametric excitation with no external excitation (d = 0, black

color) and b the MVA results for the case when the system is

under interacting external excitation (d = 0.1, blue color)

obtained from direct implementation of Eq. (12). Solid lines

represent the stable responses and discrete points represent the

unstable responses (b = 0.1, g = 0.005, x0 = 1, P = 0.3,

u = -p/4, d = 0.1)

cFig. 7 Frequency response diagrams illustrating the effect of

adding external excitation of amplitude d on the amplitude of the

responses of the system, comparing the results obtained from the

single-term approximation of the MVA and numerical results

obtained from DI. The blue-colored soild lines and discrete data

points represent the stable and unstable results obtained from the

single-term approximation of the MVA using Eq. (12), respec-

tively, and black dots represent the numerical results obtained

from DI; a the system under pure parametric excitation with no

external excitation (d = 0), b the parametrically excited system

under interacting external excitation of amplitude d = 0.1,

c d = 0.3, d d = 0.4, e d = 0.5, f d = 0.55 (b = 0.15, g = 0.01,

x0 = 1, P = 0.5, u = -p/4)
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response functions. We also compare our results with

those found using the conventional Method of Mul-

tiple Scales (MMS), which is a perturbation method.

3.1 Single-term MVA approximation results

To investigate the accuracy of the analytical results

obtained from the single-term approximation of the

MVA, the amplitude response A of the system is

depicted against the frequency ratio X=x0 for various

values of the external excitation amplitude d in Fig. 7.

The cases where the system is under pure parametric

excitation with no external excitation (d ¼ 0) and

where the system is under interacting parametric and

external excitations (d ¼ 0:1, d ¼ 0:3, d ¼ 0:4, d ¼
0:5 and d ¼ 0:55) are shown. The results are compared

with the results obtained by direct numerical integra-

tion (DI) of the equation of motion (1). As can be seen,

the analytical results obtained from the single-term

approximation of the MVA using (12) are in good

Fig. 8 A as a function of d and X/x0, showing the results of the

single-term approximation of the MVA for the upper

stable branch b1 (b = 0.15, g = 0.01, x0 = 1, P = 0.5,

u = -p/4)

Fig. 9 Numerically obtained response of the system at the

upper bound frequency for the case where the system is under

pure parametric excitation with no external excitation

(X = 3.499, A = 16.865): a amplitude, b the FFT of the

response (b = 0.15, g = 0.01, x0 = 1, P = 0.5)

cFig. 10 Frequency response diagrams for the system under

interacting parametric and external excitations obtained from

the double-term approximation of theMVA using Eqs. (20)-(23)

and direct integration of the equation of motion. The blue solid

lines and discrete data points represent the stable and unsta-

ble results obtained from the double-term approximation of the

MVA, respectively, and black dots represent the numerical

results obtained from DI; a d = 0, b d = 0.1, c d = 0.3,

d d = 0.4, e d = 0.5, f d = 0.55 (b = 0.15, g = 0.01, x0 = 1,

P = 0.5, u = -p/4)
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agreement with the numerical results, showing a

maximum deviation of 8:71% (for d ¼ 0:55).

For a small external excitation amplitude d, the

upper bound excitation frequency and amplitude

obtained from the expansion developed around this

critical point using Eqs. (41) and (42) are in a good

agreement with the MVA results obtained from the

frequency response Eq. (12) (single-term approxima-

tion): for d ¼ 0:1, d ¼ 0:3 and d ¼ 0:4, Au2 is

estimated to be 15:76 (at Xu2 ¼ 3:42), 18:64 (at

Xu2 ¼ 3:59) and 21:17 (at Xu2 ¼ 3:68), respectively.

However, for a larger value of d, the difference

between the two results increases: for d ¼ 0:5 and

d ¼ 0:55, Au2 from the expansion is estimated to be

24:42 (at Xu2 ¼ 3:77) and 26:31 (at Xu2 ¼ 3:81),

respectively. The developed closed-form expressions

(41) and (42) are very useful for designing PE systems

with lower levels of direct excitation, so as to achieve

maximum possible amplitude response.

The upper stable branch from the single-term

approximation of the MVA (b1 in Fig. 1) is depicted

against d and X=x0 in Fig. 8. It can be seen that, for a

fixed value of P, increasing d increases the frequency

bandwidth and the upper bound to the response of the

system. The response of the system is bounded, as is

suggested both by the analytical results obtained from

the single-term approximation of the MVA using

Eq. (12) and the numerical simulations. Considering

Fig. 11 Critical values of the external excitation amplitude dcr
as a function of P, comparing the results obtained from the

single-term approximation of the MVA (brown dotted line), the

double-term approximation of the MVA (blue-dotted line), and

the results obtained from DI (black dots) (b = 0.15, g = 0.01,

x0 = 1, u = -p/4)

Fig. 12 Response amplitude A as a function of frequency ratio

X/x0 for various values of the Duffing nonlinearity term g.
Illustrating the results for the system under interacting

parametric and external excitations obtained from the double-

term approximation of the MVA using Eqs. (20)-(23) (blue

colored results) and direct integration of the equation of motion

(black dots), a g = 0.005, b g = 0.04, c g = 0.08, d g = 0.1

(b = 0.1, x0 = 1, P = 0.4, d = 0.2, u = -p/4)
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the upper bound response obtained numerically for the

system under pure parametric excitation with no

external excitation (Fig. 7a), the time dependence of

the response for this critical point (X ¼ 3:499,

A ¼ 16.865) and its Fast Fourier Transform (FFT)

are presented in Fig. 9. (Note the logarithmic scale of

the coordinate in Fig. 9b). As can be seen, four

harmonics in the response are evident with frequencies

that are equal to the first four frequencies (X=2, 3X=2,
5X=2, 7X=2) of the MVA expansion. The first two

harmonics are dominant. This implies that a more

accurate approximation of the response can be

obtained by using the double-term approximation of

the MVA.

3.2 Double-term MVA approximation results

The results obtained from the double-term approxi-

mation of the MVA are compared with numerical

results obtained from DI in Fig. 10. To make a direct

comparison with the results obtained from the single-

term MVA approximation, the system parameters are

considered to be the same as those of Fig. 7. As

suggested by the FFT of the upper bound response

obtained numerically (Fig. 9), the double-term

approximation of the MVA can predict the response

of the system more accurately compared to the single-

term approximation, with the frequency and amplitude

of the upper bound showing a maximum of 0:2%

difference from values found by direct numerical

integration.

As can be seen in Figs. 7 and 10, increasing the

external excitation amplitude, the two internal

branches b2 and b3 (see Fig. 1) decrease in length

and at a critical external excitation amplitude dcr these

branches will collapse. For the same set of system

parameters, and for various values of P, dcr is depicted

in Fig. 11, where the results for dcr obtained from the

single-term and double-term approximations of the

MVA are presented and compared with the numerical

results obtained from DI.

The analytical results obtained from the single-term

MVA approximation using Eq. (12) and the double-

term MVA approximation of Eqs. (20)–(23) show that

the MVA is capable of predicting the bounded

response accurately. Furthermore, the approximations

are developed without involving commonly used

restrictions such as the system parameters being small

or the excitation frequency being close to the principal

parametric resonance frequency. For a different set of

system parameters, frequency response diagrams for

various values of the Duffing nonlinearity g are

obtained by applying the double-term MVA approx-

imation (Fig. 12). The results are verified by the

results obtained from DI. As can be seen, as g
increases, so does the upper bound frequency. As a

result, the upper bound of the response of the system

occurs at frequencies quite far from the principal

parametric resonance frequency. Nevertheless, it can

be seen that the MVA accurately predicts the upper

bound frequency and amplitude. This is in contrast

with conventional perturbation methods which cannot

predict a bounded response and whose accuracy

deteriorates for larger values of system parameters or

as the excitation frequency increases [34].

3.3 Comparison with conventional perturbation

methods

The conventional Method of Multiple Scales (MMS)

is a commonly used perturbation method that has been

applied to this problem. In this section, the first and

second approximations of MMS are applied to the

equation of motion (1) to obtain an approximate steady

state response. Frequency response equations are

developed, and results are compared with MVA

results and numerical results obtained from DI.

3.3.1 The first approximation of MMS

To the first approximation, the frequency response

equation using the conventional MMS for the case

when the system is under pure parametric excitation

with no external excitation (d ¼ 0) is given by [34]

A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4x0

3g
X� 2x0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
x0P

� �2

�b2

s0
@

1
A

vuuut ; ð43Þ

where, for positive b and g, the positive and negative

signs represent the stable and unstable responses,

respectively. Comparing Eq. (43) with Eq. (25), it can

be seen that when applying the MVA a nontrivial

stable solution exists only if bX�x2
0P, while using

the MMS this condition changes to 2b�x0P, which

does not depend on the excitation frequency X. This is
why the first-order approximation of the conventional

MMS presented in Eq. (43) predicts an unbound
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response as X increases. Note that a bounded response

can also be predicted by the averaging method using

the Mitropolskii technique [50], and, to the first

approximation, the frequency response equation

obtained by this method for a system under pure

parametric excitation is identical to the one predicted

by the single-term approximation of the MVA [34].

3.3.2 The second approximation of MMS

To develop the second approximation of MMS, two

approaches are considered in this paper. While all the

system parameters (except the Duffing nonlinearity

term g) are assumed to be small and of order OðeÞ,
where e is a small bookkeeping parameter, in the first

approach g also assumed to be OðeÞ, while in the

second approach g is assumed to be Oðe2Þ, i.e., small

compared to the other parameters. Frequency response

equations are developed for both approaches and

results are depicted for comparison.

3.3.2.1 Case g ¼ OðeÞ Applying the second-order

approximation of the MMS, assuming the system

parameters including the Duffing nonlinearity term g
are all of order e, the frequency response equation of

the system under pure parametric excitation is

obtained as (see Appendix A for details)

k1 þ k2Aþ k3A
2

k4 þ k5A2

� �2

þ k6 þ k7A
2

1
2
k4 þ k8A2

 !2

¼ 1; ð44Þ

where the coefficients kn; n ¼ 1; 2; :::; 8 are

k1 ¼X� 2x0 �
1

16
x0p

2 � x3
0p

2

4X Xþ 2x0ð Þ þ
1

4x0

b2;

k2 ¼
15

128x3
0

g2; k3 ¼ � 3

4x0

g; k4 ¼ � 1

4
P X� 4x0ð Þ;

k5 ¼
3x0

8X Xþ 2x0ð Þ þ
1

64x0

� �
gP; k6 ¼ � 1

2
ba;

k7 ¼
3

16x2
0

bg;

k8 ¼
3x0

16X Xþ 2x0ð Þ �
13

128x0

� �
gP:

ð45Þ

3.3.2.2 Case g ¼ Oðe2Þ Alternatively, as another

approximation, the frequency response equation can

be obtained assuming the Duffing nonlinearity term g
is of order e2, while the rest of the system parameters

are assumed to be of order e. Consequently, applying
the second-order approximation of the MMS the

frequency response equation becomes (see Appendix

B for details)

Fig. 13 Response amplitude A as a function of X/x0 for the

system under pure parametric excitation with no external

excitation (d = 0), comparing the results obtained from the first

approximation of the MMS, the second approximation of the

MMS for g = 0(e) using Eq. (44), the second approximation of

the MMS for g = 0(e2) using Eq. (46), the double-term

approximation of the MVA using Eqs. (20)-(23), and numerical

results obtained from DI (b = 0.15, g = 0.01, x0 = 1, P = 0.5)
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12gXðXþ 2x0ÞA2 � 16x0X
3 þ x2

0P
2X2

�
�4b2XðXþ 2x0Þ þ 64Xx3

0 þ 2P2x3
0ðXþ 2x0Þ

�2
þ 16bx0XðXþ 2x0Þð Þ2

¼ 4Px0XðXþ 2x0ðX� 4x0Þð Þ2:

ð46Þ

For the same set of system parameters as those of

Figs. 7a and 10a, the results obtained from the first and

second approximations of the MMS (MMS1, MMS2,

respectively) are depicted in Fig. 13 and compared

with the results obtained from the double-term

approximation of theMVA (MVA2) and the numerical

results obtained from DI. As can be seen, the first

approximation of the MMS fails to predict a bounded

response. Also, it is seen that when increasing the

excitation frequency to a frequency range away from

the principal parametric resonance (X[ 2x0), the

accuracy of the predicted response decreases signif-

icantly compared to the numerical results and the

analytical results obtained from the MVA. This is due

to the fact that, when increasing the excitation

frequency sufficiently above the principal parametric

resonance frequency range, the frequency detuning

parameter and the Duffing nonlinear term gu3 cannot
be assumed to be small. Therefore, the results are valid

only for a small frequency range around the principal

parametric resonance (i.e., the frequency detuning

parameter should be small). Furthermore, it can be

seen that, using the second approximation of the

MMS, one finds that the hardening Duffing-type

nonlinearity results in the response being bounded

around the principal parametric resonance, but the

MMS fails to accurately predict the excitation fre-

quency and the amplitude of the upper bound: the

second approximations of the MMS for small g (OðeÞ)
and very small g (Oðe2Þ) predict Au2 ¼ 9:050 (at

Xu2 ¼ 2:580) and Au2 ¼ 10:150 (at Xu2 ¼ 2:800),

respectively, while the predicted upper bound ampli-

tude from the double-term MVA approximation and

DI are Au2 ¼ 16:845 (at Xu2 ¼ 3:500) and Au2 ¼
16:865 (at Xu2 ¼ 3:499), respectively.

Both frequency response equations developed for

the second approximation of the MMS show that,

unlike in most of the previous studies which claim that

applying conventional MMS to a dynamical system as

presented in Eq. (1) with linear damping cannot

predict a bounded response, a bounded response can

be achieved. This does not require nonlinear damping

to be introduced into the equation of motion or the

frequency detuning parameter to be modified.

Figure 13 shows that, for the set of system param-

eters considered, the second approximation of the

MMS developed assuming g ¼ Oðe2Þ predicts a wider
frequency range compared to the results obtained

assuming g ¼ OðeÞ. This is because here the value

g ¼ 0:01 is used, which can be considered to be of

order e2.

4 Conclusions

The response of nonlinear dynamical systems under

interacting parametric and external excitations with a

Duffing nonlinearity and linear damping was investi-

gated in this paper. The paper focused on accurate

prediction of the response of the system for a wide

range of the system parameters. Closed-form analyt-

ical expressions for the upper bound response of the

system and the corresponding frequency were

obtained. These are relevant for applications.

The Method of Varying Amplitudes (MVA) was

applied to the nonlinear forced Mathieu equation with

linear damping. The case of hardening Duffing-type

nonlinearity and a strict 2:1 frequency ratio between

the parametric and external excitation frequencies was

considered. The analytical results of the single-term

approximation of the MVA showed that the response

of the system is bounded, which was validated by

numerical results obtained by Direct Integration (DI)

of the equation of motion. The results are consistent

with previous findings where bounded responses have

been observed. Analytical expressions for the upper

bound to the response of the system and the frequency

at which it is attained were developed, and the results

were illustrated for different cases, including the case

where the system was under pure parametric excita-

tion with no external excitation, and the case where the

parametrically excited system was under an interact-

ing external excitation of various amplitudes. Further-

more, the stability of the response was analyzed, and

the results showed that, as expected, adding a small

external disturbance to the pure parametrically excited

system results in the stable/unstable nontrivial

branches splitting into stable/unstable pairs due to

degeneracy. As a result, a new internal loop will

appear with a stable/unstable pair. Increasing the
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external excitation amplitude, the internal loop

becomes smaller and, for a critical value, it disappears.

By using the double-term MVA approximation,

more accurate analytical results were derived and

compared with the numerical results obtained by DI.

The results showed that the double-term approxima-

tion of the MVA can accurately predict the response of

the system. The analytical results were in good

agreement with numerical results, showing a maxi-

mum of 0:2% deviation. Furthermore, the results are

supported by observing the frequency spectrum of the

system response.

It was shown that the first approximation of the

conventional Method of Multiple Scales (MMS) does

not predict a bounded response for the system

considered. Additionally, the accuracy of the predic-

tions decreases as the excitation frequency increases.

This is because, for frequencies away from the

principal parametric resonance frequency, the fre-

quency detuning parameter and the Duffing nonlinear

term cannot be assumed to be small. Therefore, the

results of the first approximation of the MMS are valid

only for a small frequency range around the principal

parametric resonance. Also, it was seen that, using the

second approximation of the MMS, the response

around the principal parametric resonance is bounded.

The characteristics of the upper bound response,

however, cannot be accurately predicted using this

approximation as the upper bound to the response of

the system occurs in a frequency range away from the

principal parametric resonance frequency. The results

presented provide useful insights for the analysis and

design of dynamical systems under interacting para-

metric and external excitations. Future work will

consider experimental validation of analytical results

in practical applications such as signal sensing, energy

harvesting and response amplification.
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Appendix A: second approximation of MMS

assuming Duffing nonlinearity term g to be OðeÞ

In Appendix, results from the second-order MMS are

briefly reviewed [33]. To obtain the frequency

response equation of a dynamical system under pure

parametric excitation with no external excitation

(d ¼ 0) using the MMS, assuming the system param-

eters including the Duffing nonlinearity term are all

small and of order e, we express Eq. (1) as

€uþ ebe _uþ x2
0 1þ ePe cos Xtð Þð Þuþ egeu

3 ¼ 0;

ðA1Þ

where

ebe ¼ b; ePe ¼ P; ege ¼ g: ðA2Þ

To the second approximation of the MMS, the

response of the system can be written as [33]

u T0;T1; T2ð Þ ¼ u0 T0; T1; T2ð Þ þ eu1 T0; T1; T2ð Þ
þ e2u2 T0; T1; T2ð Þ þ O e3

� �
;

ðA3Þ

where T0 ¼ t, T1 ¼ et and T2 ¼ e2t are time scales.

Defining the operator

Dn ¼
o

oTn
; n ¼ 0; 1; 2; :::; ðA4Þ

the time derivatives can be expressed as

d

dt
¼ D0 þ eD1 þ e2D2 þ Oðe3Þ; ðA5Þ

d2

dt2
¼ D2

0 þ 2eD0D1 þ e2 2D0D1 þ D2
1

� �
þ O e3

� �
;

ðA6Þ

Substituting Eq. (A3) into Eq. (A1), considering

Eqs. (A4)–(A6) and equating coefficients of like

powers of e, we obtain

Oð1Þ : D2
0u0 þ x2

0u0 ¼ 0; ðA7Þ
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OðeÞ : D2
0u1 þ x2

0u1
¼ �2D0D1u0 � beD0u0 � geu

3
0

� 1

2
x2

0Pe eiXT0 þ e�iXT0
� �

u0; ðA8Þ

Oðe2Þ : D2
0u2 þ x2

0u2 ¼ �D2
1u0 � 2D0D2u0

� 2D0D1u1 � 3geu
2
0u1

� be D1u0 þ D0u1ð Þ � 1

2
x2

0Pe eiXT0 þ e�iXT0
� �

u1:

ðA9Þ

The solution of Eq. (A7) is assumed to be of the

form

u0 ¼ A T1; T2ð Þeix0T0 þ A T1; T2ð Þe�ix0T0 ; ðA10Þ

where A T1; T2ð Þ is the complex conjugate of A T1; T2ð Þ.
Substituting Eq. (A10) into Eq. (A8), we obtain

D2
0u1 þ x2

0u1

¼ �2ix0D1A� ix0beAð

� 1

2
x2

0PeAe
i X�2x0ð ÞT0 � 3geA

2A

�
eix0T0

� 1

2
x2

0PeAe
i Xþx0ð ÞT0 � geA

3e3ix0T0 þ CC; ðA11Þ

where CC is the complex conjugate of the preceding

terms. Considering X � 2x0, the coefficients of

exp ix0T0ð Þ in Eq. (A11) represent the secular terms

which can be eliminated when

D1A ¼ � 1

2
beAþ i

4
x0PeAe

i X�2x0ð ÞT0 þ 3i

2x0

geA
2A:

ðA12Þ

Consequently, the particular solution of u1 in

Eq. (A11) is obtained as

u1 ¼
x2

0PeA

2X Xþ 2x0ð Þ e
i Xþx0ð ÞT0 þ 1

8x2
0

geA
3e3ix0T0

þ CC:

ðA13Þ

Substituting u0 and u1 from Eqs. (A10) and (A13)

into Eq. (A9), we obtain

D2
0u2 þ x2

0u2

¼ �D2
1A� beD1A� 2ix0D2A� x4

0P
2
eA

4X Xþ 2x0ð Þ

�

� 3

8x2
0

g2eA
2
A3 � 3x2

0gePeAA
2

2X Xþ 2x0ð Þ e
i X�2x0ð ÞT0

� 1

16
gePeA

3e�i X�2x0ð ÞT0
�
eix0T0

þ NSTþ CC

ðA14Þ

where NST denotes the non-secular terms. Defining a

frequency detuning parameter r such that

X� 2x0 ¼ er; ðA15Þ

eliminating the secular terms in Eq. (A14) give

D2
1A ¼ �beD1A� 2ix0D2A� x4

0P
2
eA

4X Xþ 2x0ð Þ

� 3

8x2
0

g2eA
2
A3 � 3x2

0gePeAA
2

2X Xþ 2x0ð Þ e
irT1

� 1

16
gePeA

3e�irT1 : ðA16Þ

Furthermore, Eq. (A12) can be rewritten as

D2
1A ¼ 1

16
A x2

0P
2
e þ 4b2e

� �
� 3i

x0

begeA
2A� 9

4x2
0

g2eA
3A

2

� i

4
x0bePeAþ 1

4
x0PerAþ 3

8
gePeAA

2
� �

eirT1

þ 3

8
gePeA

3e�irT1 :

ðA17Þ

Also, from Eq. (A16) and considering Eq. (12) we

obtain

D2
1A ¼ 1

2
b2eA� 3i

2x0

begeA
2A� 2ix0D2A� x4

0P
2
eA

4X Xþ 2x0ð Þ

� 3

8x2
0

g2eA
3A

2 � i

4
x0bePeAþ 3x2

0gePeAA
2

2X Xþ 2x0ð Þ

 !
eirT1

� 1

16
gePeA

3e�irT1 :

ðA18Þ

Combining Eqs. (A17) and (A18) and cancelling

D2
1A give
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2ix0D2A ¼ 1

4
b2eA� 1

16
x2

0P
2
eA� x4

0P
2
eA

4X Xþ 2x0ð Þ þ
3i

2x0

begeA
2A

þ 15

8x2
0

g2eA
3A

2 þ 1

4
x0PerAþ 3

8
gePeAA

2 � 3x2
0gePeAA

2

2X Xþ 2x0ð Þ

 !
eirT1

� 7

16
gePeA

3e�irT1 :

ðA19Þ

Multiplying Eq. (A12) by 2ix0e and Eq. (A19) by e2

and combining the resulting equations yield

2ix0 eD1Aþ e2D2A
� �

þ e ix0beAþ 1

2
x2

0PeAe
irT1 þ 3geA

2A

� �

þe2
1

16
x2

0P
2
eAþ x4

0P
2
eA

4X Xþ 2x0ð Þ �
1

4
b2eA� 3i

2x0

begeA
2A

�

� 15

8x2
0

g2eA
3A

2 � 1

4
x0PerAe

irT1 � 3

8
gePeAA

2
eirT1

þ 3x2
0gePeAA

2

2X Xþ 2x0ð Þ e
irT1 þ 7

16
gePeA

3e�irT1

!
¼ 0:

ðA20Þ

Taking Eq. (A2) into account, Eq. (A20) can be

rewritten as

2ix0

dA

dt
� 1

4
x0PA X� 4x0ð Þei X�2x0ð Þt � 1

4
b2Aþ ix0bAþ 3gA2A

þ 1

16
x2

0p
2Aþ x4

0p
2A

4X Xþ 2x0ð Þ �
3i

2x0

bgA2A� 15

8x2
0

g2A3A
2

þ 3x2
0

2X Xþ 2x0ð Þ �
3

8

� �
gPAA

2
ei X�2x0ð Þt

þ 7

16
gPA3e�i X�2x0ð Þt ¼ 0;

ðA21Þ

where A is a function of time and can be expressed in a

polar form

A tð Þ ¼ 1

2
a tð Þeik tð Þ; ðA22Þ

where a tð Þ and k tð Þ are real. substituting Eq. (A22)

into Eq. (A21), we obtain

�256x0a _kþ x2
0p

2 þ 32x4
0p

2

X Xþ 2x0ð Þ � 32b2
� �

aþ 96ga3

� 15

x2
0

g2a5 þ i 256x0 _aþ 128x0ba�
48

x0

bga3
� �

þ 48x2
0

X Xþ 2x0ð Þ � 12

� �
gPa3

�

�32x0P X� 4x0ð ÞaÞei X�2x0ð Þt�2kð Þ

þ14gPa3e�i X�2x0ð Þt�2kð Þ ¼ 0:

ðA23Þ

Applying the transformation

s tð Þ ¼ X� 2x0ð Þt � 2k tð Þ ðA24Þ

into Eq. (A23) and separating the resultant real and

imaginary parts, the system of equations

a _s ¼ X� 2x0 �
1

16
x0p

2 � x3
0p

2

4X Xþ 2x0ð Þ þ
1

4x0

b2
� �

a

þ 15

128x3
0

g2a2 � 3

4x0

ga3

� 3x0

8X Xþ 2x0ð Þ þ
1

64x0

� �
gPa3

�

� 1

4
P X� 4x0ð Þa

�
cos sð Þ ¼ 0;

ðA25Þ

_a ¼� 1

2
baþ 3

16x2
0

bga3

� 3x0

16X Xþ 2x0ð Þ �
13

128x0

� �
gPa3

�

� 1

8
P X� 4x0ð Þa

�
sin sð Þ;

ðA26Þ

is obtained. Consequently, solving Eqs. (A25) and

(A26) for the steady state ( _a ¼ _s ¼ 0), the frequency

response Eq. (44) is obtained (with symbol a replaced

by A for consistency with the results obtained by the

MVA).

Appendix B: second approximation of MMS

assuming Duffing nonlinearity g to be Oðe2Þ

To the second approximation of the MMS, assuming g
is of order e2, the equation of motion is scaled as

€uþ ebe _uþ x2
0 1þ ePe cos Xtð Þð Þuþ e2geu

3 ¼ 0;

ðB1Þ

where e2ge ¼ g. Considering the system parameters to

be of different orders of e has been used commonly in

the literature for various problems [25, 32, 33]. Here,

ge is considered to be of order e2, which only implies

the degree of smallness for Duffing nonlinearity.

Considering Eqs. (A3)–(A6) and following a similar

approach, Eq. (A7) still holds true for coefficients of

order e0, while the equations representing coefficients

of order e and e2 change to
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D2
0u1 þ x2

0u1 ¼ �2D0D1u0 � beD0u0

� 1

2
x2

0Pe eiXT0 þ e�iXT0
� �

u0; ðB2Þ

D2
0u2 þ x2

0u2 ¼� D2
1u0 � 2D0D2u0 � 2D0D1u1

� be D1u0 þ D0u1ð Þ

� 1

2
x2

0Pe eiXT0 þ e�iXT0
� �

u1 � geu
3
0;

ðB3Þ

respectively. The particular solution for u1 in Eq. (B2)

is

u1 ¼
x2

0PeA

2X Xþ 2x0ð Þ e
i Xþx0ð ÞT0 þ CC: ðB4Þ

Following an approach similar to that of

Eqs. (A14)–(A22) in Appendix A, the modulation

equation is obtained as

12ga3�4x0Pa X� 4x0ð Þei X�2x0ð Þt�2kð Þ þ 32ix0 _a

þ 16ix0baþ x2
0p

2aþ 4x4
0p

2a

X Xþ 2x0ð Þ
� 4b2a� 32ax0

_k ¼ 0:

ðB5Þ

Consequently, applying the transformation (A24),

the system of equations

a _s ¼a X� 2x0ð Þ � 3ga3

4x0

� 1

16
x0p

2a� x3
0p

2a

4X Xþ 2x0ð Þ

þ 1

4
b2aþ 1

2
Pa X� 4x0ð Þ cos sð Þ;

ðB6Þ

_a ¼ � 1

2
baþ 1

8
Pa X� 4x0ð Þ sin sð Þ; ðB7Þ

is obtained. Solving Eqs. (B6) and (B7) for the steady

state ( _a ¼ _s ¼ 0), the frequency response Eq. (46) is

obtained (with symbol a replaced by A for consistency

with the results obtained by the MVA).
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