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Abstract Hysteresis is a nonlinear phenomenon
present in many structures, such as those assembled by
bolted joints. Despite a large number of recent findings
related to identification techniques for these systems,
the problem is still challenging and open to contribu-
tions. To fill the gap concerning the proposition of iden-
tification algorithms based on closed-form solutions,
this work introduces the use of the harmonic balance
method to identify a stochastic Bouc–Wen model for
predicting the nonlinear behavior of bolted structures.
A piecewise smooth procedure is applied on the hys-
teretic restoring force to become possible to derive an
analytical approximation of the response based on the
Fourier series. Firstly, the analytical approximation is
used to calibrate deterministic Bouc–Wen parameters
by minimizing the error between the Fourier ampli-
tudes of the numerical model and those extracted from
experimental data using the cross-entropy optimiza-
tion method. Since the experimental data investigated
here contain variability due to themeasurement process
(aleatoric uncertainties), the deterministic parameters
are then used as a priori conditions to update their prob-
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ability density functions via the Bayesian inference.
Having the model parameters as random variables, the
stochastic Bouc–Wen model is obtained. This method-
ology was illustrated in a bolted structure benchmark.
The results indicate that the method proposed can iden-
tify an accurate stochastic Bouc–Wen model for pre-
dicting the dynamics of bolted structures, even taking
into account data variability.

Keywords Bolted joints · Harmonic balance method ·
Hysteresis · Bayesian paradigm

1 Introduction

A representative number of assembled structures are
connected by bolted joints, which leads these elements
to have a substantial presence in the industry. The action
of these joints exhibits the dynamic behavior of the
structure, particularly its global damping and stiffness
characteristics, due to nonlinear contact interactions,
e.g., friction, that take place at the micro-scale of the
joint area. The operation of these structures is com-
monly associated with the presence of hysteresis, a
nonlinear effect that relates inputs and outputs in a non-
smooth way, induces delays, rate-dependent or inde-
pendent memory effects, and multiple solutions [1].
Moreover, due to slipping effects that occur when the
joint is subjected to pronounced vibration amplitudes,
nonlinear softening impacts occur in the vicinity of res-
onance frequencies.
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There are some approaches in the literature to
address the dynamics of jointed structures. Finite ele-
ment (FE) analysis offers high-fidelitymodels in which
hundreds of degrees of freedom are taken into account
to describe the contact interface. However, the compu-
tational cost required to simulate these models during
a nonlinear motion regime is sometimes prohibitive,
especially in obtaining responses in the time domain.
In this scenario and for applications where modeling
the contact area is not of utmost importance, lumped
models that take the form of single-degree-of-freedom
oscillators driven by hysteretic terms stand out as a
solution to reconstruct global dynamics of bolted struc-
tures. Reduced-order representations of these struc-
tures based on the Iwan model have been notably
addressed in the literature (see, for instance, Mathis
et al. [2]). This model can describe typical nonlin-
earities of bolted joints [3], such as softening stiff-
ness and hysteresis contact forces, by using a distri-
bution of friction sliders [4,5]. The popularization of
such a model in the research community that investi-
gates jointed structures is also directly related to its
simplicity of implementation, offering the possibil-
ity to calibrate its parameters based on experimental
observations.

Hysteretic terms can also be represented by the
Bouc–Wen model. Unlike the Iwan model that con-
siders sliders (Jenkins elements) associated in series
or parallel, the Bouc–Wen model assumes a constitu-
tive hysteresis relation in a differential form to cap-
ture the evolution of the restoring force. Due to its
general mathematical properties, the model is versa-
tile and can describe the hysteresis cycles of a wide
variety of applications, ranging from magnetorheolog-
ical fluid dampers [6], and piezoelectric actuators [7],
to the reconstruction of hysteretic forces of seismic iso-
lators [8]. Notwithstanding, it is argued that any Iwan
model can be represented by an equivalent Bouc–Wen
model; in the context of modeling bolted structures,
there exist only a few works that further explore the
use of the latter model to this end. Oldfield et al. [9]
proposed a simplified Bouc–Wen model to adjust the
hysteresis loops yielded by contact interactions from
an FE-based model of a structure assembled by bolts.
More recently, Teloli et al. [10] put forward an equiv-
alent Bouc–Wen model to fit whole nonlinear restor-
ing force that actuates on the experimental response
of the BoltEd stRucTure (BERT) benchmark, which is
composed of two aluminum beams jointed by a sym-

metric double-bolted joint in a cantilever boundary
condition.

However, there is still a lack of contributions related
to the calibration process of Bouc–Wen parameters
from experimental data of jointed structures since the
model constitutive equations restrict the use of conven-
tional nonlinear identification techniques. For example,
the non-smoothness and multiple solutions present in
the restoring force limit the proposition of solutions
for the response through series expansion if no smooth-
ing procedure is employed. Note that closed-form solu-
tions through analytical approximations are helpful for
parameter calibration purposes. Recently, to avoid this
technical limitation and render it possible to expand
the response of the Bouc–Wen model using the Fourier
series, Miguel et al. [11] have presented an alternative
way to obtain these analytical solutions by dividing
the non-smooth restoring force into smooth paths and
applying a piecewise approach of the harmonic bal-
ance method (HBM) to estimate the response’s Fourier
coefficients.

It is worth noting that the HBM has already been
used to numerically calculate solutions to non-smooth
problems, including approximations of the Bouc–Wen
model response. In this context of applications, the
HBM framework is used as a numeric solver of the
system response by using continuation methods (pre-
diction step followed by a correction step) that can cal-
culate the progress of the solution given a frequency
interval. This strategy does not necessarily depend on
prior knowledgeof the constitutive equations of the sys-
tem under analysis, but only on the estimation of the
Fourier coefficients of its response, either in the time
or frequency domain. Thus, for parameter calibration
purposes, analytical approximations such as the one
proposed by Miguel et al. [11] are more appropriate
(see [12], in which the analytical HBM framework was
used to calibrate parameters from a Duffing–van der
Pol oscillator).

Toward this background, this paper’s main con-
tribution lies in using closed-form solutions to iden-
tify parameters that predict the response of uncertain
bolted structures considering a reduced-order stochas-
tic Bouc–Wen model. The identification procedure is
mainly based on analytically approximating the sys-
tem’s response and its nonlinear restoring force via
Fourier series using the piecewise HBM approach pro-
posed byMiguel et al. [11]. Although this HBM frame-
work has already proved to be helpful to identification
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purposes on bolted structures by Miguel et al. [13],
their work was limited to the assumption of a deter-
ministic system. Therefore, this paper goes further and
expands the early deterministic model to a stochastic
one through the Bayesian paradigm [14]. Such model
improvement proves to be quite relevant since joints
are well known for being a great source of uncertainties
due to possible variability in the assembly and the con-
tact surface dynamics [15]. Also, an updated hysteresis
model with a reduced dimension that admits analytical
solution and statistical confidence could be a feasible
alternative to satisfactorily circumvent the high compu-
tational cost required when assuming a representation
based on matrices or meshes extracted from finite ele-
ment geometries.

The paper is organized as follows: in addition to the
introduction, the following section shows an overview
of the smoothing procedure for the Bouc–Wen model
and the HBM approach applied to describe the hys-
teresis effect [11]. Then, the identification procedure
is presented in Sect. 3. Firstly, the section addresses
the deterministic identification technique that is based
on minimizing the error between Fourier amplitudes
from the experimental data and the analytical approx-
imation through the cross-entropy (CE) optimization
method, which is a global search algorithm based on
a sampling technique from the family of Monte Carlo
methods [16–18]. Then, the section goes through the
procedure to identify a stochastic Bouc–Wen model
using the Bayesian inference. This step, which brings
the main contributions of this work, considers a priori
information of the model parameters acquired through
the CE framework to update a posteriori probability
density functions of theBouc–Wenparameters byusing
the Markov chain Monte Carlo/Metropolis–Hastings
(MCMC) algorithm [19–21]. In Sect. 4, the effective-
ness of this approach is demonstrated in an experi-
mental application involving the BERT1 benchmark
[10,13]. The BERT benchmark was chosen because
it exhibits the expected nonlinear behavior in bolted
structures (e.g., softening effects and hysteresis behav-
ior). Finally, the concluding remarks and trends for
future research directions in this topic are presented
in Sect. 5.

1 Further information available on: https://github.com/
shm-unesp/DATASET_BOLTEDBEAM.

2 The HBM applied to hysteretic systems

Harmonic balance is an analytical method in the fre-
quency domain that carries a simple proposal and exact
physical meaning among several ways to approximate
output signals in nonlinear systems. In opposite to what
happens in linear systems, when a nonlinear system
is excited by a mono-harmonic input signal, its out-
put does not follow the input’s mono-harmonic fre-
quency but is distorted by the presence of high-order
harmonics [22]. Based on this feature, the harmonic
balance’s fundamental premise is to capture both the
fundamental response and the higher-order harmonic
terms through the sum of sinusoidal functions with a
truncated Fourier series, according to the required pre-
cision. A complete discussion with simulated exam-
ples of the method, including the particular case of
hysteretic systems, can be found in Miguel et al. [11],
where the formulation applied to thiswork is presented.
This section aims to summarize the key ideas of the
methodology.

2.1 General HBM formulation

To briefly illustrate the main ideas of HBM, a general
nonlinear mechanical system is considered, whose dif-
ferential equation of motion is given by:

mÿ(t) + cẏ(t) + ky(t) + Z(t) = u(t), (1)

in which y, ẏ and ÿ represent the displacement, veloc-
ity and acceleration, respectively; m is the mass con-
stant, c and k are the viscous damping and linear
stiffness, respectively; Z(t) is a general representa-
tion of the nonlinear restoring force element. For the
application of HBM, it is assumed that the system
is subject to a mono-harmonic sinusoidal excitation
u(t) = A sin (ωt), where A [N] is the input ampli-
tude, and ω the frequency. For this input signal, it is
assumed to be a steady-state harmonic output that gen-
erates a restoring force with these same features, allow-
ing them to be approximated by an expansion in Fourier
series:

y(t) ≈ a0

+
κ∑

n=1

[an cos(nωt) + bn sin(nωt)] , (2)
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Z(t) ≈ A0

2

+
κ∑

n=1

[An cos(nωt) + Bn sin(nωt)] , (3)

where κ is the number of harmonic terms consid-
ered in the approximation, and an , bn , An and Bn

are Fourier coefficients of displacement and nonlin-
ear force, respectively. In this second one, the coeffi-
cients are conveniently expressed through the integrals
of classical Fourier analysis:

An = ω

π

∫ 2π
ω

0
Z(t) cos(nωt)dt, (4)

Bn = ω

π

∫ 2π
ω

0
Z(t) sin(nωt)dt. (5)

Replacing Eqs. 3 to 5 in Eq. 1 and balancing the
harmonic terms of the equality, we arrive at a system
of nonlinear equations that in general is solved numer-
ically. It is worth noting that in some frequency ranges,
the system can present multiple solutions due to phys-
ical effects such as the jumping phenomena [23] and
even numerical instabilities that can occurmainlywhen
high-order harmonic terms are considered. This second
case can manifest itself in situations where the method
does not reach the convergence or reach a false conver-
gence.

Further details related to this general series represen-
tation can be seen inKrack andGross [24], in which the
authors provide a comprehensive textbook that covers
from the theory of harmonic balance and Fourier series
to practical aspects of their computational implemen-
tation.

2.2 Particularities of HBM applied to hysteresis
systems

Unfortunately, this simple and direct application pre-
sented earlier is only possible when dealing with
smooth nonlinearities since the restoring force is
continuous and does not undergo abrupt transitions
between different operating regimes, differently from
what occurs in non-smooth systems such as the hys-
teretic ones. Another factor that limits its use is that
the hysteresis forces are often described in differential
equations with no single and trivial solution in terms
purely related to the output. These features are exempli-
fied here to the Bouc–Wen model, which is chosen for

further modeling applications in this work. A dynami-
cal system coupled to a hysteretic dissipation element
can be modeled as a Bouc–Wen oscillator, whose the
nonlinear force term Z(y, ẏ) is obtained by solving the
first-order differential equation of Ż(y, ẏ) [25]:

Ż(y, ẏ) = α ẏ(t) − (γ |ẏ(t)| |Z (y, ẏ)|ν−1 Z (y, ẏ)

+ δ ẏ(t) |Z (y, ẏ)|ν), (6)

inwhichα, γ , δ and ν are calledBouc–Wenparameters.
They are responsible for inducing and controlling the
memory effects and elastoplastic behavior of theBouc–
Wen model. The parameter α is a proportional elastic
term that controls the amplitude and the slope of the
linear paths of the nonlinear restoring force (paths with
a constant slope in the hysteresis loop; for illustrative
purposes, in Fig. 1 they correspond to the paths B→A
and C→D). On the other hand, δ and γ control the hys-
teretic relation between y and Z as well as the shape of
the plastic regime. Therefore, together they are respon-
sible for determining, for instance, if the system acts
with a hardening or softening nonlinear effect. Lastly,
ν determines the smoothness of the elastic–plastic tran-
sition [26,27]. As pointed out by Jalali [28], the term
Z(y, ẏ) does not offer an explicit expansion in terms of
the output y or even its derivatives ẏ and ÿ, restricting
the applicability of the HBM along with other compli-
cations associated with the non-smoothness features of
hysteresis models. To overcome such issues, a smooth-
ing procedure was developed based on the integration
of the differential equation that governs the hysteresis
force [29]. For this purpose, Eq. 6 considering the case
in which ν = 1 (without loss of generality) is initially
divided by ẏ, resulting in the following equation

dZ

dy
= α − |Z| [sgn (ẏ Z) γ + δ

]
, (7)

which in turn is a differential equation in y. The defi-
nite integral of the equation at convenient intervals that
ensure all the different combinations of the signal func-
tion’s argument results in four intervals for Z, within
which smooth and explicit functions can represent the
force in terms of displacement, given by:

(i) path: ẏ � 0,Z � 0

Z(1) = α

(δ − γ )

(
1 − e−(δ−γ )(y−y0)

)
, (8)
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(ii) path: ẏ � 0,Z � 0

Z(2) = − α

(δ + γ )

(
1 − e(δ+γ )(y−y0)

)
, (9)

(iii) path: ẏ � 0,Z � 0

Z(3) = − α

(δ − γ )

(
1 − e(δ−γ )(y+y0)

)
, (10)

(iv) path: ẏ � 0,Z � 0

Z(4) = α

(δ + γ )

(
1 − e−(δ+γ )(y+y0)

)
, (11)

in which paths (iii) and (iv), characterized by ẏ � 0,
make up the loading cycle, while paths (i) and (ii),
characterized by ẏ � 0, make up the unloading cycle.
Additionally, y0 was also defined as the displacement
to Z = 0, as shown in Fig. 1. Besides that, the smooth
equations obtained allow a finite expansion in Taylor
series around the term y0, that is:

Z(i)(y) ≈
⎡

⎣
∞∑

n=0

(
dnZ(i)

dyn

)

y=y0

(y − y0)n

n!

⎤

⎦ , i

= 1, 2, 3, 4. (12)

Thus, Eqs. 8 to 11 become:

Z(1)

≈ α

(δ − γ )

(
1 −

[ ∞∑

n=0

[
(δ − γ )

]n
(y − y0)n

n!

])
,

(13)

Z(2)

≈ − α

(δ + γ )

(
1 −

[ ∞∑

n=0

[
(δ + γ )

]n
(y − y0)n

n!

])
,

(14)

Z(3)

≈ − α

(δ − γ )

(
1 −

[ ∞∑

n=0

[
(δ − γ )

]n
(y + y0)n

n!

])
,

(15)

Z(4)

≈ α

(δ + γ )

(
1 −

[ ∞∑

n=0

[
(δ + γ )

]n
(y + y0)n

n!

])
.

(16)

With the hysteresis force wholly described in the poly-
nomial form, its challenges are solved; however, it is

Fig. 1 Representation of the paths of the Bouc–Wen hysteresis
loop. - represents the range described byZ(1), • the one described
by Z(2), - the one described by Z(3) and • by Z(4) [11]. (Color
figure online)

necessary to adapt the Fourier coefficients’ integrals.
Considering that the restoring force was divided into
four smooth intervals alternating every quarter of the
excitation period, the integrals of the Fourier analysis,
contained in Eqs. 17 and 5 , are also split into a quarter
of the period, resulting in the following integrals:

An

= ω

π

⎛

⎜⎜⎜⎜⎜⎝

∫ π
2ω

0
Z(1) cos(nωt)dt +

∫ π
ω

π
2ω

Z(2) cos(nωt)dt+

+
∫ 3π

2ω

π
ω

Z(3) cos(nωt)dt +
∫ 2π

ω

3π
2ω

Z(4) cos(nωt)dt

⎞

⎟⎟⎟⎟⎟⎠
,

(17)
Bn

= ω

π

⎛

⎜⎜⎜⎜⎜⎝

∫ π
2ω

0
Z(1) sin(nωt)dt +

∫ π
ω

π
2ω

Z(2) sin(nωt)dt+

+
∫ 3π

2ω

π
ω

Z(3) sin(nωt)dt +
∫ 2π

ω

3π
2ω

Z(4) sin(nωt)dt

⎞

⎟⎟⎟⎟⎟⎠
,

(18)

that replaced in Eq. 3 allow finding an average Fourier
series considering all regimes of motion. Some aspects
of the displacement signal produced by the Bouc–Wen
model must also be assumed, such as the fact that it has
symmetricmotion between itsmaximumandminimum
points. Due to this symmetrical aspect, the contribu-
tion of even-order harmonic and constant displacement
terms can be considered nulls [22]. Once the series has
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been calculated, obtaining and solving the system usu-
ally proceed as described in the general case.

3 Parameter estimation framework based on the
HBM

3.1 Problem definition

This paper proposes a parameter estimation procedure
applied to problems involving bolted joints that admit
approximation by hysteresis models. The Bouc–Wen
model is used to represent the set of observed data D
of the first vibration mode of the BERT beam, a bench-
mark that contains a fully symmetric double-bolted
joint. These data exhibit fluctuation due to environ-
mental variation and uncertainties in the measurement
process since the experimental tests were conducted on
different days.

First, a reference model is calibrated considering
deterministic Bouc–Wen parameters. In this step, the
cross-entropy (CE) method is used to estimate the set
of feasible parameters θ = θ∗ ∈ R

n that best-fits a
single experimental realization Dl ∈ D, as illustrated
by Miguel et al. [13].

The construction of the stochastic Bouc–Wenmodel
is then performed. The calibrated parameter values for
the deterministic model are used to propose a prior uni-
form distributions π(�) ∼ U((1− 	)θ∗, (1+ 	)θ∗),
with 	 ∈ R, and � is the randomized version of the
vector θ . These probability density distributions are
then updated to posterior ones π(�|D) by the MCMC
algorithm based on the learning inferred from experi-
mental observations.

As discussed by Ikhouane and Rodellar [30], there
are several combinations of the Bouc–Wen parame-
ters that could reproduce the same input–output behav-
ior, making the procedure of optimizing its parameters
computationally laborious. To circumvent this techni-
cal issue and reduce the set of possible solutions S to
the problem, thiswork divides the parameter estimation
procedure into two steps:

1. Linear Regime of Motion: This step takes advan-
tage of the knowledge acquired by the underlying
physics of the system of interest by estimating its
modal parameters. These parameters are calibrated
at specific low displacement conditions such that
the system is still operating in a linear vibration

regime and subject to a broadband power input
spectrum with very low excitation amplitude;

2. Nonlinear Regime of Motion: Having the modal
parameters to constraint the nonlinear optimiza-
tion problem, the parameters responsible for the
nonlinear dynamics of the Bouc–Wen oscillator
are estimated via analytical expressions derived by
the HBM-based formulation to approximate exper-
imental measurements from stepped-sine tests.
Under these controlled periodic excitations, the
system of interest behaves nonlinearly.

Figure 2 shows the framework of the parameter esti-
mation procedure proposed by this work. Note that
the interest here lies in approximating the dynam-
ics of the first vibrational mode of an experimental
test-bench, such that a reduced-order model described
by a single-degree-of-freedom (SDOF) system is suit-
able. For applications involving multi-degrees of free-
dom (MDOF), there are no theoretical impediments
in applying the proposed method since it is possible
to consider hysteretic components on a MDOF rep-
resentation and, in addition, the HBM has no limita-
tions in this regard either. However, it is worth noting
that to numerically solve this analytical approach, this
work considers the Newton–Raphson algorithm [31].
In an application involvingMDOFsystems, the number
of unknowns would be substantially more significant,
resulting in a problem of increased complexity and,
consequently, increased computational effort. There
are other methods available in the literature that serve
as alternatives to the Newton–Raphson algorithm, such
as the fixed-point algorithm, which does not require the
calculation of the Jacobian matrix to solve the system
of equations [32,33].

3.2 Deterministic identification procedure

TheBouc–Wenmodel fromEqs. (1) and (6) is rewritten
in the mass normalized form, yielding:

ÿ(t) + 2ζωn ẏ(t) + k̃ y(t) + Z̃(y, ẏ) = ũ(t), (19)
˙̃
Z(y, ẏ) = α̃ ẏ(t) − (γ̃ |ẏ(t)| Z̃ (y, ẏ)

+ δ̃ ẏ(t)
∣∣∣Z̃ (y, ẏ)

∣∣∣), (20)

where ωn is the linear resonance frequency defined

as ωn =
√

α̃ + k̃ and ζ is the damping ratio; θ =[
α̃, γ̃ , δ̃

]
is the set of parameters to be estimated
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Fig. 2 Flowchart of the identification procedure. As can be seen,
the procedure has two main branches: deterministic and later
stochastic identification. Each uses the data acquired and pro-
cessed and has a linear and nonlinear identification step, as is
proposed throughout the work. At the end of the deterministic

identification step, the knowledge obtained is used as an initial
guess for the iterations of theMCMC/Metropolis–Hastings algo-
rithm that performs the Bayesian identification in the form of a
uniform distribution prior to obtain the posterior distribution of
the parameters

through the CE method when the structure is under
nonlinear regime of motion.

Firstly, for low vibration amplitude, it is assumed
that the structure behaves linearly, in which the pair
(ωn , ζ ) can be identified through any linear modal anal-
ysis approach, such as the complex-exponentialmethod
applied in this work or other classical methods [34].

These parameters are then fixed as constraints on the
nonlinear optimization problem, which aims to obtain
a set of feasible parameters θ∗ constrained to the inter-

val S = [θmin, θmax] which minimizes an objective
function θ ∈ S �→ R(θ) [13]:

θ∗ = argmin
θ ∈ S

R(θ), (21)

whereR(θ) is the total residue between features inside
Dl built of different vibration data and the predicted
ones, yielding:

R(θ) = Rc(θ) + Rs(θ)︸ ︷︷ ︸
HBM terms

+ RT (θ)︸ ︷︷ ︸
transient term

. (22)
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Assuming that the experimental response admits a
first-order harmonic solution considering the complex
representation:

yexp(t) = (
Y exp + Y

exp)
︸ ︷︷ ︸

= a
exp
1 (ωi )

cos (ωi t)

+ j
(
Y exp − Y

exp)
︸ ︷︷ ︸

= b
exp
1 (ωi )

sin (ωi t), (23)

where aexp1 (ωi ) and bexp1 (ωi ) are the harmonic coeffi-
cients calculated directly from the Fourier transform
Y exp and its complex conjugate Y

exp
measured at a fre-

quency ωi . Note that these harmonic coefficients will
be extracted at each frequency increment that composes
stepped sine tests.

Thus, the HBM terms are given by the distance
between the harmonic amplitudes obtained experimen-
tally and analytically assuming κ = 1 harmonic term
and n = 0, 1, 2, 3 on Taylor series:

Rc(θ) =
∥∥a1(θ) − aexp1

∥∥2
2∥∥aexp1

∥∥2
2

, (24)

Rs(θ) =
∥∥b1(θ) − bexp1

∥∥2
2∥∥bexp1

∥∥2
2

, (25)

in which aexp1 = [
aexp1 (ω1), . . . , a

exp
1 (ωNω)

]
, bexp1 =

[bexp1 (ω1), . . . , bexp1 (ωNω)], a1 = [a1(ω1), . . . ,

a1(ωNω)
]
and b1 = [

b1(ω1), . . . , b1(ωNω)
]
are the

amplitude vectors over the frequency spectrum.
Considering that there is a negligible delay between

the sinusoidal input and the hysteresis force, the time
instant t = t0 when the nonlinear restoring force is zero
coincides with the zero input value, one can conclude
that the displacement term y0 in Eqs. (8)–(16) results
in y0 = ∣∣aexp1

∣∣ [13]. This enables one to evaluate the
analytical amplitude at each excitation frequency using
the HBM-based formulation.

The transient term, in turn, is given by:

RT (θ) =
∥∥∥ẏ(θ; t) − ˆ̇yexp(t)

∥∥∥
2

2∥∥∥ ˆ̇yexp(t)
∥∥∥
2

2

, (26)

resulting from the difference between the experimen-
tally measured velocity ˆ̇yexp(t) and its predictive coun-
terpart ẏ(θ; t) numerically integrated by the fourth-
order Runge–Kutta method [35] applied in Eqs. (19)–
(20). As the HBM only considers steady-state behavior
of the system response, this term is included in the cali-
bration to also evaluate the contribution of the transient

effects. Itwill be seen inSect. 4 that these velocity terms
are responses obtained through swept-sine tests around
the frequency range of the first vibration mode. In Eqs.
(23)–(25), ‖·‖2 is the L2-norm.

To solve thenonlinear optimizationproblemaddressed
in Eq. (21), the CE method [36] is considered to find
a feasible solution θ∗. The method is based on evalu-
ating sets of parameters sampled from a prior distribu-
tion and then updating it iteratively in order to narrow it
down, such that it tends to aDirac delta function around
a deterministic result. Therefore, it consists of firstly
selecting a probability distribution π(�, v) defined by
hyperparameters v = [μ, σ ], where μ is the mean and
σ is the standard deviation of the random vector �.
In this work, the realizations θk (k = 1, . . . , Ns) are
sampled according to a Gaussian truncated distribution
within the S domain.

After sampling the random vector �, the objective
function is evaluated and sorted in ascending order,
such that R(1) ≤ · · · ≤ R(Ns ). At this step, an elite
sampleEi is composedof those {θ1, . . . , θ Ne } forwhich
the performances R(1) ≤ · · · ≤ R(Ne) present their
Ne smallest values, since the values that minimize
the objective function are of utmost importance. The
number of candidates that compose an elite sample is
defined by selecting a subset of Ne = ρNs samples,
in which 0 < ρ < 1 is the rarity parameter and it
represents the ρ-quantile of performances [18].

Based on the subset Ei and following the analytical
formulas for the mean and standard deviation for trun-
cated Gaussian distributions, the hyperparameters then
are updated:

μi = 1

Ne

∑

�k∈Ei
�k, (27)

σ i =
√√√√ 1

Ne

∑

�k∈Ei
,
(
�k − μρ

)2
. (28)

The CE method is a sampling technique, which
refines the solution candidates at each iteration. Instead
of considering the hyperparameter values from Eqs.
(27)–(28) to sample θk in the next iteration, a heuristic
smoothingprocedure is applied toweights a newupdate
with the history of previous distributions. It prevents a
fast decrease in the standard deviation, making the dis-
tribution stuck in a region far from the optimal solution.
[16,18]:

vi = βvi + (1 − β)vi−1, (29)
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where 0 < β < 1 is a fixed smoothing parameter that
weights the hyperparameter’s update on the learning
phase.

The main idea of the CE method lies in using the
information obtained by evaluating R(θ) for all the
independent and identically distributed samples to iter-
atively drive the prior assumed distribution in direction
to the optimal set of parameters (by moving its mean)
and to concentrate it around θ∗ (by decreasing the devi-
ation). In other words, the method makes:

lim
v→(θ∗,0)

π(�, v) = δ
(
θ − θ∗) . (30)

In which δ
(
θ − θ∗) is a multivariable Dirac delta [16].

Thus, an usual stopping criterion is to do the iterations
while ‖σ i‖∞ > σs , in which σs is a small tolerance
related to an ideal Dirac delta, in which σs = 0, and
‖•‖∞ is the L∞-norm. Algorithm 1 summarizes the
cross-entropy optimization procedure employed [16–
18].

Algorithm 1: Cross-entropy for parameter identi-
fication.

1 Chose the initial PDF π(�, v0), and parameters ρ, Ns , σ 2
s

and β. Set the counter i = 1;
2 Generate Ns samples �1, . . . , �Ns ∼ π(�, v0);
3 Evaluate R(θ) for �1, . . . , �Ns ;
4 Sort the results such as R(1) ≤ · · · ≤ R(Ns ), and select
Ei = [R(1) . . .R(Ne)] as the ρ-quantile of performance;

5 Use the mean and standard deviation of Ei , vi = [
μi σ i

]
,

to update the distribution: vi = βvi + (1 − β)vi−1;
6 Do the steps 2 to 5 while ‖σi‖∞ < σs ;

3.3 Bayesian inference in stochastic identification
using HBM amplitudes

The Bayesian inference for identification purposes is
based on selecting random parameters � that maxi-
mize a likelihood function π(D | �) that best repre-
sents the set of observed data [14]. Estimation of this
function allows us to update posterior probability den-
sity functions (PDF) of the numerical model parame-
ters π (� | D) based on the information inferred about
the system of interest. Besides, due to the Bayesian
paradigm, the amount of samples used for model learn-
ing is not exhaustive to measure, making this technique
widely used to identify stochastic models. From the

Bayes rule of conditional probability, the posterior PDF
is given by [37]:

π (� | D) = π(D | �)π(�)

π(D)
, (31)

where π(�) is an prior probability distribution intro-
duced from preliminary assumptions, constraints, or
parameters of a deterministic reference model, as done
by this work; π(D) is the PDF of the observed data
that ensures π (� | D) is a probability density func-
tion with integral equal to unity. Thus, note that if
π(�) ∼ U((1− 	)θ∗, (1+ 	)θ∗), then π (� | D) ∝
π(D | �). The generation of the posterior distribution
can be understood as a process of increasing statistical
information about the system’s response.

The analytical expression of the likelihood function
can be derived assuming the following:

D = DM(�) + ε, (32)

where DM(�) is the model M prediction given a set
of parameters �, ε ∼ N (0, Iσ 2

ε ) is an additive decor-
related Gaussian noise ε ∈ R

n with covariance Iσ 2
ε ,

and I is the identity matrix. Thus, π(D | �) results in:

π(D | �) ∝

exp

(
−
(D − DM(�)

)T (D − DM(�)
)

2σ 2
ε

)
. (33)

To evaluate the likelihood function in this work,
the model prediction is taken also as mono-harmonic
Fourier amplitudes of aBouc–Wenmodel defined by�

and computed through HBM. Therefore, the Bayesian
inference is based on minimizing the residue:

RB(�) =
∑

D
‖H(Dl) − H(�)‖22 , (34)

where H(�) is the absolute value vector composed
by mono-harmonic analytical responses along the fre-
quency range of interest, with elements given by:

H(�) ≡ H (�, ωi ) =
√
a1(�;ωi )2 + b1(�;ωi )2.

(35)

Similarly,H(Dl) is the absolute value vector of exper-
imental responses from a realization Dl ∈ D along the
same frequency range. Also, the summation indicates
that RB(�) is composed by the sum of the residues
evaluated in all realizations of D. Thus, the likelihood
function can be rewritten as:

π (D | �) ∝ exp

(
−RB(�)

2σ 2
ε

)
. (36)
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As can be seen in Eq. 36, as both residues reduce,
the likelihood increases. In other words, minimizing
the residue yields maximizing the likelihood, which
measures how well a set of parameters fits the entire
dataset. Themost representative parameters θ = θ∗ are
those that reach the maximum a posteriori probability
(MAP):

�∗ = argmax
θ ∈ K

π (D | �) , (37)

where K denotes the domain constrained by the uni-
form prior π(�), i.e., K = [

(1 − 	)θ∗, (1 + 	)θ∗].
Although the Bayesian paradigm has a solid the-

oretical basis for evaluating the likelihood function,
it does not specify methods for obtaining the poste-
rior efficiently, primarily when the model is defined
by a combination of parameters with different distribu-
tions sampled simultaneously. Due to this fact, there is
an auxiliary algorithm in the literature from the fam-
ily of Monte Carlo methods that are useful to avoid
high-dimensional integration, such as theMarkov chain
Monte Carlo/Metropolis–Hastings [19,21], as illus-
trated in Algorithm 2 [20].

Algorithm 2: Markov Chain Monte
Carlo/Metropolis–Hastings for parameter identifi-
cation.

1 Set the counter i = 1, a first candidate

X0 = {0.5, 0.5, 0.5, 0.5}T, and define σs and is ;
2 Generate a candidate Y ∼ N (Xi−1, σs);
3 Interpolate the value

� = Y(1 + 	)θ∗ + (1 − Y)(1 − 	)θ∗ and
�Xi−1 = Xi−1(1 + 	)θ∗ + (1 − Xi−1)(1 − 	)θ∗;

4 Generate C ∼ U(0, 1);
5 If C ≤ L {�}/L {

�Xi−1

}
, accept candidate Xi = Y. Else,

reject candidate Xi = Xi−1. Set i = i + 1;
6 Do the steps 2 to 5 while i < is .

FromAlgorithm 2,X ∈ R
is×n is thematrix that con-

tains the is sets of n parameters accepted by the algo-
rithm to compose the posterior distributions. The oper-
atorL {θ} evaluates the likelihood function ofEq. 36 for
the set θ , originated from the interpolation of the vec-
tor Y, which each element belongs to the range [0, 1],
between the boundaries of the domainK. Each sample
Y is a candidate to compose the set X and is gener-
ated from a normal distribution with standard devia-
tion σs adjusted to obtain ∼ 50 % acceptance rate of
candidates. Finally, is must be chosen to ensure that

the model reaches the convergence, evaluated by the
function:

conv(i) =
√√√√1

i

i∑

l=1

∥∥H∗ (i, :)∥∥22, (38)

which takes into account the mean of the squared
euclidean norm of all the i lines of the matrix H∗ ∈
R
i×Nω , that stores the vector H(�k) to each accepted

candidate �k (k = 1, . . . , i), and which the dimension
is increased at each iteration i up to is .

It is important to note that there are other alternative
methodologies to reach a stochastic model. A pretty
common way is to perform repeatedly deterministic
identification procedures to a dataset and evaluate the
parameters identified to each one. The main drawback
of this approach is that youwill need a different realiza-
tion to each set of parameters identified, increasing the
amount of data required. Further, as the procedure will
be repeated several times, the identification should be
as simple as possible to not increase the computational
cost too much. An example of this kind of methodol-
ogy was carried out as a preliminary investigation of
the linear parameters of this work. It can be seen at
the beginning of Sect. 4.2.2. It was feasible because it
was performed only through classical modal analysis
on white noise inputs.

4 Experimental application

4.1 Experimental setup

The BERT benchmark is based on some experimental
setups with bolted joints present in the literature [38–
42] to experimentally illustrate the hysteretic behavior
in bolted joints dynamics. This benchmark is proposed
to test identification frameworks, and due to this reason,
it was used in this work to exemplify the application
of the methodology described in Sect. 3. The beam is
composed of two aluminum beams whose dimensions
are 270 mm x 25.4 mm x 6.35 mm and are connected
by a double-bolted joint with a contact area of 40 mm
x 25.4 mm. The relative motion of micro-slip between
the two surfaces in contact induces a global hystere-
sis behavior that the Bouc–Wen model can fit. TwoM5
bolts and nuts connect the bolted joint with a tightening
torque of 5 Nm assessed by a torque wrench after each
experimental run. The clamped end, in turn, was made
by two blocks (a fixed and a mobile one for adjustment
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purposes) that clamped the beam between them as two
M8 bolts were tightened. The fixed block was attached
in a robust structure by four M8 bolts and washers. The
entire assembly was then directly fastened to the iner-
tial table by two other M8 bolts. Before tightening the
beam, the parallel alignment between the inertial table
and the beam was checked by measuring the distance
along its length. It is essential tomention that the torque
applied to the clamping bolts was not measured, but the
tightening was conducted up to the maximum torque
allowed by the bolt body. Moreover, all the connect-
ing components and the clamping structure were made
of steel and cast iron, respectively. Figure 3 shows the
complete experimental setup of the BERT beam.

Figure 3b details the structure and the instrumen-
tation employed: to measure the output acceleration
of the system, four accelerometers span the length
of the beams; to measure the velocity at the free
end of the beam, a laser vibrometer Polytec OFV-
525/5000S is used. Since the interest here lies in iden-
tifying a reduced-order model, it is considered only
the first vibration mode. As its modal shape has more
pronounced displacement amplitudes at the free end,
the model is constructed based on the signal from
the laser vibrometer. Besides that, the first resonance
range was at relatively low input frequencies (around
5 and 30 Hz), and the laser was capable of measur-
ing low-frequency signals with higher quality than the
accelerometers. The tests performed on the test bench
for this work include white noise, swept-sine, and
stepped-sine excitations, and the application of each
one will be presented along with the development of
the results in Sect. 4.2. A Modal Shop 2400E electro-
dynamic shaker provided all the input signals with an
integrated power amplifier coupled by threaded nylon
rod stinger at 85mm from the clamped end tominimize
shaker/structure interactions. The shaker’s instruction
manual indicates that its resonance frequencies are
above 9.5 kHz, without a specific value and depend-
ing on the interactions with the test structure. An LMS
SCADAS acquisition board then acquires the signals,
and as input signals were considered, the voltage sup-
plied by the shaker amplifier converted in [N/kg] by a
conversion constant previously identified A = 49.507
[NV−1/kg].

Figure 4 depicts preliminary tests that justify using
an equivalent hysteresis model to represent the BERT
system and detect the nonlinear effects acting on the
first bending mode. Figure 4a illustrates the frequency

response curves of the BERT benchmark estimated
from swept-sine tests with frequency linearly increased
from 0 up to 40 Hz along 8 seconds considering dif-
ferent low input levels (0.05 V), medium (0.15 V), and
high (0.25V) amplitude and a sampling rate of 1024Hz.
These results indicate that the peak amplitude decreases
as the excitation level increases, i.e., the structure does
not hold the superposition principle, which is the main
feature of a linear system. Moreover, Fig. 4b shows the
BERT’s response to the stepped-sine test performed in
a frequency range from 13 up to 23 Hz with an incre-
mental step 0.10 Hz and a sampling rate of 1600 Hz.
For this test, only the low andmedium amplitudes were
considered to ensure structural health. It concentrates
more energy at fixed frequencies (mainly at resonance
range), generating mono-harmonic inputs that induce
large displacements. Note the decreasing of resonance
frequencies as the excitation increases, e. g., from 18.5
Hz to 18.3 Hz for the amplitudes of 0.05 V and 0.10
V, respectively. These aspects characterize the occur-
rence of the so-called softening behavior, which is a
nonlinear effect that generates a loss on the structural
stiffness in regimes with more significant displacement
(such as in the vicinity of resonance for a high level of
input) that shifts the resonance frequency to the left.

Both nonlinear mechanisms of amplitude attenua-
tion and loss of stiffness depending on the excitation
amplitude are compatible with the presence of hystere-
sis behavior in structures assembled by bolted joints,
which paves the way for the proposition of the Bouc–
Wen oscillator, which is a very versatile hysteretic
model, for modeling the BERT benchmark. Therefore,
its parameters can be calibrated by the proposed opti-
mization procedure in Sect. 2.

4.2 Identification results

4.2.1 Deterministic identification step

As previously stated in Sect. 3.2, the first step of the
deterministic identification consists in obtaining the
modal parameters that best fit the experimental FFR of
the first bending mode, applying any classical modal
analysis procedure [34]. To achieve this, a white noise
test was carried out with a low amplitude level supplied
in the shaker amplifier (0.05 V). This is a broadband
excitation that, for low input amplitudes, generates
responses close to the linear behavior. Figure 5 com-
pares the experimental FRF to the linear model iden-
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Measurement
Points

Laser 
Vibrometer

Bolted
Joint

Shaker

Top view of the bolted joint:

(a) General view. (b) Schematic representation.

Fig. 3 Setup of the BERT beam [10,13]. The results of this work are all based on the signal of the laser vibrometer at the measurement
point 1

(a) Swept-sine test. (b) Stepped-sine test.

Fig. 4 Indicatives of nonlinear behavior on frequency domain. ◦ is low input level 0.05 V;�medium 0.15 V and� high 0.25 V. (Color
figure online)
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Fig. 5 Comparison of the receptance FRF between ◦ experi-
mental and − linear FRF

tified, which has a resonance frequency of ωn = 18.8
Hz and damping ratio of ζ = 0.4634%.

To cover a large frequency band with a sinusoidal
input (for which the HBM is formulated), a stepped-
sine testDl ∈ Dwas performed to the nonlinear identi-
fication step. The input was set to excite each frequency
for 32 seconds to ensure a steady-state response. The
test conditions were the same from Fig. 4. From the
measured response, it was possible to estimate exper-
imental Fourier coefficients aexp1 (ωi ) and bexp1 (ωi ) for
each frequency ωi increment. Then, these values were
compared to the respectiveHBMamplitudesa1(θk;ωi )

and b1(θk;ωi ) in function of a sampled candidate θk
to obtain the residues Rc(θ) and Rs(θ) from Eqs. 24
and 25 . A swept-sine test was also carried out to eval-
uate the transient behavior through the residue RT (θ)

from Eq. 26. Finally, having the residues, the objective
function R(θ) from Eq. 22 is minimized by the CE
method. Table 1 presents the lower and upper limits
θmin and θmax, respectively, of the feasible solutions S.
They were selected through preliminary assumptions.
For instance, the observation of a softening behavior
reveals the requirement of 0 < γ̃ ≤ δ̃ [10].

Hereupon, considering aheuristically chosen smooth-
ing parameter β = 0.3, Ns = 20 samples, ρ = 0.1,
yielding Ne = ρNs = 2 samples, it was possible to
obtain the Bouc–Wen parameters presented in Table 2
through the CE method using as stopping criterion
σs = 1 × 10−4.

To illustrate the validity of the updated parameters,
Fig. 6 compares the hysteresis loops on the displace-

Table 1 Interval S of feasible solutions considered for the opti-
mization procedure

Parameter θmin θmax

α̃ [Nkg−1 m−1] 200 800

δ̃ [kg−1m−1] 200 1000

γ̃ [kg−1m−1] 5 150

ment× nonlinear restoring force plane predicted by the
deterministic Bouc–Wen model and the ones obtained
from the experimental data. Such verification was per-
formed considering the low (0.05V),medium (0.10V),
and high (0.15 V) levels of excitation amplitude.

Figure 6 indicates that theBouc–Wen restoring force
identified is capable of predicting the nonlinear behav-
ior observed in the experimental bolted structure prop-
erly. Notwithstanding, note that the loop’s internal area
is quite similar and increases according to the input
level. As this area is proportional to the energy dissi-
pation during each oscillation cycle, one can conclude
that there is a good prediction of the hysteretic dis-
sipative effects. These results are consistent with the
ones observed in Fig. 4a, in which the peak amplitudes
are presumably reduced due to nonlinear damping. The
predicted hysteresis loops fit the experimental observa-
tions in terms of shape and scale, which indicates that
the model proposed has a good agreement in assessing
the energy dissipation by the hysteresis effect.

4.2.2 Stochastic identification step

Based on the deterministicmodel, the stochastic identi-
fication procedure is then carried out. Firstly, themodal
parameters were identified through frequency response
curves estimated from 50 experimental runs consider-
ing awhite noise excitation at a low input level (0.05V).
From these tests, the coefficient of variation was pre-
liminary analyzed, that is, a percentage that evaluates
the dispersion of a random variable in a dimensionless
way and is defined as:

CV = σ

μ
. (39)

For the natural frequency, a coefficient of variation
CVωn = 0.06% was computed and for the damping
ratio CVζ = 9.37%. Since the resonance frequency
does not vary considerably between the experimentally
estimated samples, this parameter is fixed at its mean
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Table 2 Bouc–Wen
parameters of the model
identified

ωn [Hz] ζ [%] α [N kg−1m−1] δ[kg−1m−1] γ̃ [kg−1m−1]

18.8 0.4634 386.5841 768.6727 16.3125

(a) Low amplitude (0.05 V). (b) Medium amplitude (0.15 V).

(c) High amplitude (0.20 V).

Fig. 6 Comparison of the hysteresis loops for a swept-sine input. model identified, and • experimental data. (Color figure online)

value μωn = 18.8 Hz during the stochastic identifica-
tion procedure. Due to the higher computational cost
and fewer experiments available, this preliminary find-
ing was not feasible for nonlinear parameters. Thus,
the vector of parameters considered in the stochastic
identification is: � = [α̃, δ̃, γ̃ , ζ ]T.

Defined the set� to be identified; another important
step that deserves attention is adjusting the
MCMC/Metropolis–Hastings algorithm. Based on the
inferred information about the deterministic model, a

prior distribution π(�) is proposed. A natural consid-
eration is to define this PDF as a uniform distribution
centered on the deterministic parameter set θ∗. How-
ever, this first suggestionmay not be themost represen-
tative when considering the wholeD dataset and needs
to be updated when appropriate. For example, the pos-
terior distribution of some of the parameters can tend
to concentrate its values near the upper or lower limits
of the proposed uniform distribution, indicating that it
may be appropriate to update the uniform distribution
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Table 3 Limits of the uniform prior distribution

Parameter Minimum Maximum

α̃ [Nkg−1/m] 306.8080 569.7864

δ̃ [kg−1m−1] 390.4736 725.1653

γ̃ [kg−1m−1] 13.1764 24.4704

ζ [%] 0.2660 0.4940

Fig. 7 Convergence function evaluated for each sample

to a new mean value. Thus, after adjusting the uniform
distribution, Table 3 presents its maximum and mini-
mum values by considering a 	 = 30 % for each side
of a central value.

As an estimate of experimental varianceσε
2, the sum

of themain diagonal of the covariancematrix evaluated
toDwas considered, resultingonσε

2 = 3.5842×10−8.
It is worth mentioning here that the data considered
as experimental was series of synthetic data gener-
ated from really experimental stepped-sine signal from
the test bench in Fig. 4. Thus, 10 realizations were
considered with a medium excitation level generated
by simply adding a Gaussian noise directly on the
experimental stepped-sine curve with standard devi-
ation σD = 1.0% of the RMS value of the curve.

Lastly, usingσs
2 = 8.6×10−3 adjusted to ensure the

acceptance rate≈ 50%, the convergence of the method
was evaluated. Figure 7 presents the convergence func-
tion calculated after each sampling.

Note that the convergence is reached around the
1200th sample.Aburn-in of 200 sampleswas assumed;
then, only 1000 samples were available to estimate
the posterior PDFs for the parameter set �, which are

depicted in Fig. 8. Some statistical aspects about the
PDFs can be readily noted: on the one hand, for γ ,
α and δ unimodal PDFs were identified, being much
more concentrated around this unique mode for the last
two. On the other hand, ζ resulted in a bimodal distri-
bution covering all the assumed prior ranges, indicat-
ing difficulty in identifying the linear damping ratio.
Despite this, the methodology was able to predict in
which regions there are more suitable parameters. It is
important to highlight that, by definition, the total area
below the PDF represents the probability of occurrence
of any of the values from the distribution.

Table 4 shows the mean and MAP values for each
PDF from Fig. 8 and also allows comparing them with
the first deterministic result θ∗

As suggested by the PDFs, Table 4 confirms that
the final parameters identified considering the entire
dataset tended to slightly distance from the determin-
istic value. However, when considering distributions,
we see that in the case of the parameter α̃, δ̃, ζ the
value identified initially remains accepted within the
distribution. In opposite, for δ̃, the values of the admit-
ted parameters were lower, causing the deterministic
values to be out of the distribution. These results indi-
cate that the parameters may differ slightly when it is
intended to adjust the model to represent a broader set
of experiments and not just a specific one.As theBouc–
Wen model admits more than one set of parameters to
reproduce the same physical system, one can conclude
that the model depends on their specific combinations.
Because of that, different sets do not necessarily imply
any model fault.

To evaluate the results, the following comparisons
consider the uncertainty propagation of the Bouc–Wen
model generated by series of 1000 Monte Carlo sim-
ulations carried out along the parameter distributions.
They were done for swept-sine inputs considering low,
medium, and high amplitudes with the same test con-
ditions as the responses shown previously in Fig. 4.
For comparing the results, 10 swept-sine outputs were
used for each excitation level, which were all gener-
ated through additive Gaussian noise in experimental
signals adjusted to obtain a similar variability than pre-
viously computed on Bayesian inference, evaluated by
the variance σε

2. The main idea was to ensure testing
with statistically similar data to learning. Further, it is
essential to note that swept-sine data were selected to
illustrate the identified model due to the high compu-
tational cost in performing Monte Carlo simulations
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(a) α Distribution. (b) δ Distribution.

(c) γ Distribution. (d) ζ Distribution.

Fig. 8 PDFs identified for the model parameters. θ . represents the posterior distribution, and - - the prior distribution. (Color figure
online)

by integrating stepped-sine signals over a long experi-
mental time. The responses obtained were computed as
an average response and the limits of 0.995 and 0.005
quantiles, which compose the confidence band of 99
%. Figure 9 shows the comparison between the exper-
imental temporal response and that of the model, with
the mean value and confidence intervals with 99% of
the amount responses.

It is noted in the temporal responses that the stochas-
tic model proved to be quite efficient to accommodate
the system’s response and possible variations, even in
transient conditions, once the swept-sine test is pri-
marily a transient input. It is essential to highlight
that despite the stochastic model identified through the

stepped-sine test, it also fitted the transient behavior
of the swept-sine, illustrating the method’s robustness.
Also, it was possible to reasonably predict responses
to low and high input levels; even the model was only
identified considering the medium one. Notwithstand-
ing, the presence of relatively worse prediction in the
model’s output concerning the experimental response
just after the resonance region was noticed, which
results in a large dispersion in the confidence band. This
also indicates that it is a region more sensitive to varia-
tions in parameters due to the larger envelope when
compared to the other areas simulated by the same
model and conditions. Figure 10b, d and f reflects the
same pattern of uncertainty in the model but regarding
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(a) Low amplitude (0.05 V). (b) Zoom in the resonance frequency.

(c) Medium amplitude (0.15 V). (d) Zoom in the resonance frequency.

(e) High amplitude (0.20 V). (f) Zoom in the resonance frequency.

Fig. 9 Comparison of the time responses for a swept-sine input. model identified, • experimental displacement, and � the
confidence interval with 99 % of the amount responses. (Color figure online)
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the frequency response curves, i.e., a similar effect of
more significant uncertainty and prediction difficulty in
the region around 20 Hz when analyzing the FRF for
the same amplitudes. And finally, Fig. 10 a, c, and e also
illustrates the hysteresis loops for the stochastic model.
A notable feature in this stochasticmodel’s loops is that
the confidence bands tend to decrease near the plas-
tic regime, i.e., as the nonlinear restoring force goes
asymptotically to a horizontal line opposite to what
occurs on the sloping lines of the elastic regime. As
most of the uncertainties were inserted in the nonlin-
ear system’s parameters, this behavior illustrates the
increased influence of hysteresis in the response as the
system reaches more significant displacements, accen-
tuating the nonlinearity. However, the model was able
to predict the experimental response for all the input
levels with quite an accuracy, particularly the medium
amplitude used to identify it. Thus, it can be stated
that the model helps predict the energy dissipated by
the hysteresis loop with a reasonable confidence band,
demonstrating the adequate functioning of the method-
ology.

Although the Bouc–Wen model equations consid-
ered here to describe the BERT benchmark’s response
are the same as those considered by Teloli et al. [10],
the set of experimental realizations used for each work
is different. However, a comparative analysis between
both identification frameworks can be drawn, as sum-
marized in Table 5.

Considering the deterministic procedure, there are
no considerable differences in the experimental tests
needed once both methodologies use white noise, tran-
sient swept-sine, and sinusoidal signals in a frequency
range; however, while the method based on the higher-
order FRFs estimated through theVolterra series expan-
sion considers the sequential quadratic programming
as an optimization algorithm, this work uses the CE-
method. Regarding the stochastic identification, the
framework proposed by Teloli et al. [10] identifies,
firstly, the parameters α̃ and δ̃ considering sine inputs
with excitation frequency around one-third of the res-
onance frequency (ωn/3) to ensure a closed hysteresis
loop, in which there is no dependence of the parame-
ter γ̃ . Depending on the mode of interest, this exci-
tation condition may be close to another vibrating
mode, causing undesirable coupling effects. In this
sense, the advantage of the HBM-based methodol-
ogy lies in the possibility of isolating nonlinear modes
through stepped-sine tests around the resonance fre-

quency. Still, the HBM requires fewer signal classes
than the Volterra series formulation in stochastic iden-
tification, representing a smaller number of experimen-
tal tests. Also, the theoretical basis of HBM has its for-
mulation based basically on the Fourier series, which
are much simpler than the multidimensional Fourier
transforms present on the Volterra series formulation.
However, both have a known physical meaning [43]. In
terms of time efficiency, the HBM is slightly hampered
by the complexity of the nonlinear system of equa-
tions generated by the harmonic balance applied to the
Bouc–Wen model. As it is numerically solved (in this
case by the Newton–Raphson algorithm), this aspect
may slow convergence. However, it is not prohibitive
by itself; it just becomes costly due to being repeated
over the entire frequency range in a context involving
Monte Carlo simulations. Compared to the identifica-
tion procedure based on the Volterra series, the HBM is
slower when considered a single iteration of the iden-
tification scheme. Nevertheless, as the Volterra-based
methodology is performed in two different steps (that
also have two other experimental requirements), the
time efficiency of both procedures becomes quite sim-
ilar. Finally, besides the methodologies compared have
some practical differences, it is important to highlight
that both are helpful and present promising results to
identify systems with a hysteresis.

5 Final remarks

This work presented a new methodology to identify a
stochastic Bouc–Wen model capable of predicting the
hysteretic behavior in bolted joint structures. The iden-
tification procedure was applied in the BERT bench-
mark with two beams joined by a bolted connection.
Preliminary tests showed that there was the presence
of nonlinear behavior induced by frictional effects in
the contact surface between them.

The paper brought all the theoretical and practical
formulation of the procedure, including previous steps
to adjust a deterministic first guess for the identifica-
tion algorithm. A Bayesian inference so updated the
stochastic model over displacement amplitude of the
fundamental harmonic component obtained in the func-
tion of the Bouc–Wen parameters through a piecewise
HBMapproach recently presented in the literature [11].
As can be seen in Figs. 9 and 10 , the methodology was
proved to be quite efficient in representing the nonlin-
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(a) Receptance for low amplitude (0.05 V). (b) Hysteresis loop for low amplitude (0.05 V).

(c) Receptance for medium amplitude (0.15 V). (d) Hysteresis loop for medium amplitude (0.15 V).

(e) Receptance for high amplitude (0.20 V). (f) Hysteresis loop for high amplitude (0.20 V).

Fig. 10 Comparison of the receptance and hysteresis loops for a swept-sine input. model identified, • experimental data, and �
the confidence interval with 99% of the amount responses. (Color figure online)
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Table 4 Stochastic identification results (MAP. mean and coefficient of variation) compared to the deterministic ones

Parameter MAP μ θ∗ CV [%]

α̃ [Nkg−1/m] 446.6540 439.4293 386.5841 8.5288

δ̃ [kg−1m−1] 538.3623 555.4850 768.6727 9.7040

γ̃ [kg−1m−1] 19.1222 19.8844 16.3125 17.0617

ζ [%] 0.4462 0.3725 0.4634 13.1186

Table 5 Methodological
comparison of the
identification procedures
based on Volterra series and
HBM

Volterra series Harmonic balance

Main identification feature
Third-order

Volterra Kernel

Fundamental
harmonic
amplitude

Optimization algorithm
Sequential
quadratic

programming

Cross-entropy
method

Deterministic
identification

Required input
classes

Random, periodic
and transient inputs

Random, periodic
and transient inputs

Identification
steps

Linear: 1 step
Nonlinear: 2 steps

Linear: 1 step
Nonlinear: 1 step

Stochastic
identification

Required input
classes

Random, periodic
and transient inputs

Random and
periodic inputs

Identification
steps

Linear: 1 step
Nonlinear: 2 steps

Linear: 1 step
Nonlinear: 1 step

ear effects of the hysteretic restoring force and repro-
duced the behavior of the structure with statistical con-
fidence both in the time and frequency domains. These
results showhowpractical and robust the proper formu-
lation of a simple analytical tool such as HBMcan be to
identification purposes, even when dealing with more
complex nonlinearities than those commonly identified
through it in the literature, such as exemplified in the
review made by Busseta et al. [44].

It is also important to highlight that the procedure
is in line with current trends in the specific litera-
ture to identify hysteretic systems, as the work pre-
sented by Teloli et al. [10], over which this present
work even has some methodological advantages. As
the HBM approach used is capable to adequately pre-
dict the response in function of all the Bouc–Wen
parameters without any additional assumptions about
the nonlinear behavior presented by the hysteresis loop,
it can update all the nonlinear parameters in the same
Bayesian step, making the methodology more straight-
forward to implement and requires a dataset with less
variability from different experimental tests.

Finally, the presence of methods on the literature
that allow not only analytically approximate hysteresis
by series of smooth functions but also propose its use
as features to adjust hysteretic models to experimental
data paves theway for futureworks onhow to overcome

challenging issues in the simulation of bolted connec-
tions of more complex structures that nowadays need
FE models with a large number of degrees of freedom
and high computational cost to represent the frictional
effects on them. Following the contributions presented
by this work, it would be possible to adjust a model
such as Bouc–Wen with statistical confidence to the
transmissibility through the joint and even then use the
HBMapproach to calculate the response from it, avoid-
ing costly numerical integrations.
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