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Abstract The prediction and control of excessive
vibration are one of the most important concerns in
the design and development of geared systems. For
any gear set, parametric resonance is the main source
of instability, resulting in the separation of gears in
mesh and chaotic behavior. In many works, gears are
modeled with rigid mountings, and various analytical
and numerical approaches have been used to investi-
gate the dynamic characteristics of the system in dif-
ferent regimes: permanent contact (no impact), free
play, single-sided impact, and double-sided impact.
Alternatively, in other works, the effect of the defor-
mation of the mountings is included in the dynamic
modeling; in almost all these studies, the dynamic
characteristic of the system is investigated through
direct numerical integration of the governing differ-
ential equations, and there is no analytical work to
determine the effect of suspension on the parametric
resonance of the system. Consequently, in this work,
both analytical and numerical approaches, including
the Poincare–Lindstedt method and Floquet theory, are
used to investigate the dynamic characteristics of a one-
stage spur gear pair with linear suspension in the per-
manent contact regime. It has been shown that, unlike
systems with rigid mounting that have one set of unsta-
ble tongues, systems with suspension have three sets of
unstable tongues. The results show that the additional
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sets of unstable tongues appear at higher parametric fre-
quencies. Therefore, the rigid mounting assumption is
accurate only for systems operating at low speeds; for
systems operating at high speeds, the deformation of
the suspension must be included in the dynamic mod-
eling, as it significantly contributes to the parametric
instability of the system.

Keywords Permanent contact condition · Linear
suspension · Primary parametric resonance ·Combined
parametric resonance · System of linear parametrically
excited coupled equations

1 Introduction

Gears are one of the most common mechanical parts
widely used in rotary machinery and power transmis-
sion systems. Many researchers have investigated the
dynamic characteristics of the geared systems under
the influence of the internal excitation parameters like;
time-varying stiffness and static transmission error, and
external excitation like; fluctuation of the load and
power, to design and develop optimal, silent, and reli-
able gear transmission systems. Originally, gears are
designed to remain in permanent contact regime, where
teeth inmesh do not separatewhile inmotion, but due to
the clearance between the teeth in mesh, for the lightly
loaded operational condition [32] or bad range of the
parameters [31], the teeth can separate. Consequently,
alternating between permanent contact regime and free
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play mode while considering single- and double-sided
impact has been one of the most intriguing topics in
nonlinear dynamic analysis of the gears [32]. Under
these conditions, gears in mesh can be considered as
a non-smooth vibrio-impact system prone to chaotic
behavior [11].
Many researchers have used the lumped parameter
modeling technique to analyze gear pairs in mesh with
the assumption that the mountings are rigid. In such a
system, and with relatively large values of the forcing
parameter, the permanent contact regime is achieved
where the governing equations reduce to one linear
parametrically time-varying differential equation [31],
known as the Mathieu equation [13]. Consequently,
parametric resonance has a dominant effect on the
dynamic response of the gear pairs over the entire fre-
quency range so that the large amplitude oscillation
and separation of teeth occur in the vicinity of the res-
onance tongues [32]. Once tooth separation initiates,
the permanent contact regime is no longer valid; the
clearance between the teeth must be considered in the
modeling, and the system will behave in a nonlinear
fashion [1]. In general, the clearance between the teeth
in mesh is expressed by a non-smooth piecewise linear
function. Some researchers have used analytical meth-
ods such as the Multiple Time-Scales method [31] and
the Harmonic Balance method [1] to develop a gener-
alized solution for the gear platform, while permanent
contact regime, Free play mode, single- and double-
sided impact phases are carefully taken into consid-
eration. This is while some others used a third-order
polynomial [10], Fourier series [1], logarithmic func-
tion [19], or fractal law [5] to approximate the clearance
between the teeth in mesh for ease of calculation. Con-
sequently, the Melnikov method is used to predict [10]
and control [28] the threshold values of the parameters
for the occurrence of the homoclinic bifurcation and
transition to chaotic behavior. The Incremental Har-
monic Balance method is used to analyze and com-
pare the frequency response of the systemwhere single
and multi-order harmonics are included [29]. Numeri-
cal integration is used to identify the chaotic behavior
with reference to basins of attraction [21], bifurcation
diagram, and maximum Lyapunov exponent [20]. The
lumped parameter analysis is also used in fault simula-
tion analysis by including gear profile error, [2] surface
wear [9,15], and fillet crack [12] in the dynamic mod-
eling of the system. In some recent studies, the effect
of the backlash size [37], applied force [3], and oil film

[36] on the equivalent stiffness of gears in mesh are
included to provide more enhanced dynamic models.
Alternatively, there are fewer papers that demonstrate
the importance of including the defamation of the
mountings in the lumped parameter modeling. In these
studies, the effect of the operational speed [4] or the
stiffness of the suspension [18] on the periodic, quasi-
periodic and chaotic motions are studied with refer-
ence to the phase plane [35], bifurcation diagram [33],
basins of attraction [18], and Lyapunov exponents [4].
The effect of known applied load rather than constant
operational speed on system dynamic is studied with
reference to the frequency response [30]. The effect
of eccentricity on the nonlinear behavior of the sys-
tem is studied with reference to the frequency spectrum
[17] and bifurcation diagram [40]. The effect of damp-
ing coefficient, static transmission error, and external
excitation on the jumping discontinuity is studied with
reference to frequency response [39]. The effect of
bearing clearance [14] and surface roughness [6] on
the dynamic behavior of gears is studied with refer-
ence to phase diagram and Poincare map. The defor-
mation of the suspension is also included in the fault
simulation analysis, such that the effect of tooth crack
[16,22,23] root crack [7], and wear [38] on the vibra-
tion response of the geared platforms is investigated.
Finally, in some recent fault simulation studies even
the lateral [7,22,38] and lateral–torsional [16] defor-
mations of themountings and the gyroscopic effect [23]
are included in the dynamic modeling.
Even though these works provide insight into the effect
of suspension on gear dynamics, there are still two
missing components in the current studies. First, all the
prior works use only direct numerical integration of the
governing differential equations to plot the Poincare
map, phase portray, bifurcation diagram, and other
numeric-based approaches to investigate the dynamic
characteristics of the gear sets. However, there is no
research that uses an analytical approach to provide
an in-depth understanding of the effect of suspension
on the dynamic response of gears. Secondly, all prior
works investigate the effect of the suspension along
with the nonlinearity caused by the backlash, where
the separation of teeth in mesh plays an important role
in the nonlinear behavior of the system [26]. No works
have investigated the dynamic behavior of the geared
systems under constant speed and heavy-load opera-
tional conditions, where the governing equations of the
system become linear [31] and the parametric reso-
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nance is the main source of instability and separation
of teeth in mesh [32].
Consequently, in this paper, the Poincare–Lindstedt
method andFloquet theory are used to study the dynam-
ics of geared system with linear suspension, assuming
that the gears in mesh remain in permanent contact
regime, a condition that can be acceptable under con-
stant speed and high load operational condition [8]. In
such conditions, the governing differential equations
of the system reduce into a linear periodically time-
varying system of coupled equations. Then the effect
of deformation of the mountings on the number and
location of the unstable tongues is investigated which
is clearly excluded in previous studies. Identification
of parametric resonance is an important task in geared
systems as it causes an increase in the amplitude of the
oscillation and separation of the teeth in mesh, where
the nonlinear effect of the clearance between the gears
in mesh must be considered.

This paper is organized by sections: Sect. 2 describes
the tribological characteristics of the gears in mesh.
Section 3 formulates the dynamic equations of the spur
gear pair in mesh with linear suspension. Section 4
utilizes the Poincare–Lindstedt method to analyze the
stability of the perturbed system while the damping
and external forcing terms are dropped out. Section 5
use Floquet theory to compute and characterize the
dynamic behavior of the system for different parametric
frequencies. Section 6 compares the numerical results
with the analytical results obtained in the previous sec-
tions. And final remarks are presented in the conclu-
sion.

2 Tribological characteristics

The tribological characteristics of the gears in mesh
greatly influence the dynamic behavior and vibrations
of geared systems, including the time-varying meshing
stiffness, static transmission error and backlash. In this
section, more detail is provided on the nature and the
mathematical expressions of these characteristics.

2.1 Time-varying gear mesh stiffness

The concept of equivalent tooth mesh stiffness is
helpful in the lumped mass modeling of the gears
[14]. Under the assumption of constant velocity oper-

ational conditions, the gear stiffness coefficient can be
described as a periodic function of time with funda-
mental frequency equal to the meshing frequency.

k(t) = K
(
1 + k0 cos(ωt)

)
, k0 = k

K
(1)

where K is the average value of the equivalent stiffness,
k is the amplitude of the oscillation about K , and ω is
the meshing frequency. The harmonic term in Eq. (1)
is the most important source of internal excitation in
geared systems such that an increase or decrease in
the value of k0 directly affects the amplitude of the
vibration [6].

2.2 Static transmission error

Static transmission error, or meshing error, is an impor-
tant source of noise in gear systems, defined as the dif-
ference between the actual and the ideal positions of
the driven gear along the pressure line. This is mainly
due to geometrical manufacturing errors from perfect
involute form and teeth deformations during the oper-
ation [25]. Since the mean angular velocities of the
gears are constant, the static transmission error can be
approximated by a periodic function.

e(t) = E cos(ωt) (2)

where E is the comprehensive error amplitude and
the fundamental frequency ω is the meshing frequency
[10].

2.3 Backlash function

Backlash, looseness, or play is usually used to represent
the gear clearances, which is the gap between the gear
pair along the circumference. This can be due to man-
ufacturing error, wear of the tooth surface, or mount-
ing error. Theoretically, a gear pair with zero back-
lash is ideal, but in practice some backlash is necessary
in order to avoid the jamming phenomenon, reduction
of interference and to provide some space for ease of
assembly, better lubrication, elastic deflection under
the load, and thermal expansion. Typically, backlash
is achieved by reducing the tooth thickness in the man-
ufacturing process or by increasing the distance of the
center of the mountings. In different works, the back-
lash width is approximated either by a constant value,
time-varying function, normal distribution or fractal
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Fig. 1 Backlash function

expression [14]. Here, a constant value (b) is incor-
porated to model the gear tooth backlash width. In any
case, the gear backlash function is usually represented
by a non-smooth piecewise linear, non-differentiable
and symmetric function, which is the main source of
nonlinearity in the geared system, defined by the fol-
lowing equation.

f (x) =

⎧⎪⎨
⎪⎩

x − b +b < x

0 −b ≤ x ≤ +b

x + b x < −b

(3)

where x is the dynamic transmission error, 2b is the
total non-dimensional backlash width, and b is known
as half backlash. Figure 1 shows that if enough load
transmits through the geared system, the minimum
value of x remains greater than b and the system oper-
ates in permanent contact condition, where the effect of
backlash does not participate in the dynamic response
of the system [31].

3 Generalized model of spur gear pairs in mesh

In this section, the lumped parameter technique is used
to formulate the dynamic model of a single-stage spur
gear in mesh with linear suspension. As illustrated in
Fig. 2, the gears in mesh are modeled as a pair of rigid
disks with radiuses equal to the base circles connected
by a spring–damper set along the line of the action
and the transmission shafts and the supporting mounts
are modeled by a set of linear spring–dampers. It is

Fig. 2 Schematic of pinion and gear in mesh with linear suspen-
sion

Table 1 System parameters

Parameter Description

f (x) Backlash function

e(t) Static transmission error

2b Total backlash width

θp, θg Torsional displacements

xp, xg Vertical displacements

rp, rg Base circle radius

Ip, Ig Mass moment of inertia

K (t) Time-varying gear mesh stiffness

C Constant gear mesh damping coefficient

Cp,Cg Suspension damping coefficient

Tp(t), Tg(t) Driving torque and load torque

assumed that only one tooth pair is in mesh at a time
and all the parameters are represented in Table 1.
For this system, each disk has one rotational and one
translational degree of freedom. Newton’s Second Law
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is used to construct the torsional and translational dif-
ferential equation of motion for each disk [6,14].

Mpẍp + Cp ẋ p + Kpxp + C(ẋ p − ẋg + rp θ̇p − rg θ̇g − ė(t))

+ k(t) f (xp − xg + rpθp − rgθg − e(t)) = 0 (4)
Mgẍg + Cg ẋg + Kgxg − C(ẋ p − ẋg + rp θ̇p − rg θ̇g − ė(t))

− k(t) f (xp − xg + rpθp − rgθg − e(t)) = 0 (5)
Ip θ̈p + rpC(ẋ p − ẋg + rp θ̇p − rg θ̇g − ė(t))

+ rpk(t) f (xp − xg + rpθp − rgθg − e(t)) = +Tp(t) (6)
Ig θ̈g − rgC(ẋ p − ẋg + rp θ̇p − rg θ̇g − ė(t))

− rgk(t) f (xp − xg + rpθp − rgθg − e(t)) = −Tg(t) (7)

where subscripts p and g stand for pinion and gear,
respectively. The total difference between the rotation
angle of the gears in mesh can be expressed by the
following equation, which is defined as the difference
between the dynamic and static transmission errors.

x = xp − xg + rpθp − rgθg − e(t). (8)

For considering the fluctuation of the excitation torque
and the applied load, both can be decomposed into aver-
aging and fluctuating parts [10], so Eqs. (4)–(7) can be
written in the following form.

Mpẍp + Cpẋ p + Kpxp + Cẋ + k(t) f (x) = 0 (9)

Mgẍg + Cgẋg + Kgxg − Cẋ − k(t) f (x) = 0 (10)

Ip θ̈p + rpCx + rpk(t) f (x) = +T p + T̃p cos(ωpt)
(11)

Ig θ̈g − rgCx − rgk(t) f (x) = −T g − T̃g cos(ωgt)
(12)

where T p and T g are the average torques and T̃p and T̃g
are thefluctuating torques.By subtractingEq. (12) from
Eq. (11), the governing torsional equations of motion
reduce to one equation.

− ẍ p + ẍg + ẍ + C

M
ẋ

+ K

M

(
1 + k0 cos(ωt)

)
f (x) = K

M
F

+ K

M
Fp cos(ωpt) + K

M
Fg cos(ωgt) − ë(t)

(13)

where M is the equivalent mass representing the total
inertia of the gear pair, F is the average static force
transmitted through the gear pair and Fp and Fg are
the fluctuating forces applied on the pinion and gear,
expressed by the following equations.

M = Ip Ig
Ipr2g + Igr2p

, F = M

K

(
T prp
Ip

+ T grg
Ig

)

Fp = M

K

T̃prp
Ip

, Fg = M

K

T̃grg
Ig

(14)

Now, by defining the following standard parameters

ωn =
√

K

M
, ζ = C

2
√
KM

(15)

and using Eq. (2), one can write Eq. (13) in the follow-
ing standard form

− ẍ p + ẍg + ẍ + 2ζωn ẋ

+ ω2
n
(
1 + k0 sin(ωt)

)
f (x) = ω2

n F

+ ω2
n Fp cos(ωpt) + ω2

n Fg cos(ωgt) + ω2E cos(ωt)

(16)

By defining the following dimensionless parameters

t̂ = ωnt

u = x

b
, u p = xp

b
, ug = xg

b

� = ω

ωn
, �p = ωp

ωn
, �g = ωg

ωn
, (17)

Equations (9),(10) and (16) are written in the following
dimensionless form.

mp ˆ̈u p + 2ζp ˆ̇u p + 2ζ ˆ̇u + kpu p

+ (
1 + k0 cos(�t̂)

)
f (u) = 0 (18)

mg ˆ̈ug + 2ζg ˆ̇ug − 2ζ ˆ̇u
+ kgug − (

1 + k0 cos(�t̂)
)
f (u) = 0 (19)

− ˆ̈u p + ˆ̈ug + ˆ̈u
+ 2ζ ˆ̇u + (

1 + k0 cos(�t̂)
)
f (u)

= F + Fp cos(�pt̂) + Fg cos(�g t̂)

+ �2E cos(�t̂) (20)

where the ratio of the parameter corresponded to the
suspension system over the parameter corresponded to
the gear pairs in mesh are expressed as follow.

mp = Mp

M
, mg = Mg

M
,

kp = Kp

K
, kg = Kg

K

ζp = Cp

2
√
KM

, ζg = Cg

2
√
KM

(21)
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One can write Eqs. (18)–(20) in the following matrix
form.⎡
⎣

mp 0 0
0 mg 0

−1 1 1

⎤
⎦

⎡
⎣

ˆ̈u p
ˆ̈ug
ˆ̈u

⎤
⎦ + 2

⎡
⎣

ζp 0 ζ

0 ζg −ζ

0 0 ζ

⎤
⎦

⎡
⎣

ˆ̇u p
ˆ̇ug
ˆ̇u

⎤
⎦

+
⎡
⎣
kp 0 +(

1 + k0 cos(�t̂)
)

0 kg −(
1 + k0 cos(�t̂)

)
0 0 +(

1 + k0 cos(�t̂)
)

⎤
⎦

⎡
⎣

u p
ug
f (u)

⎤
⎦

=
⎡
⎣

0
0

F + Fp cos(�pt̂) + Fg cos(�g t̂) + �2E cos(�t̂)

⎤
⎦

(22)

with the following dimensionless backlash function

f (u) =

⎧⎪⎨
⎪⎩

u − 1 +1 < u

0 −1 ≤ u ≤ +1

u + 1 u < −1

(23)

Equation (22) is a damped conservative system and the
non-symmetric nature of this system is due to the choice
of the coordinates.

4 Analytical calculations

The purpose of this section is to use analytical methods
to obtain the parameter space that the parametric reso-
nance causes the instability of the system, increase in
the amplitude of the oscillation, and consequently the
separation of the teeth in mesh. By assuming that the
system is symmetric such that both driving and driven
shafts have the same parameters

m = mp = mg

k = kp = kg

ζ = ζp = ζg

(24)

and by imposing the permanent contact condition, Eq.
(22) reduces to a system of linear differential equations
with periodic time-varying coefficients.⎡
⎣

m 0 0
0 m 0

−1 1 1

⎤
⎦

⎡
⎣

ˆ̈u p
ˆ̈ug
ˆ̈u

⎤
⎦ + 2

⎡
⎣

ζ 0 ζ

0 ζ −ζ

0 0 ζ

⎤
⎦

⎡
⎣

ˆ̇u p
ˆ̇ug
ˆ̇u

⎤
⎦

+
⎡
⎣
k 0 +(

1 + k0 cos(�t̂)
)

0 k −(
1 + k0 cos(�t̂)

)
0 0 +(

1 + k0 cos(�t̂)
)

⎤
⎦

⎡
⎣
u p
ug
u

⎤
⎦

=
⎡
⎣

0
0

F + Fp cos(�pt̂) + Fg cos(�g t̂) + �2E cos(�t̂)

⎤
⎦

+
⎡
⎣

+(
1 + k0 cos(�t̂)

)
−(

1 + k0 cos(�t̂)
)

+(
1 + k0 cos(�t̂)

)

⎤
⎦ .

(25)

To study the stability of the corresponding undamped
homogenous system, the time-varying terms is per-
turbed as follows.

⎡
⎣

m 0 0
0 m 0

−1 1 1

⎤
⎦

⎡
⎣

ˆ̈u p
ˆ̈ug
ˆ̈u

⎤
⎦ +

⎡
⎣
k 0 +(

1 + ε cos(�t̂)
)

0 k −(
1 + ε cos(�t̂)

)
0 0 +(

1 + ε cos(�t̂)
)

⎤
⎦

⎡
⎣
u p
ug
u

⎤
⎦ = 0

(26)

where ε is a small parameter and the following trans-
formation of the variable is used to implement the
Poincare–Lindstedt method.

τ = �t̂, u′
p = du p

dτ
, u′

g = dug
dτ

, u′ = du

dτ
(27)

which results in the following system of equations.

�2

⎡
⎣

m 0 0
0 m 0

−1 1 1

⎤
⎦

⎡
⎣
u′′
p

u′′
g

u′′

⎤
⎦ +

⎡
⎣
k 0 +(

1 + ε cos τ
)

0 k −(
1 + ε cos τ

)
0 0 +(

1 + ε cos τ
)

⎤
⎦

⎡
⎣
u p

ug
u

⎤
⎦ = 0

(28)

where prime represents differentiation with respect to
the new variable τ . Now, by expanding the variables in
the following power series

u p = u0p + u1pε + u2pε
2 + u3pε

3 + · · · (29)

ug = u0g + u1gε + u2gε
2 + u3gε

3 + · · · (30)

u = u0 + u1ε + u2ε
2 + u3ε

3 + · · · (31)

� = �0 + �1ε + �2ε
2 + �3ε

3 + · · · (32)

substituting Eqs. (29)–(32) in Eq. (28), neglecting
terms of O(ε3), and collecting terms of the same power
the following system of equations is obtained.

�2
0

⎡
⎣
m 0 0
0 m 0

−1 1 1

⎤
⎦

⎡
⎢⎣
u′′
0p

u′′
0g
u′′
0

⎤
⎥⎦ +

⎡
⎣
k 0 1
0 k −1
0 0 1

⎤
⎦

⎡
⎣
u0p
u0g
u0

⎤
⎦ = 0 (33)

�2
0

⎡
⎣
m 0 0
0 m 0

−1 1 1

⎤
⎦

⎡
⎢⎣
u′′
1p

u′′
1g
u′′
1

⎤
⎥⎦ +

⎡
⎣
k 0 1
0 k −1
0 0 1

⎤
⎦

⎡
⎣
u1p
u1g
u1

⎤
⎦

= −2�0�1

⎡
⎣
m 0 0
0 m 0

−1 1 1

⎤
⎦

⎡
⎢⎣
u′′
0p

u′′
0g
u′′
0

⎤
⎥⎦ +

⎡
⎣

−1
1

−1

⎤
⎦ u0 cos τ (34)

�2
0

⎡
⎣

m 0 0
0 m 0

−1 1 1

⎤
⎦

⎡
⎢⎣
u′′
2p

u′′
2g
u′′
2

⎤
⎥⎦ +

⎡
⎣
k 0 1
0 k −1
0 0 1

⎤
⎦

⎡
⎣
u2p
u2g
u2

⎤
⎦ =
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−(�2
1 + 2�0�2)

⎡
⎣

m 0 0
0 m 0

−1 1 1

⎤
⎦

⎡
⎢⎣
u′′
0p

u′′
0g
u′′
0

⎤
⎥⎦

−2�0�1

⎡
⎣

m 0 0
0 m 0

−1 1 1

⎤
⎦

⎡
⎢⎣
u′′
1p

u′′
1g
u′′
1

⎤
⎥⎦ +

⎡
⎣

−1
1

−1

⎤
⎦ u1 cos(τ ). (35)

Equation (33) is a linear homogenous system of equa-
tions with the following solution.⎡
⎣
u0p
u0g
u0

⎤
⎦ =

⎡
⎣
A
B
C

⎤
⎦ eλτ . (36)

By substituting Eq. (36) in Eq. (33), the corresponding
eigenvalues and eigenvectors of the systemare obtained
as follows.

λ21 = k

m�2
0

i2, λ22 = 2k − a

2m�2
0

i2, λ23 = 2k − b

2m�2
0

i2

(37)⎡
⎣
1
1
0

⎤
⎦ ,

⎡
⎣

−2
+2
a

⎤
⎦ ,

⎡
⎣

−2
+2
b

⎤
⎦ (38)

where constants a and b are a function of the system
parameters;m and k, and i represent the imaginary unit,
satisfying i2 = −1.

a = −(m − k + 2) +
√

(m + k + 2)2 − 4km (39)

b = −(m − k + 2) −
√

(m + k + 2)2 − 4km. (40)

Such that the following relationships holds between a
and b.

ab = −8k. (41)

There is no gyroscopic or nonconservative forces par-
ticipating in Eq. (33) and the non-symmetric nature of
the system is due to the choice of coordinates. Accord-
ing to theSpectralTheorem, such a real, non-symmetric
system cannot be diagonalized, which results in more
complexity of the mathematical calculations. Even
though the eigenvectors of the system are linearly inde-
pendent, the second and third eigenvectors are not
orthogonal, which causes the lateral-tortional vibration
coupling of the system. As shown below, in the special
case of k = 1, the second and third eigenvectors are
orthogonal and there is no coupling; however, in this
work, the general form of Eq. (33) is solved for every
value of k.

v1v2 = 0, v1v3 = 0, v2v3 = 8(1 − k). (42)

Fig. 3 Regions that Eq. (43) is satisfied

For different values of k andm, the following condition
is required to have real values for a and b.

(m + k + 2)2 − 4km > 0. (43)

In Fig. 3, the regions that Eq. (43) is satisfied is in blue
highlights, and the regions where it is not satisfied is
in red highlights. Since only positive values are allo-
cated to k and m, then Eq. (43) is always satisfied and
Eqs. (39) and (40) are real. So, the three eigenvectors
represented by Eq. (38) are real for any value of k and
m.
And, since the following equations are positive for any
value of k and m.

2k − a = (m + k + 2) −
√

(m + k + 2)2 − 4km

2k − b = (m + k + 2) +
√

(m + k + 2)2 − 4km
(44)

the three eigenvalues expressed by Eq. (37) are always
complex. Therefore, for any value of the parameters,
Eq. (33) has three natural frequencies.

ω2
n1 = k

m�2
0

, ω2
n2 = 2k − a

2m�2
0

, ω2
n3 = 2k − b

2m�2
0

(45)

such that the following relationship holds between
them.

ω2
n2 ω2

n3 = k

m�4
0

(46)

ω2
n1 = �2

0 ω2
n2 ω2

n3 (47)
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By having the eigenvalues and eigenvectors of Eq. (33),
one can write the solution of this equation as follows.
⎡
⎣
u0p
u0g
u0

⎤
⎦ =

⎡
⎣
1
1
0

⎤
⎦ (

A1 cos(ωn1τ) + A2 sin(ωn1τ)
)

+
⎡
⎣

−2
+2
a

⎤
⎦ (

B1 cos(ωn2τ) + B2 sin(ωn2τ)
)

+
⎡
⎣

−2
+2
b

⎤
⎦ (

C1 cos(ωn3τ) + C2 sin(ωn3τ)
)
.

(48)

Substituting Eq. (48) in Eq. (34) results in the following
equation.

�2
0

⎡
⎣
m 0 0
0 m 0

−1 1 1

⎤
⎦

⎡
⎣
u′′
1p

u′′
1g
u′′
1

⎤
⎦ +

⎡
⎣
k 0 1
0 k −1
0 0 1

⎤
⎦

⎡
⎣
u1p
u1g
u1

⎤
⎦ =

+2�0�1

⎡
⎣
mω2

n1 −2mω2
n2 −2mω2

n3
mω2

n1 +2mω2
n2 +2mω2

n3
0 (a + 4)ω2

n2 (b + 4)ω2
n3

⎤
⎦

⎡
⎣
A1 cos(ωn1τ)

B1 cos(ωn2τ)

C1 cos(ωn3τ)

⎤
⎦ + 2�0�1

⎡
⎣
mω2

n1 −2mω2
n2 −2mω2

n3
mω2

n1 +2mω2
n2 +2mω2

n3
0 (a + 4)ω2

n2 (b + 4)ω2
n3

⎤
⎦

⎡
⎣
A2 sin(ωn1τ)

B2 sin(ωn2τ)

C2 sin(ωn3τ)

⎤
⎦

+
⎡
⎣

−1
1

−1

⎤
⎦ a

2

(
B1 cos(ωn2 − 1)τ + B2 sin(ωn2 − 1)τ

)
+

⎡
⎣

−1
1

−1

⎤
⎦ a

2

(
B1 cos(ωn2 + 1)τ + B2 sin(ωn2 + 1)τ

)

+
⎡
⎣

−1
1

−1

⎤
⎦ b

2

(
C1 cos(ωn3 − 1)τ + C2 sin(ωn3 − 1)τ

)
+

⎡
⎣

−1
1

−1

⎤
⎦ b

2

(
C1 cos(ωn3 + 1)τ + C2 sin(ωn3 + 1)τ

)
(49)

which contains harmonic functions with frequencies
equal to

ωn1, ωn2, ωn3, ωn2 ± 1, ωn3 ± 1. (50)

Generally, primary and combination resonance can
appear in a parametrically excited system with many
degrees of freedom [34]. In the next two sections, it is
explained how Eq. (49) can be used to determine the
corresponding unstable tongues.

4.1 First tongues

4.1.1 Primary parametric resonance due to the
second natural frequency

In general, all of the harmonic terms with frequencies
equal to the three natural frequencies in Eq. (49) are
secular terms and must be removed [24]. But in the
following special case of the second natural frequency,

more terms become secular [27].

ωn2 − 1 = −ωn2 → ωn2 = 1

2
. (51)

Imposing this condition on Eq. (45) results in the ema-
nating frequency of the first tongue related the second
natural frequency.

�2
0 = 2(2k − a)

m
. (52)

Inserting Eq. (52) into Eqs. (46) and (47) results in the
other two natural frequencies.

ω2
n1 = k

2(2k − a)
, ω2

n2 = 1

4
, ω2

n3 = km

(2k − a)2
. (53)

By substituting Eq. (53) in Eq. (49), the following
matrix form of the secular terms is obtained.

2�0�1

⎡
⎢⎢⎢⎢⎣

mω2
n1 −2mω2

n2 − a

4�0�1
−2mω2

n3

mω2
n1 2mω2

n2 + a

4�0�1
2mω2

n3

0 (a + 4)ω2
n2 − a

4�0�1
(b + 4)ω2

n3

⎤
⎥⎥⎥⎥⎦

⎡
⎣
A1 cos(ωn1τ)

B1 cos(ωn2τ)

C1 cos(ωn3τ)

⎤
⎦

+2�0�1

⎡
⎢⎢⎢⎢⎣

mω2
n1 −2mω2

n2 + a

4�0�1
−2mω2

n3

mω2
n1 2mω2

n2 − a

4�0�1
2mω2

n3

0 (a + 4)ω2
n2 + a

4�0�1
(b + 4)ω2

n3

⎤
⎥⎥⎥⎥⎦

⎡
⎣
A2 sin(ωn1τ)

B2 sin(ωn2τ)

C2 sin(ωn3τ)

⎤
⎦ = 0.

(54)

To remove these secular terms, the determinant of each
matrix in Eq. (54) must be equal to zero. These condi-
tions provide the two first-order multipliers of Eq. (32)
for the transition curves of thefirst tongue corresponded
to the second natural frequency.

�1 = ±a(b + 2m + 4)

2m�0(a − b)
. (55)

In Eq. (55), the positive and negative signs are related
to cosine and sine multipliers associated with the left
and right transition curves, respectively. At this point,
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substituting the solution of Eq. (49) in Eq. (35) and
removing the secular terms provide the two second-
order multipliers of Eq. (55) for the transition curves
of the first tongue corresponded to the second natural
frequency. Zero-determinant conditions for multipliers
of both cosine and sine terms results in the following
value for both the left and right transition curves.

�2 = �0

16m(a − b)ω2
n1

(
b(a + 2m + 4)(β3 + β4)ω

2
n2

− a(b + 2m + 4)(β2)ω
2
n3

)
− �2

1
2�0

.

(56)

The value of βi will be defined later in Eq. (77).

4.1.2 Primary parametric resonance due to the third
natural frequency

Alternatively, in the following special case of the third
natural frequency, other terms in Eq. (49) become sec-
ular

ωn3 − 1 = −ωn3 → ωn3 = 1

2
. (57)

Imposing this conditiononEq. (45) gives the emanating
frequency of the first tongue related to the third natural
frequency.

�2
0 = 2(2k − b)

m
. (58)

Inserting Eq. (58) into Eqs. (46) and (47) provides the
other two natural frequencies.

ω2
n1 = k

2(2k − b)
, ω2

n2 = km

(2k − b)2
, ω2

n3 = 1

4
.

(59)

By substituting these three natural frequencies in Eq.
(49), the following matrix form of the secular terms is
obtained.

2�0�1

⎡
⎢⎢⎢⎢⎢⎣

mω2
n1 −2mω2

n2 −2mω2
n3 − b

4�0�1

mω2
n1 2mω2

n2 2mω2
n3 + b

4�0�1

0 (a + 4)ω2
n2 (b + 4)ω2

n3 − b

4�0�1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
A1 cos(ωn1τ)

B1 cos(ωn2τ)

C1 cos(ωn3τ)

⎤
⎥⎥⎦

+2�0�1

⎡
⎢⎢⎢⎢⎢⎣

mω2
n1 −2mω2

n2 −2mω2
n3 + b

4�0�1

mω2
n1 2mω2

n2 2mω2
n3 − b

4�0�1

0 (a + 4)ω2
n2 2(b + 4)ω2

n3 + b

4�0�1

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎣
A2 sin(ωn1τ)

B2 sin(ωn2τ)

C2 sin(ωn3τ)

⎤
⎥⎥⎦ = 0.

(60)

Similarly, the zero-determinant condition results in two
first-order multipliers of Eq. (32) for the transition

curves of the first tongue corresponding to the third
natural frequency.

�1 = ±b(a + 2m + 4)

2m�0(b − a)
. (61)

In Eq. (68), the negative and positive signs are obtained
from the zero-determinant condition of the cosine and
sine terms, which are associated with the left and right
transition curves, respectively. At this point, substitut-
ing the solution of Eq. (49) in Eq. (35) and removing
the secular terms provide the two second-order multi-
pliers of Eq. (32) for the transition curves of the first
tongue corresponding to the third natural frequency.
Zero-determinant conditions for multipliers of both
cosine and sine terms results in the same value for the
left and right transition curves.

�2 = �0

16m(a − b)ω2
n1

(
b(a + 2m + 4)(β4)ω

2
n2

− a(b + 2m + 4)(β1 + β2)ω
2
n3

)
− �2

1

2�0
.

(62)

The value of βi will be defined later in Eq. (77).

4.1.3 Combined parametric resonance of summation
type

For the following special case of the second and third
natural frequency, more terms in Eq. (49) become sec-
ular.

ωn2 − 1 = −ωn3 → ωn2 + ωn3 = 1

ωn3 − 1 = −ωn2 → ωn2 + ωn3 = 1.
(63)

Imposing this conditiononEq. (45) gives the emanating
frequency of the first tongue related to the combined
parametric resonance.

�2
0 = m + k + 2

m
+ 2

√
k

m
. (64)

Figure 4 shows the values of the natural frequencies
for different normalized stiffness ratios resulting from
substituting Eq. (64) in Eq. (45).
which shows that for the emanating frequency provided
by Eq. (64), the summation of the second and third
natural frequencies is always equal to one. Imposing
Eqs. (63)–(49) results in the following matrix form of
the secular terms.
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Fig. 4 Natural frequencies at combined parametric resonance
frequency, for m = 1

2�0�1

⎡
⎢⎣
mω2

n1A1 −2mω2
n2B1 − b

4�0�1
C1 −2mω2

n3C1 − a
4�0�1

B1

mω2
n1A1 +2mω2

n2B1 + b
4�0�1

C1 +2mω2
n3C1 + a

4�0�1
B1

0 (a + 4)ω2
n2B1 − b

4�0�1
C1 (b + 4)ω2

n3C1 − a
4�0�1

B1

⎤
⎥⎦

⎡
⎣
cos(ωn1τ)

cos(ωn2τ)

cos(ωn3τ)

⎤
⎦

+ 2�0�1

⎡
⎢⎣
mω2

n1A2 −2mω2
n2B2 + b

4�0�1
C2 −2mω2

n3C2 + a
4�0�1

B2

mω2
n1A2 +2mω2

n2B2 − b
4�0�1

C2 +2mω2
n3C2 − a

4�0�1
B2

0 (a + 4)ω2
n2B2 + b

4�0�1
C2 (b + 4)ω2

n3C2 + a
4�0�1

B2

⎤
⎥⎦

⎡
⎣
sin(ωn1τ)

sin(ωn2τ)

sin(ωn3τ)

⎤
⎦ = 0.

(65)

Imposing the zero-determinant condition tomultipliers
of the cosine and sine terms in Eqs, (65) results in the
following equations.

+b(a + 2m + 4)ω2
2B

2
2 + 8m�0�1(b − a)ω2

2ω
2
3B2C2 − a(b + 2m + 4)ω2

3C
2
2 = 0 (66)

−b(a + 2m + 4)ω2
2B

2
1 + 8m�0�1(b − a)ω2

2ω
2
3B1C1 + a(b + 2m + 4)ω2

3C
2
1 = 0. (67)

Each one of Eqs. (66) and (67) form a degenerate conic
with the standard form of Ax21 + Bx1x2 + Cx22 = 0.
Imposing the condition of AB + 2AC + BC = 0 on
these equations provides the two first-order multipliers
of Eq. (32) for the transition curves of the unstable
tongue. The negative and positive signs are related to
sine and cosine multipliers associated with the left and
right transition curves, respectively.

�1 = ± 4k�0

(a − b)2
. (68)

At this point, substituting the solution of Eq. (49) in Eq.
(35) and removing the secular terms provides the two
second-order multipliers of Eq. (32) for the transition

curves of the first tongue of combined parametric res-
onance. Zero-determinant condition for the multipliers
of both cosine and sine terms results in the same value
for the left and right transition curves.

�2 = �0

16m(a − b)ω2
n1

(
b(a + 2m + 4)(β4)ω

2
n2

− a(b + 2m + 4)(β2)ω
2
n3

)
− �2

1

2�0
.

(69)

The value of βi will be defined later in Eq. (77).

4.2 Second tongues

To find the second tongues associated with the second
and third natural frequencies and combined resonance,
the general form of Eq. (49) must be solved, where the
following conditions hold.

ωn2 �= 1

2
, ωn3 �= 1

2
, ωn2 + ωn3 �= 1. (70)

Under this condition, for every value of k and m the
determinant of the secular terms is nonzero, and the
only way to remove them is the following condition.

�1 = 0. (71)

This means that for all of the higher-order tongues, the
first-order multiplier of the transition curve expressed
by Eq. (32) is zero. Imposing Eq. (71) upon Eq. (49)
results in the following non-homogeneous linear sys-
tem of equations.
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�2
0

⎡
⎣

m 0 0
0 m 0

−1 1 1

⎤
⎦

⎡
⎣
u′′
1p

u′′
1g
u′′
1

⎤
⎦ +

⎡
⎣
k 0 1
0 k −1
0 0 1

⎤
⎦

⎡
⎣
u1p
u1g
u1

⎤
⎦ =

+
⎡
⎣

−1
1

−1

⎤
⎦ a

2

(
B1 cos(ωn2 − 1)τ + B2 sin(ωn2 − 1)τ

)

+
⎡
⎣

−1
1

−1

⎤
⎦ a

2

(
B1 cos(ωn2 + 1)τ + B2 sin(ωn2 + 1)τ

)

+
⎡
⎣

−1
1

−1

⎤
⎦ b

2

(
C1 cos(ωn3 − 1)τ + C2 sin(ωn3 − 1)τ

)

+
⎡
⎣

−1
1

−1

⎤
⎦ b

2

(
C1 cos(ωn3 + 1)τ + C2 sin(ωn3 + 1)τ

)
.

(72)

The homogenous and particular solutions of Eq. (72)
are in the following form.

⎡
⎣
u1p
u1g
u1

⎤
⎦

H

=
⎡
⎣
E
F
G

⎤
⎦ eλτ (73)

⎡
⎣
u1p
u1g
u1

⎤
⎦

P

=
⎡
⎣

Up

Ug

U

⎤
⎦ eDiτ (74)

Such that i represents the imaginary unit, satisfying the
equation i2 = −1. Therefore, the general solution of
Eq. (72) is obtained as follows.

⎡
⎣
u1p
u1g
u1

⎤
⎦ =

⎡
⎣
1
1
0

⎤
⎦

(
E1 cos(ωn1τ) + E2 sin(ωn1τ)

)

+
⎡
⎣

−2
2
a

⎤
⎦(

F1 cos(ωn2τ) + F2 sin(ωn2τ)
)

+
⎡
⎣

−2
2
b

⎤
⎦

(
G1 cos(ωn3τ) + G2 sin(ωn3τ)

)

+
⎡
⎣

α1

−α1

β1

⎤
⎦ a

2

(
B1 cos(ωn2 − 1)τ + B2 sin(ωn2 − 1)τ

)

+
⎡
⎣

α2

−α2

β2

⎤
⎦ a

2

(
B1 cos(ωn2 + 1)τ + B2 sin(ωn2 + 1)τ

)

+
⎡
⎣

α3

−α3

β3

⎤
⎦ b

2

(
C1 cos(ωn3 − 1)τ + C2 sin(ωn3 − 1)τ

)

+
⎡
⎣

α4

−α4

β4

⎤
⎦ b

2

(
C1 cos(ωn3 + 1)τ + C2 sin(ωn3 + 1)τ

)

(75)

where

α j = �2
0D

2
j

(k − m�2
0D

2
j )(1 − �2

0D
2
j ) − 2�2

0D
2
j

(76)

β j = (m + 2)�2
0D

2
j − k

(k − m�2
0D

2
j )(1 − �2

0D
2
j ) − 2�2

0D
2
j

j = 1, 2, 3, 4 (77)

and

D1 = (ωn2 − 1), D2 = (ωn2 + 1)

D3 = (ωn3 − 1), D4 = (ωn3 + 1).
(78)

Substituting Eqs. (48) and (75) in Eq. (35) results in
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�2
0

⎡
⎣
m 0 0
0 m 0

−1 1 1

⎤
⎦

⎡
⎣
u′′
2p

u′′
2g
u′′
2

⎤
⎦ +

⎡
⎣
k 0 1
0 k −1
0 0 1

⎤
⎦

⎡
⎣
u2p
u2g
u2

⎤
⎦ =

+
⎡
⎣
2m�0�2ω

2
n1 −4m�0�2ω

2
n2 − a

4 (β1 + β2) −4m�0�2ω
2
n3 − b

4 (β3 + β4)

2m�0�2ω
2
n1 +4m�0�2ω

2
n2 + a

4 (β1 + β2) +4m�0�2ω
2
n3 + b

4 (β3 + β4)

0 2�0�2(a + 4)ω2
n2 − a

4 (β1 + β2) 2�0�2(b + 4)ω3
n2 − b

4 (β3 + β4)

⎤
⎦

⎡
⎣
A1 cos(ωn1τ)

B1 cos(ωn2τ)

C1 cos(ωn3τ)

⎤
⎦

+
⎡
⎣
2m�0�2ω

2
n1 −4m�0�2ω

2
n2 − a

4 (β1 + β2) −4m�0�2ω
2
n3 − b

4 (β3 + β4)

2m�0�2ω
2
n1 +4m�0�2ω

2
n2 + a

4 (β1 + β2) +4m�0�2ω
2
n3 + b

4 (β3 + β4)

0 2�0�2(a + 4)ω2
n2 − a

4 (β1 + β2) 2�0�2(b + 4)ω3
n2 − b

4 (β3 + β4)

⎤
⎦

⎡
⎣
A2 sin(ωn1τ)

B2 sin(ωn2τ)

C2 sin(ωn3τ)

⎤
⎦

+
⎡
⎣

−1
1

−1

⎤
⎦ a

2

(
F1 cos(ωn2 − 1)τ + F2 sin(ωn2 − 1)τ

)
+

⎡
⎣

−1
1

−1

⎤
⎦ a

2

(
F1 cos(ωn2 + 1)τ + F2 sin(ωn2 + 1)τ

)

+
⎡
⎣

−1
1

−1

⎤
⎦ b

2

(
G1 cos(ωn3 − 1)τ + G2 sin(ωn3 − 1)τ

)
+

⎡
⎣

−1
1

−1

⎤
⎦ b

2

(
G1 cos(ωn3 + 2)τ + G2 sin(ωn3 + 2)τ

)

+
⎡
⎣

−1
1

−1

⎤
⎦ a

4
β1

(
B1 cos(ωn2 − 2)τ + B2 sin(ωn2 − 2)τ

)
+

⎡
⎣

−1
1

−1

⎤
⎦ a

4
β2

(
B1 cos(ωn2 + 2)τ + B2 sin(ωn2 + 2)τ

)

+
⎡
⎣

−1
1

−1

⎤
⎦ b

4
β3

(
C1 cos(ωn3 − 2)τ + C2 sin(ωn3 − 2)τ

)
+

⎡
⎣

−1
1

−1

⎤
⎦ b

4
β4

(
C1 cos(ωn3 + 2)τ + C2 sin(ωn3 + 2)τ

)

(79)

which contains harmonic functions with frequencies
equal to

ωn1, ωn2, ωn3, ωn2 ± 1, ωn3 ± 1, ωn2 ± 2, ωn3 ± 2.

(80)

4.2.1 Primary parametric resonance due to the
second natural frequency

As before, the harmonic terms with frequencies equal
to the first three terms in Eq. (79) are secular and must
be removed.But in the following special case of the sec-
ond natural frequency, more terms in Eq. (79) become
secular.

ωn2 − 2 = −ωn2 → ωn2 = 1. (81)

Imposing this condition upon Eq. (45) provides the
emanating frequency of the second tongue correspond-
ing to the second natural frequency.

�2
0 = 2k − a

2m
. (82)

By inserting Eq. (82) in Eqs. (46) and (47), the other
two natural frequencies are obtained.

ω2
n1 = 2k

2k − a
, ω2

n2 = 1, ω2
n3 = 4km

(2k − a)2
. (83)

By substituting these three natural frequencies in Eq.
(79), collecting the secular terms, and imposing the
zero-determinant condition, one can find the second-
order multipliers of the left and right transition curves
for the second tongue corresponding to the second nat-
ural frequency.

�2 = �0

16m(b − a)ω2
n1

(
a(2m + b + 4)(2β1 + β2)ω

2
n3

− b(2m + a + 4)(β3 + β4)ω
2
n2

)
(84)

�2 = �0

16m(b − a)ω2
n1

(
a(2m + b + 4)(β2)ω

2
n3

− b(2m + a + 4)(β3 + β4)ω
2
n2

)
. (85)

4.2.2 Primary parametric resonance due to the third
natural frequency

Alternatively, for the following special case of the third
natural frequency, more terms in Eq. (79) become sec-
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ular.

ωn3 − 2 = −ωn3 → ωn3 = 1. (86)

Imposing this condition upon Eq. (45) provides the
emanating frequency of the second tongue correspond-
ing to the third natural frequency.

�2
0 = 2k − b

2m
(87)

By inserting Eq. (87) in Eqs. (46) and (47), the other
two natural frequencies are obtained.

ω2
n1 = 2k

2k − b
, ω2

n2 = 4km

(2k − b)2
, ω2

n3 = 1. (88)

By substituting these three natural frequencies in Eq.
(79), collecting the secular terms, and imposing the
zero-determinant condition to the multipliers of the
cosine and sine terms, the second-order multiplier of
the transition curves for the second tongue correspond-
ing to the third natural frequency are obtained.

�2 = �0

16m(b − a)ω2
n1

(
a(2m + b + 4)(β1 + β2)ω

2
n3

− b(2m + a + 4)(2β3 + β4)ω
2
n2

)
(89)

�2 = �0

16m(b − a)ω2
n1

(
a(2m + b + 4)(β1 + β2)ω

2
n3

− b(2m + a + 4)(β4)ω
2
n2

)
. (90)

4.2.3 Combined parametric resonance of summation
type

For the following special case of the second and third
natural frequency, more terms in Eq. (79) become sec-
ular.

ωn2 − 2 = −ωn3 → ωn2 + ωn3 = 2

ωn3 − 2 = −ωn2 → ωn2 + ωn3 = 2.
(91)

Imposing this condition upon Eq. (45) results in the
emanating frequency of the second tongue relating to

the combined parametric resonance.

�2
0 = 1

4

(m + k + 2

m
+ 2

√
k

m

)
. (92)

As before, substituting these three natural frequencies
in Eq. (79), collecting the secular terms, and imposing
the zero-determinant condition, result in two degener-
ate conics. Imposing the condition of AB + 2AC +
BC = 0 to these equations provides the second-order
multiplier of the transition curves for the second tongue
corresponding to the combined parametric resonance.

�2 = �0

8m(b − a)ω2
n1

(
± 2ab(2m + a + 4)(2m + b + 4)ω2

n2ω
2
n3β1β3

b(2m + b + 4)ω2
n3β3 − a(2m + a + 4)ω2

n2β1

+ a(2m + b + 4)(β1 + β2)ω
2
n3 − b(2m + a + 4)(β3 + β4)ω

2
n2

)
.

(93)

4.3 General formulas

In general, the emanating frequencies and the corre-
sponding natural frequencies related to the second nat-
ural frequency can be obtained by the following general
equations.

ωn2 − n = −ωn2 → ωn2 = n

2

�2
0 = 2(2k − a)

n2m

ω2
n1 = n2k

2(2k − a)
, ω2

n2 = n2

4
, ω2

n3 = n2km

(2k − a)2

n = 1, 2, 3, . . . (94)

Similarly, the general form of the emanating frequen-
cies and the corresponding natural frequencies related
to the third natural frequency can be obtained by the
following equations.

ωn3 − n = −ωn3 → ωn3 = n

2

�2
0 = 2(2k − b)

n2m

ω2
n1 = n2k

2(2k − b)
, ω2

n2 = n2km

(2k − b)2
, ω2

n3 = n2

4
n = 1, 2, 3, . . . (95)

Finally, the general form of the emanating frequencies
for the combined parametric resonance can be obtained
by the following equations.
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Fig. 5 Unstable tongues corresponded to the second, third and combined natural frequencies

ωn2 − n = −ωn3 → ωn2 + ωn3 = n

ωn3 − n = −ωn2 → ωn2 + ωn3 = n

�2
0 = 1

n2

(m + k + 2

m
+ 2

√
k

m

)

n = 1, 2, 3, . . . (96)

Figure 5 demonstrates that all the unstable tongues
in the parametric frequency space. The red and orange
tongues correspond to the second and third natural fre-
quencies, respectively, and the green tongues corre-
spond to the combined parametric resonance. The ana-
lytical calculations in this section clearly show that the
first natural frequency does not cause any parametric
resonance.

5 Floquet theory

In this section, it is shown howFloquet theory is used to
verify the analytical results. To this end, the governing
undamped homogenous differential equations of the
three DOF model is written in the state-space form as
a system of first-order ordinary differential equations.

ẋ = A(t)x . (97)

The corresponding fundamental matrix of Eq. (97) is
defined by the fundamental system of solutions where

each column of this matrix is a linearly independent
solution for Eq. (97).

X (t) =

⎡
⎢⎢⎢⎣

x11(t) x21(t) . . . xn1(t)
x12(t) x22(t) . . . xn2(t)

...
...

. . .
...

x1n(t) x2n(t) . . . xnn(t)

⎤
⎥⎥⎥⎦ . (98)

Additionally, Eq. (97) is a system of linear differential
equations with a time periodic coefficient matrix, and
T is the minimal period of the coefficient matrix as it
is the smallest constant positive number satisfying the
following condition.

A(t + T ) = A(t). (99)

The main idea of Floquet theory is that for a linear time
periodic system, there is a transitionmatrixC thatmaps
the state of the system from a particular time to the state
of the system after one period.

X (t + T ) = X (t)C. (100)

Such that C is a nonsingular constant matrix known as
theMonodromymatrix, and according to the reducibil-
ity of the linear periodic systems, it contains complete
information about the system. For a 6 × 6 system, the
Monodromy matrix can be constructed by integrating
the equations of motion for six linearly independent
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Fig. 6 Floquet multipliers
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Fig. 7 Root locus of unstable cases corresponded to the second
natural frequency

initial conditions. By choosing the identity matrix as
the set of linear-independent initial conditions at time
t = 0

X (0) = In . (101)

Equation (100) simplifies to the following solution
space.

C = X (T ). (102)

Consequently, numerical methods can be used to inte-
grate Eq. (97) with initial conditions expressed by Eq.
(101) for one period of oscillation. Therefore, the fol-
lowingMonodromymatrix is constructed out of the six
solution vectors.

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

x11(T ) x21(T ) x31(T ) x41(T ) x51(T ) x61(T )

x12(T ) x22(T ) x32(T ) x42(T ) x52(T ) x62(T )

x13(T ) x23(T ) x33(T ) x43(T ) x53(T ) x63(T )

x14(T ) x24(T ) x34(T ) x44(T ) x54(T ) x64(T )

x15(T ) x25(T ) x35(T ) x45(T ) x55(T ) x65(T )

x16(T ) x26(T ) x36(T ) x46(T ) x56(T ) x66(T )

⎤
⎥⎥⎥⎥⎥⎥⎦

.

(103)

According to Floquet Theory, Eq. (97) is stable if all
the eigenvalues of the Monodromy matrix, known as
Floquet Multipliers, lie on the unit circle [13]. The
Monodromymatrix for this system has six eigenvalues,

Fig. 8 Root locus of unstable cases corresponded to the third
natural frequency

Fig. 9 Root locus of unstable cases corresponded to the com-
bined resonance
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Fig. 10 Stability chart of three DOF model for k = 0.5

Fig. 11 Stability chart of three DOF model for k = 1

Fig. 12 Stability chart of three DOF model for k = 5

Fig. 13 Stability chart of three DOF model for k = 10

Fig. 14 Stability chart of three DOF model for k = 15

Fig. 15 Stability chart of three DOF model for k = 20
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which are demonstrated in Figs. 6, 7, 8 and 9. Figure 6
represents the real, imaginary, and absolute values of
all the eigenvalues for different values of the paramet-
ric frequency, and Figs. 7, 8 and 9 represent the root
locus of the eigenvalues on the unit circle only for the
unstable cases.

Figure 6 shows that two of the eigenvalues are
always on the unit circle and do not cause instabil-
ity. These two eigenvalues correspond to the first nat-
ural frequency of the system. This is while, for some
parameters, the other four eigenvalues leave the unit
circle. Figures 7 and 8 show that there are cases that
only two of these eigenvalues are real and one of them
falls outside of the unit circle. These cases of instability
correspond to the second and third natural frequencies.
Figure 9 shows that there are cases that none of the
eigenvalues are real and two of them fall outside the
unit circle. These cases of instability correspond to the
combined parametric frequency.

6 Simulation

In this section, the fourth–fifth-order Runge–Kutta
numerical integration algorithm is used to examine the
accuracy of the analytical results.

6.1 Stability chart

Figures 10, 11, 12, 13, 14 and 15 show the first two
unstable tongues corresponding to the second and third
natural frequencies and combined parametric reso-
nance,where the stiffness of the suspension is increased
gradually. In these plots the colored area is obtained
using Floquet theory, such that the red areas correspond
to the second natural frequency, the orange areas cor-
respond to the third natural frequency, and the green
regions correspond to parametric combination reso-
nances. The black solid lines are plotted by using the
analytical formula obtained by the Poincare–Lindstedt
method.

Figures 10, 11, 12, 13, 14 and 15 demonstrate agree-
ment between the analytical and numerical calcula-
tions. By increasing the value of the stiffness of the
suspension, all the unstable tongues shift toward higher
frequencies. This is while, the width of the tongues cor-
responding to the second natural frequency increase,
the width of the tongues corresponding to the third nat-

Fig. 16 Emanating frequency of the first tongues

Fig. 17 Slope of the first tongues

ural frequency decrease, and the width of the tongues
corresponding to the combined parametric frequency
increase first and then start decreasing. To have a bet-
ter sense about the location and width of the unsta-
ble tongues, Eqs. (52), (58), (68) are used to plot the
value of the emanating frequencies of the first tongues
in Fig. 16. Eqs. (55) and (68) are used to plot the
slope of the second and third natural frequencies in
Fig. 17.

Figures 16 and 17 show that by choosing relatively
high values for the stiffness of the suspension, the ema-
nating frequency and the slope of the first unstable
tongue related to the second natural frequency both
merge to constant values. At the same time the ema-
nating frequency and the slope of the first unstable
tongue related to the third natural frequency and com-

123



Parametric stability of geared systems 3069

Fig. 18 Time response for
ζ = 0.05, k = 20, k0 =
0.3, F = 1, � = 1.5

Fig. 19 Time response for
ζ = 0.05, k = 20, k0 =
0.3, F = 2, � = 1.5
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Fig. 20 Time response for
ζ = 0.05, k = 20, k0 =
0.3, F = 3, � = 1.5

Fig. 21 Time response for
ζ = 0.05, k = 20, k0 =
0.3, F = 3, � = 1.9
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bined parametric frequency merge to infinity and zero,
respectively. This means that for high values of the sus-
pension stiffness, when the mountings are assumed to
be rigid, the unstable tongues corresponding to the third
natural frequency and combined parametric resonance
vanish.

6.2 Time response

Figures 18, 19, 20 and 21 demonstrate the effect of
changing the average transmitting force on the time
response of the system. Figure 18 shows that for low
values of the transmitting force, the system enters the
dead zone area, so the permanent contact condition is
violated, and the linear model is not valid. Under this
condition, the effect of the backlash and impact phase
must be considered. Figure 19 shows that for the larger
values of the transmitting force, the time response of the
system shifts up and remains outside of the dead zone
area. In these conditions, the stability of the system
can be determined by the stability chart demonstrated
in Fig. 15. Figure 20 shows that by applying a larger
transmitting force, the response of the system moves
further from the dead zone area and the system is more
resistant to external disturbances. Figure 21 shows that,
even with large values of the transmitting force, if the
system parameters are not designed properly the para-
metric resonance causes an increase in the amplitude
of the vibration, entering into the dead zone area, and
violation of the permanent contact regime.

7 Conclusion

It is well known that for a gear set with a rigidmounting
assumption there is only one set of unstable tongues,
and many researchers have investigated the dynamic
behavior of this type of system around the unstable
tongues. This is while, no studies have examined the
effect of deformation of the mountings on the para-
metric stability of gears. Therefore, the purpose of this
work is to investigate the effect of suspension on the
number and location of parametric unstable tongues.
The Poincare–Lindstedt method and Floquet theory are
used to find the parameter space where the primary and
combined parametric resonances occur.
The results of the analytical calculations show that a
gear set with suspension has three natural frequencies,
but only two of them participate in parametric reso-
nance. There are two sets of unstable tongues associ-

ated with the second and third natural frequencies, and
one set of unstable tongues associated with their sum-
mation. Alternatively, the numerical analysis shows
that a gear set with linear suspension has a total of six
Floquet multipliers. Two of these multipliers remain
inside the unit circle for every value of the parametric
frequency and do not cause instability. These two mul-
tipliers are associated with the first natural frequency
obtained by analytical calculation. According to the
numerical results, the instability of the system is related
to the four other Floquet multipliers, which are asso-
ciated with the second and third natural frequencies
obtained by the analytical calculation. There are fre-
quencies that two of these multipliers are real and one
of them falls outside the unit circle, which corresponds
to the primary parametric resonances. For some other
frequencies, all four multipliers are complex when two
of them fall outside of the unit circle, which corre-
sponds to the parametric combination resonance of the
summation type.
The results show that, unlike a gear set with rigid
mounting that has only one set of unstable tongues,
a gear set with suspension has three sets of unsta-
ble tongues. Of significance is that the location and
width of all the unstable tongues depend on the stiff-
ness of the suspension, and by increasing the values of
the stiffness, these changes are observed: The primary
resonance tongues corresponding to the second natu-
ral frequency expand and converge to the parameters
associated with the unstable tongues of a gear set with
rigid mountings. The primary resonance tongues cor-
responding to the third natural frequency become nar-
rower and shift toward higher frequencies. The tongues
corresponding to the combined parametric resonance
first expand and then begin to narrow as they shift
toward higher frequencies.
Finally, the results presented here demonstrate that the
rigidmounting assumption is accurate only for gear sets
under low-speed operational conditions; in these cases,
both models with rigid mountings and suspension pre-
dict the same set of unstable tongues. This is while for
gears operating at higher speeds, the deformation of
the mounting must be included in the dynamic mod-
eling because it causes two sets of additional unstable
tongues within this region.
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