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Abstract For the fractional-order Hammerstein

nonlinear ARMAX system with colored noise, there

are many identification parameters and coupling

variables, difficulty in estimating the fractional order,

slow convergence of the identification algorithm and

low accuracy, and this paper proposes a new multi-

innovation principle based on the principle of multi-

innovation information identification method. First,

construct a fractional-order Hammerstein nonlinear

ARMAX discrete system model with colored noise;

secondly, a multi-innovative Levenberg–Marquardt

algorithm with an innovation vector composed of

fractional-order variables as the model input is

designed, and the auxiliary model method is combined

to solve the unknown noise variables to estimate the

system parameters and fractional order. Finally, a

fractional-order Hammerstein nonlinear ARMAX

system with colored noise and a flexible manipulator

system are taken as examples to prove the effective-

ness of the proposed algorithm.

Keywords Fractional-order Hammerstein nonlinear

ARMAX � Colored noise � Multiple innovation

principle � Levenberg–Marquardt � Auxiliary model

1 Introduction

Fractional calculus is widely used in research fields

such as electrochemical systems, fluid mechanics and

viscoelastic materials [1–3]. The chemical properties

of many physical materials show strong fractional-

order dynamic behavior. A large number of references

show that the use of fractional-order system model

modeling and identification can better express this

dynamic behavior than integer-order systems. Frac-

tional calculus, as a tool that can accurately reflect the

operating state of the system, is currently focused on

the research of fractional-order modeling and identi-

fication and fractional-order control methods.

The application of fractional calculus in the field of

control is relatively mature compared to the field of

modeling and identification, and some researchers

have achieved fruitful results. Many researchers have

combined fractional calculus and control algorithms to

produce many new control algorithms, such as frac-

tional-order nonlinear time-delay multi-agent control
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[4]; fractional state feedback control [5, 6]; fractional

output feedback control [7]; adaptive internal model

control with fractional parameters [8]; and fractional

fuzzy control [9, 10] control algorithms. The modeling

and identification of the system are the prerequisite

that the system can be accurately controlled. There-

fore, it is particularly important to use fractional

calculus to model and identify the dynamic behavior

of the system.

The difficulty of modeling and identification of

fractional-order systems compared with integer-order

systems is that it not only needs to identify the

structural parameters of the system but also the

fractional order of the system, so that the difficulty

of system identification is greatly increased. Accord-

ing to the identification model, the system fractional-

order model can be divided into fractional-order

transfer function model and state-space model. For

these two different models, researchers have carried

out a lot of research and achieved rich results. In the

identification of fractional-order state-space model,

Jonscher et al. [11] established a fractional-order state-

space model of inductance and capacitance; Tan

Cheng et al. [12] used Lyapunov stability theory to

design a fractional-order nonlinear controller and

successfully controlled the pseudo-continuous Boost

circuit in mode; Karima Hammar et al. [13] used the

Levenberg–Marquardt algorithm to identify the state-

space model of the fractional-order Hammerstein

system.

In the identification of the fractional-order transfer

function model, Victor et al. [14] used a fractional

filter to propose a time domain identification method

based on equation error and output error; Fahim et al.

[15] extended the auxiliary variable method to the

fractional-order system and improved it; Shalaby et al.

[16] proposed an identification method for fractional-

order continuous systems based on orthogonal basis

functions and block impulse functions; Karima Ham-

mar et al. [17] used Levenberg–Marquardt algorithm

to study Hammerstein-Wiener nonlinear fractional-

order system identification problem and successfully

identified the system structure parameters and system

fractional order. In the identification of fractional-

order Hammerstein nonlinear ARMAX system with

colored noise, some scholars have also made a series

of research. Cheng Songsong et al. [18] proposed a

multi-innovation fractional stochastic gradient algo-

rithm to identify Hammerstein nonlinear ARMAX

system. Jin Qibing et al. [19] proposed adaptive

differential evolution with the local search strategy

(ADELS) algorithm with the steepest descent method

and the overparameterization-based auxiliary model

recursive least squares (OAMRLS) algorithm to deal

with the identification of the fractional-order Ham-

merstein model. There are some problems in the

identification methods of systems with colored noise,

such as slow convergence speed and low accuracy.

Therefore, based on the Levenberg–Marquardt (L–M)

algorithm, combined with the multi-innovation iden-

tification algorithm, this paper proposes the multi-

innovation Levenberg–Marquardt (MILM) algorithm

to identify the fractional-order Hammerstein nonlinear

ARMAX system that contains colored noise. At the

same time, the auxiliary model is used to deal with the

unknown noise variables. It can identify the structural

parameters and fractional order of the system with

colored noise, and it can also improve the convergence

speed and accuracy of the algorithm.

The contributions of this paper are as follows:

(1) Solved the problem of high identification diffi-

culty for the fractional-order Hammerstein

nonlinear ARMAX system with colored noise;

(2) Combine the multiple innovation algorithm

with the L-M identification algorithm to

improve the convergence speed and accuracy

of the algorithm;

(3) Using auxiliary model method to solve the

problem of unknown noise term;

(4) Solve the problem of parameter coupling and

multiple identification parameters.

The overall structure of this paper is as follows:

Sect. 2 describes the fractional-order calculation and

fractional-order linear model; Sect. 3 constructed a

fractional-order Hammerstein nonlinear ARMAX

system with colored noise; Sect. 4 first introduces

the L–M algorithm and the multi-innovation identifi-

cation algorithm, and then combines the two algo-

rithms to propose the MILM identification algorithm

and finally makes an overall summary of the algorithm

proposed in this paper; Sect. 5 uses academic example

and flexible robotic arm example to verify the

proposed method.
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2 Mathematical description

This part introduces the basic concepts related to

fractional-order calculations and the fractional-order

linear Hammerstein model. First, the principle part of

fractional-order calculation gives the calculus used in

this paper. Then, the linear model of the fractional-

order Hammerstein transfer function is described and

defined in detail.

2.1 Calculation of fractional-order system

In the past decades in system modeling and control,

fractional-order systems have attracted continually an

increasing interesting among researchers. The most

commonly used in discrete cases are GL fractional

calculus [20], RL fractional calculus [21] and Caputo

fractional calculus [22], which is used in this paper is

the definition of GL calculus is expressed as follows:

DaxðkhÞ ¼ 1

ha

Xk

j¼0

ð�1Þ j a
j

� �
xðk � jÞ: ð1Þ

where Da is the fractional-order difference operator of

order a; xðkhÞ denotes a function of t ¼ kh, which k is

the k-th sampling, and h is assumed to be equal to 1.

The term
a
j

� �
is the binomial term defined by

a
j

� �
¼

1 for j ¼ 0
aða� 1Þ � � � ða� jþ 1Þ

j!
for j[ 0

8
<

: : ð2Þ

According to (1) and (2), we give the following

recurrence equation:

wð0Þ ¼ 1

wðjÞ ¼ 1� aþ 1

j

� �
wðj� 1Þ for j ¼ 1; 2; :::; k

8
<

: :

ð3Þ

where

wðjÞ ¼ �1ð Þ j a
j

� �
: ð4Þ

According to (4), (1) can be written as the following

equation,

DaxðkÞ ¼
Xk

j¼0

wðjÞxðk � jÞ: ð5Þ

In this paper, we use (5) as the fractional calculation

to study the modeling of the fractional-order Ham-

merstein system (FOHS) in subsequent sections.

2.2 Fractional-order linear models

In fractional-order systems, there exist different linear

models defined from the fractional-order systems

[23–25]. In this paper, we use the transfer function

model of the fractional-order description. This linear

transfer function is defined as follows:

yðkÞ ¼ GðzÞuðkÞ ¼ BðzÞ
AðzÞ uðkÞ: ð6Þ

where uðkÞ and yðkÞ are the system input and the

system output, respectively. AðzÞ and BðzÞ are the

denominator polynomial and the numerator polyno-

mial, respectively,

AðzÞ ¼ 1þ a1z
�a1 þ a2z

�a2 þ � � � þ anaz
�ana ;

BðzÞ ¼ b1z
�c1 þ b2z

�c2 þ � � � þ bnbz
�cnb ;

ai and cj(i ¼ 1; 2; :::; na, and j ¼ 1; 2; :::; nb) are the

corresponding fractional orders of the polynomials,

ai 2 Rþ and cj 2 Rþ, and z�1 is a unit backward shift

operator with z�1yðkÞ ¼ yðk � 1Þ.
When the fractional orders of the denominator

polynomial and the numerator polynomial in (6) are

completely different, the fractional-order models of

(6) are generally non-identical (disproportionate)

order systems; otherwise, each fractional order is an

integer multiple of the base order (a is order factor),

ai = ia, ci = ja ði ¼ 1; 2:::; na; j ¼ 1; 2:::; nbÞ, such a

model is defined as a homogeneous (proportionate)

order system. In this paper, consider a proportional

fractional-order system. Then, (6) can be written as:

yðkÞ ¼ BðzÞ
AðzÞ uðkÞ

¼ b1z
�a þ b2z

�2a þ � � � þ bnbz
�nba

1þ a1z�a þ a2z�2a þ � � � þ anaz
�naa

uðkÞ:

ð7Þ

By means of the discrete fractional-order operator

D and the derivation [17], (7) can be derived as

follows:
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yðkÞ ¼ ½1� AðzÞ�yðkÞ þ BðzÞuðkÞ
¼ �a1D

ayðk � 1Þ � a2D
ayðk � 2Þ � � � �

� anaD
ayðk � naÞ þ b1D

auðk � 1Þ
þ b2D

auðk � 2Þ þ � � � þ bnbD
auðk � nbÞ

¼ �
Xna

i¼1

aiD
ayðk � iÞþ

Xnb

i¼1

biD
auðk � iÞ:

ð8Þ

This linear model in (8) is employed as the model of

the linear part of the fractional-order Hammerstein

system.

3 Problem description

Assume that the general structure of a Hammerstein

system in Fig. 1 is defined by the series connection of

one nonlinear block with a linear fractional dynamic

block, which is described by an ARMAX model.

In Fig. 1, the nonlinear ARMAX model of the

Hammerstein system is shown as follows:

yðkÞ ¼ xðkÞ þ wðkÞ: ð9Þ

xðkÞ ¼ GðzÞuðkÞ ¼ BðzÞ
AðzÞ uðkÞ: ð10Þ

wðkÞ ¼ NðzÞvðkÞ ¼ DðzÞ
AðzÞ vðkÞ: ð11Þ

where uðkÞ and yðkÞ are the input signal and the output
signal of the overall system, respectively. uðkÞ and

xðkÞ are the input and the output of the linear block,

respectively. Meanwhile, uðkÞ is the output of the

nonlinear block. vðkÞ is the outside noise signal. wðkÞ
is a contaminated noise signal. Here, AðzÞ, BðzÞ and
DðzÞ are polynomials in the shift operator given the

following polynomials:

AðzÞ ¼ 1þ a1z
�a1 þ a2z

�a2 þ � � � þ anaz
�ana

¼ 1þ
Xna

i¼1

aiz
�ai

ð12Þ

BðzÞ ¼ b1z
�b1 þ b2z

�b2 þ � � � þ bnbz
�bnb

¼
Xnb

i¼1

biz
�bi :

ð13Þ

DðzÞ ¼ 1þ d1z
�c1 þ d2z

�c2 þ � � � þ dnd z
�cnd

¼ 1þ
Xnd

i¼1

diz
�ci :

ð14Þ

The nonlinear block is represented by the nonlinear

function f ð�Þ, which is expressed as a linear combina-

tion of a known basis functions. It is written as the

following equation:

uðkÞ ¼ f ðuðkÞÞ
¼ c1f1ðuðkÞÞ þ c2f2ðuðkÞÞ þ � � � þ cmfmðuðkÞÞ:

ð15Þ

From (1)–(3), the Hammerstein nonlinear ARMAX

model is given as the following form,

AðzÞyðkÞ ¼ BðzÞuðkÞ þ DðzÞvðkÞ: ð16Þ

uðkÞ ¼ f ðuðkÞÞ
¼ c1f1ðuðkÞÞ þ c2f2ðuðkÞÞ þ � � � þ cmfmðuðkÞÞ:

ð17Þ

For the motivation of this paper, the identification

method is developed to identify the parameters ai, bi,

ci, di and fractional orders ai, bi, ci.
Using (12)–(14), replacing AðzÞ, BðzÞ and DðzÞ in

(16) gives

yðkÞ ¼ �
Xna

i¼1

aiz
�ai yðkÞ þ

Xnb

i¼1

biz
�bi f ðuðkÞÞ

þ
Xnd

i¼1

diz
�ci vðkÞ þ vðkÞ:

ð18Þ

Substituting (17) in (18) results in the overall

model:

Fig. 1 The structure diagram of the nonlinear fractional-order

stochastic system
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yðkÞ ¼ �
Xna

i¼1

aiz
�ai yðkÞ þ

Xnb

i¼1

biz
�bi
Xm

j¼1

cjfjðuðkÞÞ

þ
Xnd

i¼1

diz
�ci vðkÞ þ vðkÞ:

ð19Þ

In this paper, consider the commensurate order in

(19), ai ¼ i~a, bj ¼ j~a, cl ¼ l~a. (19) can be rearranged

in the time domain, using the difference operator D in

[17]:

yðkÞ¼�
Xna

i¼1

aiD
~ayðk�iÞþ

Xnb

i¼1

bi
Xm

j¼1

cjD
~afjðuðkÞÞ

þ
Xnd

i¼1

diD
~avðk�iÞþvðkÞ

¼�
Xna

i¼1

aiD
~ayðk�iÞþc1

Xnb

i¼1

biD
~af1ðuðk�iÞÞþ���

þcm
Xnb

i¼1

biD
~afmðuðk�iÞÞþ

Xnd

i¼1

diD
~avðk�iÞþvðkÞ

ð20Þ

In this paper, the main work is to design or develop

a new identification method to estimate the unknown

parameters and fractional commensurate order of the

Hammerstein nonlinear model.

4 Identification method

The identification goal consists in confirming the

parameters ai, bi, ci, di as well as the order ~a in (20).

The L–M algorithm is proposed to identify these

parameters and the corresponding fractional order. It is

a robust nonlinear optimization approach which

includes the Gauss–Newton optimization and the

gradient descent. However, this method suffers from

the drawback points, including multiple parameters

coupling, complex computation and slow conver-

gence. This paper extends the multi-innovation L–M

algorithm for the identification of the Hammerstein

model by the multi-innovation identification principle.

The principle of multi-innovation identification is

proposed in [26–29]. The basic idea of multi-innova-

tion identification is to extend scalar innovation to

multi-innovation vector and innovation vector to

innovation matrix, which uses both current data and

past data. The research results of many papers have

shown that the proposed multi-innovation identifica-

tion algorithms can improve the convergence of the

algorithms and the accuracy of parameters estimation.

Therefore, this paper introduces it into the identifica-

tion algorithm. For (20), the regression representation

of the nonlinear relationship is written as the following

form,

yðkÞ¼uTðk; ~aÞ~hþvðkÞ: ð21Þ

where the parameter vector ~h and information vector

uðk; ~aÞ are defined as

~h ¼

a

c1b

c2b

..

.

cmb

d

2

6666666664

3

7777777775

2 Rn;

uðk; ~aÞ ¼

wðk; ~aÞ
D~avðk � 1Þ
D~avðk � 2Þ

..

.

D~avðk � ndÞ

2
66666664

3
77777775

2 Rn;

n ¼ na þ mnb þ nd

where a ¼

a1
a2
..
.

ana

2

6664

3

7775 2 Rna , b ¼

b1
b2
..
.

bnb

2

6664

3

7775 2 Rnb ,

c ¼

c1
c2
..
.

cm

2

6664

3

7775 2 Rm, d ¼

d1
d2
..
.

dnd

2

6664

3

7775 2 Rnd

wðk; ~aÞ ¼

w0ðk; ~aÞ
w1ðk; ~aÞ
w2ðk; ~aÞ

..

.

wmðk; ~aÞ

2

666664

3

777775
2 Rn;
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w0ðk; ~aÞ ¼

�D~ayðk � 1Þ
�D~ayðk � 2Þ
�D~ayðk � 3Þ

..

.

�D~ayðk � naÞ

2
666664

3
777775
2 Rna ;

wjðk; ~aÞ ¼

D~afiðuðk � 1ÞÞ
D~afiðuðk � 2ÞÞ
D~afiðuðk � 3ÞÞ

..

.

D~afiðuðk � nbÞÞ

2

666666664

3

777777775

2 Rnb ;

j ¼ 1; 2; :::;m:

The identification process of the Hammerstein

system requires the estimation of the total parameter

vector h which includes the parameter vectors a; b; d

of the linear block and the parameters

ci(i ¼ 1; 2; :::;m) of the nonlinear block as well as

the fractional order. The total parameter vector is

defined as,

h ¼ ~h
T

a
h iT

2 Rh; Rh ¼ nþ 1:

Consider the quadratic output criterion,

J ¼ 1

N

XN

k¼1

e2ðkÞ: ð22Þ

where N is the total number of the sampled data.eðkÞ is
the estimation error to be minimized,

eðkÞ ¼ yðkÞ � ŷðkÞ ¼ yðkÞ � uTðk; ~̂aÞ ~̂h: ð23Þ

where ŷðkÞ, ~̂h and ~̂a are the estimates of yðkÞ, ~h and ~a.
The iterative L–M algorithm is used to confirm the

total parameter vector as the following form:

hðiþ1Þ ¼ hðiÞ þ J00 þ kI½ ��1
J0

n o

ĥ¼hðiÞ
: ð24Þ

Based on the calculation of the gradient J0, and the

Hessian calculation J00 with respect to all parameters

of h. Using the calculation in (21), a difficulty of arises

because D~avðk � iÞ and the fractional order ~a are

unknown in uðkÞ, thus uðkÞ in the expression on the

right-hand side of (23) contains the unknown elements

�D~ayðk � 1Þ, D~afiðuðk � 1ÞÞ, D~avðk � iÞ; so it is

impossible to estimate the parameter vector h by

(24). In order to deal with this problem, combine with

auxiliary model ideas [30], use their corresponding

estimates �D ~̂ayðk � 1Þ, D ~̂afiðuðk � 1ÞÞ, D ~̂av̂ðk � iÞ to
replace the unknown variables �D~ayðk � 1Þ,
D~afiðuðk � 1ÞÞ, D~avðk � iÞ. From (21), the estimates

v̂ðkÞ are given by

v̂ðkÞ¼yðkÞ � ŷðkÞ¼yðkÞ � ûTðk; ~̂aÞ ~̂h: ð25Þ

where ûðk; ~̂aÞ and ~̂h are

~̂h ¼

â

ĉ1b̂

ĉ2b̂

..

.

ĉmb̂

d̂

2

6666666664

3

7777777775

2 Rn;

ûðk; ~̂aÞ ¼

ŵðk; ~̂aÞ
D ~̂av̂ðk � 1Þ
D ~̂av̂ðk � 2Þ

..

.

D ~̂av̂ðk � ndÞ

2

666666664

3

777777775

2 Rn;

where

â ¼

â1
â2
..
.

âna

2
6664

3
7775 2 Rna , b̂ ¼

b̂1
b̂2
..
.

b̂nb

2
6664

3
7775 2 Rnb ,

ĉ ¼

ĉ1
ĉ2
..
.

ĉm

2
6664

3
7775 2 Rm, d̂ ¼

d̂1
d̂2
..
.

d̂nd

2
6664

3
7775 2 Rnd .

Define � as Kronecker product or direct product,

e.g., ĉ� b̂ ¼

ĉ1b̂
ĉ2b̂

..

.

ĉmb̂

2

6664

3

7775,

ŵðk; ~̂aÞ ¼

ŵ0ðk; ~̂aÞ
ŵ1ðk; ~̂aÞ
ŵ2ðk; ~̂aÞ

..

.

ŵmðk; ~̂aÞ

2
666664

3
777775
2 Rn;
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ŵ0ðk; ~̂aÞ ¼

�D ~̂ayðk � 1Þ
�D ~̂ayðk � 2Þ
�D ~̂ayðk � 3Þ

..

.

�D ~̂ayðk � naÞ

2
6666664

3
7777775
2 Rna ;

ŵjðk; ~̂aÞ ¼

D ~̂afiðuðk � 1ÞÞ
D ~̂afiðuðk � 2ÞÞ
D ~̂afiðuðk � 3ÞÞ

..

.

D ~̂afiðuðk � nbÞÞ

2
6666664

3
7777775
2 Rnb ;

j ¼ 1; 2; :::;m:

Based on (25), D ~̂av̂ðk � iÞ is calculated as the

following equations,

D ~̂av̂ðk � iÞ¼
Xk�i

j¼0

wðjÞv̂ðk � i� jÞ: ð26Þ

ŵð0Þ ¼ 1

ŵðjÞ ¼ 1� ~̂aþ 1

j

 !
wðj� 1Þ; for j ¼ 1; . . .; k � i

8
><

>:

ð27Þ

In addition, k in (24) is a tuning coefficient for the

convergence. Based on the recursive equation of the

prediction error in (22), the estimated parameters can

be computed by the following gradient and the

Hessian equations with respect to ~̂h:

J
0

~̂h
¼ � 2

N
ûðk; ~̂aÞ yðkÞ � ûTðk; ~̂aÞ ~̂h

h i
: ð28Þ

J00
~̂h
¼ 2

N
ûðk; ~̂aÞûTðk; ~̂aÞ: ð29Þ

The calculation equation of the gradient and the

Hessian of fractional order ~̂a is as follows:

J0
~̂a
¼ � 2

N

oûTðk; ~̂aÞ~̂h
o ~̂a

" #T
yðkÞ � ûTðk; ~̂aÞ~̂h
h i

¼ � 2

N

oŷðkÞ
o ~̂a

� �T
yðkÞ � ûTðk; ~̂aÞ~̂h
h i

¼ � 2

N
rŷðkÞ= ~̂a
h iT

yðkÞ � ûTðk; ~̂aÞ~̂h
h i

where rŷðkÞ= ~̂a¼ oŷðkÞ
o ~̂a

is the output sensitivity function

with respect to ~̂a. The sensitivity function is shown as

follows:

rŷðkÞ= ~̂a � ŷðk; ~̂aþ d ~̂aÞ � ŷðk; ~̂aÞ
d ~̂a

: ð30Þ

where d ~̂a is a small variation of ~̂a.

The Hessian J
00

~̂a
can be calculated by

J
00

~̂a
¼ 2

N

oŷðkÞ
o ~̂a

� �T
oŷðkÞ
o ~̂a

� �

¼ 2

N
rŷðkÞ= ~̂a
� �T

rŷðkÞ= ~̂a
� �

:

ð31Þ

Hence, the gradient J
0

h and the Hessian calculation

J
00

h are shown as follows:

J0h ¼
J0
~̂h

J
0

~̂a

" #

¼ � 2

N

ûðk; ~̂aÞ yðkÞ � ûTðk; ~̂aÞ ~̂h
h i

rŷðkÞ= ~̂a
h iT

yðkÞ � ûTðk; ~̂aÞ~̂h
h i

2
64

3
75:

ð32aÞ

J00h ¼
J00
~̂h

J
00

~̂a

" #
¼ 2

N

ûðk; ~̂aÞûTðk; ~̂aÞ
rŷðkÞ= ~̂a
h iT

rŷðkÞ= ~̂a
h i

2

4

3

5: ð32bÞ

For the L–M algorithm in (24), it can be considered

as the single-innovation estimation algorithm by using

the error yðkÞ � ûTðk; ~̂aÞ ~̂h. For the single-innovation

L–M algorithm, it can suffer from low convergence

speed and low modeling accuracy. For this reason,

propose a multi-innovation L–M identification algo-

rithm (MILM).

First, define the L-dimensional innovation vector

EðL; k; ~̂aÞ, the input–output information matrix

ÛðL; k; ~̂aÞ, the stacked output vector YðL; kÞ as

follows:

EðL;k; ~̂aÞ¼½yðkÞ�ûTðk; ~̂aÞ ~̂h;yðk�1Þ

�ûTðk�1; ~̂aÞ ~̂h;:::;

yðk�Lþ1Þ�ûTðk�Lþ1; ~̂aÞ ~̂h�T2RL

ÛðL;k; ~̂aÞ¼½ûðk; ~̂aÞ;ûðk�1; ~̂aÞ;:::;
ûðk�Lþ1; ~̂aÞ�2Rn�L

;

ð33aÞ
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YðL; kÞ ¼ yðkÞ; yðk � 1Þ; :::; yðk � Lþ 1Þ½ �T2 RL;
n ¼ na þ mnb þ nd:

ð33bÞ

The L-dimensional innovation vector EðL; k; ~̂aÞ can
be also expressed as

EðL; k; ~̂aÞ ¼ YðL; kÞ � Û
TðL; k; ~̂aÞ~̂h: ð34Þ

Define the stacked sensitivity function vector

NðL; k; ~̂aÞ as
NðL; k; ~̂aÞ ¼ ½rŷðkÞ= ~̂a; rŷðk � 1Þ= ~̂a; :::; rŷðk � L

þ 1Þ= ~̂a�T

2 RL:

ð35Þ

Thus, the gradient J0h and the Hessian calculation J
00
h

are rearranged by the above multi-innovation variable

definitions,

J
0

h ¼
J

0

~̂h

J
0

~̂a

2
4

3
5

¼ � 2

N

ÛðL; k; ~̂aÞ YðkÞ � Û
TðL; k; ~̂aÞ ~̂h

h i

NðL; k; ~̂aÞ
h iT

YðkÞ � Û
TðL; k; ~̂aÞ ~̂h

h i

2

64

3

75:

ð36aÞ

J00h ¼
J00
~̂h

J00
~̂a

" #
¼ 2

N

ÛðL; k; ~̂aÞÛTðL; k; ~̂aÞ
NðL; k; ~̂aÞ
h iT

NðL; k; ~̂aÞ
h i

2
4

3
5:

ð36bÞ

Using the definitions of ÛðL; k; âÞ and YðL; kÞ, the
multi-innovation L–M identification algorithm is

organized as follows:

~̂h
ðmþ1Þ ¼ ~̂h

ðmÞ þ 2

N

2

N
ÛðL; k; ~̂aÞÛTðL; k; ~̂aÞ þ kI

� ��1
(

ÛðL; k; ~̂aÞ YðL; kÞ � Û
TðL; k; ~̂aÞ ~̂h

h io
~̂h¼ ~̂h

ðmÞ :

ð37aÞ

~̂aðmþ1Þ ¼ ~̂aðmÞ þ 2

N

2

N
NTðL; k; ~̂aÞNðL; k; ~̂aÞ þ kI

� ��1
(

NTðL; k; ~̂aÞ½YðL; kÞ � Û
TðL; k; ~̂aÞ ~̂h�

o

~̂a¼ ~̂aðmÞ
:

ð37bÞ

After obtaining the estimated parameter vector ĥ,

the first na element in ĥ is the estimate of the vector â,

and the element naþ1 to the naþm� nb in ĥ is the

estimate of the vector ĉ� b̂. By observing the

parameter vector ĥ, there are nb estimate ĉm, the last

nd element in ĥ is the estimate of the vector d̂. To this

end, they are calculated by the average method.

ĉj ¼
1

nb

Xnb

i¼1

hnaþnbðj�1Þþi

bi
; j ¼ 2; 3; :::;m: ð38Þ

In this paper, the MILMmethod is proposed to deal

with the parameter identification of FOHS and to

estimate the fractional order. The whole steps of the

proposed method can be summarized as follows:

Step 1 Collect the input and output data set

uðkÞ; yðkÞf g of the system;

Step 2 Let i ¼ 1, and set the initial values ~h0, ~a0,

v̂ðkÞ0 and dâ;

Step 3 Construct the information matrix ÛðL; ks; âÞ,
the stacked output vector YðL; ksÞ using (33a) and

(33b), respectively, and compute the output fractional-

order sensitivity function rŷ0ðksÞ=â using (30);

Step 4 Construct the stacked sensitivity function

vector NðL; ks; âÞ using (35);

Step 5 Compute J
00

h using (36b) and J
0

h using (36a),

update the fractional order estimate ~a using (37b) and

the parameter estimate ~h using (37a);

Step 6Update the noise sequence according to (25),

compute the objective function in (22);

Step 7 If
Jðĥðmþ1ÞÞ�JðĥðmÞÞ
�� ��

JðĥðmÞÞ
�� �� � n, increase k, otherwise

decrease k and set ĥ ¼ hðmÞ and JðĥÞ ¼ JðhiÞ, then go

to Step 3.

The overall algorithm process is summarized as

follows:

5 Simulation examples

This part uses two examples to verify the effectiveness

of the proposed method. The first example is an

academic example of a fractional-order Hammerstein

nonlinear ARMAX system, which proves the theoret-

ical feasibility of the method in this paper. Secondly,

the method of this paper is applied to the actual system

example of the second flexible manipulator
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experiment, which proves that the modeling effect of

this paper is better and the degree of fitting with the

actual system is relatively high (Fig. 2).

5.1 Academic example

In order to verify the effectiveness of the proposed

algorithm, consider the following fractional-order

Hammerstein nonlinear ARMAX system, the system

structure coefficient is na ¼ 2;nb ¼ 3;nd ¼ 2; nonlin-

ear output block adopts the polynomial form ofm ¼ 3,

and the fractional order of the system is a ¼ 0:6,

respectively.

AðzÞ ¼ a1z
�a þ a2z

�2a

BðzÞ ¼ b1z
�a þ b2z

�2a þ b3z
�3a

DðzÞ ¼ d1z
�a þ d

2
z�2a

;

f ðuðkÞÞ ¼
X3

m¼1

cmfmðuðkÞÞ:

The overall output of the system is expressed as

follows:

yðkÞ ¼ �
X2

i¼1

aiD
0:6ðyðk � iÞ þ c1

X3

i¼1

biD
0:6f1ðuðk � iÞ

þ c2
X3

i¼1

biD
0:6f2ðuðk � iÞ þ c3

X3

i¼1

biD
0:6f3ðuðk � iÞ

þ
X2

i¼1

diD
0:6vðk � iÞ þ vðkÞ:

:with :

f1ðuðk � iÞÞ ¼ uðk � iÞ
f2ðuðk � iÞÞ ¼ u2ðk � iÞ
f3ðuðk � iÞÞ ¼ u3ðk � iÞ

;

yðkÞ ¼ �a1D
0:6yðk � 1Þ � a2D

0:6yðk � 2Þ þ c1b1D
0:6uðk � 1Þ

þ c1b2D
0:6uðk � 2Þ þ c1b3D

0:6uðk � 3Þ
þ c2b1D

0:6u2ðk � 1Þ þ c2b2D
0:6u2ðk � 2Þ

þ c2b3D
0:6u2ðk � 3Þ þ c3b1D

0:6u3ðk � 1Þ
þ c3b2D

0:6u3ðk � 2Þ þ c3b3D
0:6u3ðk � 3Þ

þ d1D
0:6vðk � 1Þ þ d2D

0:6vðk � 2Þ þ vðkÞ:

The true values of the parameter vector to be

estimated are:

a ¼ a1 a2½ �T¼ 0:1 0:2½ �T

b ¼ b1 b2 b3½ �T¼ 0:3 0:20.4½ �T

c ¼ c1 c2 c3½ �T¼ 1 0:70.5½ �T

d ¼ d1 d2½ �T¼ 0:250.5½ �T:

Fig. 2 Overall algorithm flow chart
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The input signal uðkÞ is a random signal with a

mean value of 0 and a variance of 1, and the noise

signal vðkÞ is a Gaussian random signal with a mean

value of zero and a variance of r2¼ 0.01. The data set

length is N ¼ 1000, and the number of iterations is 50

times. Before parameter estimation, we must first

determine the best structure of the system and test

various combinations of na; nb; nd and m. The index

value J under various test combinations is shown in

Table 1 and Fig. 3. It can be clearly seen that the

structural parameters when the combination is

½na; nb; nd;m� ¼ ½2; 3; 2; 3� [2,3,2,3], the index value

is the smallest, so this parameter combination is

determined as the best structure.

In the study, the length of multiple innovations is

selected as L ¼ 1; 3; 5. In order to verify the effec-

tiveness of the proposed method, the relative error of

parameter estimation RMSE ¼ 1
n

Pn
i¼1 ðĥ� hÞ2, the

relative error of fractional-order estimation d :¼
â� ak k and the secondary index J are used as

indicators to verify. Following Table 2 continues to

show the identification results of parameters and

fractional orders under different innovation numbers.

Figure 4 shows the J index curves of different multi-

innovation systems.

Figure 5a shows the estimated relative error curves

of system parameters with different multi-innovation

systems, and Fig. 5b shows the estimated relative error

results of the fractional orders of different multi-

innovation systems. Through the analysis and com-

parison of these results, it is obvious that appropriately

increasing the length of multiple innovations can

speed up the identification convergence speed, and the

identification accuracy is higher. Through appropriate

partial enlargement of Figs. 4 and 5, it can be found

that when the number of innovations L ¼ 5, the

relative error of parameter estimation and the relative

error of fractional-order estimation are the smallest.

Table 1 Structure test results of academic example

½na; nb; nd ;m� ½2; 3; 2; 3� ½2; 3; 2; 1� ½2; 3; 2; 2� ½2; 2; 2; 1�

J 0.000662 0.888778 0.186151 0.194271

Fig. 3 J under different structure combinations

Table 2 Partial parameter

identification results of the

fractional-order nonlinear

system (L = 1, 3, 5)

L â1 â2 ĉ1b̂1 ĉ1b̂2 ĉ1b̂3 ĉ2b̂1 ĉ2b̂2

1 0.0989 0.1993 0.3 0.2003 0.3983 0.2090 0.1383

3 0.0995 0.1995 0.2999 0.2002 0.3996 0.2097 0.1398

5 0.0999 0.1997 0.3004 0.2006 0.4002 0.2100 0.1400

True values 0.1 0.2 0.3 0.2 0.4 0.21 0.14

L ĉ2b̂3 ĉ3b̂1 ĉ3b̂2 ĉ3b̂3 d̂1 d̂2 â

1 0.2788 0.1498 0.0996 0.2003 0.3503 0.6387 0.6014

3 0.2797 0.1499 0.1000 0.2000 0.3646 0.6451 0.6010

5 0.2798 0.1498 0.0999 0.1998 0.2851 0.5660 0.6006

True values 0.28 0.15 0.1 0.2 0.25 0.5 0.6
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Figures 6a and 7 are the parameter estimation curve

and the fractional-order estimation curve of the system

when the innovation length L ¼ 5. The estimated

value is basically consistent with the true value. The

final convergence value and estimation error of the

parameters are shown in Fig. 6b. The estimated value

can be seen in Table 1. Figure 8 compares the

estimated output of the identification model under

the innovation length L ¼ 5 with the actual output of

the system. After partial amplification and comparison

and combined with the system estimation error shown

in Fig. 9, the output has a high degree of fit and

basically coincides.

5.2 Example of a flexible manipulator

The flexible manipulator data obtained in the standard

database DAISY [31] are further used to verify the

effectiveness of the method proposed in this paper.

The measured data set contains 1024 data samples.

The input of this system is the reaction torque of the

structure on the ground, and the output is the

acceleration of the flexible manipulator. Same as

Example 1, we first determine the best structure

combination of the system. The index value J under

different structure combinations is shown in Table 3

and Fig. 10. When the combination structure is

½na; nb;m; nd� ¼ ½1; 3; 2; 1�, the index value J is the

smallest. The structure combination of is the best

structure combination.

Therefore, the optimal structure of the fractional-

order Hammerstein nonlinear ARMAX model of the

flexible manipulator system is determined as follows,

the parameter vector ½a1; b1;b2; b3; c1; c2; d1� is the

parameter to be identified, and a is the fractional order
to be identified. From the conclusion of the calculation

example 1, it can be seen that an appropriate increase

in the innovation number L can speed up the conver-

gence speed and improve the identification accuracy,

and the effect is best when the innovation number

L ¼ 5. Therefore, this flexible manipulator calculation

Fig. 4 J under different number of innovationscxs

a b

Fig. 5 a Relative error of parameter estimation ðL ¼ 1; 3; 5Þ, b relative error of fractional-order estimation ðL ¼ 1; 3; 5Þ
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example directly uses the innovation number L ¼ 5,

and the system parameters and fractional-order iden-

tification results are shown in Table 4 and Figs. 11 and

12. The specific values can be seen in Table 4.

AðzÞ ¼ a1z
�a

BðzÞ ¼ b1z
�a þ b2z

�2a þ b3z
�3a

DðzÞ ¼ d1z
�a

;

f ðuðkÞÞ ¼ c1f1ðuðkÞÞ þ c2f2ðuðkÞÞ:

The overall output system equation is as follows:

a b

Fig. 6 a System parameter estimation ðL ¼ 5Þ, b parameter estimates and error values

Fig. 8 System estimation and actual output

Fig. 7 Estimated and true values of the fractional order of the

system
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yðkÞ ¼ �a1D
aðyðk � 1ÞÞ þ c1

X3

i¼1

biD
af1ðuðk � iÞ

þ c2
X3

i¼1

biD
af2ðuðk � iÞ þ d1D

avðk � iÞ þ vðkÞ;

f1ðuðk � iÞÞ ¼ uðk � iÞ
f2ðuðk � iÞÞ ¼ u2ðk � iÞ ;

yðkÞ ¼ �a1D
ayðk � 1Þ þ c1b1D

auðk � 1Þ
þ c1b2D

auðk � 2Þ þ c1b3D
auðk � 3Þ

þ c2b1D
au2ðk � 1Þ þ c2b2D

au2ðk � 2Þ
þ c2b3D

au2ðk � 3Þ þ d1D
avðk � 1Þ þ vðkÞ:

Using the method proposed in this paper, the model

output and actual output identified by the flexible

manipulator system are shown in Fig. 13. After partial

magnification and combined with the identification

output error results of Fig. 14, it can be clearly seen

that the accuracy of the identification model is high,

which is basically the same as the actual output.

Fittingly, the error is almost 0.

6 Conclusion

Based on the Levenberg–Marquardt algorithm and

combined with the multiple innovation identification

algorithm, this paper proposes a newMILM algorithm

to model and identify the fractional-order Hammer-

stein nonlinear ARMAX system with colored noise.

The innovation vector composed of multiple fractional

variables is used as the model input. The proposed

MILM algorithm not only identifies the parameters

and fractional order of the system, but also solves the

problem of slow convergence speed and low accuracy

of the pure Levenberg–Marquardt algorithm. Finally,

two examples are combined to verify the accuracy and

effectiveness of the method proposed in this paper.

The control problem of the fractional-order Hammer-

stein nonlinear ARMAX system with colored noise is

the author’s future research direction.

Fig. 9 System estimation error
Fig. 10 J under different structure combinations

Table 3 Structure test results of flexible manipulator

½na; nb;m; nd� ½1; 1; 1; 1� ½1; 2; 1; 1� ½1; 3; 1; 1� ½1; 4; 1; 1� ½1; 3; 2; 1�

J 0.001474 0.00168 0.001109 0.001396 0.000774
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Fig. 13 System estimation and actual output

Fig. 12 System fractional-order estimation

Fig. 14 System estimation error

Fig. 11 System parameter estimation

Table 4 Parameter identification results of the fractional-order nonlinear system

â1 ĉ1b̂1 ĉ1b̂2 ĉ1b̂3 ĉ2b̂1 ĉ2b̂2 ĉ2b̂3 d̂1 â

- 1.1926 - 0.17155 0.119088 - 0.2278 0.071784 - 0.0249 0.037548 0.69852 0.6209
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