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Abstract This paper addresses the stabilization prob-
lem of an Euler–Bernoulli beam system subject to
an unknown time-varying distributed load and bound-
ary disturbance. Based on Lagrangian–Hamiltonian
mechanics, themodel of the beam system is derived as a
partial differential equation. Based on Lyapunov func-
tions, a sliding surface is designed, onwhich the system
exhibits exponential bounded stability and robustness
against the external disturbances. A sliding mode con-
troller which only uses boundary information is further
proposed to drive the system to reach the sliding sur-
face in finite time. Numerical simulations are shown to
illustrate the validity of the proposed boundary control.
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L Length of the beam
m Mass of the payload
EI Bending stiffness of the beam
T Tension of the beam
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ρ Uniform mass per unit length of the beam
w(x, t) Displacement of the beam at the position x

for the time t
f (x, t) Time-varying distributed load on the beam

except end point
u(t) Boundary control force at the end of the beam
d(t) Boundary input disturbance force at the end

of the beam
C1 Continuously differentiable function space
R+ The sets of positive real numbers

1 Introduction

Nowadays, the control of flexible beams has attracted
more and more attention, not only because of its wide
application in engineering, such as marine risers for
oil transportation [1,2], flexible aircraft wings [3] and
flexible manipulators for grasping [4,5], but also since
it is a theoretical challenge due to the difficulty of the
control. Different from lumped parameter systems rep-
resented by ordinary differential equations, the flexible
beam is modeled as a distributed parameter system,
which is related to time and spatial position. In addi-
tion, the distributed parameter system has an infinite
dimensional state space, which brings the challenge of
its control problems for such systems.

In the past few decades, a lot of researches have
focused on the controller design and stability analy-
sis of flexible beams [6–8]. There are various control
methods for the stabilization of flexible beams such as
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back-stepping technique, Lyapunov synthesis methods
and so on. The back-stepping technique is a power-
ful method for designing the control law for the dis-
tributed parameter system [9]. Its main idea is trans-
forming the system into a stable and convergent target
system through a kernel function, and explaining the
existence and well-posedness of the kernel function
further. Then, the control gain function of the system
can be easily obtained. Some existing results are given
in [10–12]. The controllers proposed in these papers
are all designed by combining order reduction and the
back-steppingmethod.Thedifference is that the system
is transformed into a coupled heat-like system by using
a complex variable in [10,11], while in [12], an alter-
native transformation is developed, which transforms
the fourth-order system into two coupled second-order
systems. On the basis of [11,13] develops a fault com-
pensation scheme to deal with certain boundary input
faults. However, the controllers designed by the back-
stepping method usually require full measurement of
the system states rather than the boundary information.
It means that the sensor needs to detect all the displace-
ments of the flexible beam in the process of vibration or
to obtain the full state informationbydesigning an addi-
tional observer, which limits the application of these
controllers.

Lyapunov synthesis provides a method to prove the
stability of the system without knowing the exact solu-
tion of the system, which is used widely in the con-
trol field. There are some remarkable results [1,4,14–
17] for the flexible beam which just use the informa-
tion at the boundary of the system. In [1] and [14],
the authors apply the adaptive control to deal with
unknown system parameters. For the boundary distur-
bance, a robust controller and a disturbance observer
are employed in [1,14] to suppress the effect of the
boundary disturbance. Different from [1] and [14,15]
puts forward a hybrid backstepping-boundary itera-
tive learning control to stabilize the flexible beam
under external disturbances. The prescribed perfor-
mance technique is applied in [4] and a barrier Lya-
punov function is presented in [16] to handle the vibra-
tion of the flexible beam. The authors in [17] employ
the Lyapunov method to design an output feedback
controller and show the existence of a solution to
the closed-loop system by using a Galerkin approx-
imation scheme. A backlash-like input nonlinearity
and the output constraint problem are considered in
[18]. In [19], for the input and output constraint prob-

lems for Euler–Bernoulli beam, a boundary scheme is
developed and this method is expanded to the three-
dimensional Euler–Bernoulli beam in [20]. In [21], the
problemof actuator faults is considered and an adaptive
actuator fault-tolerant control scheme is developed.

Slidingmode theory is a nonlinear control technique
in essence, which can handle the uncertainty and the
external disturbance of the system as the system per-
formance rely on the sliding surface only. Slidingmode
control (SMC) has been widely used in many fields
including linear systems [22], nonlinear systems [23]
and distributed parameter systems [24–26] due to its
strong robustness. For the Euler–Bernoulli beam, [27]
and [28] propose a boundary feedback controller based
on slidingmode control to reject the unknownboundary
disturbance and analyze the stability of the closed-loop
system. Comparisons of the active disturbance rejec-
tion control and the sliding mode control are made in
[29].

In this paper, we consider an Euler–Bernoulli model
with tension term subject to unknown external dis-
turbances including time-varying distributed load and
boundary disturbance.Anovel boundary vibration con-
trol is proposed to suppress the vibration of the system.
The main contributions of the paper are as follows:

(i) The unknown external disturbances are consid-
ered systematically.

(ii) A sliding mode controller is developed to sup-
press unknown external disturbances for the sys-
tem. Only information at the boundary is used in
the proposed controller.

(iii) The exponential bounded stability for the closed-
loop system is analyzed using the Lyapunov
method.

The structure of the rest of the paper is as follows.
The problem statement is given in Sect. 2, which intro-
duces the partial differential equation (PDE) model of
the Euler–Bernoulli beam and some necessary prepa-
rations. The sliding mode controller is developed in
Sect. 3. It is shown that both the exponential bounded
stability of the system on the sliding surface and the
reach-ability of the sliding surface are achieved by the
proposed controller. Section 4 presents the numerical
simulations to verify the effectiveness of the control
law. The conclusion of the paper is offered in Sect. 5.
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Fig. 1 The top view of a typical beam system

2 Problem statement

In this paper, we consider a beam system that moves in
the horizontal direction, whose length can be stretched
by the external force. When the diameter/length ratio
of beam is very small and the rotary inertia of the
beam is neglected, the beam system can be modeled
as an Euler–Bernoulli beam [14]. Figure 1 shows an
Euler–Bernoulli beam exerted by the unknown time-
varying distributed load f (x, t), unknown boundary
disturbance d(t) and a control force u(t). The left
boundary of the beam is fixed at origin.

2.1 Dynamic model

In order to derive the Euler–Bernoulli beam model, the
kinetic energy Ek(t), the potential energy Ep(t) and the
non-conservative workW (t) of the system are listed as
follows. For clarity, we make the following definition
(·)x = ∂(·)/∂x, (·)t = ∂(·)/∂t , where x and t rep-
resent the independent spatial and temporal variables,
respectively, and δ is a variation sign.

Ek(t) = 1

2
ρ

L∫

0

[wt (x, t)]2dx + 1

2
m[wt (L , t)]2,

Ep(t) = 1

2
EI

L∫

0

[wxx (x, t)]2dx + 1

2
T

L∫

0

[wx (x, t)]2dx,

δW (t) = u(t)δw(L , t) + d(t)δw(L , t)

+
L∫

0

f (x, t)δw(x, t)dx .

Then, the calculus of variation is used to derive the
model of the Euler–Bernoulli beam system

t2∫

t1

δ[Ek(t) − Ep(t) + W (t)]dt = 0, (1)

where t1 and t2 are two time instants satisfying t1 <

t < t2.
Through the direct calculations of (1), it yields

ρwt t (x, t) + EIwxxxx (x, t) − Twxx (x, t) = f (x, t),

∀(x, t) ∈ (0, L) × [0,∞), (2)

and the boundary conditions are given as follows for
∀t ∈ [0,∞)

w(0, t) = wx (0, t) = wxx (L , t) = 0, (3)

−EIwxxx (L , t) + Twx (L , t) = u(t)

+d(t) − mwt t (L , t). (4)

Assumption 1 For the unknown time-varying dis-
tributed load f (x, t) andboundarydisturbanced(t),we
make the assumption that there exist positive constants
f̄ ∈ R+ and d̄ ∈ R+, such that f (x, t) ≤ f̄ ,∀(x, t) ∈
(0, L) × [0,∞) and |d(t)| ≤ d̄,∀t ∈ [0,∞).

2.2 Preliminaries

The following essential lemmas, which will be used
to design and analyze the boundary control law, are
introduced.

Lemma 1 [30] Let φ1, φ2 ∈ C
([0, L] × [0,∞) : R)

.
Then, the following inequalities hold:

φ1(x, t)φ2(x, t) ≤ κ

2
φ2
1(x, t) + 1

2κ
φ2
2(x, t), (5)

where κ is a positive constant.

Lemma 2 [31] Let φ ∈ C1
([0, L] × [0,∞) : R

)
,

which satisfies φ(0, t) = 0, then the following inequal-
ity holds for ∀t ∈ [0,∞) :

φ2(x, t) ≤ L

L∫

0

[φx (x, t)]2dx,∀x ∈ [0, L]. (6)

Similarly, while φx (0, t) = 0, for ∀t ∈ [0,∞), the
following inequality also holds

φ2
x (x, t) ≤ L

L∫

0

[φxx (x, t)]2dx,∀x ∈ [0, L]. (7)

123



1396 Z. Wang et al.

3 Sliding mode controller design

The control objective is to suppress the vibration of
the Euler–Bernoulli beam system (2)–(4) under the
unknown time-varying distributed load f (x, t) and
boundary disturbance d(t). In this section, the Lya-
punov synthesis method and sliding mode control are
used to design a boundary controller u(t) at the right
boundary of the beam including an analysis of the
closed-loop stability of the system and the reach ability
of the sliding surface.

Here, a Lyapunov function and a sliding surface are
proposed to guarantee that the beam system (2)–(4) has
exponentially bounded stability on the sliding surface.
The sliding surface is chosen as

S = wt (L , t) + βL

α
wx (L , t) = 0. (8)

In order to make the system reach the sliding surface
in finite time, the sliding mode control law is proposed
as follows

u(t) = −EIwxxx (L , t) + Twx (L , t)

−βmL

α
wxt (L , t) − k1s(t) − (

d̄ + k2
)
sgn(s(t)), (9)

where k1, α, β and k2 are positive constants and sgn(·)
is a sign function defined as

sgn(s) =
⎧⎨
⎩
1, s > 0,
0, s = 0,
−1, s < 0,

and the corresponding sliding mode function is defined
as

s(t) = wt (L , t) + βL

α
wx (L , t). (10)

Remark 1 For the proposed controller (9), the first
three terms −EIwxxx (L , t), Twx (L , t) and −βmL

α

wxt (L , t) are introducedmainly to cancel these dynam-
ics on the boundary of the system, the fourth term
−k1s(t) is to drive the system to quickly reach a small
neighborhood of the sliding mode surface, and the last
term (d̄+k2)sgn(s(t)) is to suppress the boundary dis-
turbance d(t) and ensure that the system reaches the
sliding mode surface.

Remark 2 From the sliding mode function (10), it can
be found that the signs ofwt (L , t) andwx (L , t) are the
same when |w(L , t)| increases and are opposite when
|w(L , t)| decreases in normal circumstances. There-
fore, the value of the sliding mode function s(t) can

reflect the vibration of the system to a certain extent.
Furthermore, when s(t) ≡ 0 and |w(L , t)| decreases,
|wt (L , t)| and |wx (L , t)| will always decrease, then
wx (L , t) = 0 and wt (L , t) = 0 hold.

Theorem 1 For the system dynamics described by the
governing equation (2) and the boundary conditions
(3)–(4), suppose that Assumption 1 holds. Given that
the parameters of the controller satisfy the following
conditions⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

k1 > 0, k2 > 0,

β <
min

(
αρ, κ2

1αT
)

κ1ρL
,

α2T

2βL
− βρL

2
> 0,

βT

2
− κ2βL

2
> 0,

βρ

2
− κ3α

2
> 0,

(11)

where α, β, κ1, κ2 and κ3 are positive constants, the
proposed sliding mode control (9) yields that

(i) there exists a t0 = m
k1
ln

( k1|s(0)|
k2

+ 1
)
such that the

system reaches the sliding surface as t ≥ t0,
(ii) the state of the closed-loop system is exponentially

bounded stable on the sliding surface and it will
eventually converge to the compact set 	 defined
by

	 =
{
w(x, t) ∈ R

∣∣ lim
t→∞ |w(x, t)| ≤ D, ∀x ∈ [0, L]

}
,

where D =
√

2Lε f
αλT (1−β1)

,β1 = κ1βρL
min(αρ,κ21αT )

, ε f =(
βL
2κ2

+ α
2κ3

)
L f̄ 2 and λ > 0.

Proof First, we show that the proposed control law (9)
ensures that the states of the system (2) reach the sliding
surface infinite time and remain there afterward.Define
the following Lyapunov candidate function

Vs(t) = 1

2
ms2(t). (12)

Combining the boundary condition (4) and substituting
the control law (9), then the derivative of the Lyapunov
function (12) can be written as

V̇s(t) = s(t)
(
mwt t (L , t) + βmL

α
wxt (L , t)

)

= s(t)
(
EIwxxx (L , t) − Twx (L , t)

+u(t) + d(t) + βmL

α
wxt (L , t)

)
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= −k1s
2(t) − (

d̄ + k2
)|s(t)| + d(t)s(t). (13)

From Assumption 1, the boundary input disturbance is
bounded, i.e., d(t) ≤ d̄. According to Lemma 1, one
gets from (13)

V̇s(t) = ms(t)ṡ(t) = −k1s
2(t) − (

d̄ − d(t)
)|s(t)|

−k2|s(t)|
≤ −k1s

2(t) − k2|s(t)|. (14)

Obviously, it can be seen that the Lyapunov function
(12) decreases all the time until reaching the sliding
surface. When |s(0)| 	= 0, |s(t)| 	= 0 holds before
reaching the sliding surface. Therefore, dividing both
sides of the inequality (14) by |s(t)| results in
mṡ(t)sgn(s(t)) ≤ −k1s(t)sgn(s(t)) − k2. (15)

Multiplying both sides of the above inequality by e
k1
m t

and integrating it with respect to time from 0 to t lead
to

|s(t)| ≤ |s(0)|e− k1
m t + k2

k1
e− k1

m t − k2
k1

. (16)

With easy calculation t0 = m
k1
ln

( k1|s(0)|
k2

+ 1
)
, when

t ≥ t0, |s(t)| = 0, i.e., the system will reach the sliding
surface in finite time.

Next, the system stability on the sliding surface is
proved. Consider the Lyapunov candidate function as

V0(t) = V1(t) + V2(t), (17)

where the energy termV1(t) and the crossing termV2(t)
are defined as

V1(t) = α

2
ρ

L∫

0

[wt (x, t)]2dx + α

2
EI

L∫

0

[wxx (x, t)]2dx

+α

2
T

L∫

0

[wx (x, t)]2dx, (18)

V2(t) = βρ

L∫

0

xwt (x, t)wx (x, t)dx . (19)

According to Lemma 1, we have

|V2(t)| ≤ βρL

L∫

0

(κ1

2
[wt (x, t)]2 + 1

2κ1
[wx (x, t)]2

)
dx

≤ β1V1(t), (20)

where

β1 = κ1βρL

min
(
αρ, κ2

1αT
) . (21)

Obviously, α, β and κ1 can be chosen to satisfy β1 <

1 such that the Lyapunov candidate function (17) is
positive definite.

The derivative of Lyapunov function (17) is

V̇0(t) = V̇1(t) + V̇2(t).

The derivative of the energy term V̇1(t) yields

V̇1(t) = A1(t) + A2(t) + A3(t) (22)

with

A1(t) = αρ

L∫

0

wt (x, t)wt t (x, t)dx,

A2(t) = αEI

L∫

0

wxx (x, t)wxxt (x, t)dx,

A3(t) = αT

L∫

0

wx (x, t)wxt (x, t)dx . (23)

Substituting the governing equation (2) into A1(t) and
integrating the equation by parts yield

A1(t) = α

L∫

0

wt (x, t)
( − EIwxxxx (x, t)

+Twxx (x, t) + f (x, t)
)
dx

= α
[
wt (x, t)

( − EIwxxx (x, t) + Twx (x, t)
)]L

0

−α

L∫

0

wxt (x, t)
( − EIwxxx (x, t)

+Twx (x, t)
)
dx

+α

L∫

0

f (x, t)wt (x, t)dx . (24)

Similarly, integrating A2(t) by parts yields

A2(t) = αEI

[
wxt (x, t)wxx (x, t)

]L
0

−αEI

L∫

0

wxt (x, t)wxxx (x, t)dx . (25)
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Substituting (23)–(25) into (22) and combining with
the boundary condition (3) give

V̇1(t) = −αEIwt (L , t)wxxx (L , t) + αTwt (L , t)wx (L , t)

+α

L∫

0

f (x, t)wt (x, t)dx . (26)

Substituting (2) into the derivative of crossing item
V̇2(t) leads to

V̇2(t) = βρ

L∫

0

x
(
wt t (x, t)wx (x, t) + wt (x, t)wxt (x, t)

)
dx

= B1(t) + B2(t) + B3(t) + B4(t), (27)

where

B1(t) = −βEI

L∫

0

xwx (x, t)wxxxx (x, t)dx,

B2(t) = βT

L∫

0

xwx (x, t)wxx (x, t)dx,

B3(t) = βρ

L∫

0

xwt (x, t)wxt (x, t)dx,

B4(t) = β

L∫

0

x f (x, t)wx (L , t)dx . (28)

Integrating B1(t) by parts twice and combining the
boundary condition (3) yield

B1(t) = −βEILwx (L , t)wxxx (L , t)

−3βEI

2

L∫

0

[wxx (x, t)]2dx . (29)

Similarly calculating B2(t) yields

B2(t) = βT L

2
[wx (L , t)]2 − βT

2

L∫

0

[wx (x, t)]2dx .

(30)

Integrating the equation B3(t) by parts and using the
boundary condition (3), we have

B3(t) = βρL

2
[wt (L , t)]2 − βρ

2

L∫

0

[wt (x, t)]2dx . (31)

Combining (28)–(31), we obtain

V̇2(t) = −βEILwx (L , t)wxxx (L , t) + βT L

2
[wx (L , t)]2

+βρL

2
[wt (L , t)]2 − 3βEI

2

L∫

0

[wxx (x, t)]2dx

−βT

2

L∫

0

[wx (x, t)]2dx − βρ

2

L∫

0

[wt (x, t)]2dx

+β

L∫

0

x f (x, t)wx (L , t)dx . (32)

Next, substituting (26) and (32) into (17) arrives at

V̇0(t) = −EIwxxx (L , t)
(
αwt (L , t) + βLwx (L , t)

)

+βT L

2
[wx (L , t)]2

+αTwx (L , t)wt (L , t) + βρL

2
[wt (L , t)]2

−3βEI

2

L∫

0

[wxx (x,t)]2dx− βT

2

L∫

0

[wx (x,t)]2dx

−βρ

2

L∫

0

[wt (x, t)]2dx+α

L∫

0

f (x, t)wt (x, t)dx

+β

L∫

0

x f (x, t)wx (L , t)dx . (33)

Substituting the sliding surface (8) into (33) and com-
bining Lemma 1, we obtain

V̇0(t) = −αT

2

βL

α
[wx (L , t)]2 − αT

2

α

βL
[wt (L , t)]2

+βT L

2
[wx (L , t)]2

+βρL

2
[wt (L , t)]2

−3βEI

2

L∫

0

[wxx (x, t)]2dx

−βT

2

L∫

0

[wx (x, t)]2dx

−βρ

2

L∫

0

[wt (x, t)]2dx
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+α

L∫

0

f (x, t)wt (x, t)dx

+β

L∫

0

x f (x, t)wx (L , t)dx

≤ −
(α2T

2βL
− βρL

2

)
[wt (L , t)]2

−3βEI

2

L∫

0

[wxx (x, t)]2dx

−
(βT

2
− κ2βL

2

) L∫

0

[wx (x, t)]2dx

−
(βρ

2
− κ3α

2

) L∫

0

[wt (x, t)]2dx

+
( βL

2κ2
+ α

2κ3

) L∫

0

f 2(x, t)dx

≤ −λV0(t) + ε f , (34)

where

ε f =
( βL

2κ2
+ α

2κ3

)
L f̄ 2,

and the constants α, β, κ1, κ2 and κ3 are chosen to
satisfy the conditions (11) such that

λ = 1

1 + β1
min

(3β
α

,
2σ1
αT

,
2σ2
αρ

)
> 0, (35)

where σ1 = βT
2 − κ2βL

2 and σ2 = βρ
2 − κ3α

2 .
Therefore, it follows from (34) that

V0(t) ≤
(
V0(0) − ε f

λ

)
e−λt + ε f

λ
. (36)

Using the inequalities (6), (20) and combining with
(18), (36), we have

αT

2L
[w(x, t)]2 ≤ αT

2

L∫

0

[wx (x, t)]2dx ≤ V1(t)

≤ 1

1 − β1

((
V0(0) − ε f

λ

)
e−λt + ε f

λ

)
.

The above inequality implies that the system state
w(x, t) converges uniformly in x :

|w(x, t)| ≤
√

2L

αT (1 − β1)

((
V0(0) − ε f

λ

)
e−λt + ε f

λ

)
,

∀(x, t) ∈ [0, L] × [0,∞).

Furthermore, it shows

lim
t→∞ |w(x, t)| ≤

√
2Lε f

αλT (1 − β1)
.

This completes the proof. 
�
Based on the above analysis, the following corollary

can be obtained.

Corollary 1 For the system dynamics described by
the governing equation (2) with f (x, t) = 0 and the
boundary condition (3)–(4), suppose that Assumption
1 holds. Given that the parameters of the controller
satisfy the following conditions
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k1 > 0, k2 > 0,

β <
min

(
αρ, κ2

1αT
)

κ1ρL
,

α2T

2βL
− βρL

2
> 0,

(37)

where α, β and κ1 are positive constants, the proposed
sliding mode control (9) yields that

(i) there exists a t0 = m
k1
ln

( k1|s(0)|
k2

+ 1
)
such that the

system reaches the sliding surface as t ≥ t0,
(ii) the state of the closed-loop system is exponentially

stable on the sliding surface.

Proof The proof follows analogously to the proof of
Theorem 1. 
�
Remark 3 From the above analysis, it can be seen
that the system is exponentially bounded stable on the
proposed sliding surface (8) and the convergence rate
depends on the selection of parameters α and β, i.e., the
selection of the sliding surface. From (8), it is clear that
the parameters α and β affect the same item wx (L , t).
When β is fixed, from (11), due to β1 < 1, it can be
concluded that

λ ≥ 1

2α
min

(
3β,

2σ1
T

,
2σ2
ρ

)
.

Obviously, the decrease of the parameter α will result
in the increase of the λ; thus, the convergence rate of
the system on the sliding surface is enlarged.

Remark 4 Comparedwith using an isokinetic reaching
law (i.e., sṡ ≤ −k1|s|) to make the system reach the
sliding surface in [29], the exponential reaching law
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Table 1 Parameters of the beam

Parameter Description Value

EI Bending stiffness 7 Nm2

L length of the beam 1 m

T Tension 10 N

ρ Uniform mass per unit length 0.1 kg/m

m Mass of the payload 1 kg

(i.e., sṡ ≤ −k1s2 − k2|s|) is used in the proposed con-
trol law (9) instead. It will result in that the switching
amplitude of the controller is determined by k2 + d̄
rather than k1+ d̄ when the system is stable. In order to
guarantee the velocity of reaching the sliding surface,
k1 should be chosen as large as possible. While k2 can
be chosen as a small constant due to the introduction of
the exponential item, thus the chattering phenomenon
will be improved.

Remark 5 All feedback states in the control law (9)
can be obtained relatively more easily. w(L , t) can be
measured by a laser displacement sensor at the right
boundary of the beam. wx (L , t) can be sensored by
an inclinometer and wxxx (L , t) can be measured by a
shear force sensor. Then, the backward difference algo-
rithm can be used to calculate the signals wt (L , t) and
wxt (L , t). It should be noted that all the desired signals
can be measured directly or obtained by one derivative
with respect to time, thus avoiding the measurement
noise caused by high-order difference, i.e., wt t (L , t)
and wxtt (L , t).

4 Numerical simulations

In this section, we provide a simulation to verify the
effectiveness of the proposed controller (9) by using the
finite differencemethod (FDM) [32] to approximate the
solutionof thePDE.The space step and the time step are
chosen as Δx = 1/9m and Δt = 0.0001 s. The initial
conditions of the beam are taken as w(x, 0) = 0.1x
and wt (x, 0) = 0. The detailed parameters used in
simulation are provided in the Table 1.

In the simulation, the boundary disturbance d(t) is
generated by the following equation

d(t)=0.4+0.4 sin(π t) + 0.8 sin(2π t) + 1.6 sin(3π t).

-0.3
0

-0.2

-0.1

0.2 6

0

w
(x
,t)
/m

5

0.1

0.4

x/m

4

0.2

t/s

0.6

0.3

3
20.8 11 0

Fig. 2 Displacement of beam without control under external
disturbances

and the time-varyingdistributed load f (x, t) is described
as

f (x, t)

=
[
1+2 sin(0.1πxt)+3 sin(0.2πxt)+4 sin(0.3πxt)

]
x

100L
.

The dynamic responses of the Euler–Bernoulli beam
are examined for the following four cases.

4.1 Without control

The responses of system state for free vibration (i.e.,
u(t) = 0) under external disturbances are shown in
Fig. 2. There are significant vibrations along the beam
due to the initial condition of the system and external
disturbances.

4.2 Boundary control without sliding mode

For comparison, the response of the system state with
the controller

u(t) = −EIwxxx (L , t) + Twx (L , t)

−βmL

α
wxt (L , t) − k1s(t) (38)

without the sliding mode term is shown in Fig. 3. The
parameters are chosen as α = 1.5, β = 5 and k1 = 10
in the simulation. It can be seen that the system state
still vibrates at the equilibrium position due to the input
disturbances, although it converges quickly. Therefore,
the boundary control cannot work well with the input
disturbances.
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Fig. 3 Displacement of beam with the controller (38)

4.3 Sliding mode boundary control

The responses of the system state with the slidingmode
boundary controller (9) under external disturbances are
illustrated in Fig. 4, where the design parameters are
chosen as

α = 1.5, β = 5, k1 = 10, d̄ = 4, k2 = 1.

The response of the sliding mode function is shown in
Fig. 5, inwhich the red line represents the reaching time
of the slidingmode surface, and the blue line represents
the time calculated by the equation m

k1
ln

( k1|s(0)|
k2

+ 1
)
.

Obviously, the proposed sliding mode control (9) can
drive the system reach to the sliding surface in finite
time and remain there afterward, thus the vibration of
the beam system can be suppressed within 2 seconds
as shown in Fig. 4. In addition, the control input and
the boundary displacement of the beam system under
different α are shown in Figs. 6 and 7, respectively.

4.4 Boundary control with disturbance observer

For comparison, the response of the system state with
the boundary controller proposed in [14]

Fig. 4 Displacement of beam with SMC (9)

Fig. 5 The sliding mode function s(t)

Fig. 6 The control input u(t) of SMC (9)
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Fig. 7 Boundary displacement of beam with SMC under differ-
ent α

u(t) = −EIwxxx (L , t) + Twx (L , t) − m[wx (L , t)

−wxxx (L , t)]t − kua(t) − d̂(t) (39)

under different external disturbances is illustrated in
Fig. 8, where d̂(t) is the estimate of the d(t), k is the
control gain, and the auxiliary signal ua(t) is defined
as

ua(t) = wt (L , t) − wxxx (L , t) + wx (L , t).

The disturbance observer is designed as

˙̂d(t) = γ ua(t) − ζdγ d̂(t)

with two positive constants γ and ζd . Figure 8 shows
that the boundary control (39) can suppress the vibra-
tion of the system. However, as shown in Fig. 9, the
proposed sliding mode boundary control (9) leads to
better performace.

4.5 Discussion

This paper proposes a sliding mode control method
for the Euler–Bernoulli system under external distur-
bances. Compared with [14], the derivative of the state
wxxx (L , t) is not required in our control law. More-
over, since the sliding mode control approach is used
to suppress the boundary disturbance instead of a dis-
turbance observer, the bound of the convergence of the
system state can be smaller; thus, a better control per-
formance will be obtained. As shown in Fig. 9, the

Fig. 8 Displacement of beam with controller in [14]

Fig. 9 The comparison for SMC and boundary controller in [14]

convergence bound of the system state under the pro-
posed controller is inmagnitude smaller than that of the
controller in [14]. Besides, compared with [18,33] and
[19], the proposed controller does not depend on the
damping term of the system. Of course, the proposed
controller still has some limitations. Firstly, the chatter-
ing phenomenon of the system is still inevitable, espe-
cially when the external disturbances are large. Sec-
ondly, the proposed controller is dependent on system
parameters EI, T and the upper bound of the boundary
disturbanced(t). For the above problem, the hyperbolic
tangent function can be used to replace the sign func-
tion to reduce the chattering issue and the adaptive laws
of EI, T and d̄ can be designed to solve the parameter
uncertainties, which are also the direction of the future
work.
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5 Conclusion

In this paper, a sliding mode boundary controller is
developed to stabilize an Euler–Bernoulli beam in
the presence of unknown disturbances including time-
varying distributed load and boundary disturbance. In
the control design, a sliding surface based on boundary
state information is adopted to handle the impact of
external disturbances. Further, the reachability of the
sliding surface and the stability of the closed-loop sys-
tem are analyzed by Lyapunov approach. The numer-
ical simulations validate the theoretical results. Com-
pared with the previous work about boundary control
of the Euler–Bernoulli beam system, the proposed con-
troller has following advantages: 1) It can stabilize the
beam system with the unknown external disturbances;
meanwhile, both the controller and the sliding surface
only require boundary state information. 2) The con-
trol design and stability analysis are based on partial
differential equations, and there is no need to simplify
or discretize the beam model.
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