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Abstract Optical fiber communication has developed
rapidly because of the needs of the information age.
Here, the variable coefficients fifth-order nonlinear
Schrödinger equation (NLS), which can be used to
describe the transmission of femtosecond pulse in the
optical fiber, is studied. By virtue of the Hirota method,
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we get the one-soliton and two-soliton solutions. Inter-
actions between solitons are presented, and the soliton
stability is discussed through adjusting the values of
dispersion and nonlinear effects. Results may poten-
tially be useful for optical communications such as all-
optical switches or the study of soliton control.
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1 Introduction

Optical communication has developed rapidly, which
is one of the supporting systems of the modern internet
age [1–9]. The solitons have been investigated exten-
sively after they were proposed in 1980, because they
can keep their shapes to transmit in a long distance
for the balance between the dispersion and nonlinear
effects [10–18]. Besides, somemethods have been used
to solve the soliton solutions [19–24]. Furthermore,
soliton interactions have been used to design optical
switches [25–28]. Therefore, the research of solitons
is hot in nonlinear science, and solitons have turned
into an important topic in the area of communication
systems [29–32].

In this paper, we will study soliton interactions in
an inhomogeneous optical fiber by the following fifth-
order nonlinear Schödinger (NLS) equations [33]:
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iux + d1(x)utt + d2(x) |u|2 u − i[a1(x)utttt t
+ a2(x) |u|2 uttt + a3(x)(u |ut |2)t + a4(x)u

∗ututt
+ a5(x) |u|4 ut ] = 0, (1)

where u(x, t) is a function, which represents the vary-
ing envelope wave. x is the normalized distance, and t
is the normalized time. d1(x) is the group velocity dis-
persion (GVD), a1(x) is the fifth-order dispersion, and
d2(x) is the Kerr nonlinearity. a j (x)( j = 2, 3, 4, 5) are
the fifth-order nonlinearity coefficients.

As we all know, two-soliton interactions are impor-
tant. By studying the soliton interactions, we can
effectively enhance the communication capacity and
improve the stability of the system [34–36]. Besides,
to improve the quality of the communication in some
long-distance optical systems, some factors such as
higher-order dispersion and nonlinear effects should be
considered [37–40]. Further, when the soliton duration
is femto-second, high-order dispersion and high-order
nonlinear effects will appear while solitons are trans-
mitted in optical fibers. Meanwhile, the variable coeffi-
cient NLS equation can describe physical phenomenon
more generally than the constant-coefficient equations
[41–44]. Thus, it is necessary to use Eq. (1) to study the
soliton interactions and analyze the nonlinear dynamic
characteristics of these higher-order effects [11]. For
Eq. (1), the dark soliton solutions and the integrability
have been given [33]. However, the bright two-soliton
solutions of Eq. (1) and their interactions have not been
investigated under certain constraints in the existing
reports.

We will use the Hirota method to get the bright soli-
ton solutions, and their interactions will be given in this
paper. It is organized as: the bright soliton solutionswill
be given in part 2; the interactions between bright soli-
tons will be carried out in part 3; the conclusion will be
derived in part 4.

2 Analytic bright soliton solutions

We introduce a dependent variable u = g/ f with
g(x, t) as the complex one and f (x, t) as the real one
[45]. Using this transformation, we can get the bilinear
forms as [32]

[
i Dx + 1

2
φ1(x)D

2
t − iφ2(x)D

5
t

]
g · f

− 5iφ2(x)hg
∗
t − 5iφ2(x)g

∗s = 0,

D2
t (g · g) − h f = 0,

2Dt (g · gtt ) − s f + h ft = 0,

D2
t ( f · f ) − 2gg∗ = 0.

(2)

Here, Dt and Dx are the bilinear operators [13]. We
introduce the constrains as follows [33],

d1(x) = φ1(x)

2
, d2(x) = 2d1(x), a1(x) = φ2(x),

a2(x) = a3(x) = 10φ2(x),

a4(x) = 2a2(x), a5(x) = 3a2(x).

(3)

To get the bright one-soliton solutions, the functions
of g, f , h and s can be expanded as follows:

f = 1 + ε2 f2, g = εg1, s = 0, h = 0. (4)

And then we assume that

g1 = eθ , f2 = Beθ+θ∗
, θ = k(x) + ωt + δ, (5)

where ω and δ are the complex constants, k(x), φ1(x)
and φ2(x) are real functions. Setting ε = 1, we can get

k(x) =
∫

1

2

(
iω2φ1(x) + 2ω5φ2(x)

)
dx,

B = 1

(ω + ω∗)2
.

(6)

We write the undetermined functions as follows to get
the bright two-soliton solutions,

f = 1 + ε2 f2 + ε4 f4, g = εg1 + ε3g3,

s = s0 + ε2s2, h = h0 + ε2h2.
(7)

We assume that

g1 = eθ1+θ2 ,

f2 = B1e
θ1+θ∗

1 + B2e
θ1+θ∗

2 + B3e
θ2+θ∗

1 + B4e
θ2+θ∗

2 ,

g3 = m1e
θ1+θ2++θ∗

1 + m2e
θ1+θ2++θ∗

2 ,

f4 = Meθ1+θ∗
1 +θ2+θ∗

2 ,

s0 = h0 = 0, s2 = Aeθ1+θ2 , h2 = Qeθ1+θ2 ,

θ1 = k1(x) + ω1t + δ1, θ2 = k2(x) + ω2t + δ2,

(8)
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Fig. 1 Propagation characteristics of parabolic solitons for Eq. (1). Parameters are φ1 = sin x − x , φ2 = 0.2x with a ω = 0.48+ 1.1i ,
δ = 1 + 2i ; b ω = 0.68 + 1.1i , δ = 1 + 2i ; c ω = 0.48 + 1.1i , δ = −2 + 2i

Fig. 2 In-phase interaction characteristics of parabolic solitons for Eq. (1). Parameters are φ1 = sin x − x , φ2 = 0.2x , ω1 = 0.4−1.3i ,
ω2 = 0.73 + 1.1i , δ1 = 1 + 2i with a δ2 = 4 + 2i ; b δ2 = 2 + 2i ; c δ2 = 1 + 2i

where ω and δ are the complex constants, k(x), φ1(x)
and φ2(x) are real functions. We set ε = 1, and will get

k1(x) =
∫

1

2

(
iω2

1φ1(x) + 2ω5
1φ2(x)

)
dx,

k2(x) =
∫

1

2

(
iω2

2φ1(x) + 2ω5
2φ2(x)

)
dx,

Q = 2(ω1 − ω2)
2, A = −Q(ω1 + ω2)

2,

M = B1B2B3B4QQ∗/4,

B1 = 1

(ω1 + ω∗
1)

2 , B2 = 1

(ω1 + ω∗
2)

2 ,

B3 = 1

(ω2 + ω∗
1)

2 , B4 = 1

(ω2 + ω∗
2)

2 ,

m1 = QB1

2(ω2 − ω∗
1)

2 , m2 = QB2

2(ω2 − ω∗
2)

2 .

(9)

3 Discussion

We obtain the one-soliton and two-soliton solutions in
Sect. 2, and the characteristics and interactions of soli-

tons can be explored in this part. Taking different func-
tions for φ1(x) and φ2(x) can result in different dis-
tributions of dispersion. In Fig. 1, there is a common
soliton.Whenwe setω = 0.68+1.1i , the soliton inten-
sity in Fig. 1b gets lager compared with Fig. 1a. And
then, we set δ = −2+ 2i , the soliton in Fig. 1c moves
away while the other characteristics are not changed.

Some interactions between solitons are presented in
Fig. 2, and the interactions between two solitons are
discussed by changing δ2 as different numbers. When
we set φ1(x) = sin(x) − x and φ2(x) = 0.2x , the two
solitons are attracting and repelling each other period-
ically.

After we change δ2 = 2+2i and 1+2i , the distance
between two solitons becomes smaller. The value of δ2
gets smaller, two solitons get closer, and the intensity
of interactions gets stronger. Therefore, we can control
the distance between two solitons to reduce the relative
effect by adjusting δ2. This method can increase the
soliton energy and amplitude effectively.
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Fig. 3 Inverse interaction characteristics of parabolic solitons for Eq. (1). Parameters are φ1 = sin x − x , φ2 = 0.2x , ω1 = 0.8− 1.3i ,
ω2 = −0.43 + 1.1i , δ2 = 2 + 2i with a δ1 = 4 + 2i ; b δ1 = 1 + 2i ; c δ1 = −2 + 2i

In Fig. 3, we can see two solitons spread in differ-
ent directions. When we alter the real part of δ1, one
soliton moves along the t axis. Therefore, the interac-
tion strength between solitons is changed because of the
changing of the distance.Whenwe let δ1 to be 1+2i and
−2+ 2i , respectively, the interaction strength between
two solitons changes gradually. So we can control the
interaction strength between solitons through control-
ling the value of δ1.

4 Conclusion

We have studied the variable coefficients fifth-order
NLS Eq. (1). The bright one-soliton and two-soliton
solutions (4) and (7) have been obtained by the Hirota
method. The interaction strength between solitons has
been discussed theoretically. The intensity of solitons
has been changed with the different numbers of ω.
When we have increased the real part of ω, the soli-
ton has gotten higher. Meanwhile, we have analyzed
the influence of δ1 and δ2 on the soliton transmission.
With the changes of the real parts of δ1 and δ2, the dis-
tance between solitons has gotten smaller or larger, so
soliton interactions have become larger or smaller. As
a result, we have realized how to control the interac-
tion strength between solitons. The results in this work
may have scientific value about the solitons transmis-
sion control.
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