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Abstract The environmental temperature plays a cru-
cial role in determining the behavior of any dynamical
system. In particular, living organisms are character-
ized by a specific value of temperature, which ensures
their normal functioning. In this paper, the effect of
temperature on signal transmission of a pacemaker
neuron is investigated using a small-world neuronal
networks in which the pacemaker is stimulated by a
square-wave signal. We observe that signal propaga-
tionmay be significantly enhanced at intermediate tem-
peratures, i.e., temperature favors the propagation of
the rhythm of the pacemaker to the whole neuronal
network. Furthermore, a rich dynamics is observed,
including spiking and bursting activities, as well as full
and remote synchronization. We also find that signal
propagation crucially depends on the strength of the
coupling. Our findings provide new insights on the sys-
tem dynamics, and improve our understanding of the
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1 Introduction

The rhythmicity of some human behaviors, including
walking, eating emanate, and breathing, depends on
pacemaker neurons which are solitary neurons in the
neuronal networks that entrain the behavior of other
neurons to a coherent rhythmic activity [1]. Pacemaker
neurons can guide the rhythmic activities of neighbor-
ing neurons, and stabilize the functioning of the whole
networks. Due to the significance of pacemaker, much
attention has been devoted to discuss the effects of
pacemaker on the central pattern generator of neuronal
system [2–7]. For example, rhythmic activities driven
by a pacemaker ensemble may be observed in the cen-
tral pattern generator of pyloric of Panulirus interrupts:
these pacemakers are composed of an anterior buster
and two pyloric dilator neurons [8]. Besides, the spon-
taneous circulating waves of activity controlled by the
pacemakers embedded in a conducting medium have
been observed in excitable media [9].

To investigate theoretically the rhythmic behav-
ior, computational simulations of neuronal networks
are usually employed [10–13]. In models of neuronal
network, the complex behavior is determined by the
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dynamics of the node and by the interactions between
neurons [14–21]. It is noteworthy that these models
are not only powerful to investigate the neurodynam-
ics, but also an effective tool to discuss problems in
physical, biological, chemical and ecological systems.
Generally speaking, the complexity of neuronal activ-
ities is largely determined by the topological structure
of the network. It is well-known that different structure
leads to different dynamical behaviors. In connection-
based schemes of brain network, the structure com-
monly exhibits small-world property [22,23]. Small-
world (SW) networks have been proposed by Watts
and Strogatz to understand the nature of real networks
due to the faultiness of regular or random networks on
revealing the dynamics of the real-life network [24].
Since then, the applications of small-world networks
in nervous system greatly contribute to understand the
complex dynamics of neurons, and have attracted large
interest [25–33].

In nature, the microenvironment of a system has
a significant effect on the complex behavior of cou-
pled neurons. For example, the extracellular potassium
concentrations [34–39], cell volume [40,41], and oxy-
gen concentration [42–44], play a crucial role in the
electrical brain activity which has a close relationship
with neurological diseases, including epilepsy, Parkin-
son and arrhythmias. In this framework, temperature
is an important environmental factor, and critically
determines whether the physiological function of liv-
ing organisms works normally. It is common knowl-
edge that the most effective function of any biological
system can only occur at an appropriate temperature or
in a narrow range. For example, the comfortable tem-
perature for the normal human body is about 18◦-25◦C.
Many experiments reveal the importance of tempera-
ture on biological organisms [45–47]. Recently, theo-
retical models have revealed the important effects of
temperature on the transmission of action potentials
along axons, and the existence of an optimal temper-
ature for action-potential propagation through myeli-
nated axons [48]. The existence of an optimal temper-
ature for biological organisms is also revealed by the
fact that themaximum efficiency of system functioning
may be often maintained only at a given temperature
[49–53].

In this paper, we study the effect of temperature on
the rhythmic behavior of neuronal networkswith small-
world topology driven by a pacemaker. In particular,we
consider one neuron stimulated by a square wave sig-

nal as the pacemaker and analyze the dynamics of the
system. Our findings reveal that the signal of the pace-
maker may be transmitted to the whole neuronal net-
work at an appropriate temperature. Additionally, the
coupling strength plays a similar role in signal trans-
mission of pacemaker. In particular, the response of the
neuronal network depends nonmonotonically on the
coupling strength, indicating that a resonance behav-
ior occurs. Furthermore, we observe a rich dynami-
cal behavior, including spiking and bursting activities,
full synchronization and remote synchronization. The
paper is structured as follows. In Sect. 2, the small-
world neuronal network with Hodgkin–Huxley model
is introduced, and a figure of merit to quantify signal
transmission is presented. Some interesting results are
shown in Sect. 3. Section 4 closes the paper with some
concluding remarks.

2 Models and methods

In order to investigate the effect of temperature on
the signal transmission of pacemaker in a small world
neuronal networks, we employ the coupled Hodgkin–
Huxley neuron model [48,53],

Cm
dVi
dt

= −(gK ni (Vi − VK )

+gNam
3
i hi (Vi − VNa) + gl(Vi − Vl))

+Ii=d×i0(t)+ ε

ki

N∑

j=1

gi, j (Vj−Vi ), i=1, ..., N ,

(1)

whereVi stands for themembrane potential, the sodium
current is regulated by the gating variables for activa-
tion and inactivation which are denoted by mi and hi ,
respectively, and ni is the activation gating variable for
the potassium current. These gating variables can be
written unanimously as,

dxi
dt

= 1

τxi
(−xi + x∞

i ), xi = mi , ni , hi , (2)

where τxi = 1
αxi +βxi

, and x∞
i = αxi

αxi +βxi
(xi = mi , ni ),

h∞
i = 1

1+e(Vi+60)/6.2 . The voltage-dependent rates αxi
and βxi (x = m, n, h)do depend on temperature as
follows:

αmi = φ(T )
0.182(Vi + 30)

1 − e−(Vi+30)/8
, (3a)
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Fig. 1 (Color online) a–b
The sketch of network
topologies. a A circular
network with two nearest
neighbors for periodic
boundary conditions. b The
small-world network in
which the disconnected
edge is randomly rewired
with probability p

(a) (b)

βmi = −φ(T )
0.124(Vi + 30)

1 − e−(Vi+30)/8
, (3b)

αni = φ(T )
0.01(Vi − 30)

1 − e(−(Vi−30)/9)
, (3c)

βni = −φ(T )
0.002(Vi − 30)

1 − e(−(Vi−30)/9)
, (3d)

αhi = φ(T )
0.028(Vi + 45)

1 − e(−(Vi+45)/6)
, (3e)

βhi = −φ(T )
0.091(Vi + 70)

1 − e(−(Vi+70)/6)
. (3f)

where φ(T ) = Q
T−23
10

10 in which the effect of temper-
ature on gate rates is an exponential function [48].
Q10 is the temperature coefficient on gating rates,
and T denotes the temperature expressed in Celsius.
The factors gi, j are given by gi, j = 1(g j,i = 1)
when the node j interacts with node i , and other-
wise gi, j = 0. The degree of the node i can be com-
puted by ki = ∑N

j=1 gi, j . In order to build the net-
work, we use the standard algorithm, i.e., we start
from a ring with periodic boundary conditions. Let
gN ,k (N = 200, k = 2) be a 2k-circulant network
with vertex set V (gN ,k) = {v1, v2, ..., vn} and edge
set E(gN ,k) = (vi , vi+n) : 1 ≤ i ≤ N , 1 ≤ n ≤ k (i +
n ≡ j mod (N ) if i + n > N ). Then, we disconnect
and reconnect each edge of gN ,k with probability p by
changing uniformly and randomly one end of an edge,
and repeat this process for each node as shown in Fig. 1.
In this process, loops and multi-edges are not allowed
[24]. We chose the neuron with the largest degree as
the pacemaker (hub neuron) in the neuronal network,
and denote by i0(t), the square wave signal sent to the
pacemaker, i.e., we set Ii=d = 1, and

i0(t) =

⎧
⎪⎨

⎪⎩

I0, nT
′ + 0 ≤ t < nT

′ + T
′
2 ,

0, nT
′ + T

′
2 ≤ t < nT

′ + T
′
,

(4)

where n is positive integer, and I0 and T
′
stands for the

amplitude and period of the squarewave signal, respec-
tively. The description and the values of the parameters
is given in Table 1.

To quantify transmission of firing in the neuronal
network, we calculate the response Qi , defined as
Qi =|< eiωxi (t) >| [54], where | · | and < · >

denote module and time average, respectively. The
membrane potential Vi (t) is converted into the pulses
series xi = VA with 1ms bin orVB ,VA = 1 andVA = 0
corresponding to the firing and nonfiring states, respec-
tively. From the definition of Qi , one can find that the
value of Qi is proportional to the Fourier transform

coefficient F(ω
′
) atω

′ = ω [F(ω
′
)=

∫ +∞
0 eiω

′
t x(t)dt].

We argue that calculating Qi is faster than obtaining
the Fourier transform coefficient. Furthermore, we can
get the relationship between Qi and the firing rate ri ,
which is defined as the number of spiking at a given
time assuming that the spiking of the neuron is peri-
odic. Qi may be written as,

Qi = ri T
′
√
2 − 2 cos(2π/T ′

)

π
. (5)

The factor Qi detects the frequency of square wave,
and a large Qi is observed when synchronization
emerges. Signal propagation is achieved when the out-
put firing is synchronized with the stimulating signal.
In neuron systems, the stimulus information is trans-
mitted by the firing rate coding mechanism, and we are
thus interested in the transmission of firing rate which
contains relevant information about the pacemaker.
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Table 1 Parameter values Parameter Description Value

Cm Cell membrane capacitance 0.75 mF/cm2

gNa The maximum conductance for sodium 150.0 mS/cm2

gK The maximum conductance for potassium 40.0 mS/cm2

gl The maximum leakage conductance 0.033 mS/cm2

VK The reversal potential for potassium −90.0 mV

VNa The reversal potential for sodium 60.0 mV

Vl Leakage reversal potential −70.0 mV

I0 The amplitude of the square wave signal 0.0 40.0μA/cm2

T
′

The period of the square wave signal 100ms

ε The coupling strength 0.0–5.0 mS/cm2

p The connection probability of small-world network 0.0–1.0

Q10 The temperature coefficient 2.3 ◦C
T The Celsius temperature 0–50 ◦C

3 Observations and results

First, we investigate the effect of temperature on the
response of small-world neuronal network driven by a
pacemaker. We examine the activity in such a network
at different temperatures. Figure 2 shows the average
response Qaver = 1

N

∑N
i=1 Qi as a function of temper-

ature T for the different values of the coupling strength.
From those curves, one may clearly observe that there
is an optimal range of temperature to obtain a large
value of Qaver with different coupling strengths, and
the usual resonance clearly emerges. This suggests that
temperature is instrumental in achieving effective sig-
nal transmission frompacemaker to thewhole network.

Figure 3 shows a color 3D plots of Qi as a function
of i (index of coupled neurons) and T for different val-
ues of the coupling strength ε. Looking at the the i-axis,
one may see some large value of Qi for each neuron,
indicating that the signal of pacemaker can be transmit-
ted to the whole network at intermediate temperature
irrespective of ε. Looking at the T-axis, we see that a
maximum of Qi exists for an appropriate value of T ,
i.e., a resonant behavior exists for pacemaker-driven
neurons for all ε. Interestingly, we find that neurons
show no electrical activity except for the hub node at
high temperature.

To further assess the temperature role on the trans-
mission of pacemaker signal, Fig. 4a–c presents ri
(i = 1, 2, 5, d, 200 (d = 194) versus T for with
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Fig. 2 (Color online) a–c The average response Qaver against
temperature T for different coupling strength ε = 1.0, 2.0, and
3.0, respectively. Here, p = 0.3

ε = 1.0, 2.0 and 3.0, respectively. One can see clearly
that ri increases with T and then decreases after reach-
ing a maximum. This again indicates a resonant phe-
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Fig. 3 (Color online) a–c The 3D plot of of the response Q as
a function of i and T for ε = 1.0, 2.0, and 3.0, respectively

nomenon. We also find that ri = 0.01 = 1
T ′ at an opti-

mal window (identified by an arrow), indicating that
the whole network is synchronized with the signal of
pacemaker. We call it full synchronization window (FS
window), which are marked by the arrow in Fig. 4d.
Interestingly, one observe ri = 1

T ′ and rd �= 1
T ′ at

another window, indicating that all neurons except for
the hub node are entrained by the signal of pacemaker,
i.e., remote synchronization occurs. We call it remote
synchronization window (RS window). Furthermore,
the comparison between numerical results and analyt-
ical results (Eq. 5) is shown in Fig. 4d–f. They are in
good agreementwhen the spiking of neuron is periodic.
Upon comparing the three subfigures, we find that the
width of the optimal window depends nonmonotoni-
cally on the coupling strength, which itself critically
controls to which extent the network is under the influ-
ence of the pacemaker.

In order to gain more insight into the role of temper-
ature on the signal propagation of pacemaker, we turn

to investigate the effect of the others parameters on the
temperature-optimized signal propagation. Figure 5a–f
gives the dependence of ri on the temperature T for the
different connection probability p. From Fig. 5b–e (the
small-world network), we see similar resonances for
different connection probabilities, indicating that the
phenomenon of temperature-optimized signal propa-
gation is general. We also see that there exist FS and
RSwindows also for different connection probabilities.
For a regular network (p = 0.0), however, the firing
rate increases with the increase in temperature for a
fraction of the neurons, while a similar resonance phe-
nomenonmay be also observed in the random network.
Interestingly, full and remote synchronization cannot
be observed if one take a closer look at the pattern in
Fig. 5f.

We now consider the effect of coupling strength ε

on the signal propagation of pacemaker. In Fig. 6, the
relationship between ri and ε for different T is exhib-
ited. One can notice that there exists a window inwhich
all neurons spikes with the same firing rate at low tem-
perature, while they are not entrained by the signal of
pacemaker [Fig. 6a]. With the increase in temperature,
full synchronization and remote synchronization occur
in an optimal windows, and resonance-like behavior
may be observed [Fig. 6b, c]. For higher temperature,
the firing rate of the hub node vanishes for increas-
ing ε, and there are not spikes in the whole neuronal
network at sufficient large coupling strength [Fig. 6d].
These results suggest that the coupling strength plays
a crucial role in the signal transmission of pacemaker.

Figure 7 shows the firing rates r1 and rHub as a func-
tion of the coupling ε for different temperatures. The
upper and lower columns in Fig. 7 correspond to r1
and rHub, respectively. The different curves stand for
the different reconnectionprobability in each subfigure.
Nonmonotonic curves for r1 may be observed, indicat-
ing that the coupling strength-optimized signal prop-
agation can also be obtained for different reconnec-
tion probability, while rHub decreases monotonously
for increasing ε. Furthermore, the full and remote syn-
chronization phenomena may also occur at the appro-
priate temperature [Fig. 7b–c].

In order to appreciate the details of the dynamics,
we show [see Fig. 8a–d] the time series for x1, x4,
x5, xd (d = 194), and x200 for T = 0.0, 10.0, 20.0
and 40.0, respectively. Figure 8a shows synchronous
spiking, which are not entrained by the signal of pace-
maker, and Fig. 8b shows that all neurons spike with
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Fig. 4 (Color online) a–c
Dependence of the firing
rate ri (i = 1, 2, 5, d, 200)
on the temperature T for
ε = 1.0, 2.0, and 3.0,
respectively. The index d
stands for the hub node.
(d)-(f) The zoomed-in part
of (a)-(c), the pink lines
stand for the theoretical
result from Eq. 5
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Fig. 5 (Color online) Plots of the firing rate ri (i =
1, 2, 5, d, 200) on the temperature T for the different connec-
tion probability of small world network. p = 0.0 (a), 0.1 (b),

0.3 (c), 0.5 (d), 0.7 (e), and 1.0 (f). ε = 1.0. The insets show the
zoomed-in part. The letters FS and RS stand for the full synchro-
nization and remote synchronization, respectively

the same frequency, which corresponds to driving fre-
quency of the pacemaker, indicating that full synchro-
nization occurs. Figure 8c illustrates a case where we
have remote synchronization. Interestingly, in Fig. 8d,
one may clearly observe that the hub node spikes with

bursting, while others neurons oscillate with a small
amplitude.

To further investigate the change of dynamical
behaviors in details, Fig. 9 shows the bifurcation of ISI
of membrane potential, which is the interval time of
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Fig. 6 (Color online) a–d
The firing rate
ri (i = 1, 2, 5, d, 200)
(d = 194) vs ε for
T = 0.0, 10.0, 20.0, and
40.0, respectively. p = 0.3
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Fig. 7 (Color online) a–d
The firing rate r1 against ε
for T = 0.0, 10.0, 20.0, and
40.0, respectively, e–h the
firing rate rHub versus ε for
T = 0.0, 10.0, 20.0, and
40.0, respectively
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serial spikes for V1(t) (Fig. 9a–c) and Vd(t) (Fig. 9d–f)
with different coupling strength. The left, middle and
right columns corresponds to ε = 1.0, 2.0, and 3.0,
respectively. For the different neurons (the hub and
other nodes), the membrane potentials show different
electrical modes. For other nodes (except for the hub
node), it may be clearly observed that neuron frequency

is shifted from the periodic spiking with ω
′

ω
= 1 : 2 (ω′

and ω correspond to the frequencies of spiking and
pacemaker, respectively) to the periodic spiking corre-

sponding to 1 : 1 as the temperature increases [Fig. 9a–
c]. However, for the hub node, periodic bursting, peri-
odic spiking and aperiodic bursting can be observed
as the temperature increases [Fig. 9d–f]. Interestingly,
comparing the corresponding columns in the two sub-
figures, one clearly see the FS window for spiking with
ω

′
ω

= 1 : 1 and RS window, where the neuron shows
periodic spiking, while the hub node shows bursting.

Finally, we report the dynamical phase diagrams in
the (ε, T ) plane for the nodewith index i = 1 (Fig. 10a)
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Fig. 8 (Color online) a–d
Time series
xi (t), (i = 1, 2, 5, d, 200)
(d = 194) for
T = 0.0, 10.0, 20.0, and
40.0, respectively. The
green and pink lines stand
for the square wave signal
and hub node, respectively.
Here, ε = 2.0, p = 0.3
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VHub(t) are chosen. The
left, middle and right
columns correspond to
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and hub node (Fig. 10b). Based on the above obser-
vations, we conclude that neurons may exhibit four
primary features: subthreshold oscillation state (SO),
spiking state with 1 : 1 (SS1), spiking state with 1 : 2
(SS2) and bursting state (BS). In Fig. 10, the yellow
region corresponds to BS state, in which neurons show
bursting state, the gray region corresponds to SO state,

where the potential V (t) oscillates around the steady
statewith a small amplitude, and the SS1 and SS2 states

for ω
′

ω
= 1 : 1, and 1 : 2 are marked by pink and

cyan, respectively. Comparing Fig. 10a–b, one finds
that the pink regions corresponding to the hub and other
neurons are different, which leads to FS and RS, and
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Fig. 10 (Color online) a–b The dynamical phase diagrams for
the V1(t) and VHub(t), respectively. The pink region corresponds
to frequency synchronizationwith ω

ω
′ = 1 : 1, whereω is the fre-

quency of pacemaker, ω
′
is the frequency of spiking. The letters

SO, SS1, SS2, BS FS and BS stand for the subthreshold oscil-
lation state, spiking state with phase-locking rate 1 : 1, spiking
state with phase-locking rate 1 : 2, bursting state full synchro-
nization and remote synchronization, respectively

depends on both ε and T , showing an island shape.
This result suggests that the signal of pacemaker may
propagate effectively only at for an appropriate choice
of temperature and coupling strength.

4 Conclusions

In conclusion, we have discussed in detail the trans-
mission of pacemaker signal in small-world neural
networks with a biologically plausible neuron model,
and where the environmental temperature is a rele-
vant parameter. In our model, one stimulated neu-
ron represents the pacemaker, and we have found that
the network synchronizes with the stimulating sig-
nal only for an appropriate choice of temperature,
indicating that the signal transmission may be opti-
mized. Interestingly, this synchronous behavior may
occur in two forms: full synchronization, where all
the neurons are entrained by the stimulating signal,
and remote synchronization, where all neurons, except
for the pacemaker, synchronize with the stimulat-
ing signal. Furthermore, a rich variety of dynami-
cal behaviors has been observed, including spiking
with rate of phase locking 1 : 1 and 1 : 2, and
bursting. We have also found that the phenomenon of
temperature-optimized signal transmission is general.
In fact, numerical simulations with different values of
the coupling strength and the connection probability of
the small world network have been systematically per-

formed, and similar results have been observed. Rather
surprisingly, we have found that a resonant behavior, in
which the response of neuronal network nonmonoton-
ically depends on the coupling strength, may be also
observed.

The environmental temperature critically determines
whether biological organisms properly work. It is nec-
essary for any biological system to survive in an appro-
priate temperature range, with higher or lower tem-
peratures that may challenge the normal functioning
of organisms. Motivated by the experimental findings
about the effect of temperature on the neuronal firing
[55,56], we have investigated the effect of temperature
on the rhythmic behavior of neuronal networks driven
by a pacemaker, which is an important topic in neu-
roscience. Our findings provide new insights on the
subject, and improve our understanding about the exis-
tence of the optimal temperature observed in experi-
ments performed with living biological systems.

Acknowledgements This work was supported partially by the
National Natural Science Foundation of China under Grant Nos.
11675112 and 11805091.

Dataavailability Thedatasets generatedduring and/or analyzed
during the current study are available from the corresponding
author on reasonable request.

Declarations

Conflict of interest The authors declare that there is no conflict
of interest to this work.

123



2556 Z. He et al.

References

1. Marder, E.: Moving rhythms. Nature 410, 755 (2001)
2. Koshiya, N., Smith, J.C.: Neuronal pacemaker for breathing

visualized in vitro. Nature 400, 360–363 (1999)
3. Marder, E., Bucher, D.: Central pattern generators and the

control of rhythmic movements. Curr. Biol. 11, R986–R996
(2001)

4. Rabbah, P., Nadim, F.: Distinct synaptic dynamics of het-
erogeneous pacemaker neurons in an oscillatory network. J.
Neurophysiol. 97, 2239–2253 (2007)

5. Wang, X.J.: Pacemaker neurons for the theta rhythm and
their synchronization in the septohippocampal reciprocal
loop. J. Neurophysiol. 87, 889–900 (2002)

6. Gu, H., Ren,W., Lu, Q.,Wu, S., Yang,M., Chen,W.: Integer
multiple spiking in neuronal pacemakers without external
periodic stimulation. Phys. Lett. A 285, 63–68 (2001)

7. Gu, H.G.: Experimental observation of transition from
chaotic bursting to chaotic spiking in a neural pacemaker.
Chaos 23, 023126 (2013)

8. Eisen, J.S.,Marder, E.:Mechanisms underlying pattern gen-
eration in lobster stomatogastric ganglion as determined
by selective inactivation of identified neurons. III. Synap-
tic connections of electrically coupled pyloric neurons. J.
Neurophysiol. 48, 1392–1415 (1982)

9. Nagai, Y., Gonzalez, H., Shrier, A., Glass, L.: Paroxys-
mal starting and stopping of circulating waves in excitable
media. Phys. Rev. Lett. 84, 4248 (2000)

10. Perc,M.,Gosak,M.: Pacemaker-driven stochastic resonance
on diffusive and complex networks of bistable oscillators.
New J. Phys. 10, 053008 (2008)

11. Perc,M.: Stochastic resonance on excitable small-world net-
works via a pacemaker. Phys. Rev. E 76, 066203 (2007)

12. Kori, H.,Mikhailov, A.S.: Entrainment of randomly coupled
oscillator networks by a pacemaker. Phys. Rev. Lett. 93,
254101 (2004)

13. Yao, C.G., Ma, J., Zhiwei He, Z.W., Nakano, T., Qian,
Y., Shuai, J.W.: Inhibitory-autapse-enhanced signal trans-
mission in neural networks. Nonliear Dyn. 97, 1425–1437
(2019)

14. Qin, H., Ma, J., Wang, C., Wu, Y.: Autapse-induced spi-
ral wave in network of neurons under noise. PLoS One 9,
e100849 (2014)

15. Ma, J., Tang, J.: A review for dynamics in neuron and neu-
ronal network. Nonlinear Dyn. 89, 1569–1578 (2017)

16. Ma, J., Tang, J.: A review for dynamics of collective behav-
iors of network of neurons. Sci. China Technol. Sci. 58,
2038–2045 (2015)

17. Jia, Y.B., Gu, H.G., Li, Y.Y., Ding, X.L.: Inhibitory autapses
enhance coherence resonance of a neuronal network. Com-
mun. Nonlinear Sci. Numer. Simul. 95, 105643 (2021)

18. Guan, L., Gu, H.G., Zhao, Z.G.: Dynamics of sub-
threshold and suprathreshold resonance modulated by
hyperpolarization-activated cation current in a bursting neu-
ron. Nonlinear Dyn. 104, 577–601 (2021)

19. Xu, Y., Jia, Y., Wang, H.W., Liu, Y., Wang, P., Zhao, Y.J.:
Spiking activities in chain neural network driven by channel
noise with field coupling. Nonlinear Dyn. 95, 3237–3247
(2019)

20. He, Z.W., Yao, C.G.: The effect of oxygen concentration on
the coupled neurons: rich spiking patterns and synchroniza-
tion. Sci. China Technol. Sci. 63, 2339–2348 (2020)

21. Yao, Z., Wang, C., Zhou, P., Ma, J.: Regulating synchronous
patterns in neurons and networks via field coupling. Com-
mun. Nonlinear Sci. Numer. Simul. 95, 105583 (2021)

22. Lago-Fernandez, L.F., Huerta, R., Corbacho, F., Siguenza,
J.A.: Fast response and temporal coherent oscillations in
small-world networks. Phys. Rev. Lett. 84, 2758 (2000)

23. White, J.G., Southgate, E., Thompson, J.N., Brenner, S.: The
structure of the nervous system of the nematode caenorhab-
ditis elegans. Phil. Trans. R. Soc. Lond. B 314, 1–340 (1986)

24. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-
world networks. Nature 393, 440–442 (1998)

25. Liu, Y., Xu, Y., Ma, J.: Synchronization and spatial patterns
in a light-dependent neural network. Commun. Nonlinear
Sci. Numer. Simul. 89, 105297 (2020)

26. Sun, X.J., Perc,M., Lu, Q.S., Kurths, J.: Effects of correlated
Gaussian noise on the mean firing rate and correlations of
an electrically coupled neuronal network. Chaos 20, 033116
(2010)

27. Yao, C.G., Zhan, M., Shuai, J.W., Ma, J., Kurths, J.: Insensi-
tivity of synchronization to network structure in chaotic pen-
dulum systems with time-delay coupling. Chaos 27, 126702
(2017)

28. Tang, J., Zhang, J., Ma, J., Luo, J.M.: Noise and delay sus-
tained chimera state in small world neuronal network. Sci.
China Technol. Sci. 62, 1134–1140 (2019)

29. Xu, Y., Jia, Y., Ge, M.Y., Lu, L.L., Yang, L.J., Zhan,
X.: Effects of ion channel blocks on electrical activity of
stochastic Hodgkin-Huxley neural network under electro-
magnetic induction. Neurocomputing 283, 196–204 (2017)

30. Ozer,M.,Uzuntarla,M.,Kayikcioglu, T., Graham,L.J.: Col-
lective temporal coherence for subthreshold signal encoding
on a stochastic small-world Hodgkin-Huxley neuronal net-
work. Phys. Lett. A 372, 6498–6503 (2008)

31. Jun, M., Yang, L.J., Wang, Y., Zhang, C.R.: Spiral wave in
small-world networks of Hodgkin-Huxley neurons. Com-
mun. Theor. Phys. 54, 583–588 (2010)

32. Lv,M.,Ma, J., Yao,Y.G.,Alzahrani, F.: Synchronization and
wave propagation in neuronal network under field coupling.
Sci. China Technol. Sci. 62, 448–457 (2019)

33. Qian, Y., Zhang, C., Wei, Z.G., Liu, F., Yao, C.G., Zheng,
Z.G.: The optimal oscillation mode in excitable small-world
networks. Europhys. Lett. 131, 38002 (2020)

34. Bazhenov, M., Timofeev, I., Steriade, M., Sejnowski, T.J.:
Potassium model for slow (2–3 Hz) in vivo neocortical
paroxysmal oscillations. J. Neurophysiol. 92, 1116–1132
(2004)

35. Wu, X.X., Shuai, J.W.:Multistability in a neuronmodel with
extracellular potassium dynamics. Phys. Rev. E 85, 061911
(2012)

36. Wu,X.X., Shuai, J.W.:Effects of extracellular potassiumdif-
fusion on electrically coupled neuron networks. Phys. Rev.
E 91, 022701 (2015)

37. Wu, X.X., Yao, C.G., Shuai, J.W.: Enhanced multiple vibra-
tional resonances by Na+ and K+ dynamics in a neuron
model. Sci. Rep. 5, 7684 (2015)

38. Shuai, J.W., Sheng, R., Jung, P.: Entropically modified spik-
ing ability and periodicity in clustered channels. Phys. Rev.
E 81, 051913 (2010)

123



Transmission of pacemaker signal in a small world neuronal networks: temperature effects 2557

39. Shuai, J.W., Bikson, M., Hahn, P.J., Lian, J., Durand, D.M.:
Ionic mechanisms underlying spontaneous CA1 neuronal
firing in Ca2+-free solution. Biophys. J . 84, 2099–2111
(2003)

40. Roper, S.N., Obenaus, A., Dudek, F.E.: Osmolality and non-
synaptic epileptiform bursts in rat CA1 and dentate gyrus.
Ann. Neurol. 31, 81–85 (1992)

41. Snow,R.W.,Dudek, F.E.: Electrical fields directly contribute
to action potential synchronization during convulsant-
induced epileptiformbursts.BrainRes.323, 114–118 (1984)

42. Wei, Y., Ullah, G., Schiff, S.J.: Unification of neuronal
spikes, seizures, and spreading depression. J. Neurosci. 34,
11733–11743 (2014)

43. Ullah, G., Wei, Y., Dahlem, M.A., Wechselberger, M.,
Schiff, S.J.: The role of cell volume in the dynamics of
seizure, spreading depression, and anoxic depolarization.
PLoS Comput. Biol. 14, 1004414 (2015)

44. Yao, C.G., He, Z.W., Nakano, T., Shuai, J.W.: Spiking pat-
terns of a neuron model to stimulus: Rich dynamics and
oxygens role. Chaos 28, 083112 (2018)

45. Somero, G.N.: Temperature adaptation of enzymes: biolog-
ical optimization through structure-function compromises.
Ann. Rev. Ecol. Syst. 9, 1–29 (1978)

46. Temperature effects on biological systems: rowbury. Intro-
duction. Sci. Prog. 86, 1–8 (2003)

47. Schipper, L.A.: On the temperature dependence of
enzymecatalyzed rates. Biochemistry 55, 1681–1688 (2016)

48. Song, X.L., Wang, H.T., Chen, Y., Lai, Y.C.: Emergence
of an optimal temperature in action-potential propagation
throughmyelinated axons. Phys. Rev. E 100, 032416 (2019)

49. Fu,X., Yu,Y.G.: Reliable and efficient processing of sensory
information at body temperature by rodent cortical neurons.
Nonlinear Dyn. 98, 215–231 (2019)

50. Yu, Y.G., Shu, Y.S., McCormick, D.A.: Cortical action
potential backpropagation explains spike threshold variabil-
ity and rapid-onset kinetics. J. Neurosci. 28, 7260–7272
(2008)

51. Yu, Y.G., Hill, A.P., McCormick, D.A.: Warm body temper-
ature facilitates energy efficient cortical action potentials.
PLoS Comput. Biol. 8, 1002456 (2012)

52. Tai, C., Wang, J., Roppolo, J.R., Groat, W.C.: Relationship
between temperature and stimulation frequency in conduc-
tion block of amphibian myelinated axon. J. Comput. Neu-
rosci. 26, 331–338 (2008)

53. Ding, Q.M., Jia, Y.: Effects of temperature and ion chan-
nel blocks on propagation of action potential in myelinated
axons. Chaos 31, 053102 (2021)

54. Yao, C.G., He, Z.W.: Anormal diffusion enhancement of
resonant responses for coupled oscillator networks to weak
signals. Chaos 30, 083120 (2020)

55. Peterson, M.E., Daniel, R.M., Danson, M.J., Eisenthal, R.:
Thedependenceof enzymeactivity on temperature: determi-
nation and validation of parameters. Biochem. J. 402, 331–
337 (2007)

56. Dell, A.I., Pawar, S., Savage, V.M.: Systematic variation in
the temperature dependence of physiological and ecologi-
cal traits. Proc. Natl. Acad. Sci. U.S.A. 108, 10591–10596
(2011)

Publisher’s Note Springer Nature remains neutral with regard
to jurisdictional claims in published maps and institutional affil-
iations.

123


	Transmission of pacemaker signal in a small world neuronal networks: temperature effects
	Abstract
	1 Introduction
	2 Models and methods
	3 Observations and results
	4 Conclusions
	Acknowledgements
	References




